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Preface

Diagnostic and therapeutic technologies continue to evolve rapidly, and both
individual practitioners and clinical teams face increasingly complex decisions.
Unfortunately, the current state of medical knowledge does not provide the guid-
ance to make the majority of clinical decisions on the basis of evidence. According
to the 2012 Institute of Medicine Committee Report, only 10–20 % of clinical
decisions are evidence based. The problem even extends to the creation of clinical
practice guidelines (CPGs). Nearly 50 % of recommendations made in specialty
society guidelines rely on expert opinion rather than experimental data.
Furthermore, the creation process of CPGs is “marred by weak methods and
financial conflicts of interest,” rendering current CPGs potentially less trustworthy.

The present research infrastructure is inefficient and frequently produces unre-
liable results that cannot be replicated. Even randomized controlled trials (RCTs),
the traditional gold standards of the research reliability hierarchy, are not without
limitations. They can be costly, labor-intensive, slow, and can return results that are
seldom generalizable to every patient population. It is impossible for a tightly
controlled RCT to capture the full, interactive, and contextual details of the clinical
issues that arise in real clinics and inpatient units. Furthermore, many pertinent but
unresolved clinical and medical systems issues do not seem to have attracted the
interest of the research enterprise, which has come to focus instead on cellular and
molecular investigations and single-agent (e.g., a drug or device) effects. For
clinicians, the end result is a “data desert” when it comes to making decisions.

Electronic health record (EHR) data are frequently digitally archived and can
subsequently be extracted and analyzed. Between 2011 and 2019, the prevalence of
EHRs is expected to grow from 34 to 90 % among office-based practices, and the
majority of hospitals have replaced or are in the process of replacing paper systems
with comprehensive, enterprise EHRs. The power of scale intrinsic to this digital
transformation opens the door to a massive amount of currently untapped infor-
mation. The data, if properly analyzed and meaningfully interpreted, could vastly
improve our conception and development of best practices. The possibilities for
quality improvement, increased safety, process optimization, and personalization of
clinical decisions range from impressive to revolutionary. The National Institutes of
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Health (NIH) and other major grant organizations have begun to recognize the
power of big data in knowledge creation and are offering grants to support inves-
tigators in this area.

This book, written with support from the National Institute for Biomedical
Imaging and Bioengineering through grant R01 EB017205-01A1, is meant to serve
as an illustrative guide for scientists, engineers, and clinicians that are interested in
performing retrospective research using data from EHRs. It is divided into three
major parts.

The first part of the book paints the current landscape and describes the body of
knowledge that dictates clinical practice guidelines, including the limitations and
the challenges. This sets the stage for presenting the motivation behind the sec-
ondary analysis of EHR data. The part also describes the data landscape, who the
key players are, and which types of databases are useful for which kinds of
questions. Finally, the part outlines the political, regulatory and technical challenges
faced by clinical informaticians, and provides suggestions on how to navigate
through these challenges.

In the second part, the process of parsing a clinical question into a study design
and methodology is broken down into five steps. The first step explains how to
formulate the right research question, and bring together the appropriate team. The
second step outlines strategies for identifying, extracting, Oxford, and prepro-
cessing EHR data to comprehend and address the research question of interest. The
third step presents techniques in exploratory analysis and data visualization. In the
fourth step, a detailed guide on how to choose the type of analysis that best answers
the research question is provided. Finally, the fifth and final step illustrates how to
validate results, using cross validation, sensitivity analyses, testing of falsification
hypotheses, and other common techniques in the field.

The third, and final part of the book, provides a comprehensive collection of case
studies. These case studies highlight various aspects of the research pipeline presented
in the second part of the book, and help ground the reader in real world data analyses.

We have written the book so that a reader at different levels may easily start at
different parts. For the novice researcher, the book should be read from start to
finish. For individuals who are already acquainted with the challenges of clinical
informatics, but would like guidance on how to most effectively perform the
analysis, the book should be read from the second part onward. Finally, the part on
case studies provides project-specific practical considerations on study design and
methodology and is recommended for all readers.

The time has come to leverage the data we generate during routine patient care to
formulate a more complete lexicon of evidence-based recommendations and sup-
port shared decision making with patients. This book will train the next generation
of scientists, representing different disciplines, but collaborating to expand the
knowledge base that will guide medical practice in the future.

We would like to take this opportunity to thank Professor Roger Mark, whose
vision to create a high resolution clinical database that is open to investigators
around the world, inspired us to write this textbook.

Cambridge, USA MIT Critical Data
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MIT Critical Data consists of data scientists and clinicians from around the globe
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enhanced by scaling the access to and meaningful use of clinical data.
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Matthieu Komorowski holds board certification in anesthesiology and critical
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Part I
Setting the Stage: Rationale Behind and

Challenges to Health Data Analysis

Introduction

While wonderful new medical discoveries and innovations are in the news every
day, healthcare providers continue to struggle with using information. Uncertainties
and unanswered clinical questions are a daily reality for the decision makers who
provide care. Perhaps the biggest limitation in making the best possible decisions
for patients is that the information available is usually not focused on the specific
individual or situation at hand.

For example, there are general clinical guidelines that outline the ideal target
blood pressure for a patient with a severe infection. However, the truly best blood
pressure levels likely differ from patient to patient, and perhaps even change for an
individual patient over the course of treatment. The ongoing computerization of
health records presents an opportunity to overcome this limitation. By analyzing
electronic data from many providers’ experiences with many patients, we can move
ever closer to answering the age-old question: What is truly best for each patient?

Secondary analysis of routinely collected data—contrasted with the primary
analysis conducted in the process of caring for the individual patient—offers an
opportunity to extract more knowledge that will lead us towards the goal of optimal
care. Today, a report from the National Academy of Medicine tells us, most doctors
base most of their everyday decisions on guidelines from (sometimes biased) expert
opinions or small clinical trials. It would be better if they were from multi-center,
large, randomized controlled studies, with tightly controlled conditions ensuring the
results are as reliable as possible. However, those are expensive and difficult to
perform, and even then often exclude a number of important patient groups on the
basis of age, disease and sociological factors.

Part of the problem is that health records are traditionally kept on paper, making
them hard to analyze en masse. As a result, most of what medical professionals
might have learned from experiences is lost, or is inaccessible at least. The ideal
digital system would collect and store as much clinical data as possible from as
many patients as possible. It could then use information from the past—such as
blood pressure, blood sugar levels, heart rate, and other measurements of patients’



body functions—to guide future providers to the best diagnosis and treatment of
similar patients.

But “big data” in healthcare has been coated in “Silicon Valley Disruptionese”,
the language with which Silicon Valley spins hype into startup gold and fills it with
grandiose promises to lure investors and early users. The buzz phrase “precision
medicine” looms large in the public consciousness with little mention of the failures
of “personalized medicine”, its predecessor, behind the façade.

This part sets the stage for secondary analysis of electronic health records
(EHR). Chapter 1 opens with the rationale behind this type of research. Chapter 2
provides a list of existing clinical databases already in use for research. Chapter 3
dives into the opportunities, and more importantly, the challenges to retrospective
analysis of EHR. Chapter 4 presents ideas on how data could be systematically and
more effectively employed in a purposefully engineered healthcare system.
Professor Roger Mark, the visionary who created the Medical Information Mart for
Intensive Care or MIMIC database that is used in this textbook, narrates the story
behind the project in Chap. 5. Chapter 6 steps into the future and describes inte-
gration of EHR with non-clinical data for a richer representation of health and
disease. Chapter 7 focuses on the role of EHR in two important areas of research—
outcome and health services. Finally, Chap. 8 tackles the bane of observational
studies using EHR: residual confounding.

We emphasize the importance of bringing together front-line clinicians such as
nurses, pharmacists and doctors with data scientists to collaboratively identify
questions and to conduct appropriate analyses. Further, we believe this research
partnership of practitioner and researcher gives caregivers and patients the best
individualized diagnostic and treatment options in the absence of a randomized
controlled trial. By becoming more comfortable with the data available to us in the
hospitals of today, we can reduce the uncertainties that have hindered healthcare for
far too long.

2 Part I Setting the Stage: Rationale Behind and Challenges …
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Chapter 1
Objectives of the Secondary Analysis
of Electronic Health Record Data

Sharukh Lokhandwala and Barret Rush

Take Home Messages

• Clinical medicine relies on a strong research foundation in order to build the
necessary evidence base to inform best practices and improve clinical care,
however, large-scale randomized controlled trials (RCTs) are expensive and
sometimes unfeasible. Fortunately, there exists expansive data in the form of
electronic health records (EHR).

• Data can be overwhelmingly complex or incomplete for any individual, there-
fore we urge multidisciplinary research teams consisting of clinicians along with
data scientists to unpack the clinical semantics necessary to appropriately ana-
lyze the data.

1.1 Introduction

The healthcare industry has rapidly become computerized and digital. Most health-
care delivered in America today relies on or utilizes technology. Modern healthcare
informatics generates and stores immense amounts of detailed patient and clinical
process data. Very little real-world patient data have been used to further advance the
field of health care. One large barrier to the utilization of these data is inaccessibility to
researchers. Making these databases easier to access as well as integrating the data
would allow more researchers to answer fundamental questions of clinical care.

1.2 Current Research Climate

Many treatments lack proof in their efficacy, and may, in fact, cause harm [1].
Various medical societies disseminate guidelines to assist clinician decision-making
and to standardize practice; however, the evidence used to formulate these guide-
lines is inadequate. These guidelines are also commonly derived from RCTs with
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limited patient cohorts and with extensive inclusion and exclusion criteria resulting
in reduced generalizability. RCTs, the gold standard in clinical research, support
only 10–20 % of medical decisions [2] and most clinical decisions have never been
supported by RCTs [3]. Furthermore, it would be impossible to perform random-
ized trials for each of the extraordinarily large number of decisions clinicians face
on a daily basis in caring for patients for numerous reasons, including constrained
financial and human resources. For this reason, clinicians and investigators must
learn to find clinical evidence from the droves of data that already exists: the EHR.

1.3 Power of the Electronic Health Record

Much of the work utilizing large databases in the past 25 years have relied on
hospital discharge records and registry databases. Hospital discharge databases
were initially created for billing purposes and lack the patient level granularity of
clinically useful, accurate, and complete data to address complex research ques-
tions. Registry databases are generally mission-limited and require extensive
extracurricular data collection. The future of clinical research lies in utilizing big
data to improve the delivery of care to patients.

Although several commercial and non-commercial databases have been created
using clinical and EHR data, their primary function has been to analyze differences
in severity of illness, outcomes, and treatment costs among participating centers.
Disease specific trial registries have been formulated for acute kidney injury [4],
acute respiratory distress syndrome [5] and septic shock [6]. Additionally, databases
such as the Dartmouth Atlas utilize Medicare claims data to track discrepancies in
costs and patient outcomes across the United States [7]. While these coordinated
databases contain a large number of patients, they often have a narrow scope (i.e.
for severity of illness, cost, or disease specific outcomes) and lack other significant
clinical data that is required to answer a wide range of research questions, thus
obscuring many likely confounding variables.

For example, the APACHE Outcomes database was created by merging
APACHE (Acute Physiology and Chronic Health Evaluation) [8] with
Project IMPACT [9] and includes data from approximately 150,000 intensive care
unit (ICU) stays since 2010 [1]. While the APACHE Outcomes database is large
and has contributed significantly to the medical literature, it has incomplete phys-
iologic and laboratory measurements, and does not include provider notes or
waveform data. The Phillips eICU [10], a telemedicine intensive care support
provider, contains a database of over 2 million ICU stays. While it includes pro-
vider documentation entered into the software, it lacks clinical notes and waveform
data. Furthermore, databases with different primary objectives (i.e., costs, quality
improvement, or research) focus on different variables and outcomes, so caution
must be taken when interpreting analyses from these databases.
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Since 2003, the Laboratory for Computational Physiology at the Massachusetts
Institute of Technology partnered in a joint venture with Beth Israel Deaconess
Medical Center and Philips Healthcare, with support from the National Institute of
Biomedical Imaging and Bioinformatics (NIBIB), to develop and maintain the
Medical Information Mart for Intensive Care (MIMIC) database [11]. MIMIC is a
public-access database that contains comprehensive clinical data from over 60,000
inpatient ICU admissions at Beth Israel Deaconess Medical Center. The
de-identified data are freely shared, and nearly 2000 investigators from 32 countries
have utilized it to date. MIMIC contains physiologic and laboratory data, as well as
waveform data, nurse verified numerical data, and clinician documentation. This
high resolution, widely accessible, database has served to support research in
critical care and assist in the development of novel decision support algorithms, and
will be the prototype example for the majority of this textbook.

1.4 Pitfalls and Challenges

Clinicians and data scientists must apply the same level of academic rigor when
analyzing research from clinical databases as they do with more traditional methods
of clinical research. To ensure internal and external validity, researchers must
determine whether the data are accurate, adjusted properly, analyzed correctly, and
presented cogently [12]. With regard to quality improvement projects, which fre-
quently utilize hospital databases, one must ensure that investigators are applying
rigorous standards to the performance and reporting of their studies [13].

Despite the tremendous value that the EHR contains, many clinical investigators
are hesitant to use it to its full capacity partly due to its sheer complexity and the
inability to use traditional data processing methods with large datasets. As a
solution to the increased complexity associated with this type of research, we
suggest that investigators work in collaboration with multidisciplinary teams
including data scientists, clinicians and biostatisticians. This may require a shift in
financial and academic incentives so that individual research groups do not compete
for funding or publication; the incentives should promote joint funding and
authorship. This would allow investigators to focus on the fidelity of their work and
be more willing to share their data for discovery, rather than withhold access to a
dataset in an attempt to be “first” to a solution.

