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Abstract. A novel solution to the challenge of automatic image anno-
tation is described. Given an image with GPS data of its location of
capture, our system returns a semantically-rich annotation comprising
tags which both identify the landmark in the image, and provide an
interesting fact about it, e.g. “A view of the Eiffel Tower, which was
built in 1889 for an international exhibition in Paris”. This exploits vi-
sual and textual web mining in combination with content-based image
analysis and natural language processing. In the first stage, an input
image is matched to a set of community contributed images (with key-
word tags) on the basis of its GPS information and image classification
techniques. The depicted landmark is inferred from the keyword tags for
the matched set. The system then takes advantage of the information
written about landmarks available on the web at large to extract a fact
about the landmark in the image. We report component evaluation re-
sults from an implementation of our solution on a mobile device. Image
localisation and matching offers 93.6% classification accuracy; the selec-
tion of appropriate tags for use in annotation performs well (F1M of
0.59), and it subsequently automatically identifies a correct toponym for
use in captioning and fact extraction in 69.0% of the tested cases; finally
the fact extraction returns an interesting caption in 78% of cases.

Keywords: web mining, geo-tagged images, landmark identification,
automated image captioning

1 Introduction

Photo capture, storage and usage has undergone a revolution in recent years.
Many people routinely take large numbers of images from their lives using ded-
icated digital cameras, and increasingly with those embedded in mobile devices
such as smartphones. Many of the devices used for image capture now incorpo-
rate GPS sensors meaning that the location at which an image was captured is
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easily available. These images are then very often shared with others using online
photo archives such as Flickr or Facebook. Users uploading images are expected
to provide captions for their images which must be entered manually. However,
there are disadvantages with this manual annotation process. First, those taking
pictures will often be traveling in places which they do not know well and so are
not able to provide accurate and/or interesting labels. Thus images taken while
on a visit to London may simply be labeled “London”. The volume of images
taken on such a trip means that even if they are knowledgeable about the place
being visited, users will often not take the time to provide detailed captions, and
even if they do this, labels will be inconsistent between different users uploading
to social repositories, reducing the effectiveness of subsequent image search. In
this paper we describe a mobile application running on an iPhone in conjunction
with a web service which automates this captioning process for landmark images.
Once captioned images can be uploaded to an online social media application.
We also believe our work is relevant in the context of the burgeoning interest in
augmented reality whereby a camera screen on a mobile device is automatically
supplemented with caption-like details about the target image.

Our approach exploits GPS information accompanying an image, geographic
resources that provide reverse lookup, e.g. GeoNames [1], the existing keyword
tags associated with images in community contributed datasets such as Flickr,
and the information about a great many places available taken from the World
Wide Web. Given a GPS-tagged image of a landmark our system can generate
a caption comprising keyword tags that describe what landmark is in the image
and give an interesting fact about it. Classification is achieved through the in-
tegration of image classification based on computational classification methods
(using local image features [4] and Support Vector Machines [6]) and a technique
for text information extraction from the web.

This paper is organised as follows: Section 2 reviews background to our work,
Section 3 describes the component stages of our system and how they are in-
tegrated to generate image captions, Section 4 describes the application and
evaluation of the components, and finally Section 5 concludes our work to date.

2 Background

The ‘semantic gap’ between the low-level features used in many content-based
image analysis technologies and the human interpretation of images means that
most large-scale image retrieval systems in use today are based on textual meta-
data in the form of tags or captions which are usually created manually by
humans. Thus the potential for retrieved images to satisfy the user relies heavily
on the accuracy and quality of these human-defined tags. The main disadvantage
of this approach is that these manual tags will be inconsistent and often poor
due to lack of knowledge or time on the part of the annotator.

