51,119 research outputs found

    Using treemaps for variable selection in spatio-temporal visualisation

    Get PDF
    We demonstrate and reflect upon the use of enhanced treemaps that incorporate spatial and temporal ordering for exploring a large multivariate spatio-temporal data set. The resulting data-dense views summarise and simultaneously present hundreds of space-, time-, and variable-constrained subsets of a large multivariate data set in a structure that facilitates their meaningful comparison and supports visual analysis. Interactive techniques allow localised patterns to be explored and subsets of interest selected and compared with the spatial aggregate. Spatial variation is considered through interactive raster maps and high-resolution local road maps. The techniques are developed in the context of 42.2 million records of vehicular activity in a 98 km(2) area of central London and informally evaluated through a design used in the exploratory visualisation of this data set. The main advantages of our technique are the means to simultaneously display hundreds of summaries of the data and to interactively browse hundreds of variable combinations with ordering and symbolism that are consistent and appropriate for space- and time- based variables. These capabilities are difficult to achieve in the case of spatio-temporal data with categorical attributes using existing geovisualisation methods. We acknowledge limitations in the treemap representation but enhance the cognitive plausibility of this popular layout through our two-dimensional ordering algorithm and interactions. Patterns that are expected (e.g. more traffic in central London), interesting (e.g. the spatial and temporal distribution of particular vehicle types) and anomalous (e.g. low speeds on particular road sections) are detected at various scales and locations using the approach. In many cases, anomalies identify biases that may have implications for future use of the data set for analyses and applications. Ordered treemaps appear to have potential as interactive interfaces for variable selection in spatio-temporal visualisation. Information Visualization (2008) 7, 210-224. doi: 10.1057/palgrave.ivs.950018

    A review of data visualization: opportunities in manufacturing sequence management.

    No full text
    Data visualization now benefits from developments in technologies that offer innovative ways of presenting complex data. Potentially these have widespread application in communicating the complex information domains typical of manufacturing sequence management environments for global enterprises. In this paper the authors review the visualization functionalities, techniques and applications reported in literature, map these to manufacturing sequence information presentation requirements and identify the opportunities available and likely development paths. Current leading-edge practice in dynamic updating and communication with suppliers is not being exploited in manufacturing sequence management; it could provide significant benefits to manufacturing business. In the context of global manufacturing operations and broad-based user communities with differing needs served by common data sets, tool functionality is generally ahead of user application

    Interactive visual exploration of a large spatio-temporal dataset: Reflections on a geovisualization mashup

    Get PDF
    Exploratory visual analysis is useful for the preliminary investigation of large structured, multifaceted spatio-temporal datasets. This process requires the selection and aggregation of records by time, space and attribute, the ability to transform data and the flexibility to apply appropriate visual encodings and interactions. We propose an approach inspired by geographical 'mashups' in which freely-available functionality and data are loosely but flexibly combined using de facto exchange standards. Our case study combines MySQL, PHP and the LandSerf GIS to allow Google Earth to be used for visual synthesis and interaction with encodings described in KML. This approach is applied to the exploration of a log of 1.42 million requests made of a mobile directory service. Novel combinations of interaction and visual encoding are developed including spatial 'tag clouds', 'tag maps', 'data dials' and multi-scale density surfaces. Four aspects of the approach are informally evaluated: the visual encodings employed, their success in the visual exploration of the clataset, the specific tools used and the 'rnashup' approach. Preliminary findings will be beneficial to others considering using mashups for visualization. The specific techniques developed may be more widely applied to offer insights into the structure of multifarious spatio-temporal data of the type explored here