Some have argued that the use of large datasets may increase the frequency of
so-called “p-hacking,” wherein investigators search for significant results, rather
than seek answers to clinically relevant questions. While it appears that p-hacking is
widespread, the mean effect size attributed to p-hacking does not generally
undermine the scientific consequences from large studies and meta-analyses. The
use of large datasets may, in fact, reduce the likelihood of p-hacking by ensuring
that researchers have suitable power to answer questions with even small effect

1.3 Power of the Electronic Health Record 5



sizes, making the need for selective interpretation and analysis of the data to obtain
significant results unnecessary. If significant discoveries are made utilizing big
databases, this work can be used as a foundation for more rigorous clinical trials to
confirm these findings. In the future, once comprehensive databases become more
accessible to researchers, it is hoped that these resources can be used as hypothesis
generating and testing ground for questions that will ultimately undergo RCT. If
there is not a strong signal observed in a large preliminary retrospective study,
proceeding to a resource-intensive and time-consuming RCT may not be advisable.

1.5 Conclusion

With advances in data collection and technology, investigators have access to more
patient data than at any time in history. Currently, much of these data are inac-
cessible and underused. The ability to harness the EHR would allow for continuous
learning systems, wherein patient specific data are able to feed into a population-
based database and provide real-time decision support for individual patients based
on data from similar patients in similar scenarios. Clinicians and patients would be
able to make better decisions with those resources in place and the results would
feed back into the population database [14].

The vast amount of data available to clinicians and scientists poses daunting
challenges as well as a tremendous opportunity. The National Academy of
Medicine has called for clinicians and researchers to create systems that “foster
continuous learning, as the lessons from research and each care experience are
systematically captured, assessed and translated into reliable care” [2]. To capture,
assess, and translate these data, we must harness the power of the EHR to create
data repositories, while also providing clinicians as well as patients with data-driven
decision support tools to better treat patients at the bedside.
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Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction
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Chapter 2
Review of Clinical Databases

Jeff Marshall, Abdullah Chahin and Barret Rush

Take Home Messages

• There are several open access health datasets that promote effective retrospective
comparative effectiveness research.

• These datasets hold a varying amount of data with representative variables that
are conducive to specific types of research and populations. Understanding these
characteristics of the particular dataset will be crucial in appropriately drawing
research conclusions.

2.1 Introduction

Since the appearance of the first EHR in the 1960s, patient driven data accumulated
for decades with no clear structure to make it meaningful and usable. With time,
institutions began to establish databases that archived and organized data into
central repositories. Hospitals were able to combine data from large ancillary ser-
vices, including pharmacies, laboratories, and radiology studies, with various
clinical care components (such as nursing plans, medication administration records,
and physician orders). Here we present the reader with several large databases that
are publicly available or readily accessible with little difficulty. As the frontier of
healthcare research utilizing large datasets moves ahead, it is likely that other
sources of data will become accessible in an open source environment.

2.2 Background

Initially, EHRs were designed for archiving and organizing patients’ records. They
then became coopted for billing and quality improvement purposes. With time,
EHR driven databases became more comprehensive, dynamic, and interconnected.
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However, the medical industry has lagged behind other industries in the utilization
of big data. Research using these large datasets has been drastically hindered by the
poor quality of the gathered data and poorly organised datasets. Contemporary
medical data evolved to more than medical records allowing the opportunity for
them to be analyzed in greater detail. Traditionally, medical research has relied on
disease registries or chronic disease management systems (CDMS). These reposi-
tories are a priori collections of data, often specific to one disease. They are unable
to translate data or conclusions to other diseases and frequently contain data on a
cohort of patients in one geographic area, thereby limiting their generalizability.

In contrast to disease registries, EHR data usually contain a significantly larger
number of variables enabling high resolution of data, ideal for studying complex
clinical interactions and decisions. This new wealth of knowledge integrates several
datasets that are now fully computerized and accessible. Unfortunately, the vast
majority of large healthcare databases collected around the world restrict access to
data. Some possible explanations for these restrictions include privacy concerns,
aspirations to monetize the data, as well as a reluctance to have outside researchers
direct access to information pertaining to the quality of care delivered at a specific
institution. Increasingly, there has been a push to make these repositories freely
open and accessible to researchers.

2.3 The Medical Information Mart for Intensive
Care (MIMIC) Database

The MIMIC database (http://mimic.physionet.org) was established in October 2003
as a Bioengineering Research Partnership between MIT, Philips Medical Systems,
and Beth Israel Deaconess Medical Center. The project is funded by the National
Institute of Biomedical Imaging and Bioengineering [1].

This database was derived from medical and surgical patients admitted to all
Intensive Care Units (ICU) at Beth Israel Deaconess Medical Center (BIDMC), an
academic, urban tertiary-care hospital. The third major release of the database,
MIMIC-III, currently contains more than 40 thousand patients with thousands of
variables. The database is de-identified, annotated and is made openly accessible to
the research community. In addition to patient information driven from the hospital,
the MIMIC-III database contains detailed physiological and clinical data [2]. In
addition to big data research in critical care, this project aims to develop and
evaluate advanced ICU patient monitoring and decision support systems that will
improve the efficiency, accuracy, and timeliness of clinical decision-making in
critical care.
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Through data mining, such a database allows for extensive epidemiological
studies that link patient data to clinical practice and outcomes. The extremely high
granularity of the data allows for complicated analysis of complex clinical
problems.

2.3.1 Included Variables

There are essentially two basic types of data in the MIMIC-III database; clinical
data driven from the EHR such as patients’ demographics, diagnoses, laboratory
values, imaging reports, vital signs, etc (Fig. 2.1). This data is stored in a relational
database of approximately 50 tables. The second primary type of data is the bedside
monitor waveforms with associated parameters and events stored in flat binary files
(with ASCII header descriptors). This unique library includes high-resolution data
driven from tracings recorded from patients’ electroencephalograms (EEGs),
electrocardiograms (EKGs or ECGs), and real-time, second to second tracings of
vital signs of patients in the intensive care unit. IRB determined the requirement for
individual patient consent was waived, as all public data were de-identified.

Fig. 2.1 Basic overview of the MIMIC database
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2.3.2 Access and Interface

MIMIC-III is an open access database available to any researchers around the globe
who are appropriately trained to handle sensitive patient information. The database
is maintained by PhysioNet (http://physionet.org), a diverse group of computer
scientists, physicists, mathematicians, biomedical researchers, clinicians, and edu-
cators around the world. The third release was published in 2015 and is anticipated
to continually be updated with additional patients as time progresses.

2.4 PCORnet

PCORnet, the National Patient-Centered Clinical Research Network, is an initiative
of the Patient-Centered Outcomes Research Institute (PCORI). PCORI involves
patients as well as those who care for them in a substantive way in the governance
of the network and in determining what questions will be studied. This PCORnet
initiative was started in 2013, hoping to integrate data from multiple Clinical Data
Research Networks (CDRNs) and Patient-Powered Research Networks (PPRNs)
[3]. Its coordinating center bonds 9 partners: Harvard Pilgrim Health Care Institute,
Duke Clinical Research Institute, AcademyHealth, Brookings Institution, Center for
Medical Technology Policy, Center for Democracy & Technology, Group Health
Research Institute, Johns Hopkins Berman Institute of Bioethics, and America’s
Health Insurance Plans. PCORnet includes 29 individual networks that together will
enable access to large amounts of clinical and healthcare data. The goal of PCORnet
is to improve the capacity to conduct comparative effectiveness research efficiently.

2.4.1 Included Variables

The variables in PCORnet database are driven from the various EHRs used in the
nine centers forming this network. It captures clinical data and health information
that are created every day during routine patient visits. In addition, PCORNet is
using data shared by individuals through personal health records or community
networks with other patients as they manage their conditions in their daily lives.
This initiative will facilitate research on various medical conditions, engage a wide
range of patients from all types of healthcare settings and systems, and provide an
excellent opportunity to conduct multicenter studies.
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2.4.2 Access and Interface

PCORnet is envisioned as a national research resource that will enable teams of
health researchers and patients to work together on questions of shared interest.
These teams will be able to submit research queries and receive to data conduct
studies. Current PCORnet participants (CDRNs, PPRNs and PCORI) are developing
the governance structures during the 18-month building and expansion phase [4].

2.5 Open NHS

The National Health Services (NHS England) is an executive non-departmental
public body of the Department of Health, a governmental entity. The NHS retains
one of the largest repositories of data on people’s health in the world. It is also one
of only a handful of health systems able to offer a full account of health across care
sectors and throughout lives for an entire population.

Open NHS is one branch that was established in October of 2011. The NHS in
England has actively moved to open the vast repositories of information used across
its many agencies and departments. The main objective of the switch to an open
access dataset was to increase transparency and trace the outcomes and efficiency of
the British healthcare sector [5]. High quality information is hoped to empower the
health and social care sector in identifying priorities to meet the needs of local
populations. The NHS hopes that by allowing patients, clinicians, and commis-
sioners to compare the quality and delivery of care in different regions of the
country using the data, they can more effectively and promptly identify where the
delivery of care is less than ideal.

2.5.1 Included Variables

Open NHS is an open source database that contains publicly released information,
often from the government or other public bodies.

2.5.2 Access and Interface

Prior to the creation of Open NHS platform, SUS (Secondary Uses Service) was set
up as part of the National Programme for IT in the NHS to provide data for
planning, commissioning, management, research and auditing. Open NHS has now
replaced SUS as a platform for accessing the national database in the UK.
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The National Institute of Health Research (NIHR) Clinical Research Network
(CRN) has produced and implemented an online tool known as the Open Data
Platform.

In addition to the retrospective research that is routinely conducted using such
databases, another form of research is already under way to compare the data
quality derived from electronic records with that collected by research nurses.
Clinical Research Network staff can access the Open Data Platform and determine
the number of patients recruited into research studies in a given hospital as well as
the research being done at that hospital. They then determine which hospitals are
most successful at recruiting patients, the speed with which they recruit, and in what
specialty fields.

2.6 Other Ongoing Research

The following are other datasets that are still under development or have more
restrictive access limitations:

2.6.1 eICU—Philips

As part of its collaboration with MIT, Philips will be granting access to data from
hundreds of thousands of patients that have been collected and anonymized through
the Philips Hospital to Home eICU telehealth program. The data will be available to
researchers via PhysioNet, similar to the MIMIC database.

2.6.2 VistA

TheVeterans Health Information Systems and Technology Architecture (VistA)
is an enterprise-wide information system built around the Electronic Health Record
(EHR), used throughout the United States Department of Veterans Affairs
(VA) medical system. The VA health care system operates over 125 hospitals, 800
ambulatory clinics and 135 nursing homes. All of these healthcare facilities utilize the
VistA interface that has been in place since 1997. The VistA system amalgamates
hospital, ambulatory, pharmacy and ancillary services for over 8 million US veterans.
While the health network has inherent research limitations and biases due to its large
percentage of male patients, the staggering volume of high fidelity records available
outweighs this limitation. The VA database has been used by numerous medical
researchers in the past 25 years to conduct landmark research in many areas [6, 7].

The VA database has a long history of involvement with medical research and
collaboration with investigators who are part of the VA system. Traditionally the
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dataset access has been limited to those who hold VA appointments. However, with
the recent trend towards open access of large databases, there are ongoing dis-
cussions to make the database available to more researchers. The vast repository of
information contained in the database would allow a wide range of researchers to
improve clinical care in many domains. Strengths of the data include the ability to
track patients across the United States as well as from the inpatient to outpatient
settings. As all prescription drugs are covered by the VA system, the linking of this
data enables large pharmacoepidemiological studies to be done with relative ease.

2.6.3 NSQUIP

The National Surgical Quality Improvement Project is an international effort
spearheaded by the American College of Surgeons (ACS) with a goal of improving
the delivery of surgical care worldwide [8]. The ACS works with institutions to
implement widespread interventions to improve the quality of surgical delivery in
the hospital. A by-product of the system is the gathering of large amounts of data
relating to surgical procedures, outcomes and adverse events. All information is
gathered from the EHR at the specific member institutions.

The NSQUIP database is freely available to members of affiliated institutions, of
which there are over 653 participating centers in the world. This database contains
large amounts of information regarding surgical procedures, complications, and
baseline demographic and hospital information. While it does not contain the
granularity of the MIMIC dataset, it contains data from many hospitals across the
world and thus is more generalizable to real-world surgical practice. It is a par-
ticularly powerful database for surgical care delivery and quality of care, specifi-
cally with regard to details surrounding complications and adverse events from
surgery.
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Chapter 3
Challenges and Opportunities
in Secondary Analyses of Electronic
Health Record Data

Sunil Nair, Douglas Hsu and Leo Anthony Celi

Take Home Messages

• Electronic health records (EHR) are increasingly useful for conducting sec-
ondary observational studies with power that rivals randomized controlled trials.

• Secondary analysis of EHR data can inform large-scale health systems choices
(e.g., pharmacovigilance) or point-of-care clinical decisions (e.g., medication
selection).

• Clinicians, researchers and data scientists will need to navigate numerous
challenges facing big data analytics—including systems interoperability, data
sharing, and data security—in order to utilize the full potential of EHR and big
data-based studies.

