6,579 research outputs found

    Hierarchical Scheduling and Utility Disturbance Management in the Process Industry

    Get PDF
    This thesis deals with control of production at large-scale process industrial sites in the presence of disturbances. The main focus is on disturbances in the supply of utilities such as steam, cooling water and electricity. A general method for reducing the revenue loss due to disturbances in utilities is introduced, which may provide both proactive and reactive disturbance management strategies. Utility availability and area availability are introduced as performance indicators. These measures are used to obtain quick estimations of the revenue losses related to each utility. To obtain reactive strategies for utility disturbance management, a simple model of how utilities affect production in an area, and how utilities are shared between areas, is introduced. The modeling approach is utilized to formulate the production control problem at disturbances in utilities as an optimization problem. Measurement data are used to obtain empirical models of utility disturbances at an industrial site, which may be used as input to the optimization. Since production control closely relates to production scheduling, the integration of production scheduling based on orders and forecasts with production control at disturbances in utilities is studied in the final part of the thesis

    Survey of dynamic scheduling in manufacturing systems

    Get PDF

    Production scheduling in the process industry

    Get PDF
    The purpose of this paper is to formulate an optimization model for the production scheduling problem at continuous production sites. The production scheduling activity should produce a monthly schedule that accounts for orders and forecasts of all products. The plan should be updated every day, with feedback on the actual production the previous day. The actual daily production may be lower than the planned production due to disturbances, e.g. disruptions in the supply of a utility. The work is performed in collaboration with Perstorp, a world-leading company within several sectors of the specialty chemicals market. Together with Perstorp, a list of specifications for the production scheduling has been formulated. These are formulated mathematically in a mixed-integer linear program that is solved in receding horizon fashion. The formulation of the model aims to be general, such that it may be used for any process industrial site

    Multi-Behavior Agent Model for Supply Chain Management

    Get PDF
    Recent economic and international threats to occidental industries have encouraged companies to rethink their planning systems. Due to consolidation, the development of integrated supply chains and the use of inter-organizational information systems have increased business interdependencies and the need for collaboration. Thus, agility and the ability to deal quickly with disturbances in supply chains are critical to maintain overall performance. In order to develop tools to increase the agility of the supply chain and to promote the collaborative management of such disturbances, agent-based technology takes advantage of the ability of agents to make autonomous decisions in a distributed network. This paper proposes a multi-behavior agent model using different decision making approaches in a context where planning decisions are supported by a distributed advanced planning system (d-APS). The implementation of this solution is realized through the FOR@C experimental agent-based platform, dedicated to the supply chain planning for the forest products industry

    Multi-behavior agent model for supply chain management

    Get PDF
    Recent economic and international threats to occidental industries have encouraged companies to rethink their planning systems. Due to consolidation, the development of integrated supply chains and the use of inter-organizational information systems have increased business interdependencies and the need for collaboration. Thus, agility and the ability to deal quickly with disturbances in supply chains are critical to maintain overall performance. In order to develop tools to increase the agility of the supply chain and to promote the collaborative management of such disturbances, agent-based technology takes advantage of the ability of agents to make autonomous decisions in a distributed network. This paper proposes a multi-behavior agent model using different decision making approaches in a context where planning decisions are supported by a distributed advanced planning system (d-APS). The implementation of this solution is realized through the FOR@C experimental agent-based platform, dedicated to the supply chain planning for the forest products industry

    Activity Report: Automatic Control 2013

    Get PDF

    Evolution of microgrids with converter-interfaced generations: Challenges and opportunities

    Full text link
    © 2019 Elsevier Ltd Although microgrids facilitate the increased penetration of distributed generations (DGs) and improve the security of power supplies, they have some issues that need to be better understood and addressed before realising the full potential of microgrids. This paper presents a comprehensive list of challenges and opportunities supported by a literature review on the evolution of converter-based microgrids. The discussion in this paper presented with a view to establishing microgrids as distinct from the existing distribution systems. This is accomplished by, firstly, describing the challenges and benefits of using DG units in a distribution network and then those of microgrid ones. Also, the definitions, classifications and characteristics of microgrids are summarised to provide a sound basis for novice researchers to undertake ongoing research on microgrids
    • …
    corecore