40,935 research outputs found

    A study of System Interface Sets (SIS) for the host, target and integration environments of the Space Station Program (SSP)

    Get PDF
    System interface sets (SIS) for large, complex, non-stop, distributed systems are examined. The SIS of the Space Station Program (SSP) was selected as the focus of this study because an appropriate virtual interface specification of the SIS is believed to have the most potential to free the project from four life cycle tyrannies which are rooted in a dependance on either a proprietary or particular instance of: operating systems, data management systems, communications systems, and instruction set architectures. The static perspective of the common Ada programming support environment interface set (CAIS) and the portable common execution environment (PCEE) activities are discussed. Also, the dynamic perspective of the PCEE is addressed

    Integrating security solutions to support nanoCMOS electronics research

    Get PDF
    The UK Engineering and Physical Sciences Research Council (EPSRC) funded Meeting the Design Challenges of nanoCMOS Electronics (nanoCMOS) is developing a research infrastructure for collaborative electronics research across multiple institutions in the UK with especially strong industrial and commercial involvement. Unlike other domains, the electronics industry is driven by the necessity of protecting the intellectual property of the data, designs and software associated with next generation electronics devices and therefore requires fine-grained security. Similarly, the project also demands seamless access to large scale high performance compute resources for atomic scale device simulations and the capability to manage the hundreds of thousands of files and the metadata associated with these simulations. Within this context, the project has explored a wide range of authentication and authorization infrastructures facilitating compute resource access and providing fine-grained security over numerous distributed file stores and files. We conclude that no single security solution meets the needs of the project. This paper describes the experiences of applying X.509-based certificates and public key infrastructures, VOMS, PERMIS, Kerberos and the Internet2 Shibboleth technologies for nanoCMOS security. We outline how we are integrating these solutions to provide a complete end-end security framework meeting the demands of the nanoCMOS electronics domain

    A metric for collaborative networks

    Get PDF
    The objective of this paper is to provide a metric that could be used to define success in acollaborative network. Design/methodology/approach - The methodology of this research consists of four stages: Review, Constructing, Testing and Description. Review stage comprised of a critical review of theliterature in order to understand the characteristics of collaborative network organisations and thereasons behind the successes and failures in collaborative networks. Construction stage resulted indevelopment of a metric for collaborative networks. Testing stage tested the model through case studyin a collaborative networks organisation. The outcome of the case study was discussed at thedescription stage to assess usability and usefulness of the metric for participants in turn to generatec onclusions

    E-mail and Direct Participation in Decision Making: A Literature Review

    Get PDF
    This paper reviews the literature on the effects of the use of e-mail on direct participation in decision making (PDM) in organisations. After a brief review of the organisational literature on participation the paper distinguishes e-mail theories on direct participation in three different theoretical perspectives. Then the paper focuses the attention on the role of e-mail in affecting task type, vertical and horizontal communication and their consequences for PDM. Finally the paper presents indications and open questions for future research.email, e-mail, decision making, participation in decision making, literature review,

    Proceedings of the ECCS 2005 satellite workshop: embracing complexity in design - Paris 17 November 2005

    Get PDF
    Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr). Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr)

    Data Mining Applications in Higher Education and Academic Intelligence Management

    Get PDF
    Higher education institutions are nucleus of research and future development acting in a competitive environment, with the prerequisite mission to generate, accumulate and share knowledge. The chain of generating knowledge inside and among external organizations (such as companies, other universities, partners, community) is considered essential to reduce the limitations of internal resources and could be plainly improved with the use of data mining technologies. Data mining has proven to be in the recent years a pioneering field of research and investigation that faces a large variety of techniques applied in a multitude of areas, both in business and higher education, relating interdisciplinary studies and development and covering a large variety of practice. Universities require an important amount of significant knowledge mined from its past and current data sets using special methods and processes. The ways in which information and knowledge are represented and delivered to the university managers are in a continuous transformation due to the involvement of the information and communication technologies in all the academic processes. Higher education institutions have long been interested in predicting the paths of students and alumni (Luan, 2004), thus identifying which students will join particular course programs (Kalathur, 2006), and which students will require assistance in order to graduate. Another important preoccupation is the academic failure among students which has long fuelled a large number of debates. Researchers (Vandamme et al., 2007) attempted to classify students into different clusters with dissimilar risks in exam failure, but also to detect with realistic accuracy what and how much the students know, in order to deduce specific learning gaps (Piementel & Omar, 2005). The distance and on-line education, together with the intelligent tutoring systems and their capability to register its exchanges with students (Mostow et al., 2005) present various feasible information sources for the data mining processes. Studies based on collecting and interpreting the information from several courses could possibly assist teachers and students in the web-based learning setting (Myller et al., 2002). Scientists (Anjewierden et al., 2007) derived models for classifying chat messages using data mining techniques, in order to offer learners real-time adaptive feedback which could result in the improvement of learning environments. In scientific literature there are some studies which seek to classify students in order to predict their final grade based on features extracted from logged data ineducational web-based systems (Minaei-Bidgoli & Punch, 2003). A combination of multiple classifiers led to a significant improvement in classification performance through weighting the feature vectors. The author’s research directions through the data mining practices consist in finding feasible ways to offer the higher education institutions’ managers ample knowledge to prepare new hypothesis, in a short period of time, which was formerly rigid or unachievable, in view of large datasets and earlier methods. Therefore, the aim is to put forward a way to understand the students’ opinions, satisfactions and discontentment in the each element of the educational process, and to predict their preference in certain fields of study, the choice in continuing education, academic failure, and to offer accurate correlations between their knowledge and the requirements in the labor market. Some of the most interesting data mining processes in the educational field are illustrated in the present chapter, in which the author adds own ideas and applications in educational issues using specific data mining techniques. The organization of this chapter is as follows. Section 2 offers an insight of how data mining processes are being applied in the large spectrum of education, presenting recent applications and studies published in the scientific literature, significant to the development of this emerging science. In Section 3 the author introduces his work through a number of new proposed directions and applications conducted over data collected from the students of the Babes-Bolyai University, using specific data mining classification learning and clustering methods. Section 4 presents the integration of data mining processes and their particular role in higher education issues and management, for the conception of an Academic Intelligence Management. Interrelated future research and plans are discussed as a conclusion in Section 5.data mining,data clustering, higher education, decision trees, C4.5 algorithm, k-means, decision support, academic intelligence management
    • 

    corecore