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Abstract
In recent years, estimating beauty of faces has attracted growing interest in the fields of computer vision and machine
learning. This is due to the emergence of face beauty datasets (such as SCUT-FBP, SCUT-FBP5500 and KDEF-PT) and
the prevalence of deep learning methods in many tasks. The goal of this work is to leverage the advances in Deep
Learning architectures to provide stable and accurate face beauty estimation from static face images. To this end, our
proposed approach has three main contributions. To deal with the complicated high-level features associated with the FBP
problem by using more than one pre-trained Convolutional Neural Network (CNN) model, we propose an architecture with
two backbones (2B-IncRex). In addition to 2B-IncRex, we introduce a parabolic dynamic law to control the behavior
of the robust loss parameters during training. These robust losses are ParamSmoothL1, Huber, and Tukey. As a third
contribution, we propose an ensemble regression based on five regressors, namely Resnext-50, Inception-v3 and three
regressors based on our proposed 2B-IncRex architecture. These models are trained with the following dynamic loss
functions: Dynamic ParamSmoothL1, Dynamic Tukey, Dynamic ParamSmoothL1, Dynamic Huber, and Dynamic Tukey,
respectively. To evaluate the performance of our approach, we used two datasets: SCUT-FBP5500 and KDEF-PT. The
dataset SCUT-FBP5500 contains two evaluation scenarios provided by the database developers: 60-40% split and five-
fold cross-validation. Our approach outperforms state-of-the-art methods on several metrics in both evaluation scenarios of
SCUT-FBP5500. Moreover, experiments on the KDEF-PT dataset demonstrate the efficiency of our approach for estimating
facial beauty using transfer learning, despite the presence of facial expressions and limited data. These comparisons highlight
the effectiveness of the proposed solutions for FBP. They also show that the proposed Dynamic robust losses lead to more
flexible and accurate estimators.

Keywords Facial beauty prediction · Convolutional neural network · Deep learning · Ensemble regression ·
Robust loss functions

1 Introduction

The search for beauty has been pursued by mankind since its
beginnings. Attempting to discover the secret of beauty has
been a goal of philosophers, artists, and scientists throughout
human history [1]. Even in ancient Greece, for example, beauty
was associated with symmetry. Nowadays, the beauty of the
face receives even more interest due to the rapid development
of plastic surgery and the cosmetics industry [2].

Computer science is also not unaware of this fact, there-
fore facial beauty has become an interesting research topic
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in computer vision and machine learning [3, 4]. This
research mainly focuses on facial beauty estimation and
classification/prediction which can be useful in various
applications such as cosmetic recommendations [5], plas-
tic surgery planning [6], facial beautification [7], and social
network services (SNS) (such as Facebook, Instagram, and
dating websites) [8]. In addition, automatic facial beauty
prediction (FBP) may find application when attractiveness
is a basic requirement, such as in advertising, magazine cov-
ers, and in the selection of applicants for certain professions,
such as in the entertainment industry and modeling business
[6].

Motivation Over the past decade, CNNs have become the
dominant solution for most computer vision and machine
learning tasks [9, 10]. Despite these tremendous advances
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in deep learning methods, FBP has not been able to benefit
much from deep learning. One of the goals of this work is
to leverage some of the recent powerful CNN architectures
to develop an accurate and robust solution for FBP.

Developing such an accurate solution for facial beauty
estimation is a difficult task because facial beauty is
a subjective task that changes from person to person,
and facial attributes (gender, ethnicity, age...) also affect
facial beauty evaluation. In addition, the person’s internal
state (facial expression) can also influence facial beauty
evaluation [11]. Although Deep Learning, especially CNN
architectures, have made significant progress in facial
beauty assessment and prediction, it is noted that more
labelled data is needed to train Deep CNNs. To deal with
the aforementioned data limitation, we use active data
augmentation. Moreover, pre-trained models on ImageNet
database [12] are used to extract high level features.

In this paper, we present a Deep Learning approach for pre-
dicting the beauty of faces. The presented approach is
based on three main contributions. First, we propose a
two-backbone architecture where two different CNN archi-
tectures are fused into a single architecture that is trained
in an end-to-end method. Second, we propose a dynamic
robust loss function for training the deep regressors. Third,
we propose an ensemble of regressions where the final pre-
diction is given by the average of all predictions without
retraining the final solution with a new validation set. In
the ensemble solution, each model is trained separately. The
ensemble consists of single-branch architectures (ResneXt-
50 and Inception-v3) and our proposed two-backbones
architecture (2B-IncRex) with different loss functions. In
this approach, three robust loss functions are made dynamic:
ParametricSmoothL1, Huber and Tukey.

In the following, the most important contributions of the
proposed solution are explained one after the other.

• ParamSmoothL1 regression loss function and a dynamic
law that changes the parameters of the robust loss
function during training. For this purpose, we use the
parabolic law with the following robust loss functions:
ParamSmoothL1, Huber and Tukey, to be able to solve
the problem of complexity in finding the best loss function
parameter. Moreover, these dynamic losses improve
the training convergence compared to the standard loss
functions (MSE and L1) and the robust loss functions
(SmoothL1, Huber and Tukey) that assume a fixed
parameter.

• A network with two backbones (2B-IncRex) based on
ResneXt-50 and Inception-v3 architectures is proposed
for face beauty prediction.

• regression for face beauty estimation by fusing the
predicted values of one-branch networks (ResneXt-
50 and Inception-v3) and two-backbones networks

(2B-IncRex) is proposed. This ensemble of five
CNNs is trained with these dynamic loss functions:
Dynamic ParamSmoothL1, Dynamic Tukey, Dynamic
ParamSmoothL1, Dynamic Huber, and Dynamic
Tukey, respectively. Although the individual regres-
sion models are trained separately with the same
fixed hyperparameters, the estimates produced by
the resulting ensemble regression are more accurate
compared to the individual models as well as to the
state-of-the-art solutions. The code to train and test our
approach is publicly available at. https://github.com/
faresbougourzi/Dynamic ER-CNN. (Last accessed on
March, 25th 2022)

The paper is divided into the following sections:
Section 2 presents some related work on facial beauty
prediction. In Section 3, we explain the backbone CNN
architectures used, the proposed approach, and the proposed
dynamic robust losses. Section 4 contains: the description
of the databases and evaluation metrics used, and the
experimental setup. Section 5 presents the performance
evaluations for the SCUT-FBP5500 dataset. Section 6
presents the performance evaluation for the KDEF-PT
dataset. Section 7 provides a discussion and comparison
with state-of-the-art methods. Finally, Section 8 concludes
the paper.

2 Related work

Automatic prediction of the beauty of faces is still a young
problem, but it is becoming increasingly important in the
field of machine learning and computer vision. There is a
unified concept of facial beauty that enables the automation
of this prediction [13, 14]. In this way, the classification of
facial beauty and the prediction of attractiveness score were
developed to allow the association of facial attractiveness
and image features in a quantitative mode [15]. The first
database created to treat FBP as a regression task dates back
to 2015 [16]. In fact, two main methods for performing
FBP can be distinguished in the literature: hand-crafted [17–
24] and deep learning [18, 25–27]. Similarly, hand-crafted
methods are classified as geometry-based or appearance-
based [22].

