17,615 research outputs found

    Compressive Measurement Designs for Estimating Structured Signals in Structured Clutter: A Bayesian Experimental Design Approach

    Full text link
    This work considers an estimation task in compressive sensing, where the goal is to estimate an unknown signal from compressive measurements that are corrupted by additive pre-measurement noise (interference, or clutter) as well as post-measurement noise, in the specific setting where some (perhaps limited) prior knowledge on the signal, interference, and noise is available. The specific aim here is to devise a strategy for incorporating this prior information into the design of an appropriate compressive measurement strategy. Here, the prior information is interpreted as statistics of a prior distribution on the relevant quantities, and an approach based on Bayesian Experimental Design is proposed. Experimental results on synthetic data demonstrate that the proposed approach outperforms traditional random compressive measurement designs, which are agnostic to the prior information, as well as several other knowledge-enhanced sensing matrix designs based on more heuristic notions.Comment: 5 pages, 4 figures. Accepted for publication at The Asilomar Conference on Signals, Systems, and Computers 201

    Detecting a Vector Based on Linear Measurements

    Full text link
    We consider a situation where the state of a system is represented by a real-valued vector. Under normal circumstances, the vector is zero, while an event manifests as non-zero entries in this vector, possibly few. Our interest is in the design of algorithms that can reliably detect events (i.e., test whether the vector is zero or not) with the least amount of information. We place ourselves in a situation, now common in the signal processing literature, where information about the vector comes in the form of noisy linear measurements. We derive information bounds in an active learning setup and exhibit some simple near-optimal algorithms. In particular, our results show that the task of detection within this setting is at once much easier, simpler and different than the tasks of estimation and support recovery

    Structured random measurements in signal processing

    Full text link
    Compressed sensing and its extensions have recently triggered interest in randomized signal acquisition. A key finding is that random measurements provide sparse signal reconstruction guarantees for efficient and stable algorithms with a minimal number of samples. While this was first shown for (unstructured) Gaussian random measurement matrices, applications require certain structure of the measurements leading to structured random measurement matrices. Near optimal recovery guarantees for such structured measurements have been developed over the past years in a variety of contexts. This article surveys the theory in three scenarios: compressed sensing (sparse recovery), low rank matrix recovery, and phaseless estimation. The random measurement matrices to be considered include random partial Fourier matrices, partial random circulant matrices (subsampled convolutions), matrix completion, and phase estimation from magnitudes of Fourier type measurements. The article concludes with a brief discussion of the mathematical techniques for the analysis of such structured random measurements.Comment: 22 pages, 2 figure

    Phase retrieval from low-rate samples

    Full text link
    The paper considers the phase retrieval problem in N-dimensional complex vector spaces. It provides two sets of deterministic measurement vectors which guarantee signal recovery for all signals, excluding only a specific subspace and a union of subspaces, respectively. A stable analytic reconstruction procedure of low complexity is given. Additionally it is proven that signal recovery from these measurements can be solved exactly via a semidefinite program. A practical implementation with 4 deterministic diffraction patterns is provided and some numerical experiments with noisy measurements complement the analytic approach.Comment: Preprint accepted for publication in Sampling Theory in Signal and Image Processing -- Special issue on SampTa 201

    The generalized Lasso with non-linear observations

    Full text link
    We study the problem of signal estimation from non-linear observations when the signal belongs to a low-dimensional set buried in a high-dimensional space. A rough heuristic often used in practice postulates that non-linear observations may be treated as noisy linear observations, and thus the signal may be estimated using the generalized Lasso. This is appealing because of the abundance of efficient, specialized solvers for this program. Just as noise may be diminished by projecting onto the lower dimensional space, the error from modeling non-linear observations with linear observations will be greatly reduced when using the signal structure in the reconstruction. We allow general signal structure, only assuming that the signal belongs to some set K in R^n. We consider the single-index model of non-linearity. Our theory allows the non-linearity to be discontinuous, not one-to-one and even unknown. We assume a random Gaussian model for the measurement matrix, but allow the rows to have an unknown covariance matrix. As special cases of our results, we recover near-optimal theory for noisy linear observations, and also give the first theoretical accuracy guarantee for 1-bit compressed sensing with unknown covariance matrix of the measurement vectors.Comment: 21 page

    High-dimensional regression with noisy and missing data: Provable guarantees with nonconvexity

    Get PDF
    Although the standard formulations of prediction problems involve fully-observed and noiseless data drawn in an i.i.d. manner, many applications involve noisy and/or missing data, possibly involving dependence, as well. We study these issues in the context of high-dimensional sparse linear regression, and propose novel estimators for the cases of noisy, missing and/or dependent data. Many standard approaches to noisy or missing data, such as those using the EM algorithm, lead to optimization problems that are inherently nonconvex, and it is difficult to establish theoretical guarantees on practical algorithms. While our approach also involves optimizing nonconvex programs, we are able to both analyze the statistical error associated with any global optimum, and more surprisingly, to prove that a simple algorithm based on projected gradient descent will converge in polynomial time to a small neighborhood of the set of all global minimizers. On the statistical side, we provide nonasymptotic bounds that hold with high probability for the cases of noisy, missing and/or dependent data. On the computational side, we prove that under the same types of conditions required for statistical consistency, the projected gradient descent algorithm is guaranteed to converge at a geometric rate to a near-global minimizer. We illustrate these theoretical predictions with simulations, showing close agreement with the predicted scalings.Comment: Published in at http://dx.doi.org/10.1214/12-AOS1018 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore