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Abstract: Cluster techniques are used in hotspot spatial analysis to detect hotspots as areas on the
map; an extension of the Fuzzy C-means that the clustering algorithm has been applied to locate
hotspots on the map as circular areas; it represents a good trade-off between the accuracy in the
detection of the hotspot shape and the computational complexity. However, this method does not
measure the reliability of the detected hotspots and therefore does not allow us to evaluate how
reliable the identification of a hotspot of a circular area corresponding to the detected cluster is;
a measure of the reliability of hotspots is crucial for the decision maker to assess the need for action
on the area circumscribed by the hotspots. We propose a method based on the use of De Luca and
Termini’s Fuzzy Entropy that uses this extension of the Fuzzy C-means algorithm and measures the
reliability of detected hotspots. We test our method in a disease analysis problem in which hotspots
corresponding to areas where most oto-laryngo-pharyngeal patients reside, within a geographical
area constituted by the province of Naples, Italy, are detected as circular areas. The results show
a dependency between the reliability and fluctuation of the values of the degrees of belonging to
the hotspots.

Keywords: hotspots; fuzzy clustering; FCM; EFCM; fuzzy entropy; reliability

1. Introduction

Hotspot detection is an emerging spatial analysis feature that allows for the detection
of areas in which events representing a certain phenomenon are present with greater
insistence (hotspots) and follows their spatial distribution and displacement over time.
Cluster techniques are proposed by various researchers to locate hotspots in the study
area for many problems. For example, in crime analysis, it is used specifically to locate as
hotspots the areas with greater presence and frequency of criminal events in city contexts;
in disease analysis, it is used to evaluate the formation and displacement of disease
strains over time; in monitoring problems of natural and environmental disasters, such
as the monitoring of developments of fires in wooded areas in summer, it is applied to
analyze where and with what frequency and intensity natural and malicious phenomena
of fires develop.

Cluster algorithms are proposed by some authors to detect hotspots in various spatial
analysis problems.

K-means [1] is applied by some authors to detect hotspots in crime analysis [2,3]
and fire analysis [4,5]. K-medoids [6] is applied in disease analysis [7]. Fuzzy C-means
(for short, FCM) [8–10] is applied to detect hotspots in crime analysis [11–14], road traffic
crashes [15], and disease analysis [16]. Kernel density-based algorithms [17] are applied in
crime analysis [18], soil pollution [19], and traffic accident analysis [20].

Kernel density algorithms have the advantage of detecting even hotspots of irregular
geometric shape, but they are computationally more expensive than K-means and FCM; on
the other hand, K-means and FCM detect only cluster centers and are less robust than the
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presence of noise in the data. Furthermore, in K-means and FCM, the number of clusters
must be fixed in advance and validity measures must be used to evaluate what the suitable
number of clusters might be.

In [21], a new hotspot detection technique is proposed, based on an extension of
FCM, called Extended Fuzzy C-means (for short, EFCM) [22]. EFCM detect cluster as
hyper-spheres in the space of the features; the number of clusters must not be set a priori
as it is obtained through merging processes of the most similar clusters carried out during
each iteration. In [21], the authors show that EFCM can approximate the shape of hotspots
on the map and is robust with respect to the presence of noise and outliers. The EFCM
hotspot detection method was applied in disease analysis [23,24] and in earthquake disaster
analysis [25].

One of the main needs in hotspot detection is to evaluate the reliability of the results
by measuring how significant the detected hotspots are. EFCM detects circular hotspots on
the map but does not give information about their reliability. This assessment is sometimes
interpretative; it is left to the expert who assesses whether the analyzed event persists more
frequently in the region where the hotspot was detected. An effective measure of reliability
of a hotspot is critical to understanding how accurate the location of the area in which the
analyzed phenomenon exists is, in order to monitor it and follow its movements over time.
Currently, no hotspot detection method proposed in the literature allows us to measure
the reliability of the detected hotspots; a quantitative assessment of the reliability of the
detected hotspots is crucial because it would allow the decision maker to evaluate how
accurate the geographic location and areal size of a hotspot can be.

In this research we propose a measure of the reliability of the hotspots detected by
running the EFCM algorithm, in which the De Luca & Termini fuzzy entropy [26,27]
is applied; the reliability of the hotspot is higher if the fuzzy entropy measured for the
corresponding cluster is lower.

Recently, measures of fuzzy entropy of clustering in FCM have been proposed
in [28,29]. Following [28], in this work each fuzzy cluster constitutes a fuzzy set in the
domain of the data points and a measure of the fuzzy entropy is applied to each fuzzy
cluster to evaluate its fuzziness.

If H(Ai) is the fuzziness of the ith cluster, normalized in the interval [0,1], we assign a
reliability of the correspondent hotspot Ai given by:

R(Ai) = 1− H(Ai)

The reliability of Ai is normalized in the interval [0,1]. It holds 1 when the fuzziness
of Ci is null (the cluster is a not null crisp set) and 0 when the fuzziness is maximum (all
the data points belong to the cluster with a membership degree 1

2 n).
We’ve implemented our method in a GIS-framework in which the EFCM-based

hotspot detection algorithm was encapsulated. After executing EFCM, the detected
hotspots are shown as circles on the map and the reliability of each hotspot is calculated as
in (1). Finally, the hotspot reliability map is constructed.

In next section, the EFCM algorithm and the De Luca & Termini Fuzzy Entropy are
introduced. Our framework is described in Section 3. Section 4 show the results of our
tests. Finally, considerations are included in Section 5.

2. Preliminaries
2.1. The EFCM Algorithm

The EFCM algorithm [22] is a variation of FCM in which the cluster prototypes
are hyper-spheres in the space of the features; each cluster is characterized by a vector
characterizing its center and its radius.

Let X = {x1, . . . , xN} ⊂ Rn be a set of N data points in the n-dimensional space of the
features Rn where xk = (xk1, . . . , xkn). Let V = {v1, . . . , vC} ⊂ Rn be the set of centers of the
C clusters. Let U be the C × N partition matrix where uik is the membership degree of the
kth data point xk to the jth cluster vj. Let r = {r1, . . . , rC} be the set of radii of the C clusters.
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EFCM minimize the following objective function:

J(U, V, r) =
C

∑
i=1

N

∑
j=1

um
ij δ

2
ij (1)

where m is the fuzzifier parameter and δij, interpreted as the distance between the ith
cluster and the jth data point, is given by:

δij = max
(
0, dij − ri

)
(2)

In (2) dij is the Euclidean distance between the center of the ith cluster and the jth
pattern and ri is the radius of the ith cluster.

If Pi is the covariance matrix of the ith cluster:

Pi =
∑N

j=1 um
ij
(
xj − vi

)
(xj − vi)

T

∑N
j=1 um

ij
(3)

then the radius ri of the ith cluster is given by:

ri =

√
det(Pi)

1/n (4)

Applying the Lagrange multiplier method to the (1) we obtain the solutions for V and U:

vi =
∑N

j=1 um
ij xj

∑N
j=1 um

ij
i = 1, . . . , C (5)

uij =


1

∑C
k=1 (

δij
δkj

)

2
(m−1)

i f ϕj = 0

{
0 i f δij > 0
1
φj

i f δij = 0 i f ϕj > 0
i = 1, . . . , C, j = 1, . . . , N (6)

where φj is the number of cluster whose distance from the jth data point δij i = 1, . . . , C is
equal to 0.

In [22], with the aim to ensure the separation between clusters, the radius of the

ith cluster calculated at the tth iteration, ri
(t) is increased by a factor β(t−1)

C(t−1) , where C(t−1)

is the number of clusters detected during the previous iteration and β(t−1) is the value
calculated at the previous iteration of a parameter defined recursively, where β(0) = 1,
β(τ) = min

(
C(τ−1), β(τ−1) + 1

)
.

The optimal number of clusters is found merging at any iteration with the two most
similar clusters, under some conditions.

The similarity between two clusters is measured by the following inclusion index:

Sik =
∑N

j=1 min(uij, ukj)

min
(

∑N
j=1 uij, ∑N

j=1 ukj

) i = 1, . . . , C j = 1, . . . , N (7)

where the similarity cluster matrix S is a symmetric matrix.
Let S(t) be the similarity cluster matrix calculated at the tth iteration and let i* and

k* be the indices of the two most similar clusters; these two clusters are merged if their
similarity is greater than an adaptive similarity threshold α(t) = 1/(C(t) − 1), and the
absolute difference

∣∣∣S(t)
i∗k∗ − S(t−1)

i∗k∗

∣∣∣ is less than an error η.
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When two clusters are merged, the number of clusters is reduced by one unit and the
parameter β remains unchanged, otherwise, if S(t)

i∗k∗ > α(t), the parameter β is increased, by

setting β(t) = min
(

C(t−1), β(t−1) + 1
)

.
If the two most similar clusters are merged:

u(t)
i∗j = u(t)

i∗j + u(t)
k∗j ∀j ∈ {1, . . . , N}

C(t) = C(t−1) − 1
β(t) = β(t−1)

(8)

otherwise: {
if S(t)

i∗k∗ > α(t) then β(t) = min
(

C(t−1), β(t−1) + 1
)

C(t) = C(t−1)
(9)

The EFCM algorithm (Algorithm 1) is described in the following pseudocode.