Before the heyday of deep learning architectures, hand-
crafted methods were commonly used for FBP. Aarabi
et al. [21] and H. Yan [22] presented work dealing with
appearance-based hand-crafted methods. In the first work,
an automatic system for evaluating the beauty of faces was
developed. It is based on the ratios between facial features
(face, eyes, eyebrows and moth concretely) with the K-
nearest neighbor algorithm to learn the beauty assignment.
H. Yan [22], on the other hand, proposed a new CSOR
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(Cost-Sensitive Ordinal Regression) method to measure the
importance of samples in different classes. The CSOR
is applied to four types of characteristics: Intensity, LBP
[28], SIFT [29], and LE [30]. A typical geometry-based
hand-crafted method was described by Zhang et al. [20]
presented. This technique uses a huge amount of data
(tens of thousands of face images, both female and male).
These are mapped to a human face shape subspace, and
a quantitative method is used to analyze the effects of
facial geometry on the beauty of the human face. The
analysis was performed using the transformation invariant
shape distance measurement. On the other hand, Liang et
al. proposed a mixed technique combining geometric-based
and appearance-based hand-crafted methods. It is based
on the use of geometric features (extracted 18-dimensional
ratio features of faces) and appearance features (40 Gabor
feature maps), with apartment predictors that are linear
regression (LR) and Support Vector Regression (SVR).

Most of the hand-crafted methods listed above have been
tested using the SCUT-FBP5500 database. This database
includes 5500 frontal, neutral-looking, and unclouded faces
of individuals aged 15 to 60 years [18]. On the other hand, it
should be mentioned that the introduction of deep learning
methods in computer vision and especially in FBP has
surpassed the results obtained with hand-crafted methods.
As a result, in recent years, deep learning architectures have
been widely used for evaluating the beauty of faces.

In [18], Liang et al. presented their face beauty database
(SCUT-FBP5500) with two evaluation protocols (60-40%
split and five-fold cross validation). They tested three
CNN architectures (Alexnet [31], Resnet-18 [32], and
ResneXt-50 [33]). Their results show that the ResneXt-50
architecture outperforms the other two deep architectures.
In terms of the improvement that Deep Learning methods
represent over hand-crafted methods, it should also be
noted that all of the deep neural networks tested in their
work (including Alexnet and Resnet-18) performed better
than the hand-crafted methods tested with various shallow
regressors. Cao et al. used a residual-in-residual (RIR) block
to build a deeper network with multilevel skip connections
to achieve better gradient transmission flow. In addition,
they used both channel-wise and space-wise attention
mechanisms to find the inherent correlation between
feature maps. Their approach was tested on the SCUT-
FBP5500 database [18] and showed good performance.
Lin et al. [27] proposed an R3CNN architecture. It
consists of two components: a regression component and
a ranking component. The regression component has a
Siamese network (two identical regression sub-networks) to
consistently map each face image to a beauty value. The
ranking component, on the other hand, uses the Siamese
network for a few images and provides an additional task
to improve the learning process of the regression subnets.

The idea is that the ranking network learns the pairwise
ranking of beauty for two images. Their architecture showed
promising results on the SCUT-FBP [16] and SCUT-
FBP5500 [18] databases. Dornaika et al. [34] introduced
a multi-layer local discriminative embedding algorithm
that integrates feature selection as the main step. Feature
selection captures the most relevant and discriminative
features of an input face image or face descriptor. All the
methods mentioned so far are supervised learning methods.
However, the work presented in [35] proves that semi-
supervised learning also yields promising results in facial
beauty estimation.

3Methodology

This section focuses on presenting the CNN architectures
used, our proposed approach, and the proposed dynamic
robust losses.

3.1 Backbone CNN Architectures

The use of CNN architectures in FBP has become
increasingly popular since Deep Learning methods have
demonstrated their efficient performance [31].

This work is also based on CNN and the architecture pre-
sented is a combination of ResneXt-50 [33] and Inception-
v3 [36]. However, the approach is open to using other
backbone architectures. In addition, pre-trained models are
used, trained with the ImageNet challenge database [12].

To keep the paper self-contained, this section briefly
introduces the two CNNs (ResneXt-50 and Inception-v3)
used as backbone architectures in our proposed solution.

ResneXt-50 Architecture: ResneXt-50 architecture [33] is
a variation of the popular Resnet [37] architecture. The
main idea is to modify the residue blocks and add parallel
convolutional layers with a smaller number of filters. The
outputs of these filters are combined by summation and
serve as input for the next residual block.

Inception-v3 Architecture: Inception-v3 [36] is an evolu-
tion of the GoogLeNet architecture [38], in which the
Inception module was introduced. The main idea of this
module is to use parallel convolutional layers with different
kernel sizes as well as pooling layers. In this way, different
receptive fields can be applied to the input in an efficient
way.

3.2 Our approach

Our method is described in Fig. 1. The predicted score of
beauty is the mean of multiple scores, which means that we
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Fig. 1 General structure of the proposed approach (Dynamic ER-CNN). Note that every model in this set of five solutions is trained separately
using a given regression loss
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employ an ensemble of multiple regression models, each of
which independently provides an individual score. In our
implementation, we use five models. There are two main
contributions to this ensemble: (i) the deep network with
two backbones (2B-IncRex) (see Section 3.4) and (ii) the
dynamic robust loss functions (see Section 3.5).

The first two scores are predicted by the trained
Inception-v3 and ResneXt-50 deep networks using
the Dynamic Tukey loss function and the Dynamic
ParamSmoothL1 loss function, respectively. The selec-
tion of the associated loss function for each backbone
was empirically determined when these backbones were
evaluated in Section 5.1.2. The remaining three scores are
estimated after training the proposed deep network with
two backbones (2B-IncRex) using the three dynamic loss
functions: Dynamic ParamSmoothL1, Dynamic Huber and
Dynamic Tukey. The deep network with two backbones
consists of ResneXt-50 and inception-v3, which are merged
into a single architecture. As will be seen in the experimen-
tal section, the performance using the two contributions
without the ensemble is better than that of the state-of-the-
art methods. The use of the ensemble shown in Fig. 1 will
further improve the results.

3.3 Face preprocessing

In the preprocessing phase of the faces, we adopted the 2D
alignment scheme described in [39] and [40]. This scheme
is summarized in Fig. 2. To obtain a rectified and cropped
face region, we apply three steps to the raw face image.
First, the face image is rotated so that the two eyes have the
same vertical coordinates. For the SCUT-FBP5500 dataset
[18], we used the face landmarks provided by the authors
of this dataset. For the KDEF-PT dataset [11], we used the
Dlib library [41] to obtain these landmarks. Once the image
and its associated detected points are rotated in the image

plane, the three furthest face points in the left, right, and
bottom directions are selected as the three boundaries of the
face. We denote the distance from the lower boundary to
the vertical position of the eyes as d1. The upper boundary
of the face is set at a distance d2 from the eyes, which
is set to d2 = 0.6 d1. It is worth noting that the distance
d2 determines the region of the forehead included in the
cropped face. Empirically, we found that d2 = 0.6 d1 works
well. Finally, the face ROI is obtained by cropping the face
using the four specified boundaries. The obtained ROI is
then resized to a fixed size that depends on the input size of
the corresponding convolutional neural network.

