684 research outputs found

    Data Hiding with Deep Learning: A Survey Unifying Digital Watermarking and Steganography

    Full text link
    Data hiding is the process of embedding information into a noise-tolerant signal such as a piece of audio, video, or image. Digital watermarking is a form of data hiding where identifying data is robustly embedded so that it can resist tampering and be used to identify the original owners of the media. Steganography, another form of data hiding, embeds data for the purpose of secure and secret communication. This survey summarises recent developments in deep learning techniques for data hiding for the purposes of watermarking and steganography, categorising them based on model architectures and noise injection methods. The objective functions, evaluation metrics, and datasets used for training these data hiding models are comprehensively summarised. Finally, we propose and discuss possible future directions for research into deep data hiding techniques

    THInImg: Cross-modal Steganography for Presenting Talking Heads in Images

    Full text link
    Cross-modal Steganography is the practice of concealing secret signals in publicly available cover signals (distinct from the modality of the secret signals) unobtrusively. While previous approaches primarily concentrated on concealing a relatively small amount of information, we propose THInImg, which manages to hide lengthy audio data (and subsequently decode talking head video) inside an identity image by leveraging the properties of human face, which can be effectively utilized for covert communication, transmission and copyright protection. THInImg consists of two parts: the encoder and decoder. Inside the encoder-decoder pipeline, we introduce a novel architecture that substantially increase the capacity of hiding audio in images. Moreover, our framework can be extended to iteratively hide multiple audio clips into an identity image, offering multiple levels of control over permissions. We conduct extensive experiments to prove the effectiveness of our method, demonstrating that THInImg can present up to 80 seconds of high quality talking-head video (including audio) in an identity image with 160x160 resolution.Comment: Accepted at WACV 202

    A review on visual privacy preservation techniques for active and assisted living

    Get PDF
    This paper reviews the state of the art in visual privacy protection techniques, with particular attention paid to techniques applicable to the field of Active and Assisted Living (AAL). A novel taxonomy with which state-of-the-art visual privacy protection methods can be classified is introduced. Perceptual obfuscation methods, a category in this taxonomy, is highlighted. These are a category of visual privacy preservation techniques, particularly relevant when considering scenarios that come under video-based AAL monitoring. Obfuscation against machine learning models is also explored. A high-level classification scheme of privacy by design, as defined by experts in privacy and data protection law, is connected to the proposed taxonomy of visual privacy preservation techniques. Finally, we note open questions that exist in the field and introduce the reader to some exciting avenues for future research in the area of visual privacy.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work is part of the visuAAL project on Privacy-Aware and Acceptable Video-Based Technologies and Services for Active and Assisted Living (https://www.visuaal-itn.eu/). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 861091. The authors would also like to acknowledge the contribution of COST Action CA19121 - GoodBrother, Network on Privacy-Aware Audio- and Video-Based Applications for Active and Assisted Living (https://goodbrother.eu/), supported by COST (European Cooperation in Science and Technology) (https://www.cost.eu/)

    State of the art in privacy preservation in video data

    Full text link
    Active and Assisted Living (AAL) technologies and services are a possible solution to address the crucial challenges regarding health and social care resulting from demographic changes and current economic conditions. AAL systems aim to improve quality of life and support independent and healthy living of older and frail people. AAL monitoring systems are composed of networks of sensors (worn by the users or embedded in their environment) processing elements and actuators that analyse the environment and its occupants to extract knowledge and to detect events, such as anomalous behaviours, launch alarms to tele-care centres, or support activities of daily living, among others. Therefore, innovation in AAL can address healthcare and social demands while generating economic opportunities. Recently, there has been far-reaching advancements in the development of video-based devices with improved processing capabilities, heightened quality, wireless data transfer, and increased interoperability with Internet of Things (IoT) devices. Computer vision gives the possibility to monitor an environment and report on visual information, which is commonly the most straightforward and human-like way of describing an event, a person, an object, interactions and actions. Therefore, cameras can offer more intelligent solutions for AAL but they may be considered intrusive by some end users. The General Data Protection Regulation (GDPR) establishes the obligation for technologies to meet the principles of data protection by design and by default. More specifically, Article 25 of the GDPR requires that organizations must "implement appropriate technical and organizational measures [...] which are designed to implement data protection principles [...] , in an effective manner and to integrate the necessary safeguards into [data] processing.” Thus, AAL solutions must consider privacy-by-design methodologies in order to protect the fundamental rights of those being monitored. Different methods have been proposed in the latest years to preserve visual privacy for identity protection. However, in many AAL applications, where mostly only one person would be present (e.g. an older person living alone), user identification might not be an issue; concerns are more related to the disclosure of appearance (e.g. if the person is dressed/naked) and behaviour, what we called bodily privacy. Visual obfuscation techniques, such as image filters, facial de-identification, body abstraction, and gait anonymization, can be employed to protect privacy and agreed upon by the users ensuring they feel comfortable. Moreover, it is difficult to ensure a high level of security and privacy during the transmission of video data. If data is transmitted over several network domains using different transmission technologies and protocols, and finally processed at a remote location and stored on a server in a data center, it becomes demanding to implement and guarantee the highest level of protection over the entire transmission and storage system and for the whole lifetime of the data. The development of video technologies, increase in data rates and processing speeds, wide use of the Internet and cloud computing as well as highly efficient video compression methods have made video encryption even more challenging. Consequently, efficient and robust encryption of multimedia data together with using efficient compression methods are important prerequisites in achieving secure and efficient video transmission and storage.This publication is based upon work from COST Action GoodBrother - Network on Privacy-Aware Audio- and Video-Based Applications for Active and Assisted Living (CA19121), supported by COST (European Cooperation in Science and Technology). COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation. www.cost.e

