44,864 research outputs found

    Lifecycle information for e-literature: full report from the LIFE project

    Get PDF
    This Report is a record of the LIFE Project. The Project has been run for one year and its aim is to deliver crucial information about the cost and management of digital material. This information should then in turn be able to be applied to any institution that has an interest in preserving and providing access to electronic collections. The Project is a joint venture between The British Library and UCL Library Services. The Project is funded by JISC under programme area (i) as listed in paragraph 16 of the JISC 4/04 circular- Institutional Management Support and Collaboration and as such has set requirements and outcomes which must be met and the Project has done its best to do so. Where the Project has been unable to answer specific questions, strong recommendations have been made for future Project work to do so. The outcomes of this Project are expected to be a practical set of guidelines and a framework within which costs can be applied to digital collections in order to answer the following questions: • What is the long term cost of preserving digital material; • Who is going to do it; • What are the long term costs for a library in HE/FE to partner with another institution to carry out long term archiving; • What are the comparative long-term costs of a paper and digital copy of the same publication; • At what point will there be sufficient confidence in the stability and maturity of digital preservation to switch from paper for publications available in parallel formats; • What are the relative risks of digital versus paper archiving. The Project has attempted to answer these questions by using a developing lifecycle methodology and three diverse collections of digital content. The LIFE Project team chose UCL e-journals, BL Web Archiving and the BL VDEP digital collections to provide a strong challenge to the methodology as well as to help reach the key Project aim of attributing long term cost to digital collections. The results from the Case Studies and the Project findings are both surprising and illuminating

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    Towards Exascale Scientific Metadata Management

    Full text link
    Advances in technology and computing hardware are enabling scientists from all areas of science to produce massive amounts of data using large-scale simulations or observational facilities. In this era of data deluge, effective coordination between the data production and the analysis phases hinges on the availability of metadata that describe the scientific datasets. Existing workflow engines have been capturing a limited form of metadata to provide provenance information about the identity and lineage of the data. However, much of the data produced by simulations, experiments, and analyses still need to be annotated manually in an ad hoc manner by domain scientists. Systematic and transparent acquisition of rich metadata becomes a crucial prerequisite to sustain and accelerate the pace of scientific innovation. Yet, ubiquitous and domain-agnostic metadata management infrastructure that can meet the demands of extreme-scale science is notable by its absence. To address this gap in scientific data management research and practice, we present our vision for an integrated approach that (1) automatically captures and manipulates information-rich metadata while the data is being produced or analyzed and (2) stores metadata within each dataset to permeate metadata-oblivious processes and to query metadata through established and standardized data access interfaces. We motivate the need for the proposed integrated approach using applications from plasma physics, climate modeling and neuroscience, and then discuss research challenges and possible solutions

    ElasTraS: An Elastic Transactional Data Store in the Cloud

    Full text link
    Over the last couple of years, "Cloud Computing" or "Elastic Computing" has emerged as a compelling and successful paradigm for internet scale computing. One of the major contributing factors to this success is the elasticity of resources. In spite of the elasticity provided by the infrastructure and the scalable design of the applications, the elephant (or the underlying database), which drives most of these web-based applications, is not very elastic and scalable, and hence limits scalability. In this paper, we propose ElasTraS which addresses this issue of scalability and elasticity of the data store in a cloud computing environment to leverage from the elastic nature of the underlying infrastructure, while providing scalable transactional data access. This paper aims at providing the design of a system in progress, highlighting the major design choices, analyzing the different guarantees provided by the system, and identifying several important challenges for the research community striving for computing in the cloud.Comment: 5 Pages, In Proc. of USENIX HotCloud 200

    Distributed Computing Grid Experiences in CMS

    Get PDF
    The CMS experiment is currently developing a computing system capable of serving, processing and archiving the large number of events that will be generated when the CMS detector starts taking data. During 2004 CMS undertook a large scale data challenge to demonstrate the ability of the CMS computing system to cope with a sustained data-taking rate equivalent to 25% of startup rate. Its goals were: to run CMS event reconstruction at CERN for a sustained period at 25 Hz input rate; to distribute the data to several regional centers; and enable data access at those centers for analysis. Grid middleware was utilized to help complete all aspects of the challenge. To continue to provide scalable access from anywhere in the world to the data, CMS is developing a layer of software that uses Grid tools to gain access to data and resources, and that aims to provide physicists with a user friendly interface for submitting their analysis jobs. This paper describes the data challenge experience with Grid infrastructure and the current development of the CMS analysis system
    • …
    corecore