3.4 Two branches architecture

Recently, many successful deep architectures have been
proposed for many computer vision tasks. In our solution,
we employ two dual architectures to exploit the different
capabilities of deep neural networks. Since FBP image data
is limited, we propose to exploit the low-level and high-level
feature extraction capability of two powerful architectures
jointly. Figure 3 summarizes our introduced architecture
with two branches. The first and second branches are the
ResneXt-50 and Inception-v3 architectures, respectively,
with the decision layers removed. In our proposed
architecture with two backbones, we added the FC1
layer, which maps the encoded deep features of the
ResneXt-50 branch (vector of dimension 2048) to 1024
neurons. Similarly, we added layer FC2, which maps the
embedded deep features of the Inception-v3 branch (vector
of dimension 2048) to 1024 neurons. FC1 and FC2 were
concatenated into a single vector FC, which is followed
by the FC3 layer that performs the regression, namely the
beauty score. Note that the weights of both branches are
the weights of the pre-trained ResneXt-50 and Inception-v3
models (trained on the ImageNet Challenge database [12].),

Fig. 2 Face Region of Interest. The left image is an original image
from the database SCUT-FBP5500 [18]. The second image is the
rotated face with its 86 detected landmarks used to estimate the three
face boundary lines (right, left, and bottom). These boundaries corre-
spond to the three points ∗ marked in blue. The third image shows how

the upper boundary of the face is determined. It is located at a distance
d2 = 0.6d1 from the vertical position of the two eyes. The fourth image
shows the cropped and rescaled face image with 224 × 224 pixels.
Note that the distances D1 and D2 are constant for all cropped faces
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Fig. 3 Our proposed two
branches network 2B-IncRex

while the FC1, FC2 and FC3 layers are randomly initialized.
Our proposed network with two branches is called 2B-
IncRex architecture. In the training phase, we will fine-tune
this architecture for FBP.

3.5 Loss Functions: the use of dynamic robust losses

During convolutional network training, the loss function
measures the error (the loss) between the ground truth
and the current predicted values. Training a CNN aims to
minimize the loss based on the gradients of the loss function
used to update the weights of the network. In this section,
we will describe the loss functions we used for training our
proposed architectures. We will also introduce a dynamic
law that adjusts the parameters of these robust losses during
training. The losses are computed for a batch of N face
images. Let yi denote the ground truth score of the ith

image, and ŷi denote the predicted score.

3.5.1 Dynamic Parameterized SmoothL1 (ParamSmoothL1)
loss function

The loss function SmoothL1 produces a criterion that uses
a quadratic term when the absolute element-wise error falls
below 1, and the absolute error otherwise. It is commonly
used for training deep CNN-based regressions because it
is less sensitive to the presence of outliers than the Mean
Square Error loss function and in some cases prevents
exploding gradients [42]. The SmoothL1 loss function of N

images is defined by:

LSmoothL1 = 1

N

N∑

i=1

zi (1)

where N is the batch size and zi is given by:

zi =
{
0.5 (yi − ŷi )

2, if |yi − ŷi | < 1
|yi − ŷi | − 0.5, otherwise

(2)

In this work, we introduce the Dynamic Parametrized
SmoothL1 loss function. First, we present the Parametrized
SmoothL1 loss. We then present its dynamic variant.

Since the threshold can be different from one task
to another, we proposed a Parameterized SmoothL1 loss
function which is defined by:

LParamSmoothL1 = 1

N

N∑

i=1

zi (3)

where N is the batch size and zi is given by:

zi =
{
0.5 (yi − ŷi )

2, if |yi − ŷi | ≤ α

|yi − ŷi | + 0.5α2 − α, otherwise
(4)

where α is a tunable parameter. Our proposed dynamic
robust loss functions are motivated by the following
observation. During the training of CNNs, the robust
loss functions can be adjusted as the training progresses.
Namely, during training, the model evolves and the trained
outlier examples may vary. In the early stages of training,
the model is usually neither very stable nor accurate enough
to handle the outlier examples correctly. Therefore, it is
advantageous to use a quadratic loss function. At the end
of the training, the model may be more or less accurate to
handle the outliers. Therefore, it is useful to use a more
rigorous robust loss function where the range of non-outlier
errors is relatively small. In other words, we can time the
parameter of the robust loss function (ParamSmoothL1) so
that it is initialized with a maximum value and decreases
monotonically as training progresses. From a practical point
of view, it is extremely difficult to know the best value for
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α in advance. However, the variation interval [αmin, αmax]
can be known in advance. Therefore, to better fit the robust
loss function to the training progress, we propose a dynamic
parameter α that decreases according to a parabolic law as
a function of the epoch number. The current value of α is
given by:

αe = αmax − (αmax − αmin)

(
e

ne

)2

(5)

where αe is the value of α in the current epoch (e)
varying between 1 and the total number of epochs (ne).
αmax and αmin are the maximum and minimum of the
α value. In this paper, we denote the proposed Dynamic
Parameterized SmoothL1 by Dynamic ParamSmoothL1.
Figure 4 illustrates the variation of α using the proposed
dynamic law ((5)) as a function of epoch number. Here
αmax and αmin are fixed at 0.7 and 0.3, respectively. Our
introduced dynamic law was inspired by dynamic laws used
to control the learning rate during training in stochastic
gradient descent methods [43].

3.5.2 Dynamic Huber loss function

Huber is another robust loss function that is less sensitive
to outliers in the data than the Mean Square Error loss
function. For N training images, the Huber loss function is
defined by [44]:

LHuber = 1

N

N∑

i=1

zi (6)

where N is the batch size and zi is defined by:

zi =
{
0.5 (yi − ŷi )

2, if |yi − ŷi | ≤ β

β |yi − ŷi | − 0.5β2, otherwise
(7)

Fig. 4 Dynamic parameter α that decreases from 0.7 to 0.3

where β is a controlled parameter. Figure 5, shows a
visualization of Huber loss function with four β values (0.7,
0.5, 0.3 and 0.1) and L2 loss function.

Similar to ParamSmoothL1 loss, we suggest using
dynamic β during training according to the equation:

βe = βmax − (βmax − βmin)

(
e

ne

)2

(8)

where βe is the value of β in the current epoch (e), where
e increases from 1 to the total number of epochs (ne). βmax

and βmin are the defined maximum and minimum of β

value.

