13,424 research outputs found

    Hierarchical decomposition and simulation of manufacturing cells using Ada

    Full text link
    A useful tool in the development of flexible automation is a system description language which can generate a complete func tional description of a manufacturing cell of arbitrary complexity. We propose a description system based on the concept of hierar chical decomposition utilizing the Ada programming language in conjunction with established diagrammatical decomposition methods. The distinguishing aspect of our work is that it takes advantage of certain features of Ada (such as type checking) to create a description that can be automatically verified for con sistency Simulation is often an indispensable tool in the develop ment of manufacturing systems. We show how a simulation of the operation of the manufacturing cell can be embedded in its description. Finally, we apply the methodology to a specific instance of a manufacturing cell.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68498/2/10.1177_003754978604600402.pd

    A scalable parallel finite element framework for growing geometries. Application to metal additive manufacturing

    Get PDF
    This work introduces an innovative parallel, fully-distributed finite element framework for growing geometries and its application to metal additive manufacturing. It is well-known that virtual part design and qualification in additive manufacturing requires highly-accurate multiscale and multiphysics analyses. Only high performance computing tools are able to handle such complexity in time frames compatible with time-to-market. However, efficiency, without loss of accuracy, has rarely held the centre stage in the numerical community. Here, in contrast, the framework is designed to adequately exploit the resources of high-end distributed-memory machines. It is grounded on three building blocks: (1) Hierarchical adaptive mesh refinement with octree-based meshes; (2) a parallel strategy to model the growth of the geometry; (3) state-of-the-art parallel iterative linear solvers. Computational experiments consider the heat transfer analysis at the part scale of the printing process by powder-bed technologies. After verification against a 3D benchmark, a strong-scaling analysis assesses performance and identifies major sources of parallel overhead. A third numerical example examines the efficiency and robustness of (2) in a curved 3D shape. Unprecedented parallelism and scalability were achieved in this work. Hence, this framework contributes to take on higher complexity and/or accuracy, not only of part-scale simulations of metal or polymer additive manufacturing, but also in welding, sedimentation, atherosclerosis, or any other physical problem where the physical domain of interest grows in time

    Internet enabled modelling of extended manufacturing enterprises using the process based techniques

    Get PDF
    The paper presents the preliminary results of an ongoing research project on Internet enabled process-based modelling of extended manufacturing enterprises. It is proposed to apply the Open System Architecture for CIM (CIMOSA) modelling framework alongside with object-oriented Petri Net models of enterprise processes and object-oriented techniques for extended enterprises modelling. The main features of the proposed approach are described and some components discussed. Elementary examples of object-oriented Petri Net implementation and real-time visualisation are presented

    Production planning systems for cellular manufacturing

    Get PDF
    New product development is one of the most powerful but difficult activities in business. It is also a very important factor affecting final product quality. There are many techniques available for new product development. Experimental design is now regarded as one of the most significant techniques. In this article, we will discuss how to use the technique of experimental design in developing a new product - an extrusion press. In order to provide a better understanding of this specific process, a brief description of the extrusion press is presented. To ensure the successful development of the extrusion press, customer requirements and expectations were obtained by detailed market research. The critical and non-critical factors affecting the performance of the extrusion press were identified in preliminary experiments. Through conducting single factorial experiments, the critical factorial levels were determined. The relationships between the performance indexes of the extrusion press and the four critical factors were determined on the basis of multi-factorial experiments. The mathematical models for the performance of the extrusion press were established according to a central composite rotatable design. The best combination of the four critical factors and the optimum performance indexes were determined by optimum design. The results were verified by conducting a confirmatory experiment. Finally, a number of conclusions became evident.

    A review of information flow diagrammatic models for product-service systems

    Get PDF
    A product-service system (PSS) is a combination of products and services to create value for both customers and manufacturers. Modelling a PSS based on function orientation offers a useful way to distinguish system inputs and outputs with regards to how data are consumed and information is used, i.e. information flow. This article presents a review of diagrammatic information flow tools, which are designed to describe a system through its functions. The origin, concept and applications of these tools are investigated, followed by an analysis of information flow modelling with regards to key PSS properties. A case study of selection laser melting technology implemented as PSS will then be used to show the application of information flow modelling for PSS design. A discussion based on the usefulness of the tools in modelling the key elements of PSS and possible future research directions are also presented

    A New Combined Framework for the Cellular Manufacturing Systems Design

    Get PDF
    Cellular Manufacturing (CM) system has been recognized as an efficient and effective way to improve productivity in a factory. In recent years, there have been continuous research efforts to study different facet of CM system. The literature does not contain much published research on CM design which includes all design aspects. In this paper we provide a framework for the complete CM system design. It combines Axiomatic Design (AD) and Experimental Design (ED) to generate several feasible and potentially profitable designs. The AD approach is used as the basis for establishing a systematic CM systems design structure. ED has been a very useful tool to design and analyze complicated industrial design problems. AD helps secure valid input-factors to the ED. An element of the proposed framework is desmontrate through a numerical example for cell formation with alternative process.Cellular manufacturing; Design methodology Axiomatic Design; Experimental Design.
    • …
    corecore