3.1 Introduction

The increased adoption of EHR has created novel opportunities for researchers,
including clinicians and data scientists, to access large, enriched patient databases.
With these data, investigators are in a position to approach research with statistical
power previously unheard of. In this chapter, we present and discuss challenges in
the secondary use of EHR data, as well as explore the unique opportunities pro-
vided by these data.

3.2 Challenges in Secondary Analysis of Electronic
Health Records Data

Tremendous strides have been made in making pooled health records available to
data scientists and clinicians for health research activities, yet still more must be
done to harness the full capacity of big data in health care. In all health related
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fields, the data-holders—i.e., pharmaceutical firms, medical device companies,
health systems, and now burgeoning electronic health record vendors—are simul-
taneously facing pressures to protect their intellectual capital and proprietary plat-
forms, ensure data security, and adhere to privacy guidelines, without hindering
research which depends on access to these same databases. Big data success stories
are becoming more common, as highlighted below, but the challenges are no less
daunting than they were in the past, and perhaps have become even more
demanding as the field of data analytics in healthcare takes off.

Data scientists and their clinician partners have to contend with a research
culture that is highly competitive—both within academic circles, and among clin-
ical and industrial partners. While little is written about the nature of data secrecy
within academic circles, it is a reality that tightening budgets and greater concerns
about data security have pushed researchers to use such data as they have on-hand,
rather than seek integration of separate databases. Sharing data in a safe and
scalable manner is extremely difficult and costly or impossible even within the same
institution. With access to more pertinent data restricted or impeded, statistical
power and the ability for longitudinal analysis are reduced or lost. None of this is to
say researchers have hostile intentions—in fact, many would appreciate the
opportunity for greater collaboration in their projects. However, the time, funding,
and infrastructure for these efforts are simply deficient. Data is also often segregated
into various locales and not consistently stored in similar formats across clinical or
research databases. For example, most clinical data is kept in a variety of
unstructured formats, making it difficult to query directly via digital algorithms [1].
Within many hospitals, emergency department or outpatient clinical data may exist
separately from the hospital and the Intensive Care Unit (ICU) electronic health
records, so that access to one does not guarantee access to the other. Images from
Radiology and Pathology are typically stored separately in yet other different
systems and therefore are not easily linked to outcomes data. The Medical
Information Mart for Intensive Care (MIMIC) database described later in this
chapter, which contains ICU EHR data from the Beth Israel Deaconess Medical
Center (BIDMC), addresses and resolves these artificial divisions, but requires
extensive engineering and support staff not afforded to all institutions.

After years of concern about data secrecy, the pharmaceutical industry has
recently turned a corner, making detailed trial data available to researchers outside
their organizations. GlaxoSmithKline was among the first in 2012 [2], followed by
a larger initiative—the Clinical Trial Data Request—to which other large phar-
maceutical firms have signed-on [3]. Researchers can apply for access to large-scale
information, and integrate datasets for meta-analysis and other systematic reviews.
The next frontier will be the release of medical records held at the health system
level. The 2009 Health Information Technology for Economic and Clinical Health
(HITECH) Act was a boon to the HIT sector [4], but standards for interoperability
between record systems continue to lag [5]. The gap has begun to be resolved by
government sponsored health information exchanges, as well as the creation of
novel research networks [6, 7], but most experts, data scientists, and working
clinicians continue to struggle with incomplete data.
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Many of the commercial and technical roadblocks alluded to above have their
roots in the privacy concerns held by vendors, providers and their patients. Such
concerns are not without merit—data breaches of large health systems are becoming
distressingly common [8]. Employees of Partners Healthcare in Boston were
recently targeted in a “phishing” scheme, unwittingly providing personal infor-
mation that allowed hackers unauthorized access to patient information [9]; patients
of Seton Healthcare in Texas suffered a similar breach just a few months prior [10].
Data breaches aren’t limited to healthcare providers—80 million Anthem enrollees
may have suffered loss of their personal information to a cyberattack, the largest of
its kind to-date [11]. Not surprisingly in the context of these breaches, healthcare
companies have some of the lowest scores of all industries in email security and
privacy practices [12]. Such reports highlight the need for prudence amidst exu-
berance when utilizing pooled electronic health records for big data analytics—such
use comes with an ethical responsibility to protect population- and personal-level
data from criminal activity and other nefarious ends. For this purpose, federal
agencies have convened working groups and public hearings to address gaps in
health information security, such as the de-identification of data outside
HIPAA-covered entities, and consensus guidelines on what constitutes “harm” from
a data breach [13].

Even when issues of data access, integrity, interoperability, security and privacy
have been successfully addressed, substantial infrastructure and human capital costs
will remain. Though the marginal cost of each additional big data query is small, the
upfront cost to host a data center and employ dedicated data scientists can be
significant. No figures exist for the creation of a healthcare big data center, and
these figures would be variable anyway, depending on the scale and type of data.
However, it should not be surprising that commonly cited examples of pooled
EHRs with overlaid analytic capabilities—MIMIC (BIDMC), STRIDE (Stanford),
the MemorialCare data mart (Memorial Health System, California, $2.2 Billion
annual revenue), and the High Value Healthcare Collaborative (hosted by
Dartmouth, with 16 other members and funding from the Center for Medicare and
Medicaid Services) [14]—come from large, high revenue healthcare systems with
regional big-data expertise.

In addition to the above issues, the reliability of studies published using big data
methods is of significant concern to experts and physicians. The specific issue is
whether these studies are simply amplifications of low-level signals that do not have
clinical importance, or are generalizable beyond the database from which they are
derived. These are genuine concerns in a medical and academic atmosphere already
saturated with innumerable studies of variable quality. Skeptics are concerned that
big data analytics will only, “add to the noise,” diverting attention and resources
from other venues of scientific inquiry, such as the traditional randomized con-
trolled clinical trial (RCT). While the limitations of RCTs, and the favorable
comparison of large observational study results to RCT findings are discussed
below, these sentiments nevertheless have merit and must be taken seriously as
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secondary analysis of EHR data continues to grow. Thought leaders have suggested
expounding on the big data principles described above to create open, collaborative
learning environments, whereby de-identified data can be shared between
researchers—in this manner, data sets can be pooled for greater power, or similar
inquiries run on different data sets to see if similar conclusions are reached [15].
The costs for such transparency could be borne by a single institution—much of the
cost of creating MIMIC has already been invested, for instance, so the incremental
cost of making the data open to other researchers is minimal—or housed within a
dedicated collaborative—such as the High Value Healthcare Collaborative funded
by its members [16] or PCORnet, funded by the federal government [7]. These
collaborative ventures would have transparent governance structures and standards
for data access, permitting study validation and continuous peer review of pub-
lished and unpublished works [15], and mitigating the effects of selection bias and
confounding in any single study [17].

As pooled electronic health records achieve even greater scale, data scientists,
researchers and other interested parties expect that the costs of hosting, sorting,
formatting and analyzing these records are spread among a greater number of
stakeholders, reducing the costs of pooled EHR analysis for all involved. New
standards for data sharing may have to come into effect for institutions to be truly
comfortable with records-sharing, but within institutions and existing research
collaboratives, safe practices for data security can be implemented, and greater
collaboration encouraged through standardization of data entry and storage. Clear
lines of accountability for data access should be drawn, and stores of data made
commonly accessible to clarify the extent of information available to any institu-
tional researcher or research group. The era of big data has arrived in healthcare,
and only through continuous adaptation and improvement can its full potential be
achieved.

3.3 Opportunities in Secondary Analysis of Electronic
Health Records Data

The rising adoption of electronic health records in the U.S. health system has
created vast opportunities for clinician scientists, informaticians and other health
researchers to conduct queries on large databases of amalgamated clinical infor-
mation to answer questions both large and small. With troves of data to explore,
physicians and scientists are in a position to evaluate questions of clinical efficacy
and cost-effectiveness—matters of prime concern in 21st century American health
care—with a qualitative and statistical power rarely before realized in medical
research. The commercial APACHE Outcomes database, for instance, contains
physiologic and laboratory measurements from over 1 million patient records across
105 ICUs since 2010 [18]. The Beth Israel Deaconess Medical Center—a tertiary
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care hospital with 649 licensed beds including 77 critical care beds—provides an
open-access single-center database (MIMIC) encompassing data from over 60,000
ICU stays [19].

Single- andmulti-center databases such as those above permit large-scale inquiries
without the sometimes untenable expense and difficulty of a randomized clinical trial
(RCT), thus answering questions previously untestable in RCTs or prospective cohort
studies. This can also be done with increased precision in the evaluation of diag-
nostics or therapeutics for select sub-populations, and for the detection of adverse
events from medications or other interventions with greater expediency, among other
advantages [20]. In this chapter, we offer further insight into the utility of secondary
analysis of EHR data to investigate relevant clinical questions and provide useful
decision support to physicians, allied health providers and patients.

3.4 Secondary EHR Analyses as Alternatives
to Randomized Controlled Clinical Trials

The relative limitations of RCTs to inform real-world clinical decision-making
include the following: many treatment comparisons of interest to clinicians have not
been addressed by RCTs; when RCTs have been performed and appraised, half of
systemic reviews of RCTs report insufficient evidence to support a given medical
intervention; and, there are realistic cost and project limitations that prevent RCTs
from exploring specific clinical scenarios. The latter include rare conditions, clin-
ically uncommon or disparate events, and a growing list of combinations of rec-
ognized patient sub-groups, concurrent conditions (genetic, chronic, acute and
healthcare-acquired), and diagnostic and treatment options [20, 21].

Queries on EHR databases to address clinical questions are essentially large,
nonrandomized observational studies. Compared to RCTs, they are relatively more
efficient and less expensive to perform [22], the majority of the costs having been
absorbed by initial system installation and maintenance, and the remainder con-
sisting primarily of research personnel salaries, server or cloud space costs. There is
literature to suggest a high degree of correlation between treatment effects reported
in nonrandomized studies and randomized clinical trials. Ioannidis et al. [23] found
significant correlation (Spearman coefficient of 0.75, p < 0.001) between the
treatment effects reported in randomized trials versus nonrandomized studies across
45 diverse topics in general internal medicine, ranging from anticoagulation in
myocardial infarction to low-level laser therapy for osteoarthritis. Of particular
interest, significant variability in reported treatment outcome “was seen as fre-
quently among the randomized trials as between the randomized and nonrandom-
ized studies,” and they observed that variability was common among both
randomized trials and nonrandomized studies [23]. It is worth pointing out that
larger treatment effects were more frequently reported in nonrandomized studies
than randomized trials (exact p = 0.009) [23]; however, this need not be evidence
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of publication bias, as relative study size and conservative trial protocol could also
cause this finding. Ioannidis et al.’s [24] results are echoed by a more recent
Cochrane meta-analysis, which found no significant difference in effect estimates
between RCTs and observational studies regardless of the observational study
design or heterogeneity.

To further reduce confounding in observational studies, researchers have
employed propensity scoring [25], which allows balancing of numerous covariates
between treatment groups as well as stratification of samples by propensity score for
more nuanced analysis [26]. Kitsios and colleagues matched 18 unique propensity
score studies in the ICU setting with at least one RCT evaluating the same clinical
question and found a high degree of agreement between their estimates of relative
risk and effect size. There was substantial difference in the magnitude of effect sizes
in a third of comparisons, reaching statistically significance in one case [27].
Though the RCT remains atop the hierarchy of evidence-based medicine, it is hard
to ignore the power of large observational studies that include adequate adjusting
for covariates, such as carefully performed studies derived from review of EHRs.
The scope of pooled EHR data—whether sixty thousand or one million records—
affords insight into small treatment effects that may be under-reported or even
missed in underpowered RCTs. Because costs are small compared to RCTs, it is
also possible to investigate questions where realistically no study-sponsor will be
found. Finally, in the case of databased observational studies, it becomes much
more feasible to improve and repeat, or simply repeat, studies as deemed necessary
to investigate accuracy, heterogeneity of effects, and new clinical insights.

3.5 Demonstrating the Power of Secondary EHR Analysis:
Examples in Pharmacovigilance and Clinical Care

The safety of pharmaceuticals is of high concern to both patients and clinicians.
However, methods for ensuring detection of adverse events post-release are less
robust than might be desirable. Pharmaceuticals are often prescribed to a large,
diverse patient population that may have not been adequately represented in
pre-release clinical trials. In fact, RCT cohorts may deliberately be relatively
homogeneous in order to capture the intended effect(s) of a medication without
“noise” from co-morbidities that could modulate treatment effects [28]. Humphreys
and colleagues (2013) reported that in highly-cited clinical trials, 40 % of identified
patients with the condition under consideration were not enrolled, mainly due to
restrictive eligibility criteria [29]. Variation in trial design (comparators, endpoints,
duration of follow-up) as well as trial size limit their ability to detect low-frequency
or long-term side-effects and adverse events [28]. Post-market surveillance reports
are imperfectly collected, are not regularly amalgamated, and may not be publically
accessible to support clinical-decision making by physicians or inform decision-
making by patients.
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Queries on pooled EHRs—essentially performing secondary observational
studies on large study populations—could compensate for these gaps in pharma-
covigilance. Single-center approaches for this and similar questions regarding
medication safety in clinical environments are promising. For instance, the highly
publicized findings of the Kaiser Study on Vioxx® substantiated prior suspicions of
an association between celecoxib and increased risk of serious coronary heart
disease [30]. These results were made public in April 2004 after presentation at an
international conference; Vioxx® was subsequently voluntarily recalled from the
market in September of the same year. Graham and colleagues were able to draw on
2,302,029 person-years of follow-up from the Kaiser Permanente database, to find
8143 cases of coronary heart disease across all NSAIDs under consideration, and
subsequently drill-down to the appropriate odds ratios [31].

