787 research outputs found

    Septic shock prediction for ICU patients via coupled HMM walking on sequential contrast patterns

    Full text link
    © 2016 Background and objective Critical care patient events like sepsis or septic shock in intensive care units (ICUs) are dangerous complications which can cause multiple organ failures and eventual death. Preventive prediction of such events will allow clinicians to stage effective interventions for averting these critical complications. Methods It is widely understood that physiological conditions of patients on variables such as blood pressure and heart rate are suggestive to gradual changes over a certain period of time, prior to the occurrence of a septic shock. This work investigates the performance of a novel machine learning approach for the early prediction of septic shock. The approach combines highly informative sequential patterns extracted from multiple physiological variables and captures the interactions among these patterns via coupled hidden Markov models (CHMM). In particular, the patterns are extracted from three non-invasive waveform measurements: the mean arterial pressure levels, the heart rates and respiratory rates of septic shock patients from a large clinical ICU dataset called MIMIC-II. Evaluation and results For baseline estimations, SVM and HMM models on the continuous time series data for the given patients, using MAP (mean arterial pressure), HR (heart rate), and RR (respiratory rate) are employed. Single channel patterns based HMM (SCP-HMM) and multi-channel patterns based coupled HMM (MCP-HMM) are compared against baseline models using 5-fold cross validation accuracies over multiple rounds. Particularly, the results of MCP-HMM are statistically significant having a p-value of 0.0014, in comparison to baseline models. Our experiments demonstrate a strong competitive accuracy in the prediction of septic shock, especially when the interactions between the multiple variables are coupled by the learning model. Conclusions It can be concluded that the novelty of the approach, stems from the integration of sequence-based physiological pattern markers with the sequential CHMM model to learn dynamic physiological behavior, as well as from the coupling of such patterns to build powerful risk stratification models for septic shock patients

    Hypotension Risk Prediction via Sequential Contrast Patterns of ICU Blood Pressure

    Full text link
    © 2013 IEEE. Acute hypotension is a significant risk factor for in-hospital mortality at intensive care units. Prolonged hypotension can cause tissue hypoperfusion, leading to cellular dysfunction and severe injuries to multiple organs. Prompt medical interventions are thus extremely important for dealing with acute hypotensive episodes (AHE). Population level prognostic scoring systems for risk stratification of patients are suboptimal in such scenarios. However, the design of an efficient risk prediction system can significantly help in the identification of critical care patients, who are at risk of developing an AHE within a future time span. Toward this objective, a pattern mining algorithm is employed to extract informative sequential contrast patterns from hemodynamic data, for the prediction of hypotensive episodes. The hypotensive and normotensive patient groups are extracted from the MIMIC-II critical care research database, following an appropriate clinical inclusion criteria. The proposed method consists of a data preprocessing step to convert the blood pressure time series into symbolic sequences, using a symbolic aggregate approximation algorithm. Then, distinguishing subsequences are identified using the sequential contrast mining algorithm. These subsequences are used to predict the occurrence of an AHE in a future time window separated by a user-defined gap interval. Results indicate that the method performs well in terms of the prediction performance as well as in the generation of sequential patterns of clinical significance. Hence, the novelty of sequential patterns is in their usefulness as potential physiological biomarkers for building optimal patient risk stratification systems and for further clinical investigation of interesting patterns in critical care patients

    Understanding Peripheral Blood Pressure Signals: A Statistical Learning Approach

    Get PDF
    Proper estimation of body fluid status for human or animal subjects has always been a challenging problem. Accurate and timely estimate of body fluid can prevent life threatening conditions under trauma and severe dehydration. The main objective of this research is the estimation, classification and detection of dehydration in human and animal subjects using peripheral blood pressure (PBP) signals. Peripheral venous pressure (PVP) and peripheral arterial pressure (PAP) signals have been investigated in this research. Both PVP and PAP signals are PBP signals. A dataset of PVP signals was collected using standard peripheral intravenous catheters from human subjects suffering from hypertrophic pyloric stenosis. Using this dataset, we successfully classified dehydrated subjects from hydrated subjects using regularized logistic regression on frequency domain data of the PVP signals. During the data acquisition process, the PVP signals was corrupted by noise and blood clot. So, we developed an unsupervised anomaly detection algorithm for PVP signals using hidden Markov model and Kalman filter. This anomaly detection algorithm removed the human bias in data-preprocessing. Another dataset of PAP and PVP signals was collected from pigs under anesthesia using the Millar catheter. We proposed a integral pulse frequency modulation (IPFM) based signal model for both PAP and PVP signals. The proposed model-synthesized signal is highly correlated with the experimental data. The model-synthesized signals also performs similar to experimental signals under classification tasks. We also examine the model estimated parameters both qualitatively and quantitatively. This model can also quantify the effect of respiratory rate on heart rate variability. Increasing doses of anesthesia has similar effect of getting hydrated from dehydration

