1,702 research outputs found

    Proof Verification and Attribute Based Re-Encryption of Shared Data over Public Cloud

    Get PDF
    Cloud storage is the best and proficient approach to handle our information remotely. In any case, since information proprietors and clients are more often than not outside the trusted area of cloud specialist co-ops the information security and get to control is the critical component at the season of delicate information put away in the cloud. Additionally, now days there are distinctive systems are accessible for information sharing and saving security of information proprietor and client. Key Escrow is the one of the significant issue now a day. We can’t keep full trust over the key power focus since they might be abuse their benefits. This is unsatisfactory for data sharing circumstances. In this paper we concentrated the current procedure for sharing the information from information proprietor to information client. The methodology propose an enhanced two-party key issuing convention that can ensure that neither key power nor cloud specialist co-op can bargain the entire mystery key of a client exclusively. The method also present the idea of quality with weight, being given to upgrade the statement of characteristic, which cannot just extend the expression from paired to discretionary state, additionally help the intricacy of get to approach. In this manner, both capacity cost and encryption many-sided quality for a cipher text are eased. Attribute based encryption is an open key based encryption that empowers get to control over encoded information utilizing access strategies and credited qualities. In this paper we propose proof verification module which verify proof of shared file and is received by data consumer when file shared by data owner and also a method which applies re-encryption (ABE) of a shared file here the attributes of data consumers are used to generate key

    Decentralizing Multi-Authority Attribute-based Data Sharing Scheme in Cloud computing

    Get PDF
    To maintain data integrity on the cloud, Attribute-based Encryption (ABE) with Key Policy Attribute-based Encryption (KP-ABE) and Ciphertext-Policy Attribute-based Encryption (CP-ABE) can be used with access control implementation for cloud computing. CP-ABE is a promising cryptographic primitive for secure data sharing in cloud computing. A data owner is the only charge of to define the access policy associated with his data which to be shared. In CP-ABE, each user's secret keys are associated with a set of attributes and data are encrypted with access policy on attributes. A user can decrypt a ciphertext if and only if his attributes satisfy the ciphertext access policy. In CP-ABE, the secret keys of users have to be issued by a trusted key authority that leads to key escrow problem. Besides, most of the existing CP-ABE schemes cannot support attribute with an arbitrary state. In this paper, weighted-attribute data sharing scheme is proposed to solve the key escrow problem and also improve the expressiveness of attribute, so that the resulting scheme is friendlier to cloud computing applications. An improved two-party key issuing protocol guarantees that neither key authority nor cloud service provider can compromise the whole secret key of a user individually. The concept of weighted-attribute not only enhance the expression of an attribute binary to arbitrary but also reduce the complexity of access policy, so that storage cost of ciphertext and time cost in encryption can be reduced

    Blind Bernoulli Trials: A Noninteractive Protocol for Hidden-Weight Coin Flips

    Get PDF
    We introduce the concept of a Blind Bernoulli Trial, a noninteractive protocol that allows a set of remote, disconnected users to individually compute one random bit each with probability p defined by the sender, such that no receiver learns any more information about p than strictly necessary. We motivate the problem by discussing several possible applications in secure distributed systems. We then formally define the problem in terms of correctness and security definitions and explore possible solutions using existing cryptographic primitives. We prove the security of an efficient solution in the standard model. Finally, we implement the solution and give performance results that show it is practical with current hardware

    Unified Ciphertext-Policy weighted attribute-based encryption for sharing data in cloud computing

    Full text link
    © 2018 by the authors. With the rapid development of cloud computing, it is playing an increasingly important role in data sharing. Meanwhile, attribute-based encryption (ABE) has been an effective way to share data securely in cloud computing. In real circumstances, there is often a mutual access sub-policy in different providers' access policies, and the significance of each attribute is usual diverse. In this paper, a secure and efficient data-sharing scheme in cloud computing, which is called unified ciphertext-policy weighted attribute-based encryption (UCP-WABE), is proposed. The weighted attribute authority assigns weights to attributes depending on their importance. The mutual information extractor extracts the mutual access sub-policy and generates the mutual information. Thus, UCP-WABE lowers the total encryption time cost of multiple providers. We prove that UCP-WABE is selectively secure on the basis of the security of ciphertext-policy weighted attribute-based encryption (CP-WABE). Additionally, the results of the implementation shows that UCP-WABE is efficient in terms of time

    Developing a Trustworthy Cloud Service Framework for Cloud Computing Security

    Get PDF
    Cloud computing is quickly becoming an essential platform for sharing infrastructure, software, apps, and corporate resources. Cloud computing has many advantages, but users still have a lot of questions about the dependability and safety of cloud services. Concerns about the hazards associated with the possible exploitation of this technology to undertake criminal operations might threaten the undeniable success of cloud computing. To ensure happy customers, the cloud model must prioritize safety, openness, and dependability.Its main purpose is data security, which concerns everyone contemplating cloud services. A cloud-based assault protection system will safeguard data, communications, and information.According to studies, the recommended technique is successful, however updating tags and blocks when data is amended requires computation and communication expenses. Scalability, data secrecy, and decentralized double encryption improve security.The proposed method employs cloud servers for computation-intensive tasks and protects data content by depriving data owners and users of privilege information. Also ensures responsibility. Sharing health data on the cloud is feasible, cost-effective, efficient, adaptive, and better for individuals. This"Advanced Encryption Standard with Lightweight Cipher-text-Identity and Attribute-based Encryption" (AES-lightweight CP-ABE) aims to protect sensitive data