Using the MIMIC database mentioned above, researchers at the Beth Israel
Deaconess Medical Center were able to describe for the first time an increased
mortality risk for ICU patients who had been on selective serotonin reuptake
inhibitors prior to admission [32]. A more granular analysis revealed that mortality
varied by specific SSRI, with higher mortality among patients taking higher-affinity
SSRIs (i.e., those with greater serotonin inhibition); on the other hand, mortality
could not be explained by common SSRI adverse effects, such as impact on
hemodynamic variables [32].

The utility of secondary analysis of EHR data is not limited to the discovery of
treatment effects. Lacking published studies to guide their decision to potentially
anticoagulate a pediatric lupus patient with multiple risk factors for thrombosis,
physicians at Stanford turned to their own EHR-querying platform (the Stanford
Translational Research Integrated Database Environment—STRIDE) to create an
electronic cohort of pediatric lupus patients to study complications from this illness
[33]. In four hours’ time, a single clinician determined that patients with similar
lupus complications had a high relative risk of thrombosis, and the decision was
made to administer anticoagulation [33].

3.6 A New Paradigm for Supporting Evidence-Based
Practice and Ethical Considerations

Institutional experiences such as those above, combined with evidence supporting
the efficacy of observational trials to adequately inform clinical practice, validate
the concept of pooled EHRs as large study populations possessing copious amounts
of information waiting to be tapped for clinical decision support and patient safety.
One can imagine a future clinician requesting a large or small query such as those
described above. Such queries might relate to the efficacy of an intervention across
a subpopulation, or for a single complicated patient whose circumstances are not
satisfactorily captured in any published trial. Perhaps this is sufficient for the
clinician to recommend a new clinical practice; or maybe they will design a
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pragmatic observational study for more nuance—evaluating dose-responsiveness,
or adverse effect profiles across subpopulations. As clinical decisions are made and
the patient’s course of care shaped, this intervention and outcomes information is
entered into the electronic health record, effectively creating a feedback loop for
future inquiries [34].

Of course, the advantages of secondary analysis of electronic health records
must always be balanced with ethical considerations. Unlike traditional RCTs, there
is no explicit consent process for the use of demographic, clinical and other
potentially sensitive data captured in the EHR. Sufficiently specific queries could
yield very narrow results—theoretically specific enough to re-identify an individual
patient. For instance, an inquiry on patients with a rare disease, within a certain age
bracket, and admitted within a limited timeframe, could include someone who may
be known to the wider community. Such an extreme example highlights the need
for compliance with federal privacy laws as well as ensuring high institutional
standards of data security such as secured servers, limited access, firewalls from the
internet, and other data safety methods.

Going further, data scientists should consider additional measures intentionally
designed to protect patient anonymity, e.g. date shifting as implemented in the
MIMIC database (see Sect. 5.1, Chap. 5). In situations where queries might
potentially re-identify patients, such as in the investigation of rare diseases, or in the
course of a contagious outbreak, researchers and institutional research boards
should seek accommodation with this relatively small subset of potentially affected
patients and their advocacy groups, to ensure their comfort with secondary analy-
ses. Disclosure of research intent and methods by those seeking data access might
be required, and a patient option to embargo one’s own data should be offered.

It is incumbent on researchers and data scientists to explain the benefits of
participation in a secondary analysis to patients and patient groups. Such sharing
allows the medical system to create a clinical database of sufficient magnitude and
quality to benefit individual- and groups of patients, in real-time or in the future.
Also, passive clinical data collection allows the patient to contribute, at relatively
very low risk and no personal cost, to the ongoing and future care of others. We
believe that people are fundamentally sufficiently altruistic to consider contributions
their data to research, provided the potential risks of data usage are small and
well-described.

Ultimately, secondary analysis of EHR will only succeed if patients, regulators,
and other interested parties are assured and reassured that their health data will be
kept safe, and processes for its use are made transparent to ensure beneficence for
all.
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Chapter 4
Pulling It All Together: Envisioning
a Data-Driven, Ideal Care System

David Stone, Justin Rousseau and Yuan Lai

Take Home Messages

• An Ideal Care System should incorporate fundamental elements of control
engineering, such as effective and data-driven sensing, computation, actuation,
and feedback.

• These systems must be carefully and intentionally designed to support clinical
decision-making, rather than being allowed to evolve based on market pressures
and user convenience.

This chapter presents ideas on how data could be systematically more effectively
employed in a purposefully engineered healthcare system. We have previously
written on potential components of such a system—e.g. dynamic clinical data
mining, closing the loop on ICU data, optimizing the data system itself, crowd-
sourcing, etc., and will attempt to ‘pull it all together’ in this chapter, which we
hope will inspire and encourage others to think about and move to create such a
system [1–10]. Such a system, in theory, would support clinical workflow by [1]
leveraging data to provide both accurate personalized, or ‘precision,’ care for
individuals while ensuring optimal care at a population level; [2] providing coor-
dination and communication among the users of the system; and [3] defining,
tracking, and enhancing safety and quality. While health care is intrinsically
heterogeneous at the level of individual patients, encounters, specialties, and clin-
ical settings, we also propose some general systems-based solutions derived from
contextually defined use cases. This chapter describes the fundamental infrastruc-
ture of an Ideal Care System (ICS) achieved through identifying, organizing,
capturing, analyzing, utilizing and appropriately sharing the data.
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4.1 Use Case Examples Based on Unavoidable
Medical Heterogeneity

The intrinsic heterogeneities inherent in health care at the level of individual
patients, encounters, specialties, and clinical settings has rendered the possibility of
a single simple systems solution impossible. We anticipate requirements in an ICS

Table 4.1 Clinical use cases with pertinent clinical and data objectives

Clinical use case Clinical objective(s) Data objectives

Outpatient in state of
good health

Provide necessary preventive
care; address mild intermittent
acute illnesses

Health maintenance
documentation: vaccination
records, cancer screening
records, documentation of
allergies; data on smoking and
obesity

Outpatient with
complex chronic
medical problems

Connect and coordinate care
among diverse systems and
caregivers

Ensure accurate and
synchronized information across
care domains without need for
oversight by patient and/or
family; targeted monitors to
prevent admission, readmission

Inpatient—elective
surgery

Provide a safe operative and
perioperative process

Track processes relevant to
safety and quality; track
outcomes, complication rates,
including safety related
outcomes

Inpatient (emergency
department, inpatient
wards, intensive care
units)

Identify and predict ED patients
who require ICU care; ICU
safety and quality; Identify and
predict adverse events

Track outcomes of ED patients
including ICU transfers and
mortality; Track adverse events;
Track usual and innovative ICU
metrics

Nursing home patient Connect and coordinate care
among diverse locations and
caregivers for a patient who may
not be able to actively participate
in the process

Ensure accurate and
synchronized information across
care domains without need for
oversight by patient and/or
family

Recent discharge from
hospital

Prevent re-admission Data mining for predictors
associated with re-admission and
consequent interventions based
on these determinations;
Track functional and clinical
outcomes

Labor and delivery Decision and timing for
caesarian section;
Lower rates of intervention and
complications

Data mining for predictors
associated with c-section or
other interventions; track
complication rates and outcomes

Palliative care/end of
life

Decision and timing for
palliative care;
Ensure comfort and integrity

Data mining to determine
characteristics that indicate
implementation of palliative care
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of identifying common core elements that apply to the medical care of all patients
(e.g. safety principles, preventive care, effective end of life care, accurate and
up-to-date problem list and medication list management), and subsequently for-
mulating pathways based on specific context. One should note that an individual
patient can cross over multiple categories. Any complex outpatient will also have
the baseline requirements of meeting objectives of an outpatient in good health and
may at some point have an inpatient encounter. Table 4.1 identifies a variety of use
cases including abbreviated forms of the pertinent clinical and data issues associ-
ated with them.

4.2 Clinical Workflow, Documentation, and Decisions

The digitalization of medicine has been proceeding with the wide adoption of
electronic health records, thanks in part to meaningful use as part of the Health
Information Technology for Economic and Clinical Health (HITECH) Act [11], but
has received varying responses by clinicians. An extensive degree of digitalization
is a fundamental element for creating an ICS. Defined at the highest level, a system
is a collection of parts and functions (a.k.a. components and protocols) that accepts
inputs and produces outputs [3]. In healthcare, the inputs are the patients in various
states of health and disease, and the outputs are the outcomes of these patients.
Figure 4.1 provides a simple control loop describing the configuration of a data
driven health system.

The practice of medicine has a long history of being data driven, with diagnostic
medicine dating back to ancient times [12]. Doctors collect and assemble data from
histories, physical exams, and a large variety of tests to formulate diagnoses,
prognoses, and subsequent treatments. However, this process has not been optimal
in the sense that these decisions, and the subsequent actuations based on these
decisions, have been made in relative isolation. The decisions depend on the prior
experience and current knowledge state of the involved clinician(s), which may or
may not be based appropriately on supporting evidence. In addition, these decisions
have, for the most part, not been tracked and measured to determine their impact on
safety and quality. We have thereby lost much of what has been done that was good
and failed to detect much of what was bad [1]. The digitization of medicine pro-
vides an opportunity to remedy these issues. In spite of the suboptimal usability of
traditional paper documentation, the entries in physicians’ notes in natural language
constitute the core data required to fuel an ideal care system. While data items such
as lab values and raw physiological vital signs may be reasonably reliable and
quantitative, they generally do not represent the decision-making and the diagnoses
that are established or being considered, which are derived from the analysis and
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synthesis of the available data (the assessment with differential diagnosis) as well as
the data to be acquired in the diagnostic workup (the plan).

The digitalization of medicine has encountered two key issues: [1] How does
one develop a digitally based workflow that supports rapid, accurate documentation
so that the clinician feels enlightened rather than burdened by the process? [2] How
can the documentation process of data entry support and enhance the medical
decision-making process? The first iteration of electronic health records (EHRs) has
simply attempted to replicate the traditional paper documentation in a digital for-
mat. In order to address the first issue, smarter support of the documentation process
will require innovative redesigns to improve the EHR as it evolves. Rather than
requiring the clinician to sit at a keyboard facing away from a patient, the process
needs to capture real-time input from the patient encounter in such potential modes
as voice and visual recognition. This must be done so that the important details are
captured without unduly interfering with personal interactions or without erroneous
entries due to delayed recall. The receiving system must ‘consider’ the patient’s
prior information in interpreting new inputs in order to accurately recognize and

Fig. 4.1 Control loop depicting a data-driven care system. A clinical issue such as an infection
or vascular occlusion affects the state of the patient. Subsequently, the system sensor detects this
change and submits the relevant data to the computer for storage and analysis. This may or may
not result in actuation of a clinical practice intervention that further affects the state of the patient,
which feeds back into the system for further analysis. Feed-forward control involves the
transmission of disturbances directly to the sensor without first affecting the state of the patient.
The detection of a risk factor for venous thromboembolism that triggers prophylaxis in a
protocol-based manner represents a clinical example of feed-forward control [3]
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assimilate the essential information from the current encounter. Furthermore, the
data that is collected should not be functionally lost as the patient advances through
time and moves between geographic locales. A critical issue is one that has been
perpetuated in the current practice of medicine from one encounter to another—the
physician and patient should not need to ‘reinvent the informational wheel’ with
every encounter. While each physician should provide a fresh approach to the
patient, this should not require refreshing the patient’s entire medical story with
each single encounter, wasting time and effort. Furthermore, what is documented
should be transparent to the patient in contrast to the physician beneficence model
that has been practiced for most of the history of medicine where it was considered
beneficial to restrict patients’ access to their own records. Steps are being taken
toward this goal of transparency with the patient with the OpenNotes movement
that began in 2010. The effects of this movement are being recognized nationally
with significant potential benefits in many areas relating to patient safety and
quality of care [13].

Regarding the second issue, we have written of how quality data entry can
support medical decision-making [14]. Future iterations of an innovatively rede-
signed EHR in an ideal care system should assist in the smart assembly and pre-
sentation of the data as well as presentation of decision support in the form of
evidence and education. The decision-maker is then able to approach each
encounter with the advantage of prior knowledge and supporting evidence longi-
tudinally for the individual patient as well as comparisons of their states of health
with patients with similar data and diagnoses (Fig. 4.2). Patterns and trends in the
data can be recognized, particularly in the context of that patient’s prior medical
history and evolving current state (Fig. 4.3).

Population data should be leveraged to optimize decisions for individuals, with
information from individual encounters captured, stored and utilized to support the
care of others as we have described as ‘dynamic clinical data mining [2].’ This also
is similar to what has been described as a ‘learning healthcare system’ or by a
‘green button’ for consulting such population data for decision support [15, 16].

