1,574 research outputs found

    Hoodsquare: Modeling and Recommending Neighborhoods in Location-based Social Networks

    Full text link
    Information garnered from activity on location-based social networks can be harnessed to characterize urban spaces and organize them into neighborhoods. In this work, we adopt a data-driven approach to the identification and modeling of urban neighborhoods using location-based social networks. We represent geographic points in the city using spatio-temporal information about Foursquare user check-ins and semantic information about places, with the goal of developing features to input into a novel neighborhood detection algorithm. The algorithm first employs a similarity metric that assesses the homogeneity of a geographic area, and then with a simple mechanism of geographic navigation, it detects the boundaries of a city's neighborhoods. The models and algorithms devised are subsequently integrated into a publicly available, map-based tool named Hoodsquare that allows users to explore activities and neighborhoods in cities around the world. Finally, we evaluate Hoodsquare in the context of a recommendation application where user profiles are matched to urban neighborhoods. By comparing with a number of baselines, we demonstrate how Hoodsquare can be used to accurately predict the home neighborhood of Twitter users. We also show that we are able to suggest neighborhoods geographically constrained in size, a desirable property in mobile recommendation scenarios for which geographical precision is key.Comment: ASE/IEEE SocialCom 201

    A Spatiotemporal Study and Location-Specific Trip Pattern Categorization of Shared E-Scooter Usage

    Get PDF
    This study analyzes the temporally resolved location and trip data of shared e-scooters over nine months in Berlin from one of Europe’s most widespread operators. We apply time, distance, and energy consumption filters on approximately 1.25 million trips for outlier detection and trip categorization. Using temporally and spatially resolved trip pattern analyses, we investigate how the built environment and land use affect e-scooter trips. Further, we apply a density-based clustering algorithm to examine point of interest-specific patterns in trip generation. Our results suggest that e-scooter usage has point of interest related characteristics. Temporal peaks in e-scooter usage differ by point of interest category and indicate work-related trips at public transport stations. We prove these characteristic patterns with the statistical metric of cosine similarity. Considering average cluster velocities, we observe limited time-saving potential of e-scooter trips in congested areas near the city center

    Mechanisms of murine cerebral malaria: Multimodal imaging of altered cerebral metabolism and protein oxidation at hemorrhage sites.

    Get PDF
    Using a multimodal biospectroscopic approach, we settle several long-standing controversies over the molecular mechanisms that lead to brain damage in cerebral malaria, which is a major health concern in developing countries because of high levels of mortality and permanent brain damage. Our results provide the first conclusive evidence that important components of the pathology of cerebral malaria include peroxidative stress and protein oxidation within cerebellar gray matter, which are colocalized with elevated nonheme iron at the site of microhemorrhage. Such information could not be obtained previously from routine imaging methods, such as electron microscopy, fluorescence, and optical microscopy in combination with immunocytochemistry, or from bulk assays, where the level of spatial information is restricted to the minimum size of tissue that can be dissected. We describe the novel combination of chemical probe-free, multimodal imaging to quantify molecular markers of disturbed energy metabolism and peroxidative stress, which were used to provide new insights into understanding the pathogenesis of cerebral malaria. In addition to these mechanistic insights, the approach described acts as a template for the future use of multimodal biospectroscopy for understanding the molecular processes involved in a range of clinically important acute and chronic (neurodegenerative) brain diseases to improve treatment strategies

    Fuzzy Entropy-Based Spatial Hotspot Reliability

    Get PDF
    Cluster techniques are used in hotspot spatial analysis to detect hotspots as areas on the map; an extension of the Fuzzy C-means that the clustering algorithm has been applied to locate hotspots on the map as circular areas; it represents a good trade-off between the accuracy in the detection of the hotspot shape and the computational complexity. However, this method does not measure the reliability of the detected hotspots and therefore does not allow us to evaluate how reliable the identification of a hotspot of a circular area corresponding to the detected cluster is; a measure of the reliability of hotspots is crucial for the decision maker to assess the need for action on the area circumscribed by the hotspots. We propose a method based on the use of De Luca and Termini’s Fuzzy Entropy that uses this extension of the Fuzzy C-means algorithm and measures the reliability of detected hotspots. We test our method in a disease analysis problem in which hotspots corresponding to areas where most oto-laryngo-pharyngeal patients reside, within a geographical area constituted by the province of Naples, Italy, are detected as circular areas. The results show a dependency between the reliability and fluctuation of the values of the degrees of belonging to the hotspots

