17,466 research outputs found

    High Confidence Networked Control for Next Generation Air Transportation Systems

    Get PDF
    This paper addresses the design of a secure and fault-tolerant air transportation system in the presence of attempts to disrupt the system through the satellite-based navigation system. Adversarial aircraft are assumed to transmit incorrect position and intent information, potentially leading to violations of separation requirements among aircraft. We propose a framework for the identification of adversaries and malicious aircraft, and then for air traffic control in the presence of such deliberately erroneous data. The framework consists of three mechanisms that allow each aircraft to detect attacks and to resolve conflicts: fault detection and defense techniques to improve Global Positioning System (GPS)/inertial navigation, detection and defense techniques using the Doppler/received signal strength, and a fault-tolerant control algorithm. A Kalman filter is used to fuse high frequency inertial sensor information with low frequency GPS data. To verify aircraft position through GPS/inertial navigation, we propose a technique for aircraft localization utilizing the Doppler effect and received signal strength from neighboring aircraft. The control algorithm is designed to minimize flight times while meeting safety constraints. Additional separation is introduced to compensate for the uncertainty of surveillance information in the presence of adversaries. We evaluate the effect of air traffic surveillance attacks on system performance through simulations. The results show that the proposed mechanism robustly detects and corrects faults generated by the injection of malicious data. Moreover, the proposed control algorithm continuously adapts operations in order to mitigate the effects these faults. The ability of the proposed approaches to defend against attacks enables reliable air traffic operations even in highly adversarial surveillance conditions.National Science Foundation (U.S.) (CNS-931843)United States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant N0014-08-0696)United States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant N00014-09-1-1051)United States. Office of Naval Research (Grant N00014-12-1-0609)United States. Air Force Office of Scientific Research. Multidisciplinary University Research Initiative (Grant FA9550-10-1-0567

    The Internet of Things Connectivity Binge: What are the Implications?

    Get PDF
    Despite wide concern about cyberattacks, outages and privacy violations, most experts believe the Internet of Things will continue to expand successfully the next few years, tying machines to machines and linking people to valuable resources, services and opportunities

    Increasing resilience of ATM networks using traffic monitoring and automated anomaly analysis

    Get PDF
    Systematic network monitoring can be the cornerstone for the dependable operation of safety-critical distributed systems. In this paper, we present our vision for informed anomaly detection through network monitoring and resilience measurements to increase the operators' visibility of ATM communication networks. We raise the question of how to determine the optimal level of automation in this safety-critical context, and we present a novel passive network monitoring system that can reveal network utilisation trends and traffic patterns in diverse timescales. Using network measurements, we derive resilience metrics and visualisations to enhance the operators' knowledge of the network and traffic behaviour, and allow for network planning and provisioning based on informed what-if analysis

    Girt by sea: understanding Australia’s maritime domains in a networked world

    Get PDF
    This study aims to provide the background, language and context necessary for an informed understanding of the challenges and dilemmas faced by those responsible for the efficacy of Australia’s maritime domain awareness system. Abstract Against a rapidly changing region dominated by the rise of China, India and, closer to home, Indonesia, Australia’s approaches to understanding its maritime domains will be influenced by strategic factors and diplomatic judgements as well as operational imperatives.  Australia’s alliance relationship with the United States and its relationships with regional neighbours may be expected to have a profound impact on the strength of the information sharing and interoperability regimes on which so much of Australia’s maritime domain awareness depends. The purpose of this paper is twofold.  First, it seeks to explain in plain English some of the principles, concepts and terms that maritime domain awareness practitioners grapple with on a daily basis.  Second, it points to a series of challenges that governments face in deciding how to spend scarce tax dollars to deliver a maritime domain awareness system that is necessary and sufficient for the protection and promotion of Australia’s national interests

    Opening Autonomous Airspace–a Prologue

    Get PDF
    The proliferation of Unmanned Aerial Vehicles (UAV), and in particular small Unmanned Aerial Systems (sUAS), has significant operational implications for the Air Traffic Control (ATC) system of the future. Integrating unmanned aircraft safely presents long-standing challenges, especially during the lengthy transition period when unmanned vehicles will be mixed with piloted vehicles. Integration of dissimilar systems is not an easy, straight-forward task and in this case is complicated by the difficulty to truly know what is present in the airspace. Additionally, there are significant technology, security and liability issues that will need resolution to ensure property and life are protected and in loss, indemnified. The future of air traffic will be a fully networked environment, where the absence of participation on the network could connote a potential intruder and threat. This article explores a potential airspace structure, and conceptual air traffic management philosophy of self-separation that is inclusive of all participants. Additionally, the article acknowledges the significant cyber security, technological, societal trust, employment, policy, and liability implications of transition to a fully autonomous air transportation system. Each subject is described at a macro, operations analysis level verses a more detailed systems engineering level. The objective and potential value of such a treatment is to encourage industry dialog about possibilities and more importantly a focus toward workable future air traffic solutions
    corecore