3.5.3 Dynamic Tukey loss function

The Tukey loss function [45] suppresses the influence
of outlier data during backpropagation by reducing the
magnitude of its gradient toward zero. Another interesting
property of this loss function is its smooth transition
between inliers and outliers [46]. The Tukey loss function is
defined by:

LT ukey = 1

N

N∑

i=1

zi (9)

where N is the batch size and zi is given by:

zi =

⎧
⎪⎨

⎪⎩

c2

6

[
1−

(
1 −

( |yi−ŷi |
c

)2)3
]

, if |yi − ŷi | ≤ c

c2

6 , otherwise

(10)

where c is an adjustable parameter. Similar to
ParamSmoothL1 and Huber losses, we propose to use
dynamic c during training through the equation:

ce = cmax − (cmax − cmin)

(
e

ne

)2

(11)

where ce is the value of c in the current epoch (e), with e

increasing from 1 to the total number of epochs (ne). cmax

and cmin are the maximum and minimum of c value.

Fig. 5 Illustration of two loss functions: the Mean Sqaure Error loss
(L2 loss), and the Huber loss function with four β values (0.7, 0.5, 0.3
and 0.1)
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4 Experimental setting

4.1 Database and evaluation protocols

To evaluate the performance of our approach, we used
the SCUT-FBP5500 [18] database. It consists of 5500
frontal faces of subjects with different attributes: age (from
15 to 60), gender (male/ female), and ethnicity (Asian/
Caucasian). Each facial image was labelled with beauty
score in the range [1-5] by 60 volunteers. In addition, each

Fig. 6 Facial beauty samples from the SCUT-FBP5500 database, (a)
Female Assian samples their score from left to the right are: 1.88,
3.00, 3.93 and 4.28. (b) Male Assian samples their score from left to
the right are: 1.73, 2.48, 3.53 and 4.43. (c) Female Caucasian samples
their score from left to the right are: 1.93, 2.87, 3.63 and 4.7. (d) Male
Caucasian samples their score from left to the right are: 1.88, 2.67,
3.27 and 4.43

facial image has 86 facial landmarks. Figures 6 and 7 show
some facial samples with their corresponding face beauty
score. The creators of the SCUT-FBP5500 database
provided two evaluation scenarios [18]. In the first scenario,
the data were divided into a training split and test split
(60 - 40%). In the second scenario, the data were divided
into 5 folds to perform a five-fold cross-validation. In our
evaluations, we will use both scenarios.

In addition to the SCUT-FBP5500 dataset, the KDEF-
PT dataset [11] was used to evaluate the performance of
our approach in the presence of facial expressions. KDEF-
PT consists of 70 subjects (35 females and 35 males).
Each subject performs three facial expressions, namely joy,
neutrality, and anger. To determine facial attractiveness,
each image was labelled by the participants and they were
asked to indicate the extent of attractiveness on a 7-point
rating scale (1 = not at all attractive to 7 = very attractive).
Each image was rated by a varying number of subjects
(from 34 to 42 subjects). The attractiveness score is the
average of the subjects’ ratings, Fig. 7 shows two examples
from the KDEF-PT dataset. In our experiments, we split
the 70 subjects into a training set and a validation set
(80% and 20%) to avoid using the same subject in both
the training and validation sets. Since there are only 168
training images, we used the trained models from the first
fold of the SCUT-FBP5500 dataset and then performed

Fig. 7 Facial beauty samples from the KDEF-PT dataset, (a) Female
samples their score from left to the right are: 2.78, 4.81 and 3.47, for
anger, happy and neutral faces, respectively. (b) Male samples their
score from left to the right are: 2.43, 3.34 and 3.24, for anger, happy
and neutral faces, respectively
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transfer learning (model fine-tuning) with the training part
of the KDEF-PT dataset.

4.2 Evaluationmetrics

To evaluate the performance of each model, four evaluation
metrics are used which are: Mean Absolute Error (MAE),
Root Mean Square Error (RMSE), Pearson Correlation
coefficient (PC) and the ε-error. Let consider Y =
(y1, y2, ..., yn) the ground-truth scores of the tested n

images and Ŷ = (ŷ1, ŷ2, ..., ŷn) are their corresponding
estimated scores. Here, n denotes the number of the tested
face images. The evaluation metrics are defined as follows:

Mean Absolute Error (MAE): MAE is defined by:

MAE = 1

n

n∑

i=1

|yi − ŷi | (12)

MAE is scale-dependent accuracy measurement, this means
MAE uses the same scale as the data being measured.

Root Mean Square Error (RMSE): RMSE is defined
by:

RMSE = 1

n

n∑

i=1

(yi − ŷi )
2 (13)

The RMSE is another scale-dependent accuracy measure.
Unlike MAE, the effect of any error on the RMSE
is proportional to the squared error; thus, larger errors
have a disproportionately large effect on the final RMSE.
Consequently, the RMSE is sensitive to outliers.

Pearson Correlation coefficient (PC): PC was devel-
oped by Karl Pearson [47] and it is defined by:

PC =
∑n

i=1 (yi − yi)
(
ŷi − ŷi

)

√∑n
i=1

(
yi − yi

)2
√

∑n
i=1

(
ŷi − ŷi

)2
(14)

where yi and ŷi are the mean of the ground-truth scores and
the estimated scores, respectively. PC has a value between
+1 and -1, it is a statistic that measures linear correlation
between two variables Y and Ŷ . A value of +1 means total
positive linear correlation, 0 means no linear correlation,
and -1 means total negative linear correlation.

ε-error: ε-error is defined by:

ε − error = 1

n

n∑

i=1

(
1 − exp

((
yi − ŷi

)2

2 σ 2
i

))
(15)

where σi is the standard deviation of the scores of all raters
of the image i. The value of ε-error is the accumulation of
each image i error which based on the term ε − errori =
1− exp (

(yi−ŷi )
2

2 σ 2
i

). When the absolute error of image i goes

toward zero (i.e., yi = ŷi), ε − errori is zero. In contrast,
when the absolute error is large ε−error takes into account

the uncertainty of the rate which is represented by σ 2
i . In

more details, the division by the term σ 2
i provides a smaller

contribution to the value of the ε error when the uncertainty
in the rate is large and vice versa.

4.3 Experimental setup

All experiments are carried out on Pytorch library [48] with
NVIDIA GPU Device GeForce TITAN RTX 24 GB. All
Networks are trained for 40 epochs using Adam optimizer
[49] and batch size of 15. The initial learning rate is 1e-4 for
20 epochs, then leaning rate decreases to 1e-5 for next 10
epochs, for the last 10 epochs the learning rate decreases to
1e-6. Active data augmentation is performed by rotating the
input face by an angle between [-5, 5]. For all experiments,
the reported results correspond to the best PC of the test data
during the training/testing of the 40 epochs.

5 Performance evaluation on SCUT-FBP5500
dataset

5.1 Experimental results on the 60-40% split
scenario

In this section, we limit the study to the provided 60-40%
split.

5.1.1 Raw input vs the proposed face preprocessing

Preprocessing of faces is considered an important step for
face analysis by machine learning. However, Deep Learning
architectures are capable of learning high-level features in
scenarios with shape and rotation variations. In this section,
we investigate the impact of the preprocessing step on
estimating the beauty of a face. For this purpose, we used
ResneXt-50 and Inception-v3 with the default MSE loss
function and considered two input scenarios : raw face
images and aligned face images. Table 1 shows the results
obtained. From this table, it can be seen that preprocessing
the face image provides a significant improvement for
the ResneXt-50 architecture. In contrast, this improvement
is small for Inception-v3. In general, face alignment and
cropping can support the training of CNN architectures by
discarding the background features and prioritizing the face
features.