    Enhancing Exploratory Analysis across Multiple Levels of Detail of Spatiotemporal Events

    Get PDF
    Crimes, forest fires, accidents, infectious diseases, human interactions with mobile devices (e.g., tweets) are being logged as spatiotemporal events. For each event, its spatial location, time and related attributes are known with high levels of detail (LoDs). The LoD of analysis plays a crucial role in the user’s perception of phenomena. From one LoD to another, some patterns can be easily perceived or different patterns may be detected, thus requiring modeling phenomena at different LoDs as there is no exclusive LoD to study them. Granular computing emerged as a paradigm of knowledge representation and processing, where granules are basic ingredients of information. These can be arranged in a hierarchical alike structure, allowing the same phenomenon to be perceived at different LoDs. This PhD Thesis introduces a formal Theory of Granularities (ToG) in order to have granules defined over any domain and reason over them. This approach is more general than the related literature because these appear as particular cases of the proposed ToG. Based on this theory we propose a granular computing approach to model spatiotemporal phenomena at multiple LoDs, and called it a granularities-based model. This approach stands out from the related literature because it models a phenomenon through statements rather than just using granules to model abstract real-world entities. Furthermore, it formalizes the concept of LoD and follows an automated approach to generalize a phenomenon from one LoD to a coarser one. Present-day practices work on a single LoD driven by the users despite the fact that the identification of the suitable LoDs is a key issue for them. This PhD Thesis presents a framework for SUmmarizIng spatioTemporal Events (SUITE) across multiple LoDs. The SUITE framework makes no assumptions about the phenomenon and the analytical task. A Visual Analytics approach implementing the SUITE framework is presented, which allow users to inspect a phenomenon across multiple LoDs, simultaneously, thus helping to understand in what LoDs the phenomenon perception is different or in what LoDs patterns emerge

    Mapping the Landscape of Mutation Rate Heterogeneity in the Human Genome: Approaches and Applications

    Full text link
    All heritable genetic variation is ultimately the result of mutations that have occurred in the past. Understanding the processes which determine the rate and spectra of new mutations is therefore fundamentally important in efforts to characterize the genetic basis of heritable disease, infer the timing and extent of past demographic events (e.g., population expansion, migration), or identify signals of natural selection. This dissertation aims to describe patterns of mutation rate heterogeneity in detail, identify factors contributing to this heterogeneity, and develop methods and tools to harness such knowledge for more effective and efficient analysis of whole-genome sequencing data. In Chapters 2 and 3, we catalog granular patterns of germline mutation rate heterogeneity throughout the human genome by analyzing extremely rare variants ascertained from large-scale whole-genome sequencing datasets. In Chapter 2, we describe how mutation rates are influenced by local sequence context and various features of the genomic landscape (e.g., histone marks, recombination rate, replication timing), providing detailed insight into the determinants of single-nucleotide mutation rate variation. We show that these estimates reflect genuine patterns of variation among de novo mutations, with broad potential for improving our understanding of the biology of underlying mutation processes and the consequences for human health and evolution. These estimated rates are publicly available at http://mutation.sph.umich.edu/. In Chapter 3, we introduce a novel statistical model to elucidate the variation in rate and spectra of multinucleotide mutations throughout the genome. We catalog two major classes of multinucleotide mutations: those resulting from error-prone translesion synthesis, and those resulting from repair of double-strand breaks. In addition, we identify specific hotspots for these unique mutation classes and describe the genomic features associated with their spatial variation. We show how these multinucleotide mutation processes, along with sample demography and mutation rate heterogeneity, contribute to the overall patterns of clustered variation throughout the genome, promoting a more holistic approach to interpreting the source of these patterns. In chapter 4, we develop Helmsman, a computationally efficient software tool to infer mutational signatures in large samples of cancer genomes. By incorporating parallelization routines and efficient programming techniques, Helmsman performs this task up to 300 times faster and with a memory footprint 100 times smaller than existing mutation signature analysis software. Moreover, Helmsman is the only such program capable of directly analyzing arbitrarily large datasets. The Helmsman software can be accessed at https://github.com/carjed/helmsman. Finally, in Chapter 5, we present a new method for quality control in large-scale whole-genome sequencing datasets, using a combination of dimensionality reduction algorithms and unsupervised anomaly detection techniques. Just as the mutation spectrum can be used to infer the presence of underlying mechanisms, we show that the spectrum of rare variation is a powerful and informative indicator of sample sequencing quality. Analyzing three large-scale datasets, we demonstrate that our method is capable of identifying samples affected by a variety of technical artifacts that would otherwise go undetected by standard ad hoc filtering criteria. We have implemented this method in a software package, Doomsayer, available at https://github.com/carjed/doomsayer.PHDBioinformaticsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147537/1/jedidiah_1.pd

