115,140 research outputs found

    Business Case and Technology Analysis for 5G Low Latency Applications

    Get PDF
    A large number of new consumer and industrial applications are likely to change the classic operator's business models and provide a wide range of new markets to enter. This article analyses the most relevant 5G use cases that require ultra-low latency, from both technical and business perspectives. Low latency services pose challenging requirements to the network, and to fulfill them operators need to invest in costly changes in their network. In this sense, it is not clear whether such investments are going to be amortized with these new business models. In light of this, specific applications and requirements are described and the potential market benefits for operators are analysed. Conclusions show that operators have clear opportunities to add value and position themselves strongly with the increasing number of services to be provided by 5G.Comment: 18 pages, 5 figure

    A Federated Filtering Framework for Internet of Medical Things

    Full text link
    Based on the dominant paradigm, all the wearable IoT devices used in the healthcare sector also known as the internet of medical things (IoMT) are resource constrained in power and computational capabilities. The IoMT devices are continuously pushing their readings to the remote cloud servers for real-time data analytics, that causes faster drainage of the device battery. Moreover, other demerits of continuous centralizing of data include exposed privacy and high latency. This paper presents a novel Federated Filtering Framework for IoMT devices which is based on the prediction of data at the central fog server using shared models provided by the local IoMT devices. The fog server performs model averaging to predict the aggregated data matrix and also computes filter parameters for local IoMT devices. Two significant theoretical contributions of this paper are the global tolerable perturbation error (TolF{To{l_F}}) and the local filtering parameter (δ\delta); where the former controls the decision-making accuracy due to eigenvalue perturbation and the later balances the tradeoff between the communication overhead and perturbation error of the aggregated data matrix (predicted matrix) at the fog server. Experimental evaluation based on real healthcare data demonstrates that the proposed scheme saves upto 95\% of the communication cost while maintaining reasonable data privacy and low latency.Comment: 6 pages, 6 Figures, accepted for oral presentation in IEEE ICC 2019, Internet of Things, Federated Learning and Perturbation theor
    corecore