1,389 research outputs found

    Information transfer and causality in the sensorimotor loop

    Get PDF
    This thesis investigates information-theoretic tools for detecting and describing causal influences in embodied agents. It presents an analysis of philosophical and statistical approaches to causation, and in particular focuses on causal Bayes nets and transfer entropy. It argues for a novel perspective that explicitly incorporates the epistemological role of information as a tool for inference. This approach clarifies and resolves some of the known problems associated with such methods. Here it is argued, through a series of experiments, mathematical results and some philosophical accounts, that universally applicable measures of causal influence strength are unlikely to exist. Instead, the focus should be on the role that information-theoretic tools can play in inferential tests for causal relationships in embodied agents particularly, and dynamical systems in general. This thesis details how these two approaches differ. Following directly from these arguments, the thesis proposes a concept of “hidden” information transfer to describe situations where causal influences passing through a chain of variables may be more easily detected at the end-points than at intermediate nodes. This is described using theoretical examples, and also appears in the information dynamics of computer-simulated and real robots developed herein. Practical examples include some minimal models of agent-environment systems, but also a novel complete system for generating locomotion gait patterns using a biologically-inspired decentralized architecture on a walking robotic hexapod

    THREAD: A programming environment for interactive planning-level robotics applications

    Get PDF
    THREAD programming language, which was developed to meet the needs of researchers in developing robotics applications that perform such tasks as grasp, trajectory design, sensor data analysis, and interfacing with external subsystems in order to perform servo-level control of manipulators and real time sensing is discussed. The philosophy behind THREAD, the issues which entered into its design, and the features of the language are discussed from the viewpoint of researchers who want to develop algorithms in a simulation environment, and from those who want to implement physical robotics systems. The detailed functions of the many complex robotics algorithms and tools which are part of the language are not explained, but an overall impression of their capability is given

    Hidden Parameter Markov Decision Processes: A Semiparametric Regression Approach for Discovering Latent Task Parametrizations

    Full text link
    Control applications often feature tasks with similar, but not identical, dynamics. We introduce the Hidden Parameter Markov Decision Process (HiP-MDP), a framework that parametrizes a family of related dynamical systems with a low-dimensional set of latent factors, and introduce a semiparametric regression approach for learning its structure from data. In the control setting, we show that a learned HiP-MDP rapidly identifies the dynamics of a new task instance, allowing an agent to flexibly adapt to task variations

    Symbol Emergence in Robotics: A Survey

    Full text link
    Humans can learn the use of language through physical interaction with their environment and semiotic communication with other people. It is very important to obtain a computational understanding of how humans can form a symbol system and obtain semiotic skills through their autonomous mental development. Recently, many studies have been conducted on the construction of robotic systems and machine-learning methods that can learn the use of language through embodied multimodal interaction with their environment and other systems. Understanding human social interactions and developing a robot that can smoothly communicate with human users in the long term, requires an understanding of the dynamics of symbol systems and is crucially important. The embodied cognition and social interaction of participants gradually change a symbol system in a constructive manner. In this paper, we introduce a field of research called symbol emergence in robotics (SER). SER is a constructive approach towards an emergent symbol system. The emergent symbol system is socially self-organized through both semiotic communications and physical interactions with autonomous cognitive developmental agents, i.e., humans and developmental robots. Specifically, we describe some state-of-art research topics concerning SER, e.g., multimodal categorization, word discovery, and a double articulation analysis, that enable a robot to obtain words and their embodied meanings from raw sensory--motor information, including visual information, haptic information, auditory information, and acoustic speech signals, in a totally unsupervised manner. Finally, we suggest future directions of research in SER.Comment: submitted to Advanced Robotic

    Meta Reinforcement Learning with Latent Variable Gaussian Processes

    Get PDF
    Learning from small data sets is critical in many practical applications where data collection is time consuming or expensive, e.g., robotics, animal experiments or drug design. Meta learning is one way to increase the data efficiency of learning algorithms by generalizing learned concepts from a set of training tasks to unseen, but related, tasks. Often, this relationship between tasks is hard coded or relies in some other way on human expertise. In this paper, we frame meta learning as a hierarchical latent variable model and infer the relationship between tasks automatically from data. We apply our framework in a model-based reinforcement learning setting and show that our meta-learning model effectively generalizes to novel tasks by identifying how new tasks relate to prior ones from minimal data. This results in up to a 60% reduction in the average interaction time needed to solve tasks compared to strong baselines.Comment: 11 pages, 7 figure

    3D locomotion biomimetic robot fish with haptic feedback

    Full text link
    This thesis developed a biomimetic robot fish and built a novel haptic robot fish system based on the kinematic modelling and three-dimentional computational fluid dynamic (CFD) hydrodynamic analysis. The most important contribution is the successful CFD simulation of the robot fish, supporting users in understanding the hydrodynamic properties around it
    corecore