18,803 research outputs found

    Knowledge Graph semantic enhancement of input data for improving AI

    Full text link
    Intelligent systems designed using machine learning algorithms require a large number of labeled data. Background knowledge provides complementary, real world factual information that can augment the limited labeled data to train a machine learning algorithm. The term Knowledge Graph (KG) is in vogue as for many practical applications, it is convenient and useful to organize this background knowledge in the form of a graph. Recent academic research and implemented industrial intelligent systems have shown promising performance for machine learning algorithms that combine training data with a knowledge graph. In this article, we discuss the use of relevant KGs to enhance input data for two applications that use machine learning -- recommendation and community detection. The KG improves both accuracy and explainability

    Automated annotation of landmark images using community contributed datasets and web resources

    Get PDF
    A novel solution to the challenge of automatic image annotation is described. Given an image with GPS data of its location of capture, our system returns a semantically-rich annotation comprising tags which both identify the landmark in the image, and provide an interesting fact about it, e.g. "A view of the Eiffel Tower, which was built in 1889 for an international exhibition in Paris". This exploits visual and textual web mining in combination with content-based image analysis and natural language processing. In the first stage, an input image is matched to a set of community contributed images (with keyword tags) on the basis of its GPS information and image classification techniques. The depicted landmark is inferred from the keyword tags for the matched set. The system then takes advantage of the information written about landmarks available on the web at large to extract a fact about the landmark in the image. We report component evaluation results from an implementation of our solution on a mobile device. Image localisation and matching oers 93.6% classication accuracy; the selection of appropriate tags for use in annotation performs well (F1M of 0.59), and it subsequently automatically identies a correct toponym for use in captioning and fact extraction in 69.0% of the tested cases; finally the fact extraction returns an interesting caption in 78% of cases

    Image-based Text Classification using 2D Convolutional Neural Networks

    Get PDF
    We propose a new approach to text classification in which we consider the input text as an image and apply 2D Convolutional Neural Networks to learn the local and global semantics of the sentences from the variations of the visual patterns of words. Our approach demonstrates that it is possible to get semantically meaningful features from images with text without using optical character recognition and sequential processing pipelines, techniques that traditional natural language processing algorithms require. To validate our approach, we present results for two applications: text classification and dialog modeling. Using a 2D Convolutional Neural Network, we were able to outperform the state-ofart accuracy results for a Chinese text classification task and achieved promising results for seven English text classification tasks. Furthermore, our approach outperformed the memory networks without match types when using out of vocabulary entities from Task 4 of the bAbI dialog dataset

    Hierarchy-based Image Embeddings for Semantic Image Retrieval

    Full text link
    Deep neural networks trained for classification have been found to learn powerful image representations, which are also often used for other tasks such as comparing images w.r.t. their visual similarity. However, visual similarity does not imply semantic similarity. In order to learn semantically discriminative features, we propose to map images onto class embeddings whose pair-wise dot products correspond to a measure of semantic similarity between classes. Such an embedding does not only improve image retrieval results, but could also facilitate integrating semantics for other tasks, e.g., novelty detection or few-shot learning. We introduce a deterministic algorithm for computing the class centroids directly based on prior world-knowledge encoded in a hierarchy of classes such as WordNet. Experiments on CIFAR-100, NABirds, and ImageNet show that our learned semantic image embeddings improve the semantic consistency of image retrieval results by a large margin.Comment: Accepted at WACV 2019. Source code: https://github.com/cvjena/semantic-embedding
    corecore