An alternative and more appealing image search scenario in many situations
is to use a query image which should be compared to existing known images
in order to identify what is depicted in the new image. High-level semantic



classification can be used to identify complex images such as the image being
a view of the Trevi Fountain in Rome. A popular approach to automatic high-
level semantic classification is to use local image features as opposed to low-level
image features. Local image features are based around interest points (salient,
non uniform regions) in a photo. These have been successfully used in the past
for object matching, tracking and recognition along with other niche tasks such
as image mosaicing [9]. Several research groups have used these local image
features for object recognition tasks on mobile devices. For example Chevallet et
al.[5] developed an application called Snap2Tell designed to run on GPS enabled
mobile phone devices. In their system a user can take a picture of one of 120
landmarks located around Singapore (STOIC dataset), which is then identified
on a remote server. Fritz et al. [7] use SIFT features for descriptor matching in
a mobile landmark recognition system. They use a relatively small dataset of
1005 landmark images (ZUBUD dataset) based around Zurich as their training
collection. When a user takes a picture of a landmark within the Zurich region,
the system aims to classify the image against the dataset using only the SIFT
features that it deems to be ‘informative’, disregarding all other features to speed
up matching time. Yeh et al. [19] developed a system that recognises an image
of a landmark taken on a mobile device and retrieves information from an online
search describing the landmark within an image. This system compares an image
of a landmark taken on a mobile device against a collection of images that are
contained on webpages. If a match is found, the system extracts information
from the text in the corresponding webpage and uses it to extract information
from the wider web to describe the landmark depicted within the image.

Our work improves on this previous work by implementing a more robust
recognition system that is able to classify landmarks more accurately using very
large datasets of community contributed images. Our techniques allow for the
creation of reliable captions and tags from large amounts of noisy data. The
integrated framework then reliably augments these captions and tags with facts
about landmarks contained within an image taken from the whole Web.

3 Landmark Identification and Caption Generation

Our landmark identification and captioning application exploits the very large
number of captioned geo-tagged images now available in community contributed
image collections from which tags are selected. In this integrated process when a
new geo-tagged image is introduced into the system, a cluster of similar images
is first identified. Representative sets of tags for this landmark based on a set of
matched images are then identified and used to identify the primary toponym
in the image. Finally keywords selected from images related to the one being
captioned are used to extract a fact about the landmark from the web and
integrate it into the image’s caption.



3.1 Landmark Classification

An effective approach to classification of a landmark image is to harvest a large
number of similarly annotated landmark images, and then to match it based
on context and content features of these images [14] [15]. In this process im-
age and object matching using interest point features has been shown to work
well even in large-scale image databases containing thousands of different images
[11]. However the actual matching between keypoints can be very computation-
ally expensive, and for large-scale image databases containing millions of images
computationally infeasible. In order to use these techniques in a practical sys-
tem, methods are required to reduce the number of keypoints which need to
be compared or else that do not match keypoint to keypoint. In our work this
is achieved by combining computer vision techniques with different forms of
semantic context data to organise and classify landmarks within images.

A new framework is implemented based on single viewpoint clustering [10]
which enables the efficient and accurate classification of landmarks using a large
scale training database. Single viewpoint clustering involves collecting a number
of images of the same landmark taken from a relatively similar viewpoint and
clustering them to create clusters of visually similar images. Each cluster can
then be assigned spatial location data. They can be used for efficient classification
of new input images using Support Vector Machines (SVMs), where each SVM
model represents a single landmark from a certain viewpoint. One drawback of
this approach is that a large number of positive examples are needed to train an
accurate SVM classifier. Within real-world collections of landmark images, there
may not be a sufficient number of images to build a reliable SVM model. To deal
with this situation, we use a method that addresses this problem by combining
SVMs with an hierarchical classification approach.

In this paper we apply this technique to a collection of images harvested from
Flickr which contains many examples of images for significant landmarks. For ex-
ample a search on Flickr for “eiffel tower” currently returns over 370,000 images
and for “notre dame paris” over 245,000 images (May 2010). Landmarks tend to
have a unique visual appearance that leads to high discrimination values between
different landmarks. The automated classification approach applied here works
well due to the observed capture behaviour of users on large scale photo-sharing
websites. Photographers tend to visit similar destinations and landmarks, and
to take images of these landmarks from a small number of locations due to geo-
graphical constraints and their photogencity from certain viewpoints. This leads
to a large overlap of visually similar images of popular landmarks. Based on this
observation, our system takes advantage of this overlap by reducing the search
space in a large scale dataset by clustering similar images, thus creating a robust
means of classifying an image using SVMs.

