3 research outputs found

    Analysis of a consistency recovery method for the 1D convection–diffusion equation using linear finite elements

    Get PDF
    For residual-based stabilization methods such as streamline-upwind Petrov–Galerkin (SUPG) and finite calculus (FIC), the higher-order derivatives of the residual that appear in the stabilization term vanish when simplicial elements are used. The sub-grid scale method using orthogonal sub-scales (OSS) attempts to recover the lost consistency by using a fine-scale projected residual in the stabilization term. The FIC method may also be cast into an OSS form with very little manipulation using an auxiliary convective projection equation. This paper discusses the gain/loss by recovering the consistency of the discrete residual in the stabilization terms via the form that includes the convective projection (as in the OSS method). We present the von Neumann analysis of the FIC method with recovered consistency (FIC RC) for the 1D convection–diffusion problem and we compare it with the standard Bubnov–Galerkin linear finite element method and FIC/SUPG methods. The transient analysis is done by examining the discrete dispersion relation of the stabilization methods. The spectral results for the semi-discrete and fully discrete problem are presented with time integration done by the trapezoidal and second-order backward differencing formula schemes. The effect of lumping the effective mass matrix T is considered relative to using a consistent form. The effect of refinement in space and time is also discussed. Finally, an optimal expression for the stabilization parameter for the FIC RC method on a uniform grid and for the steady state is given and its performance in the transient mode is discussed.&nbsp

    Development and validation of the Euler-Lagrange formulation on a parallel and unstructured solver for large-eddy simulation

    Get PDF
    De nombreuses applications industrielles mettent en jeu des écoulements gaz-particules, comme les turbines aéronautiques et les réacteurs a lit fluidisé de l'industrie chimique. La prédiction des propriétés de la phase dispersée, est essentielle à l'amélioration et la conception des dispositifs conformément aux nouvelles normes européennes des émissions polluantes. L'objectif de cette these est de développer le formalisme Euler- Lagrange dans un solveur parallèle et non-structuré pour la simulation aux grandes échelles pour ce type d'écoulements. Ce travail est motivé par l'augmentation rapide de la puissance de calcul des machines massivement parallèles qui ouvre une nouvelle voie pour des simulations qui étaient prohibitives il y a une décennie. Une attention particulière a été portée aux structures de données afin de conserver une certaine simplicité et la portabilité du code sur des differentes architectures. Les développements sont validés pour deux configurations : un cas académique de turbulence homogène isotrope décroissante et un calcul polydisperse d'un jet turbulent recirculant chargé en particules. L'équilibrage de charges de particules est mis en évidence comme une solution prometteuse pour les simulations diphasiques Lagrangiennes afin d'améliorer les performances des calculs lorsque le déséquilibrage est trop important. ABSTRACT : Particle-laden flows occur in industrial applications ranging from droplets in gas turbines tofluidized bed in chemical industry. Prediction of the dispersed phase properties such as concentration and dynamics are crucial for the design of more efficient devices that meet the new pollutant regulations of the European community. The objective of this thesis is to develop an Euler-Lagrange formulation on a parallel and unstructured solver for large- eddy simulation. This work is motivated by the rapid increase in computing power which opens a new way for simulations that were prohibitive one decade ago. Special attention is taken to keep data structure simplicity and code portability. Developments are validated in two configurations : an academic test of a decaying homogeneous isotropic turbulence and a polydisperse two-phase flow of a confined bluff body. The use of load-balancing capabilities is highlighted as a promising solution in Lagrangian two-phase flow simulations to improve performance when strong imbalance of the dispersed phase is presen

    LES based aerothermal modeling of turbine blade cooling systems

    Get PDF
    Ce travail de thèse, réalisé dans le cadre d’une convention CIFRE entre TURBOMECA et le CERFACS et en partenariat avec l’IVK, se place dans un contexte d’amélioration des performances des turbines axiales équipant les turboréacteurs d’hélicoptère. Un des points critiques du dimensionnement de tels moteurs est la maitrise de la durée de vie des pales de la turbine haute pression qui font face à de très hautes températures provenant de la chambre de combustion. Les prédictions numériques de l’environnement aérothermique des pales (écoulements dans la veine et système de refroidissement) sont réalisées aujourd’hui dans le milieu industriel à l’aide de la modélisation Reynolds Averaged Navier-Stokes (RANS). Grâce à des capacités de calculs grandissantes, l’approche Simulation aux Grandes Echelles (SGE) offre désormais un nouveau potentiel de prédictions d’écoulements. Les travaux de cette thèse s’intéressent ainsi à la capacité de la SGE à prédire l’écoulement du circuit de refroidissement interne d’une pale de turbine. Pour simplifier l’analyse de ce problème ou plusieurs phénomènes physiques sont en jeu, une progression en trois parties est proposée. La première s’intéresse à l’étude aérothermique de géométries simplifiées de canaux de refroidissement (coude à 180° et canal avec promoteurs de turbulence) en configuration statique. Aux régimes d’écoulement considérés, une approche résolue en paroi avec maillage non-structuré hybride est proposée et validée en vue d’une application industrielle facilitée. La seconde partie étend l’analyse de l’écoulement à un cas de canal avec promoteurs de turbulence en rotation utilisant une méthode de résolution numérique dans un repère absolu. Les investigations des résultats de la SGE fournissent des prédictions moyennes et instationnaires en bon accord avec les expériences disponibles et les travaux précédents aussi bien pour la dynamique de l’écoulement que les transferts de chaleur. Enfin, une troisième partie présente une application de la méthode sur un cas de pale réelle avec couplage thermique entre le circuit de refroidissement et le solide de la pale. Cette dernière partie classée confidentielle n’est pas présente dans le manuscrit disponible publiquement. Les résultats de l’approche résolue en paroi et de la rotation dans le repère absolu comparés aux résultats RANS disponibles pour le cas applicatif montrent d’importante différences locales et ainsi le potentiel de la méthode proposée. ABSTRACT : This PhD dissertation, conducted as part of a CIFRE research project between TURBOMECA and CERFACS in partnership with the VKI, deals with improving performance of axial turbines from helicopter engines. One of the most critical design points of such engines is the control of the high pressure turbine blade lifetime which face the high temperatures from the combustor. Today, industrial numerical aerothermal predictions of the flows around the blade (in the vein and in its cooling system) are performed with the Reynolds Averaged Navier-Stokes (RANS). Thanks to the increasing computational power, Large Eddy Simulation (LES) becomes affordable to offer further flow predictions. Therefore, this thesis focuses on the capabilities of the LES to estimate the flow in turbine blade internal cooling channels. To simplify this analysis where several physical phenomenon are present, the problem is described in three parts with increasing complexity. The first part addresses simplified typical geometries of cooling channel (U-bend and ribbed channel) in a static configuration. Considering the flow regime, a wall-resolved approach using a hybrid unstructured mesh is proposed in view of the application on an industrial case. The second part extends the study of the ribbed channel in rotation using an inertial reference frame. LES provides mean and unsteady results in good agreement with the available experimental data and previous works, for the flow dynamic and the heat transfer. Finally, the third part presents the application of the method to an industrial case with conjugate heat transfer between a complex cooling channel and the blade. This last section is not present in the public manuscrit for confidential reasons. Results of the use of the wall-resolved approach in rotation in an inertial frame of reference are compared to RANS predictions and show the potential of the method with high local differences
    corecore