7,420 research outputs found

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Wireless communication, identification and sensing technologies enabling integrated logistics: a study in the harbor environment

    Get PDF
    In the last decade, integrated logistics has become an important challenge in the development of wireless communication, identification and sensing technology, due to the growing complexity of logistics processes and the increasing demand for adapting systems to new requirements. The advancement of wireless technology provides a wide range of options for the maritime container terminals. Electronic devices employed in container terminals reduce the manual effort, facilitating timely information flow and enhancing control and quality of service and decision made. In this paper, we examine the technology that can be used to support integration in harbor's logistics. In the literature, most systems have been developed to address specific needs of particular harbors, but a systematic study is missing. The purpose is to provide an overview to the reader about which technology of integrated logistics can be implemented and what remains to be addressed in the future

    A Survey on UAV-Aided Maritime Communications: Deployment Considerations, Applications, and Future Challenges

    Full text link
    Maritime activities represent a major domain of economic growth with several emerging maritime Internet of Things use cases, such as smart ports, autonomous navigation, and ocean monitoring systems. The major enabler for this exciting ecosystem is the provision of broadband, low-delay, and reliable wireless coverage to the ever-increasing number of vessels, buoys, platforms, sensors, and actuators. Towards this end, the integration of unmanned aerial vehicles (UAVs) in maritime communications introduces an aerial dimension to wireless connectivity going above and beyond current deployments, which are mainly relying on shore-based base stations with limited coverage and satellite links with high latency. Considering the potential of UAV-aided wireless communications, this survey presents the state-of-the-art in UAV-aided maritime communications, which, in general, are based on both conventional optimization and machine-learning-aided approaches. More specifically, relevant UAV-based network architectures are discussed together with the role of their building blocks. Then, physical-layer, resource management, and cloud/edge computing and caching UAV-aided solutions in maritime environments are discussed and grouped based on their performance targets. Moreover, as UAVs are characterized by flexible deployment with high re-positioning capabilities, studies on UAV trajectory optimization for maritime applications are thoroughly discussed. In addition, aiming at shedding light on the current status of real-world deployments, experimental studies on UAV-aided maritime communications are presented and implementation details are given. Finally, several important open issues in the area of UAV-aided maritime communications are given, related to the integration of sixth generation (6G) advancements

    Integrated satellite-terrestrial connectivity for autonomous ships:Survey and future research directions

    Get PDF
    An autonomous vessel uses multiple different radio technologies such as satellites, mobile networks and dedicated narrowband systems, to connect to other ships, services, and the remote operations center (ROC). In-ship communication is mainly implemented with wired technologies but also wireless links can be used. In this survey paper, we provide a short overview of autonomous and remote-controlled systems. This paper reviews 5G-related standardization in the maritime domain, covering main use cases and both the role of autonomous ships and that of people onboard. We discuss the concept of a connectivity manager, an intelligent entity that manages complex set of technologies, integrating satellite and terrestrial technologies together, ensuring robust in-ship connections and ship-to-outside connections in any environment. This survey paper describes the architecture and functionalities of connectivity management required for an autonomous ship to be able to operate globally. As a specific case example, we have implemented a research environment consisting of ship simulators with connectivity components. Our simulation results on the effects of delays to collision avoidance confirm the role of reliable connectivity for safety. Finally, we outline future research directions for autonomous ship connectivity research, providing ideas for further work

    Cross Domain IW Threats to SOF Maritime Missions: Implications for U.S. SOF

    Get PDF
    As cyber vulnerabilities proliferate with the expansion of connected devices, wherein security is often forsaken for ease of use, Special Operations Forces (SOF) cannot escape the obvious, massive risk that they are assuming by incorporating emerging technologies into their toolkits. This is especially true in the maritime sector where SOF operates nearshore in littoral zones. As SOF—in support to the U.S. Navy— increasingly operate in these contested maritime environments, they will gradually encounter more hostile actors looking to exploit digital vulnerabilities. As such, this monograph comes at a perfect time as the world becomes more interconnected but also more vulnerable

    Girt by sea: understanding Australia’s maritime domains in a networked world

    Get PDF
    This study aims to provide the background, language and context necessary for an informed understanding of the challenges and dilemmas faced by those responsible for the efficacy of Australia’s maritime domain awareness system. Abstract Against a rapidly changing region dominated by the rise of China, India and, closer to home, Indonesia, Australia’s approaches to understanding its maritime domains will be influenced by strategic factors and diplomatic judgements as well as operational imperatives.  Australia’s alliance relationship with the United States and its relationships with regional neighbours may be expected to have a profound impact on the strength of the information sharing and interoperability regimes on which so much of Australia’s maritime domain awareness depends. The purpose of this paper is twofold.  First, it seeks to explain in plain English some of the principles, concepts and terms that maritime domain awareness practitioners grapple with on a daily basis.  Second, it points to a series of challenges that governments face in deciding how to spend scarce tax dollars to deliver a maritime domain awareness system that is necessary and sufficient for the protection and promotion of Australia’s national interests

    Intelligent-Reflecting-Surface-Assisted UAV Communications for 6G Networks

    Full text link
    In 6th-Generation (6G) mobile networks, Intelligent Reflective Surfaces (IRSs) and Unmanned Aerial Vehicles (UAVs) have emerged as promising technologies to address the coverage difficulties and resource constraints faced by terrestrial networks. UAVs, with their mobility and low costs, offer diverse connectivity options for mobile users and a novel deployment paradigm for 6G networks. However, the limited battery capacity of UAVs, dynamic and unpredictable channel environments, and communication resource constraints result in poor performance of traditional UAV-based networks. IRSs can not only reconstruct the wireless environment in a unique way, but also achieve wireless network relay in a cost-effective manner. Hence, it receives significant attention as a promising solution to solve the above challenges. In this article, we conduct a comprehensive survey on IRS-assisted UAV communications for 6G networks. First, primary issues, key technologies, and application scenarios of IRS-assisted UAV communications for 6G networks are introduced. Then, we put forward specific solutions to the issues of IRS-assisted UAV communications. Finally, we discuss some open issues and future research directions to guide researchers in related fields

    Enabling emergent configurations in the industrial internet of things for oil and gas explorations : a survey

    Get PDF
    Abstract: Several heterogeneous, intelligent, and distributed devices can be connected to interact with one another over the Internet in what is termed internet of things (IoT). Also, the concept of IoT can be exploited in the industrial environment for enhancing the production of goods and services and for mitigating the risk of disaster occurrences. This application of IoT for enhancing industrial production is known as industrial IoT (IIoT). Emergent configuration (EC) is a technology that can be adopted to enhance the operation and collaboration of IoT connected devices in order to improve the efficiency of the connected IoT systems for maximum user satisfaction. To meet user goals, the connected devices are required to cooperate with one another in an adaptive, interoperable, and homogeneous manner. In this paper, a survey of the concept of IoT is presented in addition to a review of IIoT systems. The application of ubiquitous computing-aided software define networking (SDN)-based EC architecture is propounded for enhancing the throughput of oil and gas production in the maritime ecosystems by managing the exploration process especially in emergency situations that involve anthropogenic oil and gas spillages
    corecore