In summary, an ICS must have tools (e.g. enhanced versions of current EHRs) to
capture and utilize the data in ways that make documentation and decision-making
effective and efficient rather than isolated and burdensome. While we realize that
individual clinicians function brilliantly in spite of the technical and systems-level
obstacles and inefficiencies with which they are faced, we have reached a point of
necessity, one recognized by the Institute of Medicine threatening the quality and
safety of healthcare, requiring the development of digital tools that facilitate nec-
essary data input and decisions as well as tools that can interact with and incor-
porate other features of an integrated digitally-based ICS [17]. This will require
close interactions and collaborations among health care workers, engineers
including software and hardware experts, as well as patients, regulators, policy-
makers, vendors and hospital business and technical administrators [5].
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4.3 Levels of Precision and Personalization

Many of the tools available to clinicians have become fantastically sophisticated,
including technical devices and molecular biological and biochemical knowledge.
However, other elements, including those used intensively on a daily basis, are
more primitive and would be familiar to clinicians of the distant past. These ele-
ments include clinical data such as the heart rates and blood pressures recorded in a

Fig. 4.2 Clinician documentation with fully integrated data systems support. Prior notes and
data are input for future notes and decisions. The digital system analyzes input and displays
suggested diagnoses and problem list, and then diagnostic test and treatment recommendations
hierarchically based on various levels of evidence: CPG—clinical practice guidelines, UTD—Up
to Date®, DCDM—Dynamic clinical data mining [14]
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nursing flowsheet. Patient monitoring is not generally employed on a data driven
basis, particularly decisions regarding who gets monitored with what particular
signals, the duration of monitoring, and whether the data are stored, analyzed, and
utilized beyond the current time. Furthermore, it is questionable whether the
precedent of setting common numeric thresholds for abnormally high or low values
extracts maximal clinical information from those signals. This recognition of
abnormal values has become a significant problem of excessive false alarms and
alarm fatigue [18]. Data analysis should provide clinicians with personalized and
contextualized characterizations of individual vital signs (e.g. heart and respiratory
rate variability patterns, subtle ECG waveform shapes, etc.) so that truly important
changes can be recognized quickly and effectively while not overwhelming the
cognitive load of the clinician. This would constitute ‘personalized data driven
monitoring’ in which the raw data on the monitor screen is analyzed in real time to
provide more information regarding the state of the patient. This will become more
important and pressing as monitoring becomes more ubiquitous both in the hospital

Fig. 4.3 Mock screenshot for the Assessment screen with examples of background data
analytics. Based on these analytics that are constantly being performed by the system and are
updated as the user begins to enter a note, a series of problems are identified and suggested to the
user by EMR display. After consideration of these suggestions in addition to their own analysis,
the user can select or edit the problems that are suggested or input entirely new problems. The final
selection of problems is considered with ongoing analytics for future assessments [14]
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and in outpatient settings, which is not far from a reality with the exponential
development of mobile health monitors and applications. A potential approach to
this issue would be to treat monitors as specialized component of the EHR rather
than standalone devices that display the heart rate and beep frequently, at times
even when there is no good reason. In fact, this has occurred to some functional
extent as monitors have become networked and in many cases can import data into
the EHR. The loop will be closed when information flows bi-directionally so that
the EHR (and other elements such as infusion pumps) can assist in providing
clinical contexts and personalized information to enhance the performance potential
of the monitors [14]. Whereas the user interface of the monitor is currently solely
one of adjusting the monitored channels and the alarm settings, the user interface
will also be increasingly rich so that the user could, for instance with the proper
credentials, access, edit and annotate the EHR from a bedside or central monitor, or
add information directly to the monitor to calibrate the monitoring process.

The data from monitors is beginning to be used for prospective analytic purposes
in terms of predicting neonatal sepsis and post cardiac surgery problems [19, 20].
The HeRO neonatal alert focuses on diminution in heart rate variability and increase
in decelerations to identify potential sepsis, whereas the Etiometry alert employs a
sophisticated statistical analysis of those monitored elements reflecting cardiac
function to detect and define problems earlier than humans could ordinarily do. The
HeRO team is now working to develop predictive analytics for respiratory deteri-
oration, significant hemorrhage, and sepsis in adults [21]. The essential point is that
monitors employing such predictive analytics, as well as streaming and retro-
spective analytics, can leverage large amounts of personal data to improve the
monitoring process as well as the healthcare encounter experience, particularly in
areas of quality and safety. However, it is essential that such individual applica-
tions, exponentially growing in complexity and sophistication, not be introduced as
unrelated bits into an already data-overburdened and under-engineered health care
system. In the current state of the healthcare system, there is already plenty of data.
However, it is not being systematically handled, utilized and leveraged. It is
essential that such new applications be embedded thoughtfully into workflows.
They must also be systematically interfaced and interoperable with the core care
system, represented by the next generation of EHRs, so that the information can be
used in a coordinated fashion, audited in terms of its impact on workflows, and
tracked in terms of its impact on patient outcomes, quality, and safety. The addition
of further system elements should be planned, monitored, and evaluated in a
data-driven fashion. New elements should contribute to the system that uses data in
a targeted, well-managed fashion rather than simply collecting it. The introduction
of elements outside the core EHR requires communication and coordination among
all system elements, just as effectively using the EHR alone requires communica-
tion and coordination among caregivers and patients.
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4.4 Coordination, Communication, and Guidance
Through the Clinical Labyrinth

Coordination and communication would be fundamental properties of an ICS
contrasted with the enormous individual efforts required to achieve these goals in
the current state. Patients and caregivers should be able to assume that the system
captures, stores, and shares their information where and when it is needed. When
the patient leaves her nursing home to be seen in a local emergency room or by her
neurologist, the clinicians should have all previously available information neces-
sary to treat her. This should also be the case when she returns to the nursing home
with the system updating her record with events from her previous encounter as
well as implementing new orders reflecting that encounter. This seamless com-
munication and coordination is especially important for the kinds of patients who
cannot provide this support themselves: people who are elderly, cognitively
impaired, acutely ill, etc. Unfortunately, the current system was developed as a tool
to aid in billing and reimbursement of interventions and the challenge that we face
with transforming and continuing to develop it into an ICS is to transition its focus
to patient care. Currently, patients and their advocates must battle with unrelenting
challenges of opacity and obstruction facing immense frustration and threats to
patient safety and quality of care where such risks would not be tolerated in any
other industry.

Data and the efficient transmission of information where and when it is needed
are at the core of an ICS. Information networks that permeate all the relevant locales
must be created employing all the interoperability, privacy, and security features
necessary. The system must maintain its focus on the patient and must instantly (or
sufficiently quickly to meet clinical needs) update, synchronize, and transmit the
information to all those who need to know, including qualified and permitted family
members and the patients themselves relevant to the care of the patient. Many
clinicians may be misinterpreted as being unresponsive, or even uncaring, in
response to their continuing frustration with the difficulty of obtaining timely and
accurate information. The current state of siloed healthcare systems makes
obtaining information from other locales prohibitively challenging with no partic-
ular reward for continuing to struggle to obtain pertinent information for the con-
tinued care of patients, evoking reactions from caregivers including rudeness,
neglect, hostility, or burnout. This challenge to obtain information from outside
sources also leads to repeat diagnostic testing exposing patients to unnecessary risks
and exposures such as is seen when a patient is transferred from one institution to
another but the imaging obtained at the first institution is not able to be transferred
appropriately [22]. Unfortunately, the Health Insurance Portability and
Accountability Act of 1996 (HIPAA), the very legislation designed to enable the
portability of information relevant to patient care, has further hindered this trans-
mission of information. An efficient system of communication and coordination
would benefit the caregiver experience in addition to the patients by providing them
with the tools and information that they need to carry out their jobs.
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The scope of those affected by the challenges inherent in the current healthcare
system is broad. Not only does it affect those that are cognitively impaired, but also
those with limited education or resources. It affects those that have complicated
medical histories as well as those without previous histories. Even when patients are
capable of contributing to the management of their own clinical data, there is
potential to be overwhelmed and incapacitated through the complexities of the
system when affected by illness, no matter the acuity, severity, or complexity.
Interoperable EHRs focused on patients rather than locations or brands would
provide the necessary and updated information as a patient moves from office A to
hospital system B to home and back to emergency room C. When people are sick,
they and their caregivers should be supported by the system rather than forced to
battle it.

The sharing of data among patients and caregivers in a safe and efficient manner
is not primarily a technical problem at this time, although there are many technical
challenges to achieving such seamless interoperability. It is also a business as well
as a political problem. This complex interaction can be seen in efforts toward
healthcare architecture and standards supporting interoperability described in the
JASON report, “A Robust Health Data Infrastructure” with responses from industry
and EHR vendors in the development and adoption of HL7 Fast Healthcare
Interoperability Resources (FHIR) standards [23, 24]. In an ICS, all parties must
cooperate to interconnect EHRs among caregivers and locals so that the accurate
and reliable data essential for healthcare can be coordinated, synchronized, and
communicated across practice domains but within each patient’s domain. As we
have seen on individual patient levels, an overabundance of data is not useful if it is
not processed, analyzed, placed into the appropriate context, and available to the
right people at the right places and times.

4.5 Safety and Quality in an ICS

There are many examples in healthcare, such as with bloodletting with leeches,
where what was thought to be best practice, based on knowledge or evidence at the
time, was later found to be harmful to patients. Our knowledge and its application
must be in a continual state of assessment and re-assessment so that unreliable
elements can be identified and action taken before, or at least minimal, harm is done
[4]. There is currently no agreement on standard metrics for safety and quality in
healthcare and we are not going to attempt to establish standard definitions in this
chapter [25]. However, in order to discuss these issues, it is important to establish a
common understanding of the terminologies and their meaning.

At a conceptual level, we conceive clinical safety as a strategic optimization
problem in which the maximum level of permissible actuation must be considered
and implemented in the simultaneous context of allowing the minimal degree of
care-related harm. The objective is to design and implement a care system that
minimizes safety risks to approach a goal of zero. The digitization of medicine

36 4 Pulling It All Together: Envisioning a Data-Driven …



affords a realistic chance of attaining this goal in an efficient and effective manner.
The application of systems engineering principles also provides tools to design
these kinds of systems.

The overall quality of healthcare is a summation of the experience of individ-
uals, and for these individuals, there may be varying degrees of quality for different
periods of their experience. Similar to safety, we also think of quality as a strategic
optimization problem in which outcomes and benefits are maximized or optimized,
while the costs and risks involved in the processes required to achieve them, are
minimized. The provision of quality via optimized outcomes in clinical care is, to a
large extent, a problem in engineering information reliability and flow, providing
the best evidence at the right times to assist in making the best decisions [3]. The
concepts of the ‘best evidence’ and ‘best decisions’ themselves depend on input
sources that range from randomized control trials to informed expert opinion to
local best practices. To provide actual actuation, information flows must be sup-
plemented by chemical (medications), mechanical (surgery, physical therapy,
injections, human touch) and electromagnetic (imaging, ultrasound, radiation
therapy, human speech) modalities, which can institute the processes indicated by
those information flows.

Furthermore, quality may also be defined with respect to the degree of success in
treatment of the disease state. Diseases addressed in modern medicine are, to a
surprisingly large and increasingly recognized extent, those of control problems in
bioengineering [10]. These diseases may stem from control problems affecting
inflammation, metabolism, physiological homeostasis, or the genome. However,
these all represent failure in an element or elements of a normally well-controlled
biological system. The quality of the clinical response to these failures is best
improved by understanding them sufficiently and thoroughly enough so that tar-
geted and tolerable treatments can be developed that control and/or eliminate the
systems dysfunction represented by clinical disease. This should be accomplished
in a way that minimizes undue costs in physical, mental, or even spiritual suffering.
Ultimately, medical quality is based primarily on outcomes, but the nature of the
processes leading to those outcomes must be considered. Optimal outcomes are
desirable, but not at any cost, in the broad definition of the term. For example,
prolonging life indefinitely is not an optimal outcome in some circumstances that
are contextually defined by individual, family, and cultural preferences.

Having defined safety and quality in our context, the next step is to develop
systems that capture, track and manage these concepts in retrospective, real-time,
and predictive manners. It is only when we know precisely what static and dynamic
elements of safety and quality we wish to ensure that we can design the systems to
support these endeavors. These systems will involve the integration of hardware
and software systems such as physiologic monitors with the EHR (including
Computerized Provider Order Entry, Picture Archiving and Communication
System, etc.), and will require a variety of specialized, domain-specific data ana-
lytics as well as technical innovations such as wireless body sensor networks to
capture patient status in real time. The system will connect and communicate
pertinent information among caregivers by populating standardized, essential access

4.5 Safety and Quality in an ICS 37



and alert nodes with timely and accurate information. It is also necessary that
information flows bi-directionality (from the records of individuals to the popula-
tion record, and from the population record to individuals) so that both can benefit
from the data [2, 14]. Clearly, this will require an overall monitoring and infor-
mation system that is interoperable, interactive both with its own components and
its users, and actively but selectively informative. Future generations of clinicians
will receive their education in an environment in which these systems are ubiqui-
tous, selectively modifiable based on inputs such as crowdsourcing, and intrinsic to
the tasks at hand, in contrast to the siloed and apparently arbitrarily imposed
applications current clinicians may resist and resent [5, 8].

We noted the importance of control problems in disease, and control will also
represent a fundamental component in the design of future safety and quality
systems. The detection and prevention of adverse events is a significant challenge
when depending on self-reporting methods or chart review and this issue is of high
importance in the US [26, 27]. Predictive analytics can be developed as elements of
the system to prospectively inform users of threats to safety and quality [19–21].
Carefully designed feed-forward components will inform participants in real time
that an high risk activity is occurring so that it can be rectified without requiring
retroactive analysis (Fig. 4.4—safety control loop below). Retrospective data
analytics will track the factors affecting quality and safety so that practice,

Fig. 4.4 Control loop depicting a data-driven safety system. A clinical safety issue affects the
state of the patient. Subsequently, the system sensor detects this change and submits the relevant
data to the computer for storage and analysis. This may or may not result in actuation of a
counteractive intervention that further affects the state of the patient, which feeds back into the
system for further analysis. Feed-forward control involves the transmission of disturbances directly
to the sensor without first affecting the state of the patient. An example of such a feed-forward
control includes a faulty device or a biohazard
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workflow, and technological systems can be accordingly modified. Such an ICS
will be capable of monitoring medical errors, adverse events, regulatory and safety
agency concerns and metrics, and compliance with best practice as well as mean-
ingful use in parallel with costs and outcomes.