Dataset For this work a training collection of images was harvested using the
Flickr API from the metropolitan area of Paris. In order to reliably cluster similar
images for SVM training, we downloaded only geo-tagged images. To ensure
that the vast majority of these images contained large landmarks as their main



subject, the image text tags assigned to describe it when it was uploaded to Flickr
were analysed. A long list of stopwords was created to filter out unwanted images
(eg. concert, match, march). This filtering process produced a training set of
76,749 geo-tagged images. However, since geo-tags and text tags are assigned by
those contributing the images to Flickr there is no way to ensure their accuracy.
It is however expected that correct tags will dominate the dataset.

SVM Classification Single viewpoint clustering involves taking a number of
images of the same landmark taken from a relatively similar viewpoint, and clus-
tering them into visually similar clusters. Due to the large size of the dataset,
traditional clustering techniques such as K-means would be infeasible. We ex-
plored many different techniques and combinations of image features (content
and context) to determine an efficient and accurate method to cluster large
numbers of images. We selected a combination of spatial data, low-level image
features and SURF local image features [4].

All training images were first clustered based on geographical locations. Clus-
ter centres were chosen randomly in the dataset and all images located within
a spatial radius of 500 metres of each centre were clustered. This process was
repeated until all images in the dataset were assigned to a cluster. Within each
of these clusters, images were then subclustered based on two MPEG7 low-level
features: edge histogram (which provides weak spatial verification) and scalable
colour using an hierarchical clustering method.

Each of these clusters were then subclustered again based on local image
feature matching. A graph was created using images within a cluster as the nodes
and local feature matched as the edges. The most connected image was chosen as
the cluster centre. All images were then compared against the cluster centres to
subcluster these images into visually similar clusters. Thus, each cluster should
represent a landmark from a similar viewpoint. Clusters were then assigned a
spatial location based on the average position of each image within the cluster.

K-means clustering was then carried out on these clusters (K = 100) using
their geographical location as the comparison values. The metropolitan area
of Paris was split into 100 geographical regions and a multi-class SVM model
trained to represent all classifiable landmarks within each of these regions. Thus
100 multi-class classification models were trained in total, each one representing
all viewpoints of landmarks within the geographical bounding box as determined
by the K-means clustering procedure. These models were trained using Visual
Bag of Words (BOW) features with a vocabulary size of 4096. We also trained
versions of these SVM models using the MPEG7 edge histogram descriptor.

To classify an image, firstly its closest multi-class SVM is retrieved based
on geographical distance. A visual BOW is created for the test image based on
the vocabulary used for the training images. The SVM then classifies the test
input vector into one of the classes used to create the model. At this point an
input image is only classified to the nearest class so a more definite verification
is required to guarantee an accurate match. The input image is then compared
against all images within this class using point to point matching with SURF



Fig. 1. Example of the SVM training process within a small spatial area in Paris. All
clusters within this geographical area are used as inputs into a multi-class SVM model.

image features. If the number of matches is above a threshold, this should confirm
that the input image is indeed a match.

A significant drawback of this approach is that a large number of training
examples are needed to build each accurate SVM model. Our hybrid approach
addresses this problem as follows, in cases where no match is found for an in-
put image using the SVM approach, a slower hierarchical pipeline classification
method is used.

Hierarchical Classification To classify an input image using the hierarchical
approach all images within a spatial radius are first retrieved. Many different
spatial radii were investigated. It was found that for our urban Paris dataset
that a radius of 500 meters provided the best trade-off between accuracy and
speed. Although high level semantics based on image features are very difficult to
implement successfully, several low-level semantic classifiers can work quite well.
In our work two low-level semantic classifiers that have been shown to work well
in the past are indoor/outdoor and building/non-building [17][12], were used in
the early phase of our hierarchical pipeline. Classifiers were trained based on
MPEG7 features using SVMs to classify whether an image was taken indoors
or outdoors and whether an image contains a large building. The number of
retrieved images is then pruned based on the results of these semantic classifiers.
Gabor texture features are then extracted and compared against the remainder
of the retrieved images. All images which have a Euclidean distance above a
threshold (threshold = 20) are then pruned from the search space. Point to
point matching is then carried out using SURF image features and the distance



