3,690 research outputs found

    Facial Beauty Prediction and Analysis based on Deep Convolutional Neural Network: A Review

    Get PDF
    Abstract: Facial attractiveness or facial beauty prediction (FBP) is a current study that has several potential usages. It is a key difficulty area in the computer vision domain because of the few public databases related to FBP and its experimental trials on the minor-scale database. Moreover, the evaluation of facial beauty is personalized in nature, with people having personalized favor of beauty. Deep learning techniques have displayed a significant ability in terms of analysis and feature representation. The previous studies focussed on scattered portions of facial beauty with fewer comparisons between diverse techniques. Thus, this article reviewed the recent research on computer prediction and analysis of face beauty based on deep convolution neural network DCNN. Furthermore, the provided possible lines of research and challenges in this article can help researchers in advancing the state – of- art in future work

    Towards Decrypting Attractiveness via Multi-Modality Cue

    Get PDF
    Decrypting the secret of beauty or attractiveness has been the pursuit of artists and philosophers for centuries. To date, the computational model for attractiveness estimation has been actively explored in the computer vision and multimedia community, yet with the focus mainly on facial features. In this article, we conduct a comprehensive study on female attractiveness conveyed by single/multiple modalities of cues, that is, face, dressing and/or voice; the aim is to discover how different modalities individually and collectively affect the human sense of beauty. To extensively investigate the problem, we collect the Multi-Modality Beauty (M2B) dataset, which is annotated with attractiveness levels converted from manual k-wise ratings and semantic attributes of different modalities. Inspired by the common consensus that middle-level attribute prediction can assist higher-level computer vision tasks, we manually labeled many attributes for each modality. Next, a tri-layer Dual-supervised Feature-Attribute-Task (DFAT) network is proposed to jointly learn the attribute model and attractiveness model of single/multiple modalities. To remedy possible loss of information caused by incomplete manual attributes, we also propose a novel Latent Dual-supervised Feature-Attribute-Task (LDFAT) network, where latent attributes are combined with manual attributes to contribute to the final attractiveness estimation. The extensive experimental evaluations on the collected M2B dataset well demonstrate the effectiveness of the proposed DFAT and LDFAT networks for female attractiveness prediction

    Science of Facial Attractiveness

    Get PDF

    Varieties of Attractiveness and their Brain Responses

    Get PDF

    CNN based facial aesthetics analysis through dynamic robust losses and ensemble regression

    Get PDF
    In recent years, estimating beauty of faces has attracted growing interest in the fields of computer vision and machine learning. This is due to the emergence of face beauty datasets (such as SCUT-FBP, SCUT-FBP5500 and KDEF-PT) and the prevalence of deep learning methods in many tasks. The goal of this work is to leverage the advances in Deep Learning architectures to provide stable and accurate face beauty estimation from static face images. To this end, our proposed approach has three main contributions. To deal with the complicated high-level features associated with the FBP problem by using more than one pre-trained Convolutional Neural Network (CNN) model, we propose an architecture with two backbones (2B-IncRex). In addition to 2B-IncRex, we introduce a parabolic dynamic law to control the behavior of the robust loss parameters during training. These robust losses are ParamSmoothL1, Huber, and Tukey. As a third contribution, we propose an ensemble regression based on five regressors, namely Resnext-50, Inception-v3 and three regressors based on our proposed 2B-IncRex architecture. These models are trained with the following dynamic loss functions: Dynamic ParamSmoothL1, Dynamic Tukey, Dynamic ParamSmoothL1, Dynamic Huber, and Dynamic Tukey, respectively. To evaluate the performance of our approach, we used two datasets: SCUT-FBP5500 and KDEF-PT. The dataset SCUT-FBP5500 contains two evaluation scenarios provided by the database developers: 60-40% split and five- fold cross-validation. Our approach outperforms state-of-the-art methods on several metrics in both evaluation scenarios of SCUT-FBP5500. Moreover, experiments on the KDEF-PT dataset demonstrate the efficiency of our approach for estimating facial beauty using transfer learning, despite the presence of facial expressions and limited data. These comparisons highlight the effectiveness of the proposed solutions for FBP. They also show that the proposed Dynamic robust losses lead to more flexible and accurate estimators.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature

    How Technology Impacts and Compares to Humans in Socially Consequential Arenas

    Full text link
    One of the main promises of technology development is for it to be adopted by people, organizations, societies, and governments -- incorporated into their life, work stream, or processes. Often, this is socially beneficial as it automates mundane tasks, frees up more time for other more important things, or otherwise improves the lives of those who use the technology. However, these beneficial results do not apply in every scenario and may not impact everyone in a system the same way. Sometimes a technology is developed which produces both benefits and inflicts some harm. These harms may come at a higher cost to some people than others, raising the question: {\it how are benefits and harms weighed when deciding if and how a socially consequential technology gets developed?} The most natural way to answer this question, and in fact how people first approach it, is to compare the new technology to what used to exist. As such, in this work, I make comparative analyses between humans and machines in three scenarios and seek to understand how sentiment about a technology, performance of that technology, and the impacts of that technology combine to influence how one decides to answer my main research question.Comment: Doctoral thesis proposal. arXiv admin note: substantial text overlap with arXiv:2110.08396, arXiv:2108.12508, arXiv:2006.1262

    Physical Attractiveness, Social Network Location, and Performance in the Military

    Get PDF
    The purpose of this research is to provide insight into the effect of physical attractiveness on social network location and performance in a military environment. This study sought to prove five hypotheses regarding the many interactions among physical attractiveness, social network location, and objective and subjective performance ratings. Specifically, a mediation and moderation model were proposed to capture the relationships among the three variables. For mediation, a causal relationship was found from physical attractiveness to centrality to performance. In other words, physical attractiveness influences centrality, which in turn influences performance. Moderation results suggest that physical attractiveness influences the relationship between social network centrality and both objective and subjective performance. That is, physical attractiveness appears to hinder the relationship between centrality and performance such that more attractive individuals with high centrality perform worse than less attractive individuals of similar centrality
    corecore