Algorithm 1: EFCM.

1. Set m, ε, η, the initial number of clusters C(0)

2. β← 1, S*← 0, S*prev ← 1
3. Initialize randomly the partition matrix U and the centers vi
4. Repeat
5. For i = 1 to C //calculate centers and radius of clusters
6. Calculate the center of the ith cluster vi by (4)
7. Calculate the radius of the ith cluster ri by (12)
8. ri ← ri · β/C //enlarge the radius of the i-th cluster
9. For i = 1 to C //calculate new partition matrix
10. For j = 1 to N
11. Calculate the membership degree component uij by (14)
12. For i = 1 to C − 1 //Find the two most similar clusters
13. For k = i + 1 to C
14. Calculate Sik by (15)
15. If Sik > S* Then
16. S*← Sik
17. If |S* − S*prev| < η
18. α = 1/(C − 1)
19. If S* > α //merge the two most similar clusters
20. For j = i + 1 to N
21. uij ← uij + ukj
22. Remove the kth row from U
23. C← C − 1
24. Else
25. β←min(C, β + 1)

26. Until
∣∣∣U(t) −U(t−1)

∣∣∣ > ε

27. Return the partition matrix and the volume prototypes of the final C Clusters

2.2. De Luca & Termini Fuzzy Entropy and the Measure of Fuzziness

Let F(X) = {A: X→ [0,1]} be the family of fuzzy sets defined on a universe of discourse X.
Let h: [0,1]→ [0,1] be a continuous function called fuzzy entropy function. The following

restrictions are required for the function h:

1. h(1) = 0
2. h(u) = h(1 − u)
3. h is monotonically increasing in in [0, 1

2 ]
4. h is monotonically decreasing in in [ 1

2 , 1]

The fuzzy entropy function has a minimal value of 0 when u is 0 or 1, and a maximum
value when u = 1

2 .
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De Luca and Termini in [26,27] propose the following fuzzy entropy function:

h(u) =


0 i f u = 0

−u·log2(u)− (1− u)·log2(1− u) i f 0 < u < 1
0 i f u = 1

(10)

which has the maximum value 1 when u = 1
2 ; it is called Shannon’s function.

If X = {xi, x2, . . . , xN} is a discrete set, we define the entropy measure of fuzziness of
the fuzzy set A as:

H(A) = K
N

∑
i=1

h(A(xi)) (11)

where K is a multiplicative constant. If H(A) = 0, then for each element xi, i = 1, . . . , N,
A(xi) = 0 or A(xi) = 1 and A coincides with a subset of the set X; if for each element xi,
i = 1, . . . , N, A(xi) = 1

2 and the fuzziness of A is maximum.
If A is a crisp set, its fuzziness is null and H(A) = 0. The higher the fuzziness of a fuzzy

set, the closer the mean membership degree to the fuzzy set of X’s elements approaches 1
2 .

In [28], a fuzziness measure (12) is used to construct a new validity index, which is
applied to evaluate the optimal number of clusters in FCM. If Ai is the ith fuzzy cluster
where i = 1, . . . , C considered as a fuzzy set and uij is the membership degree of the jth
data point to the ith cluster, the authors use the following fuzzy entropy measure of Ai:

H(Ai) =
1
N

N

∑
j=1

h
(
uij
)

i = 1, . . . , C (12)

where N is the number of data points and the De Luca & Termini fuzzy entropy function (11)
is used.

3. The Proposed Framework

We constructed a GIS-based framework in which EFCM is implemented to detect
hotspots and the fuzzy entropy measure (13) is calculated to evaluate the reliability of the
detected hotspots. The framework is schematized in Figure 1.
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The set of spatial events is extracted from the spatial event datasets. Each event
is a data point given by its latitude and longitude coordinates. The event extraction
functionality builds the set of data points by extracting the event data located in the study
area and transforming them into a single system of geographic coordinates.

The set of spatial events is given by a set of N events X = {x1, . . . , xN} RN. Each data
point is given by a pair xj = (xj1, xj2), j = 1, . . . , N; xj1 and xj2 are the latitude and longitude
coordinates where the event is located.

