852 research outputs found

    Local Geometric Invariants of Integrable Evolution Equations

    Full text link
    The integrable hierarchy of commuting vector fields for the localized induction equation of 3D hydrodynamics, and its associated recursion operator, are used to generate families of integrable evolution equations which preserve local geometric invariants of the evolving curve or swept-out surface.Comment: 15 pages, AMSTeX file (to appear in Journal of Mathematical Physics

    Nested hierarchies in planar graphs

    Get PDF
    We construct a partial order relation which acts on the set of 3-cliques of a maximal planar graph G and defines a unique hierarchy. We demonstrate that G is the union of a set of special subgraphs, named `bubbles', that are themselves maximal planar graphs. The graph G is retrieved by connecting these bubbles in a tree structure where neighboring bubbles are joined together by a 3-clique. Bubbles naturally provide the subdivision of G into communities and the tree structure defines the hierarchical relations between these communities

    Integration and conjugacy in knot theory

    Full text link
    This thesis consists of three self-contained chapters. The first two concern quantum invariants of links and three manifolds and the third contains results on the word problem for link groups. In chapter 1 we relate the tree part of the Aarhus integral to the mu-invariants of string-links in homology balls thus generalizing results of Habegger and Masbaum. There is a folklore result in physics saying that the Feynman integration of an exponential is itself an exponential. In chapter 2 we state and prove an exact formulation of this statement in the language which is used in the theory of finite type invariants. The final chapter is concerned with properties of link groups. In particular we study the relationship between known solutions from small cancellation theory and normal surface theory for the word and conjugacy problems of the groups of (prime) alternating links. We show that two of the algorithms in the literature for solving the word problem, each using one of the two approaches, are the same. Then, by considering small cancellation methods, we give a normal surface solution to the conjugacy problem of these link groups and characterize the conjugacy classes. Finally as an application of the small cancellation properties of link groups we give a new proof that alternating links are non-trivial.Comment: University of Warwick Ph.D. thesi

    A New Approach for Visualizing UML Class Diagrams

    Get PDF
    UML diagrams have become increasingly important in the engineering and reengineering processes for software systems. Of particular interest are UML class diagrams whose purpose is to display class hierarchies (generalizations), associations, aggregations, and compositions in one picture. The combination of hierarchical and non-hierarchical relations poses a special challenge to a graph layout tool. Existing layout tools treat hierarchical and non-hierarchical relations either alike or as separate tasks in a two-phase process as in, e.g., cite{See97}. We suggest a new approach for visualizing UML class diagrams leading to a balanced mixture of the following aesthetic criteria: Crossing minimization, bend minimization, uniform direction within each class hierarchy, no nesting of one class hierarchy within another, orthogonal layout, merging of multiple inheritance edges, and good edge labelling. We have realized our approach within the graph drawing library GoVisual. Experiments show the superiority to state-of-the-art and industrial standard layouts

    Flat Foldings of Plane Graphs with Prescribed Angles and Edge Lengths

    Get PDF
    When can a plane graph with prescribed edge lengths and prescribed angles (from among {0,180∘,360∘\{0,180^\circ, 360^\circ\}) be folded flat to lie in an infinitesimally thin line, without crossings? This problem generalizes the classic theory of single-vertex flat origami with prescribed mountain-valley assignment, which corresponds to the case of a cycle graph. We characterize such flat-foldable plane graphs by two obviously necessary but also sufficient conditions, proving a conjecture made in 2001: the angles at each vertex should sum to 360∘360^\circ, and every face of the graph must itself be flat foldable. This characterization leads to a linear-time algorithm for testing flat foldability of plane graphs with prescribed edge lengths and angles, and a polynomial-time algorithm for counting the number of distinct folded states.Comment: 21 pages, 10 figure
    • …
    corecore