    Fabrication, structural, optical, electrical, and humidity sensing characteristics of hierarchical NiO nanosheet/nanoball fower like structure flms

    Get PDF
    In this work, nickel oxide (NiO) nanosheet/nanoball-fower-like structures (NSBS) were directly grown on a NiO seed-coated glass substrate using a low-temperature immersion method at 75 ºC. The thickness, or density, of the nanoball-fower-like structures difered based on the following samples order: NSBS1< NSBS2< NSBS3. The synthesised NSBS flms were investigated in terms of structural, optical, electrical, and humidity sensing characteristics. The X-ray difraction (XRD) analysis revealed that the NSBS samples corresponded to the face-centred cubic NiO with fve difraction patterns indexed to the (111), (200), (220), (311), and (222) planes. The interplanar spacing, lattice parameter, unit cell volume, strain, and stress were also determined from the XRD results. The transmittance spectra showed that the NSBS samples had a transparency of more than 30% in the visible region. The optical bandgap values for the NSBS samples were estimated in the range between 3.72 and 3.75 eV, which is directly related to their lattice expansion and defect characteristics. The current–voltage and Hall efect measurement results revealed that the NSBS2 displayed good electrical properties with the resistance, hole concentration, and hole mobility values of 7.84 MΩ, 8.71×1015 hole/cm−3, and 1.88×102 cm2 /V s, respectively. The NSBS samples performed well for humidity sensing with the highest sensitivity value of 169 being obtained for the NSBS2. These humidity sensing results correlated well with their structural, optical, and electrical characteristics

    Detecting and predicting the topic change of Knowledge-based Systems: A topic-based bibliometric analysis from 1991 to 2016

    Full text link
    © 2017 The journal Knowledge-based Systems (KnoSys) has been published for over 25 years, during which time its main foci have been extended to a broad range of studies in computer science and artificial intelligence. Answering the questions: “What is the KnoSys community interested in?” and “How does such interest change over time?” are important to both the editorial board and audience of KnoSys. This paper conducts a topic-based bibliometric study to detect and predict the topic changes of KnoSys from 1991 to 2016. A Latent Dirichlet Allocation model is used to profile the hotspots of KnoSys and predict possible future trends from a probabilistic perspective. A model of scientific evolutionary pathways applies a learning-based process to detect the topic changes of KnoSys in sequential time slices. Six main research areas of KnoSys are identified, i.e., expert systems, machine learning, data mining, decision making, optimization, and fuzzy, and the results also indicate that the interest of KnoSys communities in the area of computational intelligence is raised, and the ability to construct practical systems through knowledge use and accurate prediction models is highly emphasized. Such empirical insights can be used as a guide for KnoSys submissions
    corecore