Fig. 2. The hierarchical classification pipeline. Images that cannot be successfully clas-
sified using the spatially organised SVM models are classified using this approach.

ratio test. The image with the highest number of positive matches (if above a
threshold of 4) is then matched with the input image

3.2 Landmark Identification and Selection of Keywords, Tags and
Image Title

The landmark image localization and matching method described in the previous
section was implemented into a matching engine and service. The engine localizes
and matches the input image, looking up potentially relevant images within the
training dataset of Parisian landmark images. Once potential matches have been
located, the engine returns a set of images from the training set ordered from best
match to worst in XML format. For each image returned, associated metadata is
also provided, including the community-contributed tags, the title given to the
image by the uploader and a unique identifier for the matched image.

Tag Filtering And Selection Each matched image returned by the localiza-
tion engine has associated information which includes a set of tags. We wish



to assign the most appropriate tags to the input image from among those con-
tributed by the community. Thus our system attempts to identify a represen-
tative set of tags which can be used to annotate the target image. A hashmap
of tags is created from the available tag set, by iterating through the matched
images and the tags they contain and adding them to the set. A tag within the
set is given an importance measure or weighting which is incremented with each
encounter. The amount by which it is incremented corresponds to the rank of
the matched image within the results list, i.e. tags encountered in the highest
scoring match are given greater weight than those from images further down the
list. Finally, using the weighted score of each tag, the set is thresholded to yield
the set of tags likely to be the most representative of the target image.

Toponym Identification Using the provided location information, our appli-
cation middleware communicates with the GeoNames API and retrieves a list
of toponyms within a 1.5 kilometre radius of these coordinates. A wide radius is
employed to allow for positioning errors or varying ranges of accuracy in the pro-
vided GPS position. The toponym list is filtered to remove irrelevant, spurious or
noisy toponym types, e.g. names of hotels. The list of potential toponyms is then
matched as outlined above to the selected tags to identify the most likely candi-
date. This is then applied as the image title. With a toponym identified, the fact
extraction and caption augmentation service, as described below, is called and
the returned facts are then used to further annotate the media being processed.
We employ a reasonably straightforward approach: the available toponyms are
compared to the thresholded tag set and the best matching item chosen. Stop-
words are removed from the titles, which are divided into tokens and stemmed
using the Porter Stemming algorithm [13]. Using the Jaccard Coefficient [18],
each toponym is then compared to the selected tags, and scored. The best match
is then returned, or if no match is found, the closest toponym is returned.

3.3 Fact Extraction and Title Augmentation

In the next stage of processing we use the output of the image classification and
toponym identification as input to a highly portable mechanism for the extrac-
tion of partially structured facts from information on toponyms available on the
World Wide Web. A particular feature of this is that it exploits information re-
dundancy on the web, i.e. the fact that the same information about a landmark
is available in many forms on the web. This method is described in detail in
[16]. For a given landmark, we return a list of facts in the form (Landmark, Cue,
Text-Fragment), ranked according to a score which is intended to promote in-
teresting and true facts. This fact structure makes it straightforward to combine
it with an existing image title. Crucially, for this information extraction pro-
cess, we assume that at least one key fact about a landmark will be expressed
somewhere on the web in a simple form, so that we only need to work with a
few simple linguistic structures and shallow language processing. The following
sub-sections describe the fact extraction process.



Get Snippets from Search Engine: A series of queries is made to a web search
engine (we use Yahoo’s BOSS API [3]). Each query takes the form <“Landmark
Cue”>; where the use of double quotes indicates that only exact matches are
wanted, i.e. text in which the given landmark and cue are adjacent. A set of
cues is manually specified to capture some common and simple ways in which
information about landmarks is expressed, e.g. ‘is a’, ‘is famous for’, ‘is popular
with’, ‘was built’.

Although we worked with around 40 cues (including single / plural and
present / past forms), a much smaller number are responsible for returning the
majority of high ranking facts; in particular (and perhaps unsurprisingly) the
generic “is” seems most productive. The query may also include a disambiguat-
ing term. For example, streets and buildings with the same name may occur in
different towns, so we can include a town name in the query outside the double
quotes, e.g. <“West Street is popular with” Bridport>. For each query, all the
unique snippets returned up to a preconfigured maximum number are processed
in the next step. Typically a snippet is a few lines of text from a webpage around
the words that match the query, often broken in mid-sentence.

