82 research outputs found

    Covert Communication in UAV-Assisted Air-Ground Networks

    Get PDF
    Unmanned aerial vehicle (UAV) assisted communication is a promising technique for future wireless networks due to its characteristics of low cost and flexible deployment. However, the high possibility of line-of-sight (LoS) air-ground channels may result in a great risk of being attacked by malicious users. Especially compared to the encryption and physical layer security that prevent eavesdropping, covert communication aims at hiding the existence of transmission, which is able to satisfy the more critical requirement of security. Thus, in this article, we focus on the covert communication issues of UAV-assisted wireless networks. First, the preliminaries of secure communications including encryption, physical layer security and covert communication are discussed. Then, current works and typical applications of UAV in covert communications are demonstrated. We then propose two schemes to enhance the covertness of UAV-assisted networks for some typical scenarios. Specifically, to improve the covert rate in UAV-assisted data dissemination, an iterative algorithm is proposed to jointly optimize the time slot, transmit power and trajectory. For the covertness of ground-air communication, a friendly jammer is employed to confuse the wardens, where the location of the jammer, the jamming power and the legitimate transmit power are jointly optimized. Numerical results are presented to validate the performance of these two proposed schemes. Finally, several challenges and promising directions are pointed out

    Trajectory and Power Design for Aerial Multi-User Covert Communications

    Full text link
    Unmanned aerial vehicles (UAVs) can provide wireless access to terrestrial users, regardless of geographical constraints, and will be an important part of future communication systems. In this paper, a multi-user downlink dual-UAVs enabled covert communication system was investigated, in which a UAV transmits secure information to ground users in the presence of multiple wardens as well as a friendly jammer UAV transmits artificial jamming signals to fight with the wardens. The scenario of wardens being outfitted with a single antenna is considered, and the detection error probability (DEP) of wardens with finite observations is researched. Then, considering the uncertainty of wardens' location, a robust optimization problem with worst-case covertness constraint is formulated to maximize the average covert rate by jointly optimizing power allocation and trajectory. To cope with the optimization problem, an algorithm based on successive convex approximation methods is proposed. Thereafter, the results are extended to the case where all the wardens are equipped with multiple antennas. After analyzing the DEP in this scenario, a tractable lower bound of the DEP is obtained by utilizing Pinsker's inequality. Subsequently, the non-convex optimization problem was established and efficiently coped by utilizing a similar algorithm as in the single-antenna scenario. Numerical results indicate the effectiveness of our proposed algorithm.Comment: 30 pages, 9 figures, submitted to the IEEE journal for revie

    Decentralized Navigation of a UAV Team for Collaborative Covert Eavesdropping on a Group of Mobile Ground Nodes

    Full text link
    Unmanned aerial vehicles (UAVs) are increasingly applied to surveillance tasks, thanks to their excellent mobility and flexibility. Different from existing works using UAVs for video surveillance, this paper employs a UAV team to carry out collaborative radio surveillance on ground moving nodes and disguise the purpose of surveillance. We consider two aspects of disguise. The first is that the UAVs do not communicate with each other (or the ground nodes can notice), and each UAV plans its trajectory in a decentralized way. The other aspect of disguise is that the UAVs avoid being noticed by the nodes for which a metric quantifying the disguising performance is adopted. We present a new decentralized method for the online trajectory planning of the UAVs, which maximizes the disguising metric while maintaining uninterrupted surveillance and avoiding UAV collisions. Based on the model predictive control (MPC) technique, our method allows each UAV to separately estimate the locations of the UAVs and the ground nodes, and decide its trajectory accordingly. The impact of potential estimation errors is mitigated by incorporating the error bounds into the online trajectory planning, hence achieving a robust control of the trajectories. Computer-based simulation results demonstrate that the developed strategy ensures the surveillance requirement without losing disguising performance, and outperforms existing alternatives. Note to Practitioners - The paper is motivated by the covertness requirement in the radio surveillance (also called eavesdropping) by UAVs. In some situations, the UAV user (such as the police department) wishes to disguise the surveillance intention from the targets, and the trajectories of UAVs play a significant role in the disguising. However, the typical UAV trajectories such as standoff tracking and orbiting can easily be noticed by the targets. Considering this gap, we focus on how to plan the UAVs' trajectories so that they are less noticeable while conducting effective eavesdropping. We formulate a path planning problem aiming at maximizing a disguising metric, which measures the magnitude of the relative position change between a UAV and a target. A decentralized method is proposed for the online trajectory planning of the UAVs based on MPC, and its robust version is also presented to account for the uncertainty in the estimation and prediction of the nodes' states

    Resource allocation and trajectory optimization for UAV-enabled multi-user covert communications

    Get PDF
    In this correspondence, covert air-to-ground communication is investigated to hide the wireless transmission from unmanned aerial vehicle (UAV). The warden's total detection error probability with limited observations is first analyzed. Considering the location uncertainty of the warden, a robust resource allocation and UAV trajectory optimization problem with worst-case covertness constraint is then formulated to maximize the average covert rate. To solve this optimization problem, we propose a block coordinate descent method based iterative algorithm to optimize the time slot allocation, power allocation and trajectory alternately. Numerical results demonstrate the effectiveness of the proposed algorithm in covert communication for UAVs

    Assessing the Socio-economic Impacts of Secure Texting and Anti-Jamming Technologies in Non-Cooperative Networks

    Full text link
    Operating securely over 5G (and legacy) infrastructure is a challenge. In non-cooperative networks, malicious actors may try to decipher, block encrypted messages, or specifically jam wireless radio systems. Such activities can disrupt operations, from causing minor inconvenience, through to fully paralyzing the functionality of critical infrastructure. While technological mitigation measures do exist, there are very few methods capable of assessing the socio-economic impacts from different mitigation strategies. This leads to a lack of robust evidence to inform cost-benefit analysis, and thus support decision makers in industry and government. Consequently, this paper presents two open-source simulation models for assessing the socio-economic impacts of operating in untrusted non-cooperative networks. The first focuses on using multiple non-cooperative networks to transmit a message. The second model simulates a case where a message is converted into alternative plain language to avoid detection, separated into different portions and then transmitted over multiple non-cooperative networks. A probabilistic simulation of the two models is performed for a 15 km by 15 km spatial grid with 5 untrusted non-cooperative networks and intercepting agents. The results are used to estimate economic losses for private, commercial, government and military sectors. The highest probabilistic total losses for military applications include US300,US300, US150, and US$75, incurred for a 1, 3 and 5 site multi-transmission approach, respectively, for non-cooperative networks when considering 1,000 texts being sent. These results form a framework for deterministic socio-economic impact analysis of using non-cooperative networks and secure texting as protection against radio network attacks. The simulation data and the open-source codebase is provided for reproducibility

    DRONE DELIVERY OF CBNRECy – DEW WEAPONS Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD)

    Get PDF
    Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD) is our sixth textbook in a series covering the world of UASs and UUVs. Our textbook takes on a whole new purview for UAS / CUAS/ UUV (drones) – how they can be used to deploy Weapons of Mass Destruction and Deception against CBRNE and civilian targets of opportunity. We are concerned with the future use of these inexpensive devices and their availability to maleficent actors. Our work suggests that UASs in air and underwater UUVs will be the future of military and civilian terrorist operations. UAS / UUVs can deliver a huge punch for a low investment and minimize human casualties.https://newprairiepress.org/ebooks/1046/thumbnail.jp
    • …
    corecore