5.1.2 Dynamic vs fixed loss function parameter

To investigate the effectiveness of the proposed dynamic
law for the parametric robust loss functions, we use
ResneXt-50 in two cases: (i) a loss adopting a fixed
parameter and (ii) a loss adopting a dynamic parameter
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Table 1 Face beauty prediction using ResneXt-50 and Inception-v3 networks with MSE loss function and two input image scenarios (The raw
image and the detected face with our preprocessing scheme)

CNN architecture Pre-processing PC ↑ MAE ↓ RMSE ↓ ε-error ↓

ResneXt-50 Raw Image 0.9119 0.2126 0.2845 0.0853

ResneXt-50 Face Detection 0.9137 0.2107 0.2774 0.0807

Inception-v3 Raw Image 0.9108 0.2150 0.2831 0.0873

Inception-v3 Face Detection 0.9112 0.2147 0.2814 0.0833

using the parabolic law. The considered parametric loss
functions are the proposed ParamSmoothL1, Huber and
Tukey. For each parametric loss, we choose an interval for
the dynamic law. For the fixed values, we choose the left
and right limits of the interval and a set of values within
the interval. The interval for the dynamic law is chosen
experimentally and determined independently for each loss
function. We compare the dynamic law not only with the
fixed values, but also with their average.

The results obtained are summarized in Table 2. For both
ParamSmoothL1 and Huber loss functions, the dynamic
law interval is set to [0.7-0.3] and the fixed values are
{0.7, 0.6, 0.5, 0.4, 0.3}. Table 2 shows that PramSmoothL1

and the Huber loss function with the proposed dynamic law
perform better than the fixed values and their average. On
the other hand, the dynamic interval of the c parameter of
the Tukey loss function is set to [2-1.5] and the fixed c val-
ues are {2, 1.7, 1.5}. Similar to ParamSmoothL1 and Huber,
the dynamic Tukey loss function using the parabolic law
achieves better performance than using the fixed c values
and their average. For the Tukey loss function, the dynamic
interval of [2-1] achieved better performance than the
Dynamic Tukey loss function of interval [2-1.5], as shown
in Table 2. Based on these results, the dynamic intervals for
the parameters α, β, and c are set to [0.7-0.3], [0.7-0.3], and
[2-1] for ParamSmoothL1, Huber and Tukey, respectively.

Table 2 Comparison between dynamic and fixed parameters of ParamSmoothL1, Huber and Tukey loss functions using ResneXt-50 network

Loss Function Parameter PC ↑ MAE ↓ RMSE ↓ ε-error ↓

ParamSmoothL1 α = 0.7 0.9122 0.2127 0.2799 0.0814

α = 0.6 0.9141 0.2098 0.2772 0.0803

α = 0.5 0.9132 0.2110 0.2780 0.0815

α = 0.4 0.9101 0.2146 0.2825 0.0833

α = 0.3 0.9116 0.2150 0.2810 0.0831

Mean 0.9123 0.2126 0.2797 0.0819

dynamic α (0.7-0.3) 0.9150 0.2085 0.2744 0.0796

Huber β = 0.7 0.9126 0.2114 0.2796 0.0812

β = 0.6 0.9130 0.2107 0.2780 0.0804

β = 0.5 0.9144 0.2111 0.2770 0.0808

β = 0.4 0.9124 0.2122 0.2783 0.0839

β = 0.3 0.9110 0.2155 0.2811 0.0845

Mean 0.9127 0.2122 0.2788 0.0822

dynamic β (0.7-0.3) 0.9149 0.2105 0.2757 0.0809

Tukey c = 2.0 0.9128 0.2155 0.2810 0.0837

c = 1.7 0.9116 0.2133 0.2805 0.0821

c = 1.5 0.9126 0.2129 0.2808 0.0824

Mean 0.9123 0.2139 0.2808 0.0827

dynamic c (2-1.5) 0.9138 0.2114 0.2778 0.0810

dynamic c (2-1) 0.9146 0.2093 0.2757 0.0798

Best results are shown in bold
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Table 3 Facial Beauty Prediction using ResneXt-50 Network with five loss functions (L1, MSE, Dynamic ParamSmoothL1, Dynamic Huber and
Dynamic Tukey losses)

Loss Function PC ↑ MAE ↓ RMSE ↓ ε-error ↓

L1 0.9126 0.2113 0.2783 0.0810

MSE 0.9137 0.2107 0.2774 0.0807

Dyn. ParamSmoothL1 (0.7-0.3) 0.9150 0.2085 0.2744 0.0796

Dyn. Huber (0.7-0.3) 0.9149 0.2105 0.2757 0.0809

Dyn. Tukey (2-1) 0.9146 0.2093 0.2757 0.0798

Best results are shown in bold

5.1.3 Two branches vs one branch

The goal of this section is to compare our proposed
architecture with two backbones (2B-IncRex) with the
pre-trained CNNs used to create 2B-IncRex. To this
end, we used five loss functions (L1, MSE, Dynamic
ParamSmoothL1, Dynamic Huber, and Dynamic Tukey
losses) to test ResneXt-50, Inception-v3, and 2B-IncRex,
as shown in Tables 3, 4, and 5. respectively. In addition
to the comparison between our proposed two-backbone
architecture and the individual backbones, these results also
show the comparison between our proposed dynamic loss
functions and the standard loss functions (L1 and MSE).

Based on the results of ResneXt-50 in Table 3, we can see
that our proposed dynamic loss function ParamSmoothL1
achieves the best performance. Moreover, the other two
dynamic loss functions (Huber and Tukey) obtained similar
results to the Dynamic ParamSmoothL1 loss function and
better performance than L1 and MSE. This proves the
efficiency of using the dynamic law not only compared to
fixed parametric losses (as in Table 2), but also compared
to other loss functions. From the Inception-v3 results in
Table 4, we can also see that the dynamic loss functions
give better results than L1 and MSE. For the Inception-v3
architecture, the Dynamic Tukey loss function achieved the
best performance.

The results of 2B-IncRex using the five loss functions are
summarized in Table 5. Again, we note that the proposed
dynamic loss functions achieve better performance than

L1 and MSE. On the other hand, the proposed Dynamic
ParamSmoothL1 achieved the best performance for our
proposed 2B-IncRex architecture. From the results of
ResneXt-50, Inception-v3 and 2B-IncRex (from Tables 3, 4
and 5), we conclude that the proposed 2B-IncRex converges
to the lowest error compared to ResneXt-50 and Inception-
v3. This proves the effectiveness of our proposed CNN
architecture with two backbones and the effectiveness of the
proposed dynamic law for the robust loss functions.