Shallow Chunk Snippets to Make Candidate Facts: Because we are only retriev-
ing information about a given landmark that is expressed as “Landmark Cue
...”, we can use a simple extraction pattern to obtain candidate facts from the
retrieved snippets. The gist of the pattern is ‘BOUNDARY LANDMARK CUE
TEXT-FRAGMENT BOUNDARY’, such that ‘TEXT-FRAGMENT’ captures
the ‘Text-Fragment’ part of a fact. The details of the pattern are captured in a
regular expression on a language-specific basis, e.g. to specify boundary words
and punctuation, to allow optional words to appear inbetween LANDMARK
and CUE, and to reorder the elements for non-SVO languages. A successful
match of the pattern on a snippet leads to the generation of a candidate fact.
For example, using extraction patterns the snippet text ‘...in London. Big Ben
was named after Sir Benjamin Hall. ...’ matches, giving the candidate fact (Big
Ben, was named, after Sir Benjamin Hall) but ‘The square next to Big Ben was
named in 1848...’ does not match.

Filter Candidate Facts: Four filters are used as a quality control to remove
candidate facts that: contain potentially subjective words; end in words that
would be ungrammatical; are under a length threshold; and that contain words
that are all in capitals. Finally, facts are ranked so that we are more likely to
get correct and interesting facts at the top. We exploit the overlap between
candidate facts for the same Landmark-Cue pair to capture these notions to
some extent. For each Landmark-Cue pair a keyword frequency list is generated
by counting the occurrence of all words in the Text-Fragments for that pair,
words in a stopword list are ignored. The score for each fact is then calculated
by summing the Landmark-Cue frequencies of each word in the Text-Fragment,
so that facts containing words that were common in other facts with the same
Landmark-Cue will score highly. If shorter facts are wanted then the sum is
divided by the word length of the Text-Fragment.



Fig. 3. An illustration demonstrating how the different components of the framework
integrate with one another.

The sum score for a fact can become high in two ways: (i) there are many
overlapping Text-Fragments for an Landmark-Cue pair, so there are some high
word frequencies; and (ii) a fact contains more of these high frequency words
than other facts. Thus, the method is designed to highly rank facts with the
most appropriate Cue for the Landmark, and the best Text-Fragment for the
Landmark-Cue pair. For an existing image title, e.g. “A view of the Eiffel Tower”,
then the top-ranked fact, e.g. ‘Eiffel Tower, was built, in 1889 for an international
exhibition in Paris’, can be inserted in one of two ways: (i) as a new sentence -
“A view of the Eiffel Tower. The Eiffel Tower was built in 1889...”; or (ii) as a
subclause - “A view of the Eiffel Tower, which was built in 1889...”.

4 Application and Evaluation

4.1 Application Workflow

The three components described in the previous sections are integrated into a
combined service architecture shown in Figure 3. The landmark image recogni-
tion and classification engine resides on the server along with a series of web
services designed to expose their functionality to a mobile application running
on a compatible mobile device (in this case an iPhone.) The integrated service
allows an input landmark image to be recognized, localized and matched with
other images in the repository, in this case the Flickr corpus of Parisian land-
marks described previously. In order to caption and tag an input image, matches
for the provided image are looked up, and through the middleware layer used to
determine appropriate annotations to be applied to the target image. The steps
are as follows: first the image matching is performed after which, and using



Fig. 4. The workflow and outputs of the chained components illustrated with a worked
example, in this case of the Louvre in Paris.

the returned results along with their associated metadata, a set of representa-
tive tags for the image being processed is identified. Using these tags, the best
matching toponym nearby the provided coordinates is determined, this is then
used to seed the fact extraction and caption augmentation step. This workflow
is illustrated using a worked example in Figure 4.

