10,559 research outputs found

    Design and evaluation of a scalable hierarchical application component placement algorithm for cloud resource allocation

    Get PDF
    In the context of cloud systems, mapping application components to a set of physical servers and assigning resources to those components is challenging. For large-scale clouds, traditional resource allocation systems, which rely on a centralized management paradigm, become ineffective and inefficient. Therefore, there is an essential need of providing new management solutions that scale well with the size of large cloud systems. In this paper a distributed and hierarchical component placement algorithm is presented, evaluated and compared to a centralized algorithm. Each application is represented as a collection of interacting services, and multiple service types with differing placement characteristics are considered. Our evaluations show that the proposed algorithm is at least 84.65 times faster and offers better scalability compared with a central approach, while the percentage of servers used and fully placed applications remains close to that of the centralized algorithm

    C2MS: Dynamic Monitoring and Management of Cloud Infrastructures

    Full text link
    Server clustering is a common design principle employed by many organisations who require high availability, scalability and easier management of their infrastructure. Servers are typically clustered according to the service they provide whether it be the application(s) installed, the role of the server or server accessibility for example. In order to optimize performance, manage load and maintain availability, servers may migrate from one cluster group to another making it difficult for server monitoring tools to continuously monitor these dynamically changing groups. Server monitoring tools are usually statically configured and with any change of group membership requires manual reconfiguration; an unreasonable task to undertake on large-scale cloud infrastructures. In this paper we present the Cloudlet Control and Management System (C2MS); a system for monitoring and controlling dynamic groups of physical or virtual servers within cloud infrastructures. The C2MS extends Ganglia - an open source scalable system performance monitoring tool - by allowing system administrators to define, monitor and modify server groups without the need for server reconfiguration. In turn administrators can easily monitor group and individual server metrics on large-scale dynamic cloud infrastructures where roles of servers may change frequently. Furthermore, we complement group monitoring with a control element allowing administrator-specified actions to be performed over servers within service groups as well as introduce further customized monitoring metrics. This paper outlines the design, implementation and evaluation of the C2MS.Comment: Proceedings of the The 5th IEEE International Conference on Cloud Computing Technology and Science (CloudCom 2013), 8 page
    corecore