    Understanding Peripheral Blood Pressure Signals: A Statistical Learning Approach

    Get PDF
    Proper estimation of body fluid status for human or animal subjects has always been a challenging problem. Accurate and timely estimate of body fluid can prevent life threatening conditions under trauma and severe dehydration. The main objective of this research is the estimation, classification and detection of dehydration in human and animal subjects using peripheral blood pressure (PBP) signals. Peripheral venous pressure (PVP) and peripheral arterial pressure (PAP) signals have been investigated in this research. Both PVP and PAP signals are PBP signals. A dataset of PVP signals was collected using standard peripheral intravenous catheters from human subjects suffering from hypertrophic pyloric stenosis. Using this dataset, we successfully classified dehydrated subjects from hydrated subjects using regularized logistic regression on frequency domain data of the PVP signals. During the data acquisition process, the PVP signals was corrupted by noise and blood clot. So, we developed an unsupervised anomaly detection algorithm for PVP signals using hidden Markov model and Kalman filter. This anomaly detection algorithm removed the human bias in data-preprocessing. Another dataset of PAP and PVP signals was collected from pigs under anesthesia using the Millar catheter. We proposed a integral pulse frequency modulation (IPFM) based signal model for both PAP and PVP signals. The proposed model-synthesized signal is highly correlated with the experimental data. The model-synthesized signals also performs similar to experimental signals under classification tasks. We also examine the model estimated parameters both qualitatively and quantitatively. This model can also quantify the effect of respiratory rate on heart rate variability. Increasing doses of anesthesia has similar effect of getting hydrated from dehydration

    Doctor of Philosophy

    Get PDF
    dissertationTemporal reasoning denotes the modeling of causal relationships between different variables across different instances of time, and the prediction of future events or the explanation of past events. Temporal reasoning helps in modeling and understanding interactions between human pathophysiological processes, and in predicting future outcomes such as response to treatment or complications. Dynamic Bayesian Networks (DBN) support modeling changes in patients' condition over time due to both diseases and treatments, using probabilistic relationships between different clinical variables, both within and across different points in time. We describe temporal reasoning and representation in general and DBN in particular, with special attention to DBN parameter learning and inference. We also describe temporal data preparation (aggregation, consolidation, and abstraction) techniques that are applicable to medical data that were used in our research. We describe and evaluate various data discretization methods that are applicable to medical data. Projeny, an opensource probabilistic temporal reasoning toolkit developed as part of this research, is also described. We apply these methods, techniques, and algorithms to two disease processes modeled as Dynamic Bayesian Networks. The first test case is hyperglycemia due to severe illness in patients treated in the Intensive Care Unit (ICU). We model the patients' serum glucose and insulin drip rates using Dynamic Bayesian Networks, and recommend insulin drip rates to maintain the patients' serum glucose within a normal range. The model's safety and efficacy are proven by comparing it to the current gold standard. The second test case is the early prediction of sepsis in the emergency department. Sepsis is an acute life threatening condition that requires timely diagnosis and treatment. We present various DBN models and data preparation techniques that detect sepsis with very high accuracy within two hours after the patients' admission to the emergency department. We also discuss factors affecting the computational tractability of the models and appropriate optimization techniques. In this dissertation, we present a guide to temporal reasoning, evaluation of various data preparation, discretization, learning and inference methods, proofs using two test cases using real clinical data, an open-source toolkit, and recommend methods and techniques for temporal reasoning in medicine

    Secondary Analysis of Electronic Health Records

    Get PDF
    Health Informatics; Ethics; Data Mining and Knowledge Discovery; Statistics for Life Sciences, Medicine, Health Science
    corecore