4.2 Mobile Application

The mobile application is designed to operate in-situ with a tourist style scenario
in mind. Examplescreenshots of the working iPhone application are shown in
Figure 5. The application operates as follows: first the user selects a photo they
want to process, either by taking a new image with the device’s in-built camera
or by selecting an existing image from the photo library. They are then asked
to confirm that the location for the image is correct, after which the image
and location data is passed to the middleware layer through a REST-based API.
After the service completes the matching and annotation of the image, a response
is returned to the device. The annotated image is then saved to a local data store
and the application presents the results on-screen. The image, along with the
automatically generated captions and tags, can then be uploaded to a number
of social media sites including Flickr and Twitter through the results screen.



Fig. 5. An example of the application developed based on this framework running on
an Apple iPhoneTMmobile device.

Table 1. Landmark Classification Accuracy(270 test images)

Approach No. of images Classified correctly

Hierarchical only 270 91.0%

SVM (BOW) only 156 92.9%

SVM (Edge) only 214 93.4%

Hybrid (BOW) 270 93.3%

Hybrid (Edge) 270 93.6%

4.3 Evaluation

This section describes laboratory evaluation of the accuracy of the components
of our landmark image classification and annotation system.

Landmark Classification In order to evaluate the classification system, a test
collection of 270 images was gathered from the Panoramio online collection using
Panoramio’s REST API [2]. All of these test images have a large landmark as
their main subject and include geo-tags. It should be noted that to make the test
collection realistically challenging, the landmarks shown in many of the images
are partially occluded and taken under a wide variety of lighting conditions
(day, night, flash, etc..). The test collection was first classified solely using the
hierarchical classification approach described in section 3.1, with the aim of
ascertaining the classification accuracy of this technique. Experimental results
are shown in Table 1.



Fig. 6. The precision can be seen to increase for each of the weighting approaches as
the thresholds increase, while the recall increases.

We then processed our training set of images into spatially organised multi-
class SVM models (using BOW and Edge features) and re-classifed the test
collection using the hybrid approach combining SVMs and the hierarchical ap-
proach. Results of this investigation are again shown in Table 1. Of the 270
images within the test collection, the BOW SVMs recognised 156 of them while
the Edge based SVMs recognised 214 of the test images. The Edge based hybrid
approach slightly outperforms the BOW using this dataset.

Tagging The selection of appropriate tags for the target image is extremely
important within the workflow since tags are used for image annotation and as
the input to the web-based augmentation stage. In order to evaluate the accuracy
of the tagging phase, we groundtruthed 85 test images. The tags for the images
returned for each image by the image matching service were formed into a union
pool set. An annotator manually judged each pooled tag and made a binary
classification of its relevance (ie. relevant or not). A tag was determined to be
relevant if it described the landmark featured in the image. As such associated
tags were not deemed relevant. Thus details such as descriptions of camera types,
related tags such as weather or lighting, or information on the year or events and
activities were deemed non-relevant, since the emphasis in the groundtruthing
was placed on tags which identify the landmark in the image. On average 9.85
tags were deemed relevant per image, while each image had an average of 69.09
tags taken from 12.85 images matches from the image collection.

With a groundtruth established, the tag weighting and thresholding approach
as previously described was applied to the image matching results for each test
image. The input parameters were varied from 0.5-0.95 for both weighting and
threshold and all of the combinations iterated. The set of tags returned from
each variation was compared against the groundtruth for that image. Precision
and recall measures were calculated as outlined in [8]. These were then averaged
across all of the test images and the F1M measure calculated.



Within the selection of tags there was a need to balance precision and the
recall so that ‘noisy’ or superfluous tags are kept to a minimum while a maxi-
mum of the desired tags are contained within the selected set. Applying a low
threshold results in an unconstrained and highly noisy set displaying high recall
but extremely low precision. This is illustrated in Fig 6. Conversely, a higher
threshold and weight results in an overly constrained set, which while displaying
high precision, has very low overall recall. By exploring the various variations
for the highest F1M, we identified a threshold value of 0.75 with an iteratively
decreasing tag weighting of 0.85 to be optimal for tag selection. This resulted
in on average 13.9 tags being selected. While some of the selected tags are not
directly relevant, this may be acceptable to users since many of these additional
tags are noted to be ancillary or related descriptors rather than genuine noise.