4.6 Conclusion

The basic systems solutions to the health care data problem rest on fully and
inclusively addressing the axes of patient, care giver and care system considera-
tions, which at times are apparently independent, but are ultimately interactive and
interdependent. The required systems design will also greatly benefit from basic
incorporation of the fundamental elements of control engineering such as effective
and data-driven sensing, computation, actuation, and feedback. An Ideal Care
System must be carefully and intentionally designed rather than allowed to evolve
based on market pressures and user convenience.

The patient’s data should be accurate, complete, and up-to-date. As patients
progress in time, their records must be properly and timely updated with new data
while concurrently, old data are modified and/or deleted as the latter become
irrelevant or no longer accurate. New entry pipelines such as patient-generated and
remotely generated data, as well as genomic data, must be taken into consideration
and planned for. These data should be securely, reliably, and easily accessible to the
designated appropriate users including the patient. The caregiver should have
access to these data via a well-designed application that positively supports the
clinical documentation process and includes reasonable and necessary decision
support modalities reflecting best evidence, historical data of similar cases in the
population, as well as the patient’s own longitudinal data. All should have access to
the data so far as it is utilized to construct the current and historical patterns of
safety and quality. In addition to the data of individuals, access to the data of
populations is required for the above purposes as well as to provide effective
interventions in emergency situations such as epidemics. The creation of this kind
of multimodal systems solution (Fig. 4.5—Ideal Care System Architecture below)
will require the input of a great variety of experts including those from the EHR,
monitoring devices, data storage, and data analytic industries along with leaders in
healthcare legislation, policy makers, regulation, and administration.

Many important engineering, economic, and political questions remain that are
not addressed in this chapter. What and who will provide the infrastructure and who
will pay for it? Will this kind of system continue to work with current hardware and
software or require fundamental upgrades to function at the required level of reli-
ability and security? How and where will the controls be embedded in the system?
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For example, will they be at the individual smart monitoring level or at a statewide
public health level? How will the metadata obtained be handled for the good of
individuals and populations? It is critical that the addition of new modalities and
devices be fully integrated into the system rather than adding standalone compo-
nents that may contribute more complexity and confusion than benefit. These goals
will require cooperation previously unseen among real and potential competitors
and those who have previously been able to work in relative isolation.

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

Fig. 4.5 Information Architecture of an Ideal Care System. This diagram integrates the
concepts described in this chapter depicting data driven care systems, safety systems, along with
connection and coordination of patient data across multiple modalities to achieve an Ideal Care
System. Patients move through time and interact with the ICS in different contexts. Parallel
databases are integrated with the patient data states in time including an individual patient’s
longitudinal database, hospital quality and safety database, and a population database. Data from
the patient, mobile technologies and from the home care entities keep caregivers informed of the
most current patient data state
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Chapter 5
The Story of MIMIC

Roger Mark

Take Home Messages

• MIMIC is a Medical Information Mart for Intensive Care and consists of several
comprehensive data streams in the intensive care environment, in high levels of
richness and detail, supporting complex signal processing and clinical querying
that could permit early detection of complex problems, provide useful guidance
on therapeutic interventions, and ultimately lead to improved patient outcomes.

• This complicated effort required a committed and coordinated collaboration
across academic, industry, and clinical institutions to provide a radically open
access data platform accessible by researchers around the world.

5.1 The Vision

Patients in hospital intensive care units (ICUs) are physiologically fragile and
unstable, generally have life-threatening conditions, and require close monitoring
and rapid therapeutic interventions. They are connected to an array of equipment
and monitors, and are carefully attended by the clinical staff. Staggering amounts of
data are collected daily on each patient in an ICU: multi-channel waveform data
sampled hundreds of times each second, vital sign time series updated each second
or minute, alarms and alerts, lab results, imaging results, records of medication and
fluid administration, staff notes and more. In early 2000, our group at the
Laboratory of Computational Physiology at MIT recognized that the richness and
detail of the collected data opened the feasibility of creating a new generation of
monitoring systems to track the physiologic state of the patient, employing the
power of modern signal processing, pattern recognition, computational modeling,
and knowledge-based clinical reasoning. In the long term, we hoped to design
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monitoring systems that not only synthesized and reported all relevant measure-
ments to clinicians, but also formed pathophysiologic hypotheses that best
explained the observed data. Such systems would permit early detection of complex
problems, provide useful guidance on therapeutic interventions, and ultimately lead
to improved patient outcomes.

It was also clear that although petabytes of data are captured daily during care
delivery in the country’s ICUs, most of these data were not being used to generate
evidence or to discover new knowledge. The challenge, therefore, was to employ
existing technology to collect, archive and organize finely detailed ICU data,
resulting in a research resource of enormous potential to create new clinical
knowledge, new decision support tools, and new ICU technology. We proposed to
develop and make public a “substantial and representative” database gathered from
complex medical and surgical ICU patients.

5.2 Data Acquisition

In 2003, with colleagues from academia (Massachusetts Institute of Technology),
industry (Philips Medical Systems), and clinical medicine (Beth Israel Deaconess
Medical Center, BIDMC) we received NIH (National Institutes of Health) funding
to launch the project “Integrating Signals, Models and Reasoning in Critical Care”,
a major goal of which was to build a massive critical care research database. The
study was approved by the Institutional Review Boards of BIDMC (Boston, MA)
and MIT (Cambridge, MA). The requirement for individual patient consent was
waived because the study would not impact clinical care and all protected health
information was to be de-identified.

We set out to collect comprehensive clinical and physiologic data from all ICU
patients admitted to the multiple adult medical and surgical ICUs of our hospital
(BIDMC). Each patient record began at ICU admission and ended at final discharge
from the hospital. The data acquisition process was continuous and invisible to staff.
It did not impact the care of patients or methods of monitoring. Three categories of
data were collected: clinical data, which were aggregated from ICU information
systems and hospital archives; high-resolution physiological data (waveforms and
time series of vital signs and alarms obtained from bedside monitors); and death data
from Social Security Administration Death Master Files (See Fig. 5.1).

5.2.1 Clinical Data

Bedside clinical data were downloaded from archived data files of the CareVue
Clinical Information System (Philips Healthcare, Andover, MA) used in the ICUs.
Additional clinical data were obtained from the hospital’s extensive digital archives.
The data classes included:
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• Patient demographics
• Hospital administrative data: admission/discharge/death dates, room tracking,

billing codes, etc.
• Physiologic: hourly vital signs, clinical severity scores, ventilator settings, etc.
• Medications: IV medications, physician orders
• Lab tests: chemistry, hematology, ABGs, microbiology, etc.
• Fluid balance data
• Notes and reports: Discharge summaries; progress notes; ECG, imaging and

echo reports.

5.2.2 Physiological Data

Physiological data were obtained with the technical assistance of the monitoring
system vendor. Patient monitors were located at every ICU patient bed. Each
monitor acquired and digitized multi-parameter physiological waveform data,
processed the signals to derive time series (trends) of clinical measures such as heart
rate, blood pressures, and oxygen saturation, etc., and also produced bedside
monitor alarms. The waveforms (such as electrocardiogram, blood pressures, pulse
plethysmograms, respirations) were sampled at 125 Hz, and trend data were
updated each minute. The data were subsequently stored temporarily in a central
database server that typically supported several ICUs. A customized archiving
agent created and stored permanent copies of the physiological data. The data were
physically transported from the hospital to the laboratory every 2–4 weeks where
they were de-identified, converted to an open source data format, and incorporated
into the MIMIC II waveform database. Unfortunately, limited capacity and

Fig. 5.1 MIMIC II data sources

5.2 Data Acquisition 45



intermittent failures of the archiving agents limited waveform collection to a
fraction of the monitored ICU beds.

5.2.3 Death Data

The Social Security Death Master files were used to document subsequent dates of
death for patients who were discharged alive from the hospital. Such data are
important for 28-day and 1-year mortality studies.

5.3 Data Merger and Organization

A major effort was required in order to organize the diverse collected data into a
well-documented relational database containing integrated medical records for each
patient. Across the hospital’s clinical databases, patients are identified by their
unique Medical Record Numbers and their Fiscal Numbers (the latter uniquely
identifies a particular hospitalization for patients who might have been admitted
multiple times), which allowed us to merge information from many different hos-
pital sources. The data were finally organized into a comprehensive relational
database. More information on database merger, in particular, how database
integrity was ensured, is available at the MIMIC-II web site [1]. The database user
guide is also online [2].

An additional task was to convert the patient waveform data from Philips’
proprietary format into an open-source format. With assistance from the medical
equipment vendor, the waveforms, trends, and alarms were translated into WFDB,
an open data format that is used for publicly available databases on the National
Institutes of Health-sponsored PhysioNet web site [3].

All data that were integrated into the MIMIC-II database were de-identified in
compliance with Health Insurance Portability and Accountability Act standards to
facilitate public access to MIMIC-II. Deletion of protected health information from
structured data sources was straightforward (e.g., database fields that provide the
patient name, date of birth, etc.). We also removed protected health information
from the discharge summaries, diagnostic reports, and the approximately 700,000
free-text nursing and respiratory notes in MIMIC-II using an automated algorithm
that has been shown to have superior performance in comparison to clinicians in
detecting protected health information [4]. This algorithm accommodates the broad
spectrum of writing styles in our data set, including personal variations in syntax,
abbreviations, and spelling. We have posted the algorithm in open-source form as a
general tool to be used by others for de-identification of free-text notes [5].
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5.4 Data Sharing

MIMIC-II is an unprecedented and innovative open research resource that grants
researchers from around the world free access to highly granular ICU data and in
the process substantially accelerates knowledge creation in the field of critical care
medicine. The MIMIC Waveform Database is freely available to all via the
PhysioNet website, and no registration is required. The MIMIC Clinical Database is
also available without cost. To restrict users to legitimate medical researchers,
access to the clinical database requires completion of a simple data use agreement
(DUA) and proof that the researcher has completed human subjects training [6].

The MIMIC-II clinical database is available in two forms. In the first form, inter-
ested researchers can obtain a flat-file text version of the clinical database and the
associated database schema that enables them to reconstruct the database using a
database management system of their choice. In the second form, interested
researchers can gain limited access to the database through QueryBuilder, a
password-protected web service. Database searches using QueryBuilder allow users
to familiarize themselves with the database tables and to program database queries
using the Structured Query Language. Query output, however, is limited to 1000 rows
because of our laboratory’s limited computational resources. Accessing and pro-
cessing data from MIMIC-II is complex. It is recommended that studies based on the
MIMIC-II clinical database be conducted as collaborative efforts that include clinical,
statistical, and relational database expertise. Detailed documentation and procedures
for obtaining access to MIMIC-II are available at the MIMIC-II web site [1]. The
current release ofMIMIC-II is version 2.6, containing approximately 36,000 patients,
including approximately 7000 neonates, and covering the period 2001–2008. At the
present time approximately 1700 individuals worldwide in academia, industry, and
medicine have been credentialed to access MIMIC-II and are producing research
results in physiologic signal processing, clinical decision support, predictive algo-
rithms in critical care, pharmacovigilance, natural language processing, and more.

5.5 Updating

In 2008 the hospital made a major change in the ICU information system technology
and in ICU documentation procedures. The Philips CareVue system was replaced
with iMDsoft’s MetaVision technology. In 2013 we began a major update to MIMIC
to incorporate adult ICU data for the period 2008–2012. The effort required learning
the entirely new data schema of MetaVision, and merging the new data format with
the existing MIMIC design. The new MetaVision data included new data elements
such as physician progress notes, oral and bolus medication administration records,
etc. Updated data were extracted from hospital archives and from the SSA death files
for the newly added patients. Almost two years of effort was invested to acquire,
organize, debug, normalize and document the new database before releasing it.
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MIMIC-III includes 20,000 new adult ICU admissions, bringing the total to
approximately 60,000. The new database is known as MIMIC-III, and the acronym
has been recast as “Medical Information Mart for Intensive Care” [7].

5.6 Support

Support of the MIMIC databases includes: credentialing new users, administration of
the authorized user list (i.e. users who have signed the DUA and have been granted
permission to access MIMIC-II), user account creation, password resets and
granting/revoking permissions. The servers providing MIMIC-II include authenti-
cation, application, database and web servers. All systems must be monitored,
maintained, upgraded and backed up; themaintenance burden continues to increase as
the number of database users grows. The engineering staff at LCP attempt to answer
user queries as needed. Common questions are added to list of frequently asked
questions on the MIMIC website and we regularly update our online documentation.

5.7 Lessons Learned

Building and distributing MIMIC-like databases is challenging, complex, and
requires the cooperation and support of a number of individuals and institutions.
A list of some of the more important requirements follows (Table 5.1).

