1,000 research outputs found

    Temporal Topic Analysis with Endogenous and Exogenous Processes

    Full text link
    We consider the problem of modeling temporal textual data taking endogenous and exogenous processes into account. Such text documents arise in real world applications, including job advertisements and economic news articles, which are influenced by the fluctuations of the general economy. We propose a hierarchical Bayesian topic model which imposes a "group-correlated" hierarchical structure on the evolution of topics over time incorporating both processes, and show that this model can be estimated from Markov chain Monte Carlo sampling methods. We further demonstrate that this model captures the intrinsic relationships between the topic distribution and the time-dependent factors, and compare its performance with latent Dirichlet allocation (LDA) and two other related models. The model is applied to two collections of documents to illustrate its empirical performance: online job advertisements from DirectEmployers Association and journalists' postings on BusinessInsider.com

    Anomaly detection in video with Bayesian nonparametrics

    Get PDF
    A novel dynamic Bayesian nonparametric topic model for anomaly detection in video is proposed in this paper. Batch and online Gibbs samplers are developed for inference. The paper introduces a new abnormality measure for decision making. The proposed method is evaluated on both synthetic and real data. The comparison with a non-dynamic model shows the superiority of the proposed dynamic one in terms of the classification performance for anomaly detection

    Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time

    Full text link
    Dynamic topic modeling facilitates the identification of topical trends over time in temporal collections of unstructured documents. We introduce a novel unsupervised neural dynamic topic model named as Recurrent Neural Network-Replicated Softmax Model (RNNRSM), where the discovered topics at each time influence the topic discovery in the subsequent time steps. We account for the temporal ordering of documents by explicitly modeling a joint distribution of latent topical dependencies over time, using distributional estimators with temporal recurrent connections. Applying RNN-RSM to 19 years of articles on NLP research, we demonstrate that compared to state-of-the art topic models, RNNRSM shows better generalization, topic interpretation, evolution and trends. We also introduce a metric (named as SPAN) to quantify the capability of dynamic topic model to capture word evolution in topics over time.Comment: In Proceedings of the 16th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT 2018

    Learning Topic Models by Belief Propagation

    Full text link
    Latent Dirichlet allocation (LDA) is an important hierarchical Bayesian model for probabilistic topic modeling, which attracts worldwide interests and touches on many important applications in text mining, computer vision and computational biology. This paper represents LDA as a factor graph within the Markov random field (MRF) framework, which enables the classic loopy belief propagation (BP) algorithm for approximate inference and parameter estimation. Although two commonly-used approximate inference methods, such as variational Bayes (VB) and collapsed Gibbs sampling (GS), have gained great successes in learning LDA, the proposed BP is competitive in both speed and accuracy as validated by encouraging experimental results on four large-scale document data sets. Furthermore, the BP algorithm has the potential to become a generic learning scheme for variants of LDA-based topic models. To this end, we show how to learn two typical variants of LDA-based topic models, such as author-topic models (ATM) and relational topic models (RTM), using BP based on the factor graph representation.Comment: 14 pages, 17 figure

    Poisson random fields for dynamic feature models

    Get PDF
    We present the Wright-Fisher Indian buffet process (WF-IBP), a probabilistic model for time-dependent data assumed to have been generated by an unknown number of latent features. This model is suitable as a prior in Bayesian nonparametric feature allocation models in which the features underlying the observed data exhibit a dependency structure over time. More specifically, we establish a new framework for generating dependent Indian buffet processes, where the Poisson random field model from population genetics is used as a way of constructing dependent beta processes. Inference in the model is complex, and we describe a sophisticated Markov Chain Monte Carlo algorithm for exact posterior simulation. We apply our construction to develop a nonparametric focused topic model for collections of time-stamped text documents and test it on the full corpus of NIPS papers published from 1987 to 2015
    corecore