    Security and Privacy for Green IoT-based Agriculture: Review, Blockchain solutions, and Challenges

    Get PDF
    open access articleThis paper presents research challenges on security and privacy issues in the field of green IoT-based agriculture. We start by describing a four-tier green IoT-based agriculture architecture and summarizing the existing surveys that deal with smart agriculture. Then, we provide a classification of threat models against green IoT-based agriculture into five categories, including, attacks against privacy, authentication, confidentiality, availability, and integrity properties. Moreover, we provide a taxonomy and a side-by-side comparison of the state-of-the-art methods toward secure and privacy-preserving technologies for IoT applications and how they will be adapted for green IoT-based agriculture. In addition, we analyze the privacy-oriented blockchain-based solutions as well as consensus algorithms for IoT applications and how they will be adapted for green IoT-based agriculture. Based on the current survey, we highlight open research challenges and discuss possible future research directions in the security and privacy of green IoT-based agriculture

    A Framework for Uncertain Cloud Data Security and Recovery Based on Hybrid Multi-User Medical Decision Learning Patterns

    Get PDF
    Machine learning has been supporting real-time cloud based medical computing systems. However, most of the computing servers are independent of data security and recovery scheme in multiple virtual machines due to high computing cost and time. Also, this cloud based medical applications require static security parameters for cloud data security. Cloud based medical applications require multiple servers to store medical records or machine learning patterns for decision making. Due to high Uncertain computational memory and time, these cloud systems require an efficient data security framework to provide strong data access control among the multiple users. In this work, a hybrid cloud data security framework is developed to improve the data security on the large machine learning patterns in real-time cloud computing environment. This work is implemented in two phases’ i.e. data replication phase and multi-user data access security phase. Initially, machine decision patterns are replicated among the multiple servers for Uncertain data recovering phase. In the multi-access cloud data security framework, a hybrid multi-access key based data encryption and decryption model is implemented on the large machine learning medical patterns for data recovery and security process. Experimental results proved that the present two-phase data recovering, and security framework has better computational efficiency than the conventional approaches on large medical decision patterns

    A Hybrid Secure Cloud Platform Maintenance Based on Improved Attribute-Based Encryption Strategies

    Get PDF
    In the modern era, Cloud Platforms are the most needed port to maintain documents remotely with proper security norms. The concept of cloud environments is similar to the network channel. Still, the Cloud is considered the refined form of network, in which the data can easily be stored into the server without any range restrictions. The data maintained into the remote server needs a high-security feature, and the processing power of data should be high to retrieve the data back from the respective server. In the past, there were several security schemes available to protect the remote cloud server reasonably. However, the attack possibilities over the cloud platform remain; only all the researchers continuously work on this platform without any delay. This paper introduces a hybrid data security scheme called the Improved Attribute-Based Encryption Scheme (IABES). This IABES combines two powerful data security algorithms: Advanced Encryption Standard (AES) and Attribute-Based Encryption (ABE) algorithm. These two algorithms are combined to provide massive support to the proposed approach of data maintenance over the remote cloud server with high-end security norms. This hybrid data security algorithm assures the data cannot be attacked over the server by the attacker or intruder in any case because of its robustness. The essential generation process generates a credential for the users. It cannot be identified or visible to anyone as well as the generated certificates cannot be extracted even if the corresponding user forgets the credentials. The only way to get back the certification is resetting the credential. The obtained results prove the accuracy level of the proposed cypher security schemes compared with the regular cloud security management scheme, and the proposed algorithm essential generation process is unique. No one can guess or acquire it. Even the person may be the service provider or server administrator. For all, the proposed system assures data maintenance over the cloud platform with a high level of security and robustness in Quality of Service

    Attribute-Based Data Sharing Scheme Revisited in Cloud Computing

    Get PDF
    Ciphertext-policy attribute-based encryption (CP-ABE) is a very promising encryption technique for secure data sharing in the context of cloud computing. Data owner is allowed to fully control the access policy associated with his data which to be shared. However, CP-ABE is limited to a potential security risk that is known as key escrow problem, whereby the secret keys of users have to be issued by a trusted key authority. Besides, most of the existing CP-ABE schemes cannot support attribute with arbitrary state. In this paper, we revisit attribute-based data sharing scheme in order to solve the key escrow issue but also improve the expressiveness of attribute, so that the resulting scheme is more friendly to cloud computing applications. We propose an improved two-party key issuing protocol that can guarantee that neither key authority nor cloud service provider can compromise the whole secret key of a user individually. Moreover, we introduce the concept of attribute with weight, being provided to enhance the expression of attribute, which can not only extend the expression from binary to arbitrary state, but also lighten the complexity of access policy. Therefore, both storage cost and encryption complexity for a ciphertext are relieved. The performance analysis and the security proof show that the proposed scheme is able to achieve efficient and secure data sharing in cloud computing
    • …
    corecore