Table 5.1 Health data
requirements

1. The availability of digitized ICU and hospital data including
structured and unstructured clinical data and high resolution
waveform and vital sign data

2. A cooperative and supportive hospital IT department to assist
in data extraction

3. A supportive IRB and hospital administration to assure both
protection of patient privacy and release of de-identified data
to the research community

4. Adequate engineering and data science capability to design
and implement the database schema and to de-identify the
data (including the unstructured textual data)

5. Sophisticated signal processing expertise to reformat and
manage proprietary waveform data streams

6. Cooperation and technical support of equipment vendors

7. Adequate computational facilities for data archiving and
distribution

8. Adequate technical and administrative personnel to provide
user support and credentialing of users

9. Adequate financial support

48 5 The Story of MIMIC



5.8 Future Directions

The MIMIC-III database is a powerful and flexible research resource, but the
generalizability of MIMIC-based studies is somewhat limited by the fact that the
data are collected from a single institution. Multi-center data would have the
advantages of including wider practice variability, and of course a larger number of
cases. Data from international institutions would add still greater strength to the
database owing to the even larger variations in practice and patient populations.

Our long-term goal is to create a public, multi-center, international data archive
for critical care research. We envisage a massive, detailed, high-resolution ICU data
archive containing complete medical records from patients around the world. The
difficulty of such a project cannot be understated; nevertheless we propose to lay the
foundation for such a system by developing a scalable framework that can readily
incorporate data from multiple institutions, capable of supporting research on
cohorts of critically ill patients from around the world.
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Chapter 6
Integrating Non-clinical Data with EHRs

Yuan Lai, Edward Moseley, Francisco Salgueiro and David Stone

Take Home Messages

• Non-clinical factors make a significant contribution to an individual’s health and
providing this data to clinicians could inform context, counseling, and
treatments.

• Data stewardship will be essential to protect confidential health information
while still yielding the benefits of an integrated health system.

6.1 Introduction

The definition of “clinical” data is expanding, as a datum becomes clinical once it
has a relation to a disease process. For example: the accessibility of one’s home
would classically be defined as non-clinical data, but in the context of a patient with
a disability, this fact may become clinically relevant, and entered into the encounter
note much like the patient’s blood pressure and body temperature. However, even
with this simple example, we can envision some of the problems with traditional
non-clinical data being re-classified as clinical data, particularly due to its
complexity.

6.2 Non-clinical Factors and Determinants of Health

Non-clinical factors are already significantly linked to health. Many public health
policies focusing on transportation, recreation, food systems and community
development are based on the relation between health and non-clinical determinants
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such as behavioral, social and environmental factors [1]. Behavioral factors such as
physical activity, diet, smoking and alcohol consumption are highly related to
epidemic of obesity [2]. Some of this information, such as alcohol and tobacco use,
is regularly documented by clinicians. Other information, such as dietary behaviors
and physical activity, isn’t typically captured, but may be tracked by new tech-
nology (such as wearable computers commonly referred to as “wearables”) and
integrated into electronic health records (EHRs). Such efforts may provide clini-
cians with additional context with which to counsel patients in an effort to increase
their physical activity and reach a desired health outcome.

From a public health perspective, the same data obtained from these devices may
be aggregated and used to guide decisions on public health policies. Continuing the
prior example, proper amounts of physical activity will contribute to lower rates of
mortality and chronic disease including coronary heart disease, hypertension, dia-
betes, breast cancer and depression across an entire population. Such data can be
used to guide public health interventions in an evidence-based, cost-effective
manner.

Both social and environmental factors are highly related to health. Social
Determinants of Health (SDH) are non-clinical factors that affect the social and
economic status of individuals and communities, including such items as their
birthplace, living conditions, working conditions and demographic attributes [3].
Also included are social stressors such as crime, violence, and physical disorders, as
well as others [4].

Environmental factors (i.e., air pollution, extreme weather, noise and poor
indoor environmental quality) are highly related to an individual’s health status.
Densely built urban regions create air pollution, heat islands and high levels of
noise, which have been implicated in causing or worsening a variety of health
issues. For example, a study in New York City showed that asthma-related emer-
gency admissions in youth from 5 to 17 years old were highly related to ambient
ozone exposure. This annual NYC Community Health Survey also reveals that
self-reported chronic health problems are related to extreme heat, suggesting that
temperature can effect, or exacerbate, the symptoms of an individual’s chronic
illness. Social factors such as age and poverty levels also impact health. A study in
New York City shows that fine particles (PM2.5, a surrogate marker for pollution)
attributable asthma hospital admissions are 4.5 times greater in high-poverty
neighborhoods [5].

While outdoor environmental conditions merit public health attention, the
average American spends only an hour of each day outdoors, and most individuals
live, work and rest in an indoor environment, where other concerns reside. Poor
indoor quality can cause building related illness and “sick building syndrome”
(SBS)—where occupants experience acute health issues and discomfort, while no
diagnosable illness can be readily identified [6]. Again in New York City, housing
data was combined from multiple agencies in an effort to address indoor pollution
concerns—using predictive analytics, the city was able to increase the rate of
detection of buildings considered dangerous, as well as improve the timeliness in
locating apartments with safety concerns or health hazards [7].
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6.3 Increasing Data Availability

For many years scientists and researchers have had to deal with very limited
available data to study behavioral, social and environmental factors that exist in
cities, as well as the difficulty in evaluating their model with a large pool of urban
data [8]. The big data revolution is bringing vast volumes of data and paradigmatic
transformations to many industries within urban services and operations. This is
particularly true in commerce, security and health care, as more data are system-
atically gathered, stored, and analyzed. The emergence of urban informatics also
coincides with a transition from traditionally closed and fragmented data systems to
more fully connected and open data networks that include mass communications,
citizen involvement (e.g. social media), and informational flow [9].

In 2008, 3.3 billion of the world’s inhabitants lived in cities, representing, for the
first time in history the majority of the human population [10]. In 2014, 54 % of
population lives in urban area and it is expected to increase to 66 % by 2050 [11].
With the growth of cities, there are rising concerns in public health circles regarding
the impact of associated issues such as aging populations, high population densities,
inadequate sanitation, environmental degradation, climate change factors, an
increasing frequency of natural disasters, as well as current and looming resource
shortages. A concomitantly large amount of information is required to plan and
provide for the public health of these urban entities, as well as to prevent and react
to adverse public events of all types (e.g. epidemiological, natural, criminal and
politico-terroristic disasters).

The nature of the city as an agglomeration of inhabitants, physical objects and
activities makes it a rich source of urban data. Today, billions of individuals are
generating the digital data through their cellphones and use of the Internet including
social networks. Hardware like global positioning systems (GPS) and other sensors
are also becoming ubiquitous as they become more affordable, resulting in diverse
types of data being collected in new and unique ways [12]. This is especially true in
cities due to their massive populations, creating hotspots of data generation and
hubs of information flow. Such extensive data availability may also provide the
substrate for more statistically robust models across multiple disciplines.

An overview of the volume, variety, and format of open urban data is essential to
further integration with electronic health records. As more cities begin building
their informational infrastructure, the volume of city data increases rapidly. The
majority of urban data are in tabular format with location-based information [8].
Data source and collection processes vary based on the nature of urban data.
Passive sensors continuously collect environmental data such as temperature, air
quality, solar radiation, and noise, and construct an urban sensing infrastructure
along with ubiquitous computing [13]. There is also a large amount of city data
generated by citizens such as service requests and complaints. Some pre-existing
data, like those in the appropriate tabular format, are immediately ready for inte-
gration, while other data contained in more complex file types, like Portable
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Document Format (PDF) or others, are more difficult to parse. This problem can be
compounded if the data are encoded in uncommon character languages.

The fact that many non-clinical data, especially urban data, is geo-located
enables clinicians to consider patient health within a broader view. Many envi-
ronmental, social and behavioral factors link together spatially, and such spatial
correlation is a key measurement in epidemiology, as it allows for the facilitation of
data integration based on location. Connections and solutions become more visible
by linking non-clinical data with EHR on a public health and city planning level.
Recently, IBM announced that, by teaming supercomputer Watson’s cognitive
computing with data from CVS Health (a pharmacy chain with locations across the
U.S.), we will have better predictions regarding the prevalence of chronic condi-
tions such as heart disease and diabetes in different cities and locations [14].

6.4 Integration, Application and Calibration

In a summary of all cities in the United States that published open data sets as of
2013, it was found that greater than 75 % of datasets were prepared in tabular
format [8]. Tabular data is most amenable for automated integration, as it is already
in the final format prior to being integrated into most relational databases (as long as
the dataset contains a meaningful attribute, or variable, with which to relate to other
data entries). Furthermore, data integration occurs most easily when the dataset is
“tidy”, or follows the rule of “one observation per row and one variable per col-
umn.” Any data manipulation process resulting in a dataset that is aggregated or
summarized could remove a great deal of utility from that data [15].

For instance, a table that is familiar within one working environment may not be
easily decipherable to another individual and may be nearly impossible for a
machine to parse without proper context given for what is within the table. An
example could be a table of blood pressure over time and in different locations for a
number of patients, which may look like (Table 6.1).

Here we see two patients, Patient 1 and Patient 2, presenting to two locations,
Random and Randomly, RA, on two different dates. While this table may be easily
read by someone familiar with the format, such that an individual would understand
that Patient 1 on the 1st of January, 2015, presented to a healthcare setting in
Random, RA with a systolic blood pressure of 130 mmHg and a diastolic pressure
of 75 mmHg, it may be rather difficult to manipulate these data to a tidy format
without understanding the context of the table.

Table 6.1 Example of a table requiring proper context to read

Patient blood pressure chart Random, RA Randomly, RA

1-Jan-15 7-Jan-15 1-Jan-15 7-Jan-15

Patient 1 130/75 139/83 141/77 146/82

Patient 2 158/95 151/91 150/81 141/84
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If this table were to be manipulated in a manner that would make it easily
analyzed by a machine (as well as other individuals without requiring an expla-
nation of the context), it would follow the rule of one column per variable and one
row per observation, as below (Table 6.2).

There are further limitations imparted due to data resolutions, which refers to the
detail level of data in space, time or theme, especially the spatial dimension of the
data [16]. Examples include: MM/DD/YY time formats compared to YYYY; or zip
codes compared to geographic coordinates. Even with these limitations, one may
still be able to draw relevant information from these spatial and temporal data.

One method to provide spatial orientation to a clinical encounter has recently
been adopted by the administrators of the Medical Information Mart for Intensive
Care (MIMIC) database, which currently contains data from over 37,000 intensive
care unit admissions [17]. Researchers utilize the United States Zip Code system to
approximate the patients’ area of residence. This method reports the first three digits
of the patient’s zip code, while omitting the last two digits [18]. The first three digits
of a zip code contain two pieces of information: the first integer in the code refers to
a number of states, the following two integers refer to a U.S. Postal Service
Sectional Center Facility, through which the mail for that state’s counties is pro-
cessed [19]. The first three digits of the zip code are sufficient to find all other zip
codes serviced by the Sectional Center Facility, and population level data of many
types are available by zip code as per the U.S. Government’s census [20].

Table 6.2 A tidy dataset that contains a readily machine-readable format of the data in Table 6.1

Patient ID Place Date (MM/DD/YYYY) Pressure (mmHg) Cycle

1 Random, RA 1/1/2015 130 Systole

1 Random, RA 1/1/2015 75 Diastole

1 Random, RA 1/7/2015 139 Systole

1 Random, RA 1/7/2015 83 Diastole

1 Randomly, RA 1/1/2015 141 Systole

1 Randomly, RA 1/1/2015 77 Diastole

1 Randomly, RA 1/7/2015 146 Systole

1 Randomly, RA 1/7/2015 82 Diastole

2 Random, RA 1/1/2015 158 Systole

2 Random, RA 1/1/2015 95 Diastole

2 Random, RA 1/7/2015 151 Systole

2 Random, RA 1/7/2015 91 Diastole

2 Randomly, RA 1/1/2015 150 Systole

2 Randomly, RA 1/1/2015 81 Diastole

2 Randomly, RA 1/7/2015 141 Systole

2 Randomly, RA 1/7/2015 84 Diastole
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Connections and solutions become more visible by linking non-clinical data with
EHRs on a public health and city planning level. Although many previous studies
show the correlation between air pollution and asthma, it is only recently indi-
viduals became able to trace PM2.5, SO2 and Nickel (Ni) in the air back to the
generators in buildings with aged boilers and heating systems, which is due in large
part to increasing data collection and integration across multiple agencies and
disciplines [21]. As studies reveal additional links between our environment and
pathological processes, our ability to address potential health threats will be limited
by our ability to measure these environmental factors in sufficient resolution to be
able to apply it to patient level, creating truly personalized medicine.

For instance, two variables, commonly captured in many observations, are
geo-spatiality and temporality. Since all actions share these conditions, integration
is possible among a variety of data otherwise loosely utilized in the clinical
encounter. When engaged in an encounter, a clinician can determine, from data
collected during the examination and history taking, the precise location of the
patient over a particular period of time within some spatial resolution. As a case
example, a patient may present with an inflammatory process of the respiratory
tract. The individual may live in random, RA, and work as an administrator in
Randomly, RA; one can plot these variables over time, and separate them to rep-
resent both the individuals’ work and home environment—as well as other travel
(Fig. 6.1).

Fig. 6.1 Example of pollution levels over time for a patient’s “work” and “home” environment
with approximate labels that may provide clinically relevant decision support
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This same method may be applied to other variables that could be determined to
have statistical correlates of significance during the timeframe prior to the onset of
symptoms and then the clinical encounter.

With the increasing availability of information technology, there is less need for
centralized information networks, and the opportunity is open for the individual to
participate in data collection, creating virtual sensor networks of environmental and
disease measurement. Mobile and social web have created powerful opportunities
for urban informatics and disaster planning particularly in public health surveillance
and crisis response [13]. There are geo-located mobile crowdsourcing applications
such as Health Map’s Outbreaks Near Me [22] and Sickweather [23] collecting data
on a real-time social network.