    Uncertainty in phylogenetic tree estimates

    Full text link
    Estimating phylogenetic trees is an important problem in evolutionary biology, environmental policy and medicine. Although trees are estimated, their uncertainties are discarded by mathematicians working in tree space. Here we explicitly model the multivariate uncertainty of tree estimates. We consider both the cases where uncertainty information arises extrinsically (through covariate information) and intrinsically (through the tree estimates themselves). The importance of accounting for tree uncertainty in tree space is demonstrated in two case studies. In the first instance, differences between gene trees are small relative to their uncertainties, while in the second, the differences are relatively large. Our main goal is visualization of tree uncertainty, and we demonstrate advantages of our method with respect to reproducibility, speed and preservation of topological differences compared to visualization based on multidimensional scaling. The proposal highlights that phylogenetic trees are estimated in an extremely high-dimensional space, resulting in uncertainty information that cannot be discarded. Most importantly, it is a method that allows biologists to diagnose whether differences between gene trees are biologically meaningful, or due to uncertainty in estimation.Comment: Final version accepted to Journal of Computational and Graphical Statistic

    Interactive tag maps and tag clouds for the multiscale exploration of large spatio-temporal datasets

    Get PDF
    'Tag clouds' and 'tag maps' are introduced to represent geographically referenced text. In combination, these aspatial and spatial views are used to explore a large structured spatio-temporal data set by providing overviews and filtering by text and geography. Prototypes are implemented using freely available technologies including Google Earth and Yahoo! 's Tag Map applet. The interactive tag map and tag cloud techniques and the rapid prototyping method used are informally evaluated through successes and limitations encountered. Preliminary evaluation suggests that the techniques may be useful for generating insights when visualizing large data sets containing geo-referenced text strings. The rapid prototyping approach enabled the technique to be developed and evaluated, leading to geovisualization through which a number of ideas were generated. Limitations of this approach are reflected upon. Tag placement, generalisation and prominence at different scales are issues which have come to light in this study that warrant further work

    Hierarchical Knowledge-Gradient for Sequential Sampling

    Get PDF
    We consider the problem of selecting the best of a finite but very large set of alternatives. Each alternative may be characterized by a multi-dimensional vector and has independent normal rewards. This problem arises in various settings such as (i) ranking and selection, (ii) simulation optimization where the unknown mean of each alternative is estimated with stochastic simulation output, and (iii) approximate dynamic programming where we need to estimate values based on Monte-Carlo simulation. We use a Bayesian probability model for the unknown reward of each alternative and follow a fully sequential sampling policy called the knowledge-gradient policy. This policy myopically optimizes the expected increment in the value of sampling information in each time period. Because the number of alternatives is large, we propose a hierarchical aggregation technique that uses the common features shared by alternatives to learn about many alternatives from even a single measurement, thus greatly reducing the measurement effort required. We demonstrate how this hierarchical knowledge-gradient policy can be applied to efficiently maximize a continuous function and prove that this policy finds a globally optimal alternative in the limit

    Exploration of Parameter Spaces in a Virtual Observatory

    Get PDF
    Like every other field of intellectual endeavor, astronomy is being revolutionised by the advances in information technology. There is an ongoing exponential growth in the volume, quality, and complexity of astronomical data sets, mainly through large digital sky surveys and archives. The Virtual Observatory (VO) concept represents a scientific and technological framework needed to cope with this data flood. Systematic exploration of the observable parameter spaces, covered by large digital sky surveys spanning a range of wavelengths, will be one of the primary modes of research with a VO. This is where the truly new discoveries will be made, and new insights be gained about the already known astronomical objects and phenomena. We review some of the methodological challenges posed by the analysis of large and complex data sets expected in the VO-based research. The challenges are driven both by the size and the complexity of the data sets (billions of data vectors in parameter spaces of tens or hundreds of dimensions), by the heterogeneity of the data and measurement errors, including differences in basic survey parameters for the federated data sets (e.g., in the positional accuracy and resolution, wavelength coverage, time baseline, etc.), various selection effects, as well as the intrinsic clustering properties (functional form, topology) of the data distributions in the parameter spaces of observed attributes. Answering these challenges will require substantial collaborative efforts and partnerships between astronomers, computer scientists, and statisticians.Comment: Invited review, 10 pages, Latex file with 4 eps figures, style files included. To appear in Proc. SPIE, v. 4477 (2001
    • …
    corecore