5.1.4 CNN ensemble

The goal of this section is to use the trained models
from Section 5.1.3 to improve the performance of FBP.
To this end, we select the best models for the two
individual backbones (ResneXt-50 and Inception) and
the three best models of the proposed 2B-IncRex. In
summary, three ensemble scenarios were tested. First, we
combine the ensemble of the single backbones (ResneXt-
50 and Inception). Second, the three best models of the
proposed 2B-IncRex are combined. The third scenario is
the combination of five models (best individual backbones
and the best three 2B-IncRex, which corresponds to the
trained models with the dynamic robust losses), the results
are shown in Table 6. Since the creators of the SCUT
-FBP5500 dataset provided two evaluation scenarios (60-
40% and five fold cross-validation), each considering only
training and test splits, we considered the last model after
it was trained with 40 epochs. The goal of selecting the last

Table 4 Facial Beauty Prediction using Inception-v3 Network with five loss functions (L1, MSE, Dynamic SmoothL1, Dynamic Huber and
Dynamic Tukey)

Loss Function PC ↑ L1 ↓ RMSE ↓ ε-error ↓

L1 0.9103 0.2152 0.2832 0.0848

MSE 0.9112 0.2147 0.2814 0.0833

Dyn. ParamSmoothL1 (0.7-0.3) 0.9132 0.2136 0.2803 0.0832

Dyn. Huber (0.7-0.3) 0.9127 0.2143 0.2793 0.0838

Dyn. Tukey (2-1) 0.9149 0.2132 0.2781 0.0829

Best results are shown in bold
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Table 5 Facial Beauty
Prediction using the proposed
two backbones Network
(2B-IncRex) with five loss
functions (L1, MSE, Dynamic
ParamSmoothL1, Dynamic
Huber and Dynamic Tukey
losses)

Loss Function PC ↑ MAE ↓ RMSE ↓ ε-error ↓

L1 0.9123 0.2133 0.2802 0.0818

MSE 0.9145 0.2090 0.2755 0.0796

Dyn. ParamSmoothL1 (0.7-0.3) 0.9171 0.2072 0.2716 0.0783

Dyn. Huber (0.7-0.3) 0.9161 0.2082 0.2741 0.0791

Dyn. Tukey (2-1) 0.9164 0.2081 0.2734 0.0787

Best results are shown in bold

model in our ensemble approach is to use the test data only
once. For an input image fed with regressors (trained CNN
models), the ensemble is obtained by computing the average
of the different regressors; this average is considered as the
ensemble prediction. From the results of Table 6, we can
observe the following:

• The ensemble of the two individual backbones outper-
forms the individual CNN backbones.

• The ensemble of our proposed 2B-IncRex trained with
the proposed dynamic losses outperforms the ensemble
of the two individual backbones.

• Finally, we find that the ensemble of the two single
backbones and the three 2B-IncRex models improves
the results compared to the previous ensemble schemes.
Based on these results, we consider this last ensemble
as our proposed solution for FBP. We refer to it
as Dynamic ER-CNN, since it benefits from the
proposed dynamic loss functions and ensemble of CNN
architectures for the regression task.

From the above results, we conclude that all ensemble
scenarios improve the face beauty estimation. Although
the second ensemble scenario achieves a better result
than the first, the combination of both ensemble scenarios
further improves the results. This proves that the individual
backbones can provide a diversity estimator for the
proposed Dynamic ER-CNN solution.

5.2 Experimental results using the five fold
cross-validation scenario

In addition to the 60-40% evaluation scheme of the
SCUT -FBP5500 dataset, the creator of this dataset has
provided five-fold cross-validation splits. In this section,

we will test the best identified solutions from 60-40%
for one and two backbones. Specifically, these are the
following solutions: ResneXt-50 trained with Dynamic
ParamSmoothL1, Inception-v3 trained with Dynamic Tukey
and 2B-IncRex trained with the three dynamic robust
loss functions (ParamSmoothL1, Huber and Tukey). The
obtained results are summarized in Table 7. For each
architecture and corresponding loss function, we report the
results using four evaluation metrics (PC, MAE, RMSE and
ε-error) for each fold and its average over the five folds.

Similar to the results of 60-40% split, two backbones
architecture achieve higher performance than the single
backbones, again this proves the efficiency of the proposed
2B-IncRex architecture. On the other hand, we notice that
the two backbones architecture achieves close performance
using different dynamic robust losses, with small preference
for the Dynamic ParamSmoothL1 loss function based on
MAE, RMSE and ε-error metrics. Similar to the 60-40%
split results, the architecture with two backbones achieves
higher performance than the one with one backbone, which
again proves the efficiency of the proposed 2B-IncRex
architecture. On the other hand, we find that the architecture
with two backbones achieves similar performance when
using different dynamic robust losses, slightly favoring the
Dynamic ParamSmoothL1 loss function based on MAE,
RMSE and ε error metrics.

Similar to Section 5.1.4, we tested three ensemble
scenarios, (i) the ensemble of the single backbones
(ResneXt-50 and Inception), (ii) the ensemble of the
proposed 2B-IncRex architecture trained with the three
dynamic robust losses, (iii) the ensemble of all models used
in the first two scenarios (i and ii), denoted by Dynamic
CNN-ER. Table 8 summarizes the obtained results of the
three ensemble scenarios for each fold and their mean. From

Table 6 Facial Beauty Prediction using the proposed CNN ensemble of different trained models on 60-40% data split

Fusion scheme PC ↑ MAE ↓ RMSE ↓ ε-error ↓

One Backbone (2 models) 0.9189 0.2071 0.2711 0.0785

Two Backbones (3 models) 0.9201 0.2045 0.2685 0.0765

Dynamic ER-CNN (Mixture models) 0.9212 0.2037 0.2672 0.0762

Best results are shown in bold
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Table 7 Five folds cross-validation of Facial Beauty Prediction using
single backbone networks (Inception-v3 with Dynamic Tukey loss and
ResneXt-50 with Dynamic ParamSmoothL1 loss) and two backbones

networks (2B-IncRex wit Dynamic ParamSmoothL1, Dynamic Huber,
and Dynamic Tukey losses)

Architecture Fold PC ↑ MAE ↓ RMSE ↓ ε-error ↓

Inception-v3 with Dynamic Tukey loss function Fold 1 0.9139 0.2138 0.2792 0.0803

Fold 2 0.9147 0.2062 0.2794 0.0792

Fold 3 0.9188 0.2124 0.2774 0.0791

Fold 4 0.9239 0.2094 0.2686 0.0797

Fold 5 0.9214 0.2066 0.2675 0.0763

Mean 0.9185 0.2097 0.2744 0.0789

ResneXt-50 with Dynamic ParamSmoothL1 loss function Fold 1 0.9176 0.2094 0.2740 0.0780

Fold 2 0.9155 0.2067 0.2780 0.0789

Fold 3 0.9214 0.2080 0.2739 0.0774

Fold 4 0.9218 0.2051 0.2688 0.0765

Fold 5 0.9196 0.2073 0.2713 0.0777

Mean 0.9192 0.2073 0.2732 0.0777

2B-IncRex with Dynamic ParamSmoothL1 loss function Fold 1 0.9175 0.2084 0.2762 0.0770