Toponym identification A toponym is used to initiate the fact extraction and
title augmentation step, and its accuracy is thus important to the effectiveness of
the fact extraction stage. The identification of the appropriate toponym label for
each image is reliant upon the outputs of the tag filtering and selection process
as outlined previously. To investigate this, 87 test images were selected, image
matching was performed and a set of tags filtered from the results selected.
Nearby toponyms were looked up using GeoNames and a candidate selected
based on the tag set in a manner as outlined in Section 3.2. Each of the returned
toponyms was then annotated into one of the following categories: Incorrect
toponym identified; Vague or unspecific toponym identified, e.g. Paris, France;
Toponym is related to the target but is incorrect, this included a landmark
nearby or within the image but which was not the primary focus or featured
landmark, e.g. the Champ de Mars returned in place of the Eiffel Tower; and
finally a correctly identified toponym. In total 13 of the toponyms were incorrect,
4 were vague, 10 were incorrect but related and 60 were correct.

While 68.97% of the tested images returned a correctly identified toponym,
a further 16% (vague and related categories) may be considered acceptable (to-
talling 88.5%). All of the vague cases were composed of a generic toponym of
‘Paris’, which returned facts such as ‘Paris is named after a Celtic tribe called
the Parisii who lived on the island in the river’, ‘Paris is famous for its huge
number of cafes and brasseries’ and ‘Paris was made for lovers and lovers of
life’. While these facts are not ideal, they are generic enough to be reasonably
acceptable. Additionally those which are related often contained reference to the
target landmark. For example, in the case where the Champ de Mars was iden-
tified in place of the Eiffel tower, the first returned fact is the following: ‘Champ
de Mars is a green area located in the middle of the Eiffel Tower and the Ecole
Militare building’. In another case, where the Champs Elysees was returned in-
stead of the Arc de Triomphe, the first fact returned again referenced the desired
landmark: ‘Champs-elysees is a seventeenth century garden-promenade turned
avenue connecting the Concorde and Arc de Triomphe’.

Fact Extraction and Title Augmentation For this evaluation 68 place
names from around Europe were selected. We chose an even mixture of urban



/ rural and famous / not famous places from European cities (London, Riga,
Zurich and Dublin) and countryside (UK, Latvia, Switzerland and Ireland), and
various types of place - churches, statues, mountains, rivers, etc. For each place
the top ranked fact was evaluated in terms of its correctness (according to one
investigator consulting relevant websites) and whether or not it was deemed in-
teresting (according to the judgments of five subjects). Our evaluation criteria
were actually rather strict, since it was found that a majority of subjects rated
more facts as ‘interesting’ (78%) than we ourselves rated as correct (50%).

Overall we are encouraged by the performance of each of the component tech-
nologies used in our application. While all of them use some degree of empirical
design and parameter selection, none of these specifically focus on the dataset
used here and they can easily be adjusted for other similar environments. We
anticipate that in an operational application empirical parameters could be ad-
justed automatically based on user feedback.

5 Conclusions and Further Work

This paper has described our novel integrated system for automatically caption-
ing landmark images captured on a GPS enabled mobile device. Evaluation of
the three principle components of the systems shows that they each have a high
degree of effectiveness. They do however make some mistakes. However, informal
testing of the combined system shows that the application provides good tags for
popular landmarks for which there are many existing labeled images contained
in online social collections with a correspondingly large number of facts avail-
able online. Tagging is less effective for less frequented landmarks where there
are less online images and less web content available. For this latter case we plan
to explore more sophisticated techniques to improve the quality of tagging, how-
ever it is likely that for many less popular landmarks this problem will address
itself over time as more online content appears naturally. We also plan to carry
out an end-to-end evaluation of the captioning system. This will evaluate the
accuracy of landmark identification, factual augmentation, and the acceptability
and value of the captions to users.

In the longer term, users will be able to upload captioned images to social
image collections. Over time this will expand the number and detail of annotated
images available. This itself will provide more effective sources of information for
landmark identification and for the selection of accurate and interesting tags.
While the system described here is only implemented for English, the methods
used are all language independent and it could easily be ported to other lan-
guages by means of new stopword lists, localised toponyms lists and collections
of word patterns in the fact extraction stage [16].
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