    Generative Steganography Diffusion

    Full text link
    Generative steganography (GS) is an emerging technique that generates stego images directly from secret data. Various GS methods based on GANs or Flow have been developed recently. However, existing GAN-based GS methods cannot completely recover the hidden secret data due to the lack of network invertibility, while Flow-based methods produce poor image quality due to the stringent reversibility restriction in each module. To address this issue, we propose a novel GS scheme called "Generative Steganography Diffusion" (GSD) by devising an invertible diffusion model named "StegoDiffusion". It not only generates realistic stego images but also allows for 100\% recovery of the hidden secret data. The proposed StegoDiffusion model leverages a non-Markov chain with a fast sampling technique to achieve efficient stego image generation. By constructing an ordinary differential equation (ODE) based on the transition probability of the generation process in StegoDiffusion, secret data and stego images can be converted to each other through the approximate solver of ODE -- Euler iteration formula, enabling the use of irreversible but more expressive network structures to achieve model invertibility. Our proposed GSD has the advantages of both reversibility and high performance, significantly outperforming existing GS methods in all metrics.Comment: Draft for ACM-mm 2023.Shall not be reproduced without permission, rights reserved

    Flexible Cross-Modal Steganography via Implicit Representations

    Full text link
    We present INRSteg, an innovative lossless steganography framework based on a novel data form Implicit Neural Representations (INR) that is modal-agnostic. Our framework is considered for effectively hiding multiple data without altering the original INR ensuring high-quality stego data. The neural representations of secret data are first concatenated to have independent paths that do not overlap, then weight freezing techniques are applied to the diagonal blocks of the weight matrices for the concatenated network to preserve the weights of secret data while additional free weights in the off-diagonal blocks of weight matrices are fitted to the cover data. Our framework can perform unexplored cross-modal steganography for various modalities including image, audio, video, and 3D shapes, and it achieves state-of-the-art performance compared to previous intra-modal steganographic methods

    Towards Deep Network Steganography: From Networks to Networks

    Full text link
    With the widespread applications of the deep neural network (DNN), how to covertly transmit the DNN models in public channels brings us the attention, especially for those trained for secret-learning tasks. In this paper, we propose deep network steganography for the covert communication of DNN models. Unlike the existing steganography schemes which focus on the subtle modification of the cover data to accommodate the secrets, our scheme is learning task oriented, where the learning task of the secret DNN model (termed as secret-learning task) is disguised into another ordinary learning task conducted in a stego DNN model (termed as stego-learning task). To this end, we propose a gradient-based filter insertion scheme to insert interference filters into the important positions in the secret DNN model to form a stego DNN model. These positions are then embedded into the stego DNN model using a key by side information hiding. Finally, we activate the interference filters by a partial optimization strategy, such that the generated stego DNN model works on the stego-learning task. We conduct the experiments on both the intra-task steganography and inter-task steganography (i.e., the secret and stego-learning tasks belong to the same and different categories), both of which demonstrate the effectiveness of our proposed method for covert communication of DNN models.Comment: 8 pages. arXiv admin note: text overlap with arXiv:2302.1452
    • …
    corecore