Fold 2 0.9166 0.2073 0.2789 0.0786

Fold 3 0.9220 0.2072 0.2733 0.0775

Fold 4 0.9279 0.2013 0.2604 0.0737

Fold 5 0.9266 0.1959 0.2596 0.0703

Mean 0.9221 0.2040 0.2697 0.0754

2B-IncRex with Dynamic Huber loss function Fold 1 0.9206 0.2046 0.2706 0.0753

Fold 2 0.9196 0.2083 0.2725 0.0783

Fold 3 0.9254 0.2049 0.2687 0.0755

Fold 4 0.9250 0.2036 0.2637 0.0752

Fold 5 0.9220 0.2053 0.2694 0.0775

Mean 0.9225 0.2053 0.2690 0.0763

2B-IncRex with Dynamic Tukey loss function Fold 1 0.9216 0.2060 0.2699 0.0761

Fold 2 0.9138 0.2097 0.2821 0.0806

Fold 3 0.9251 0.2088 0.2733 0.0775

Fold 4 0.9247 0.2040 0.2653 0.0766

Fold 5 0.9243 0.2014 0.2633 0.0734

Mean 0.9219 0.2060 0.2708 0.0768

Best results are shown in bold

the results for one and two backbones (Table 7) and the
ensemble scenarios (Table 8), we notice the following:
• The fusion of the individual backbones (scenario (i))

performs better than the individual backbone networks
(Inception-v3 with Dynamic Tukey and ResneXt-50
with Dynamic PramSmoothL1 loss function).

• The second ensemble scenario shows that the ensemble
of 2B-IncRex outperforms all the results obtained by
the single two backbone networks (2B-IncRex with the
three dynamic robust loss functions).

• Our proposed ensemble approach Dynamic CNN-ER
(scenario (iii)) outperforms not only single and 2B-
IncRex networks, but also their combination.

The comparison between the results of Tables 7 and 8
proves the effectiveness of the proposed Dynamic ER-CNN
for the assessment of the beauty of the face.

6 Performance evaluation on KDEF-PT
dataset

In this experiment, we used the KDEF-PT dataset [11],
which contains ratings of facial beauty in the presence of
facial expressions. Table 9 summarizes the results obtained
with the selected individual CNN architectures in our
ensemble trained with the proposed dynamic loss functions.
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Table 8 Five folds cross-validation of Facial Beauty Prediction using the proposed CNN ensemble of different trained models

Fusion scheme Fold PC ↑ MAE ↓ RMSE ↓ ε-error ↓

One Branch (2 models) Fold 1 0.9203 0.2071 0.2704 0.0761

Fold 2 0.9198 0.2009 0.2723 0.0757

Fold 3 0.9243 0.2056 0.2695 0.0752

Fold 4 0.9274 0.2007 0.2604 0.0741

Fold 5 0.9243 0.2023 0.2636 0.0739

Mean 0.9232 0.2033 0.2672 0.075

Two Branches (3 models) Fold 1 0.9236 0.2015 0.2663 0.0732

Fold 2 0.9204 0.2032 0.2721 0.0762

Fold 3 0.9278 0.2028 0.2666 0.0742

Fold 4 0.9293 0.1986 0.2580 0.0727

Fold 5 0.9277 0.1959 0.2579 0.0706

Mean 0.9257 0.2004 0.2642 0.0734

Dynamic ER-CNN (Mixture 5 models) Fold 1 0.9240 0.2022 0.2656 0.0731

Fold 2 0.9216 0.2004 0.2701 0.0750

Fold 3 0.9279 0.2023 0.2657 0.0736

Fold 4 0.9299 0.1978 0.2568 0.0722

Fold 5 0.9275 0.1966 0.2583 0.0709

Mean 0.9262 0.1998 0.2633 0.0730

Best results are shown in bold

Similar to the ensemble experiments in the SCUT-FBP5500
dataset, three ensemble scenarios are evaluated. From the
results of Table 9, we can make the following observations:

• The proposed 2B-IncRex trained by various dynamic
robust losses performs better than the individual
backbones and their ensemble.

• The fusion of individual backbones performs better
than the individual backbone networks (Inception-v3
with Dynamic Tukey and ResneXt-50 with Dynamic
PramSmoothL1 loss function).

• 2B-IncRex-based ensemble scenario outperforms all
results obtained by the single two backbone networks (2B-
IncRex with the three dynamic robust loss functions).

• Our proposed ensemble approach Dynamic CNN-ER
outperforms not only single and 2B-IncRex networks,
but also their combination.

Despite the presence of facial expressions and a limited
amount of data, our approach can achieve very good
performance in estimating facial beauty using transfer
learning (model fine-tuning). Moreover, the ε-error shows

Table 9 Facial Beauty Prediction using single backbone CNN archi-
tectures (Inception-v3 and Resnext-50) and our proposed 2B-IncRex
architecture. Furthermore, the ensemble of these approaches and our

proposed Dynamic ER-CNN approach are evaluated. All these meth-
ods are tested on KDEF-PT dataset

Architecture PC ↑ MAE ↓ RMSE ↓ ε-error ↓

Inception-v3 with Dynamic Tukey loss 0.9068 0.3402 0.4474 0.0519

Resnext-50 with Dynamic ParamSmoothL1 loss 0.9031 0.3500 0.4267 0.0496

2B-IncRex with Dynamic ParamSmoothL1 loss 0.9153 0.2864 0.3769 0.0404

2B-IncRex with Dynamic Huber loss 0.9132 0.3130 0.3934 0.0428

2B-IncRex with Dynamic Tukey loss 0.9151 0.3099 0.4060 0.0444

Ensemble of Single Backbones (2 models) 0.9111 0.3311 0.4270 0.0482

Ensemble of Two Backbones (3 models) 0.9232 0.2988 0.3805 0.0396

Dynamic ER-CNN 0.9260 0.2839 0.3638 0.0371

Best results are shown in bold
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Table 10 Comparison with the
sate-of-the-arts methods using
the 60-40% split. Dynamic
ParamSmoothL* is our
2B-IncRex network that was
trained using the Dynamic
ParamSmoothL1 loss function

Method PC ↑ MAE ↓ RMSE ↓

LR (2018) [18] 0.5948 0.4289 0.5531

GR (2018) [18] 0.6738 0.3914 0.5085

SVR (2018) [18] 0.6668 0.3898 0.5132

Alexnet (2018) [18] 0.8298 0.2938 0.3819

Resnet-18 (2018) [18] 0.8513 0.2818 0.3703

ResneXt-50 (2018) [18] 0.8777 0.2518 0.3325

CNN with SCA (2020) [25] 0.8780 0.2517 0.3320

Dynamic ParamSmoothL1* (Ours) 0.9171 0.2072 0.2716

Dynamic ER-CNN (Ours) 0.9212 0.2037 0.2672

Best results are shown in bold

Table 11 Comparison with the sate-of-the-arts methods the five folds
cross-validation scenario. + the authors of [27] used ResNeXt-50
as the backbone network to re-implement the methods [50] and