EFCM was executed to detect circles C as clusters; each cluster is identified by its
center vj = (vi1, vi2), j = 1, . . . , C and its radius ri and the component uij of the C × N
partition matrix U gives the membership degree of the jth data point to the ith cluster. The
cluster prototypes constitute hotspots of circular areas which are shown on the map.

The Calculate reliability function calculates the reliability of each hotspot by applying
the Formula (13) to assess the fuzziness of the hotspots. The reliability R(Ai), i = 1, . . . , C,
assigned to the ith hotspot is given by the Formula (1); it is a value in the range [0,1].

Finally, the reliability thematic map was produced. Below we show the algorithm
applied to extract the hotspots assessing their reliabilities (Algorithm 2).

Algorithm 2: Hotspots reliability evaluation.

1. Extract the dataset of event X = {x1, . . . , xN} ⊂ R2

2. Execute EFCM (X)
3. For i = 1 to C
4. H← 0
5. For j = 1 to N
6. Hi ← Hi + h(uij)//where the Equation (11) is applied for the function h(u)
7. H← H/N
8. Ri ← 1 − H
9. Return the centers vi, the radius ri and the reliability Ri i = 1, . . . , C

In next section we show the obtained results.

4. Test Results

We tested our framework on an area of study given by the district of Naples, Italy.
The extension of the district is 1171 km2. The event dataset was constructed by considering
the places of residence of patients who have been diagnosed with oto-laryngo-pharyngeal
disease diagnosis in the last four years. These data were collected by entering only non-
sensitive information and transmitted by hospitals and medical facilities. An address
locator geocoding function was used to geo-refer the data points.

The event dataset is made from about 4000 data points. The GIS framework was
constructed using the tool GIS Esri ArcGis Desktop 10.8; the EFCM algorithm was imple-
mented in the GIS platform using Python libraries.

After executing EFCM, 24 hotspots were detected and plotted as circles on the map.
The thematic map with the hotspots is shown in Figure 2.
The detected hotspots have an extension between 0.6 and about 9 km2. The area and

the reliability of each hotspots are shown in Table 1.
Figure 3 shows a plot graph in which the reliability dependency on hotspots area

is analyzed.
Figure 3 shows that there is no linear dependency between the area of hotspots and

their reliability; the very low value of the coefficient of determination R2 (=0.128) means
that the smaller and more compact hotspots do not necessarily have greater reliability.

In Figure 4, the graph analyzes the linear dependency of reliability on the standard
deviation. The graph shows the presence of a linear relationship between standard devia-
tion and reliability with a mean-high value of the coefficient of determination R2 (=0.864):
this result means that, on average, the greater the fluctuation of the values of the degrees of
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belonging of the data points to the hotspot, the greater the fuzzy entropy of the hotspot,
therefore the lower its reliability.
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ID Area (km2) Standard dev. Reliability

01 0.06 0.045 0.47
02 0.24 0.028 0.69
03 0.31 0.031 0.68
04 0.34 0.033 0.63
05 0.81 0.033 0.68
06 0.89 0.025 0.81
07 0.92 0.032 0.67
08 0.97 0.024 0.82
09 1.00 0.022 0.89
10 1.08 0.033 0.57
11 1.18 0.050 0.41
12 1.47 0.026 0.76
13 1.59 0.034 0.57
14 1.66 0.044 0.42
15 1.76 0.033 0.66
16 1.79 0.042 0.43
17 2.10 0.035 0.53
18 2.14 0.039 0.47
19 3.51 0.030 0.57
20 3.52 0.048 0.46
21 5.03 0.045 0.43
22 5.07 0.037 0.58
23 5.30 0.035 0.61
24 8.91 0.043 0.50



Entropy 2021, 23, 531 8 of 11

Entropy 2021, 23, x FOR PEER REVIEW 8 of 11 
 

 

Figure 3 shows a plot graph in which the reliability dependency on hotspots area is 
analyzed. 

 
Figure 3. Linear dependency analysis results of the reliability on the area of the hotspots. 

Figure 3 shows that there is no linear dependency between the area of hotspots and 
their reliability; the very low value of the coefficient of determination R2 (=0.128) means 
that the smaller and more compact hotspots do not necessarily have greater reliability.  

In Figure 4, the graph analyzes the linear dependency of reliability on the standard 
deviation. The graph shows the presence of a linear relationship between standard devi-
ation and reliability with a mean-high value of the coefficient of determination R2 (=0.864): 
this result means that, on average, the greater the fluctuation of the values of the degrees 
of belonging of the data points to the hotspot, the greater the fuzzy entropy of the hotspot, 
therefore the lower its reliability.  

