18 research outputs found

    Self-stabilization in self-organized multihop wireless networks

    No full text
    International audienceIn large scale multihop wireless networks, flat architectures are not scalable. In order to overcome this major drawback, clusterization is introduced to support self-organization and to enable hierarchical routing. When dealing with multihop wireless networks the robustness is a main issue due to the dynamicity of such networks. Several algorithms have been designed for the clusterization process. As far as we know, very few studies check the robustness feature of their clusterization protocols. Moreover, when it is the case, the evaluation is driven by simulations and never by a theoretical approach. In this paper, we show that a clusterization algorithm, that seems to present good properties of robustness, is self-stabilizing. We propose several enhancements to reduce the stabilization time and to improve stability. The use of a Directed Acyclic Graph ensures that the self-stabilizing properties always hold regardless of the underlying topology. These extra criterion are tested by simulations

    Distributed QoS Guarantees for Realtime Traffic in Ad Hoc Networks

    Get PDF
    In this paper, we propose a new cross-layer framework, named QPART ( QoS br>rotocol for Adhoc Realtime Traffic), which provides QoS guarantees to real-time multimedia applications for wireless ad hoc networks. By adapting the contention window sizes at the MAC layer, QPART schedules packets of flows according to their unique QoS requirements. QPART implements priority-based admission control and conflict resolution to ensure that the requirements of admitted realtime flows is smaller than the network capacity. The novelty of QPART is that it is robust to mobility and variances in channel capacity and imposes no control message overhead on the network

    Connected k-hop clustering in ad hoc networks

    Get PDF
    2004-2005 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Self-stabilization in self-organized multihop wireless networks

    Get PDF
    International audienceIn large scale multihop wireless networks, flat architectures are not scalable. In order to overcome this major drawback, clusterization is introduced to support self-organization and to enable hierarchical routing. When dealing with multihop wireless networks the robustness is a main issue due to the dynamicity of such networks. Several algorithms have been designed for the clusterization process. As far as we know, very few studies check the robustness feature of their clusterization protocols. Moreover, when it is the case, the evaluation is driven by simulations and never by a theoretical approach. In this paper, we show that a clusterization algorithm, that seems to present good properties of robustness, is self-stabilizing. We propose several enhancements to reduce the stabilization time and to improve stability. The use of a Directed Acyclic Graph ensures that the self-stabilizing properties always hold regardless of the underlying topology. These extra criterion are tested by simulations

    Mobile Ad-Hoc Networks

    Get PDF
    Ad-hoc networks are a key in the evolution of wireless networks. Ad-hoc networks are typically composed of equal nodes, which communicate over wireless links without any central control. Ad-hoc wireless networks inherit the traditional problems of wireless and mobile communications, such as bandwidth optimisation, power control and transmission quality enhancement. In addition, the multi-hop nature and the lack of fixed infrastructure brings new research problems such as configuration advertising, discovery and maintenance, as well as ad-hoc addressing and self-routing. Many different approaches and protocols have been proposed and there are even multiple standardization efforts within the Internet Engineering Task Force, as well as academic and industrial projects. This chapter focuses on the state of the art in mobile ad-hoc networks. It highlights some of the emerging technologies, protocols, and approaches (at different layers) for realizing network services for users on the move in areas with possibly no pre-existing communications infrastructure

    Communication Solutions for Scaling Number of Collaborative Agents in Swarm of Unmanned Aerial Systems Using Frequency Based Hierarchy