[51] on the newly-constructed SCUT-FBP5500 dataset. Dynamic
ParamSmoothL* is our 2B-IncRex network that was trained using the
Dynamic ParamSmoothL1 loss function

1 2 3 4 5 Mean

PC ↑
Alexnet (2018) [18] 0.8667 0.8645 0.8615 0.8678 0.8566 0.8634
Resnet-18 (2018) [18] 0.8847 0.8792 0.8929 0.8932 0.9004 0.8900
ResneXt-50 (2018) [18] 0.8985 0.8932 0.9016 0.899 0.9064 0.8997
CNN with SCA (2020) [25] 0.8990 0.8939 0.9020 0.8999 0.9067 0.9003
PI-CNN (2017) [51]+ - - - - - 0.8978
CNN + LDL (2017) [50]+ - - - - - 0.9031
ResNet-18 based AaNet (2019) [26] - - - - - 0.9055
ResneXt-50-R3CNN (2019) [27] 0.9143 0.9066 0.9136 0.9146 0.9217 0.9142
Dynamic ParamSmoothL1* (Ours) 0.9175 0.9166 0.9220 0.9279 0.9266 0.9221
Dynamic ER-CNN (Ours) 0.9240 0.9216 0.9279 0.9299 0.9275 0.9262

MAE ↓
Alexnet (2018) [18] 0.2633 0.2605 0.2681 0.2609 0.2728 0.2651
Resnet-18 (2018) [18] 0.2480 0.2459 0.243 0.2383 0.2383 0.2419
ResneXt-50 (2018) [18] 0.2306 0.2285 0.226 0.2349 0.2258 0.2291

CNN with SCA (2020) [25] 0.2300 0.2284 0.2257 0.2345 0.2251 0.2287

PI-CNN (2017) [51]+ - - - - - 0.2267
CNN + LDL (2017) [50]+ - - - - - 0.2201
ResNet-18 based AaNet (2019) [26] - - - - - 0.2236
ResneXt-50-R3CNN (2019) [27] 0.2109 0.2152 0.2126 0.2130 0.2085 0.2120
Dynamic ParamSmoothL1* (Ours) 0.2084 0.2073 0.2072 0.2013 0.1959 0.2040
Dynamic ER-CNN (Ours) 0.2022 0.2004 0.2023 0.1978 0.1966 0.1998

RMSE ↓
Alexnet (2018) [18] 0.3408 0.3449 0.3538 0.3438 0.3576 0.3481
Resnet-18 (2018) [18] 0.3258 0.3286 0.3184 0.3107 0.2994 0.3166

ResneXt-50 (2018) [18] 0.3025 0.3084 0.3016 0.3044 0.2918 0.3017

CNN with SCA (2020)[25] 0.3020 0.3081 0.3013 0.3039 0.2916 0.3014

PI-CNN (2017) [51]+ - - - - - 0.3016

CNN + LDL (2017) [50]+ - - - - - 0.2940

ResNet-18 based AaNet (2019) [26] - - - - - 0.2954

ResneXt-50-R3CNN (2019) [27] 0.2767 0.2895 0.2837 0.2804 0.2701 0.2800

Dynamic ParamSmoothL1* (Ours) 0.2762 0.2789 0.2733 0.2604 0.2596 0.2697

Dynamic ER-CNN (Ours) 0.2656 0.2701 0.2657 0.2568 0.2583 0.2633
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that our approach achieves very good performance despite
the high labeling uncertainty of the ground truth. From
the above results and discussion, it is clear that all of our
proposed elements (2B-IncRex, Dynamic Law for Robust
Loss Function, and the Ensemble) and their combination
prove their efficiency for FBP. As far as we know, this is the
first time that facial beauty estimation has been evaluated
using machine learning methods in the presence of facial
expressions on the dataset KDEF-PT.

7 Discussion and comparison

The goal of this section is to compare the performance
of our proposed solutions with state-of-the-art approaches.
In summary, this comparison examines the two evaluation
scenarios of SCUT-FBP5500 (60-40% and five-fold cross-
validation). Table 10 summarizes the comparison with
the state-of-the-art approaches using the first evaluation
scenario (60-40% split). The comparison consists of two
parts. First, we compare our proposed Dynamic ER-CNN
with the state-of-the-art approaches in three evaluation
metrics (PC, MAE, and RMSE). This comparison shows
that our proposed Dynamic ER-CNN outperforms state-of-
the-art methods. In addition to the first comparison, our
proposed 2B-IncRex architecture trained with the proposed
Dynamic PramSmoothL1 loss function achieves better
performance than the state-of-the-art approaches. The above
comparisons prove that the superiority of our approach over
the state-of-the-art methods is not only due to the ensemble
of models, but that both the proposed 2B-IncRex network
and the dynamic parabolic law for the robust loss functions
played a crucial role in achieving such performance.

Similar to the comparison with state-of-the-art approaches
for the 60-40% assessment scenario, we used our proposed
Dynamic ER-CNN and Dynamic PramSmoothL1 of the 2B-
IncRex architecture for the five-fold scenario. From Table 11,
our approach (Dynamic ER-CNN) outperforms all state-of-
the-art methods on the three evaluation metrics. Moreover,
our Dynamic ER-CNN not only outperforms the state-of-
the-art methods, but also our two proposed backbones with
Dynamic ParamSmoothL1 achieve better performance than
the state-of-the-art methods. This confirms that the strength
of our proposed Dynamic ER-CNN is not only due to the
ensemble of different regressors, but both the proposed
2B-IncRex network and the dynamic loss functions play a
crucial role in outperforming state-of-the-art methods. The
efficiency of our proposed Dynamic ER-CNN has been
demonstrated in both 60-40% and five-fold cross-validation.

8 Conclusion

In this paper, we presented a framework based on an
ensemble of regression CNNs (Dynamic ER-CNN). Our

proposed approach averages the output of five trained CNN
architectures. The CNNs used are ResneXt-50, Inception-
v3, and the proposed 2B-IncRex architectures. These
architectures were trained with the proposed Dynamic
ParamSmoothL1, Dynamic Huber, and Dynamic Tukey.
For these dynamic loss functions (ParamSmoothL1, Huber
and Tukey), a parabolic law is proposed to reduce the
parameter of the loss. The dynamic schemes were found
to be very efficient both in terms of performance and in
avoiding the grid search for the best value, which has a high
computational cost. Moreover, the dynamic loss functions
performed better than two standard loss functions, namely
L1 and MSE.

The obtained results show the superiority of the proposed
2B-IncRex over ResneXt-50 and Inception-v3 networks.
Moreover, the proposed approach (Dynamic ER-CNN)
outperformed not only one and two branches networks,
but also their fused models. On the other hand, the
proposed approach performed better than the state-of-
the-art methods in both the 60-40% and cross-validation
experiments for the three evaluation metrics (PC, MAE and
RMSE) onthe SCUT-FBP5500 dataset. The experimental
results on KDEF-PT proved the efficiency of our approach
for estimating facial beauty with adopting transfer learning,
despite the presence of facial expressions and limited data.
We also found that using the proposed dynamic robust loss
functions generally leads to better estimates
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