 
Figure 4. Linear dependency analysis results of the reliability on the standard deviation. 

Figure 5 shows a thematic map of the hotspots in which three thematic classes are 
used, obtained by applying the Jenks Natural Breaks Classification method [30]: 

Figure 3. Linear dependency analysis results of the reliability on the area of the hotspots.

Entropy 2021, 23, x FOR PEER REVIEW 8 of 11 
 

 

Figure 3 shows a plot graph in which the reliability dependency on hotspots area is 
analyzed. 

 
Figure 3. Linear dependency analysis results of the reliability on the area of the hotspots. 

Figure 3 shows that there is no linear dependency between the area of hotspots and 
their reliability; the very low value of the coefficient of determination R2 (=0.128) means 
that the smaller and more compact hotspots do not necessarily have greater reliability.  

In Figure 4, the graph analyzes the linear dependency of reliability on the standard 
deviation. The graph shows the presence of a linear relationship between standard devi-
ation and reliability with a mean-high value of the coefficient of determination R2 (=0.864): 
this result means that, on average, the greater the fluctuation of the values of the degrees 
of belonging of the data points to the hotspot, the greater the fuzzy entropy of the hotspot, 
therefore the lower its reliability.  

 
Figure 4. Linear dependency analysis results of the reliability on the standard deviation. 

Figure 5 shows a thematic map of the hotspots in which three thematic classes are 
used, obtained by applying the Jenks Natural Breaks Classification method [30]: 

Figure 4. Linear dependency analysis results of the reliability on the standard deviation.

Figure 5 shows a thematic map of the hotspots in which three thematic classes are
used, obtained by applying the Jenks Natural Breaks Classification method [30]:

- Low, which includes hotspots with reliability less than 0.45
- Mean, which includes hotspots with reliability between 0.45 and 0.6
- High, which includes hotspots with reliability greater than 0.6

This can provide information on the distribution in the study area of hotspots with
different reliabilities. Hotspots with low reliability can be interpreted as hotspots in which
there is greater uncertainty regarding their location and extent; on the contrary, hotspots
with high reliability are hotspots whose location and extent have been detected with
greater certainty.
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Figure 5. Thematic map with the detected hotspots.

The map in Figure 5 shows a concentration of hotspots with low reliability within the
municipality of Naples; they are located in an area corresponding to the historic center of
the city.

We asked a team of expert doctors who analyzed the dataset of the locations of patients
diagnosed with the disease to evaluate how accurate the location and width of each hotspot
detected on the map was, assigning one of the three labels: Low, Mean, and High, to each
hotspot. In Table 2, the evaluations of the experts are compared with the results obtained
in the thematic map in Figure 5.

Table 2. Hotspot reliability Comparison results.

ID Reliability Reliability Class Expert Evaluation

01 0.47 Mean Mean
02 0.69 High High
03 0.68 High High
04 0.63 High Mean
05 0.68 High Mean
06 0.81 High High
07 0.67 High Mean
08 0.82 High High
09 0.89 High High
10 0.57 Mean Mean
11 0.41 Low Low
12 0.76 High High
13 0.57 Mean High
14 0.43 Low Low
15 0.66 High Mean
16 0.42 Low Low
17 0.53 Mean Mean
18 0.47 Mean Mean
19 0.57 Mean Mean
20 0.46 Mean Mean
21 0.43 Low Low
22 0.58 Mean Mean
23 0.61 Mean High
24 0.50 Mean Mean
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The results obtained are correlated with the deductions made by the team of experts.
The four hotspots rated with reliability Low, are also evaluated with Low reliability by the
pool of experts, who found it more difficult to locate disease strains in the areas including
the historic center of the municipality of Naples, due mainly to a high population density,
on average homogeneous to the entire area of the historic city center.

5. Final Considerations

To assess the reliability of the hotspots detected in spatial analysis, we propose a
framework in which the EFCM hotspot detection algorithm is used to detect the hotspots,
and the De Luca and Termini’s fuzzy entropy is applied to measure the reliability of the
detected hotspots.

We tested our framework in a disease analysis problem; the results show that the
presence of an approximately linear dependence between the reliability of the detected
hotspots and the fluctuation of the membership degrees of the event data points to the
corresponding fuzzy clusters. Furthermore, the spatial distribution of the reliability of the
detected hotspots corresponds to the assessments made by the pool of experts.

In the future, we intend to adapt and apply our framework on massive event datasets,
and to test the proposed method for measuring the reliability of predictions of future
locations and displacements of hotspots.
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