    Get PDF
    Swarms of unmanned aerial systems (UASs) usage is becoming more prevalent in the world. Many private companies and government agencies are actively developing analytical and technological solutions for multi-agent cooperative swarm of UASs. However, the majority of existing research focuses on developing guidance, navigation, and control (GNC) algorithms for a swarm of UASs and proof of stability and robustness of those algorithms. In addition to profound challenges in control of a swarm of UASs, a reliable and fast intercommunication between UASs is one of the vital conditions for success of any swarm. Many modern UASs have high inertia and fly at high speeds which means if latency or throughput are too low in swarms, there is a higher risk for catastrophic failure due to inter-collision within the swarm. This work presents solutions for scaling the number of collaborative agents in swarm of UASs using a frequency-based hierarchy. This work identifies shortcomings and discusses traditional swarm communication systems and how they rely on a single frequency that will handle distribution of information to all or some parts of a swarm. These systems typically use an ad-hoc network to transfer data locally, on the single frequency, between agents without the need of existing communication infrastructure. While this does allow agents the flexibility of movement without concern for disconnecting from the network and managing only neighboring communications, it does not necessarily scale to larger swarms. In those large swarms, for example, information from the outer agents will be routed to the inner agents. This will cause inner agents, critical to the stability of a swarm, to spend more time routing information than transmitting their state information. This will lead to instability as the inner agents’ states are not known to the rest of the swarm. Even if an ad-hoc network is not used (e.g. an Everyone-to-Everyone network), the frequency itself has an upper limit to the amount of data that it can send reliably before bandwidth constraints or general interference causes information to arrive too late or not at all.This work proposes that by using two frequencies and creating a hierarchy where each layer is a separate frequency, a large swarm can be grouped into manageable local swarms. The intra-swarm communication (inside the local swarm) will be handled on a separate frequency while the inter-swarm communication will have its own. A normal mesh network was tested in both hardware in the loop (HiTL) scenarios and a collision avoidance flight test scenario. Those results were compared against dual-frequency HiTL simulations. The dual-frequency simulations showed overall improvement in the latency and throughput comparatively to both the simulated and flight-tested mesh network

    QoS in Node-disjoint Routing for Ad Hoc Networks

    Get PDF
    PhDA mobile ad hoc network (MANET) is a collection of mobile nodes that can communicate with each other without using any fixed infrastructure. It is necessary for MANETs to have efficient routing protocol and quality of service (QoS) mechanism to support multimedia applications such as video and voice. Node-Disjoint Multipath Routing Protocol (NDMR) is a practical protocol in MANETs: it reduces routing overhead dramatically and achieves multiple node-disjoint routing paths. Because QoS support in MANETs is important as best-effort routing is not efficient for supporting multimedia applications, this thesis presents a novel approach to provide that support. In this thesis NDMR is enhanced to provide a QoS enabled NDMR that decreases the transmission delay between source and destination nodes. A multi-rate mechanism is also implemented in the new protocol so that the NDMR QoS can minimise the overall delays. It is shown that these approaches lead to significant performance gains. A modification to NDMR is also proposed to overcome some of the limitations of the original

    ENERGY CONSERVATION FOR WIRELESS AD HOC ROUTING

    Get PDF
    Self-configuring wireless ad hoc networks have attracted considerable attention in the last few years due to their valuable civil and military applications. One aspect of such networks that has been studied insufficiently is the energy efficiency. Energy efficiency is crucial to prolong the network lifetime and thus make the network more survivable.Nodes in wireless ad hoc networks are most likely to be driven by battery and hence operate on an extremely frugal energy budget. Conventional ad hoc routing protocols are focused on handling the mobility instead of energy efficiency. Energy efficient routing strategies proposed in literature either do not take advantage of sleep modes to conserve energy more efficiently, or incur much overhead in terms of control message and computing complexity to schedule sleep modes and thus are not scalable.In this dissertation, a novel strategy is proposed to manage the sleep of the nodes in the network so that energy can be conserved and network connectivity can be kept. The novelty of the strategy is its extreme simplicity. The idea is derived from the results of the percolation theory, typically called gossiping. Gossiping is a convenient and effective approach and has been successfully applied to several areas of the networking. In the proposed work, we will developa sleep management protocol from gossiping for both static and mobile wireless ad hoc networks. Then the protocol will be extended to the asynchronous network, where nodes manage their own states independently. Analysis and simulations will be conducted to show thecorrectness, effectiveness and efficiency of the proposed work. The comparison between analytical and simulation results will justify them for each other. We will investigate the most important performance aspects concerning the proposed strategy, including the effect ofparameter tuning and the impacts of routing protocols. Furthermore, multiple extensions will be developed to improve the performance and make the proposed strategy apply to different network scenarios
    corecore