In the 2014 Ebola Virus Disease outbreak, self-reporting and close contact
reporting was essential to create accurate disease outbreak maps [24]. The emer-
gence of wearables is pushing both EHR manufacturers to develop frameworks that
integrate data from wearable devices, and third party companies to provide cloud
storage and integration of data from different wearables for greater analytic power.

Attention and investment in digital health and digital cities continues to grow
rapidly. In digital health care, investors’ funding has soared from $1.1 Billion in
2011 to $5.0 Billion in 2014, and big data analytics ranks as the #1 most active
subsector of digital healthcare startups in both amount of investment and number of
deals [25]. Integration will be a long process requiring digital capabilities, new
policies, collaboration between the public and private sectors, and innovations from
both industry leaders and research institutions [26]. Yet we believe with more
interdisciplinary collaborations in data mining and analytics, we will gain new
knowledge on the health-associated non-clinical factors and indicators of disease
outcomes [27]. Furthermore, such integration creates a feedback loop, pushing
cities to collect better and larger amounts of data. Integrating non-clinical infor-
mation into health records remains challenging. Ideally the information obtained
from the patient would flow into the larger urban pool and vice versa. Challenges
remain on protecting confidentiality at a single patient level and determining
applicability of macroscopic data to the single patient.

6.5 A Well-Connected Empowerment

Disease processes can result and be modified by interactions of the patient and his
or her environment. Understanding this environment is of importance to clinicians,
hospitals, public health policy makers and patients themselves. With this infor-
mation we can preempt patients at risk for disease (primary prevention), act earlier
in minimizing morbidity from disease (secondary prevention) and optimize
therapeutics.

A good example of the use of non-clinical data for disease prevention is the use
of geographical based information systems (GIS) for preemptive screening of
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populations at risk for sexually transmitted diseases (STDs). Geographical infor-
mation systems are used for STD surveillance in about 50 % of state STD
surveillance programs is the U.S. [28]. In Baltimore (Maryland, U.S.) a GIS based
study identified core groups of repeat gonococcal (an STD) infection that showed
geographical clustering [29]. The authors hinted at the possibility of increased yield
when directing prevention to geographically restricted populations.

A logical next step is the interaction between public health authority systems and
electronic medical records. As de-identified geographical health information
becomes publically available, an electronic medical record would be able to
download this information from the cloud, apply it to the patient’s zip code, sex,
age and sexual preference (if documented) and warn/cue the clinician that would
decide if an intervention is required based on a calculated risk to acquire a STD.

6.6 Conclusion

Good data stewardship will be essential for protecting confidential health infor-
mation from unintended and illegal disclosure. For patients, the idea of increasing
empowerment in their health is essential [8]. Increasing sensor application and data
visualization make our own behavior and surroundings more visible and tangible,
and alert us about potential environmental risks. More importantly, it will help us to
better understand and gain power over our own lives.

The dichotomy of addressing population health versus individual health must be
addressed. Researchers should ask: what information is relevant to the target which
I’m addressing, and what data do we feed from this patient’s record into the public
health realm? The corollary to that question is: how can we balance the individual’s
right to privacy with the benefit of non-clinical data applicable to the individual and
to the large populations? Finally: how can we create systems that select relevant
data from a single patient and present it to the clinician in a population-health
context? In this chapter, we have attempted to provide an overview of the potential
use of traditionally non-clinical data in electronic health records, in addition to
mapping some of the pitfalls and strategies to using such data, as well as high-
lighting practical examples of the use of these data in a clinical environment.
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Chapter 7
Using EHR to Conduct Outcome
and Health Services Research

Laura Myers and Jennifer Stevens

Take Home Messages

• Electronic Health Records have become an essential tool in clinical research,
both as a supplement to existing methods, but also in the growing domains of
outcomes research and analytics.

• While EHR data is extensive and analytics are powerful, it is essential to fully
understand the biases and limitations introduced when used in health services
research.

7.1 Introduction

Data from electronic health records (EHR) can be a powerful tool for research.
However, researchers must be aware of the fallibility of data collected for clinical
purposes and of biases inherent to using EHR data to conduct sound health out-
comes and health services research. Innovative methods are currently being
developed to improve the quality of data and thus our ability to draw conclusions
from studies that use EHR data.

The United States devotes a large share of the Gross Domestic Product (17.6 %
in 2009) to health care [1]. With such a huge financial and social investment in
healthcare, important questions are fundamental to evaluating this investment:

How do we know what treatment works and for which patients?
How much should health care cost? When is too much to pay? In what type of care should
we invest more or less resources?
How does the health system work and how could it function better?

Health services research is a field of research that lives at the intersection of
health care policy, management, and clinical care delivery and seeks to answer
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these questions. Fundamentally, health services research places the health system
under the microscope as the organism of study.

To begin to address these questions, researchers need large volumes of data
across multiple patients, across different types of health delivery structures, and
across time. The simultaneous growth of this field of research in the past 15 years
has coincided with the development of the electronic health record and the
increasing number of providers who make use of them in their workspace [2]. The
EHR provides large quantities of raw data to fuel this research, both at the granular
level of the patient and provider and at the aggregated level of the hospital, state, or
nation.

Conducting research with EHR data has many challenges. EHR data are riddled
with biases, collected for purposes other than research, inputted by a variety of
users for the same patient, and difficult to integrate across health systems [See
previous chapter “Confounding by Indication”]. This chapter will focus on the
attempts to capitalize on the promise of the EHR for health services research with
careful consideration of the challenges researchers must address to derive mean-
ingful and valid conclusions.

7.2 The Rise of EHRs in Health Services Research

7.2.1 The EHR in Outcomes and Observational Studies

Observational studies, either retrospective or prospective, attempt to draw inferences
about the effects of different exposures. Within health services research, these
exposures include both different types of clinical exposures (e.g., does hormone
replacement therapy help or hurt patients?) and health care delivery exposures (e.g.,
does admission to a large hospital for cardiac revascularization improve survival
from myocardial infarction over admission to a small hospital). The availability of
the extensive health data in electronic health records has fueled this type of research,
as data extraction and transcription from paper records has ceased to be a barrier to
research. These studies capitalize on the demographic and clinical elements that are
routinely recorded as part of an encounter with the health system (e.g., age, sex, race,
procedures performed, length of stay, critical care resources used).

We have highlighted a number of examples of this type of research below. Each
one is an example of research that has made use of electronic health data, either at
the national or hospital level, to draw inferences about health care delivery and care.

Does health care delivery vary? The researchers who compile and examine the Dartmouth
Atlas have demonstrated substantial geographic variation in care. In their original article in
Science, Wennberg and Gittlesohn noted wide variations in the use of health services in
Vermont [3]. These authors employed data derived from the use of different types of
medical services—home health services, inpatient discharges, etc.—to draw these infer-
ences. Subsequent investigations into national variation in care have been able to capitalize
on the availability of such data electronically [4].
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Do hospitals with more experience in a particular area perform better? Birkmeyer and
colleagues studied the intersection of hospital volume and surgical outcomes with absolute
differences in adjusted mortality rates between low volume hospitals and high volume
hospitals ranging from 12 % for pancreatic resection to 0.2 % for carotid endarterectomy
[5]. Kahn et al. also used data available in over 20,000 patients to demonstrate that mor-
tality associated with mechanical ventilation was 37 % lower in high volume hospitals
compared with low volume hospitals [6]. Both of these research groups made use of large
volumes of clinical and claims data—Medicare claims data in the case of Birkmeyer and
colleagues and the APACHE database from Cerner for Kahn et al.—to ask important
questions about where patients should seek different types of care.

How can we identify harm to patients despite usual care? Herzig and colleagues made use
of the granular EHR at a single institution and found that the widely-prescribed medications
that suppress acid production were associated with an increased risk of pneumonia [7].
Other authors have similarly looked at the EHR found that these types of medications are
often continued on discharge from the hospital [8, 9].

To facilitate appropriate modeling and identification of confounders in obser-
vational studies, researchers have had to devise methods to extract markers of
diagnoses, severity of illness, and patient comorbidities using only the electronic
fingerprint. Post et al. [10] developed an algorithm to search for patients who had
diuretic-refractory hypertension by querying for patients who had a diagnosis of
hypertension despite 6 months treatment with a diuretic. Previously validated
methods for reliably measuring the severity of a patient’s illness, such as APACHE
or SAPS scores [11, 12], have data elements that are not easily extracted in the
absence of manual inputting of data. To meet these challenges, researchers such as
Escobar and Elixhauser have proposed alternative, electronically derived methods
for both severity of illness measures [13, 14] and identification of comorbidities
[14]. Escobar’s work, with a severity of illness measure with an area under the
curve of 0.88, makes use of highly granular electronic data including laboratory
values; Elixhauser’s comorbidity measure is publically available through the
Agency for Healthcare Research and Quality and solely requires billing data [15].

Finally, researchers must develop and employ appropriate mathematical models
that can accommodate the short-comings of electronic health data or else they risk
drawing inaccurate conclusions. Examples of such modeling techniques are
extensive have included propensity scores, causal methods such as marginal
structural models and inverse probability weights, and designs from other fields
such as instrumental variable analysis [16–19]. The details of these methods are
discussed elsewhere in this text.

7.2.2 The EHR as Tool to Facilitate Patient Enrollment
in Prospective Trials

Despite the power of the EHR to conduct health services and outcomes research
retrospectively, the gold standard in research remains prospective and randomized
trials. The EHR has functioned as a valuable tool to screen patients at a large scale
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for eligibility. In this instance, research staff uses the data available through the
electronic record as a high-volume screening technique to target recruitment efforts
to the most appropriate patients. Clinical trials that develop electronic strategies for
patient identification and recruitment are at an even greater advantage, although
such robust methods have been described as sensitive but not specific, and fre-
quently require coupling screening efforts with manual review of individual records
[20]. Embi et al. [21] have proposed using the EHR to simultaneously generate
Clinical Trial Alerts, particularly in commercial EHRs such as Epic to leverage the
EHR in a point of care strategy. This strategy could expedite enrollment although it
must be weighed against the risk of losing patient confidentiality, an ongoing
tension between patient care and clinical trial enrollment [22].

7.2.3 The EHR as Tool to Study and Improve Patient
Outcomes

Quality can also be tracked and reported through EHRs, either for internal quality
improvement or for national benchmarking; the Veterans’ Affairs’ (VA) healthcare
system highlights this. Byrne et al. [23] reported that in the 1990s, the VA spent
more money on information technology infrastructure and achieved higher rates of
adoption compared to the private sector. Their home-grown EHR, which is called
VistA, provided a way to track preventative care processes such as cancer and
diabetes screening through electronic pop up messages. Between 2004 and 2007,
they found that the VA system achieved better glucose and lipid control for dia-
betics compared to a Medicare HMO benchmark [23]. While much capital
investment was needed during the initial implementation of VistA, it is estimated
that adopting this infrastructure saved the VA system $3.09 billion in the long term.
It also continues to be a source of quality improvement as quality metrics evolve
over time [23].

7.3 How to Avoid Common Pitfalls When Using EHR
to Do Health Services Research

We would propose the following hypothetical research study as a case study to
highlight common challenges to conducting health services research with electronic
health data:

Proposed research study: Antipsychotic medications (e.g. haloperidol) are prescribed fre-
quently in the intensive care unit to treat patients with active delirium. However, these
medications have been associated with their own potential risk of harm [24] that is separate
from the overall risk of harm from delirium. The researchers are interested in whether
treatment with antipsychotics increases the risk of in-hospital death and increases the cost
of care and use of resources in the hospital.
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7.3.1 Step 1: Recognize the Fallibility of the EHR

The EHR is rarely complete or correct. Hogan et al. [25] tried to estimate how
complete and accurate data are in studies that are conducted on an EHR, finding
significant variability in both. Completeness ranged from 31 to 100 %and correctness
ranged from 67 to 100 % [25]. Table 7.1 highlights examples of different diagnoses
and possible sources of data, which may or may not be present for all patients.

Proposed research study: The researchers will need to extract which patients were exposed
to antipsychotics and which were not. However, there is unlikely to be one single place
where this information is stored. Should they use pharmacy dispensing data? Nursing
administration data? Should they look at which patients were charged for the medications?
What if they need these data from multiple hospitals with different electronic health
records?

Additionally, even with a robust data extraction strategy, the fidelity of different
types of data is variable [26–33]. For example, many EHR systems have the option of
entering free text for a medical condition, which may be spelled wrong or be worded
unconventionally. As another example, the relative reimbursement of a particular
billing code may influence the incidence of that code in the electronic health record so
billing may not reflect the true incidence and prevalence of the disease [34, 35].

7.3.2 Step 2: Understand Confounding, Bias, and Missing
Data When Using the EHR for Research

We would highlight the following methodological issues inherent in conducting
research with electronic health records: selection bias, confounding, and missing
data. These are explored in greater depth in other chapters of this text.

Table 7.1 Examples of the range of data elements that may be used to identify patients with
either ischemic heart disease or acute lung injury through the electronic health record

Disease state Data source Example

Ischemic
heart disease

Billing data ICD-9 code 410 [48]

Laboratory
data

Positive troponin during admission

Physician
documentation

In the discharge summary: “the patient was noted to have
ST elevations on ECG and was taken to the cath lab”…

Acute lung
injury

Billing data ICD-9 code 518.5 and 518.82 with the procedural codes
96.70, 96.71 and 96.72 for mechanical ventilation [49]

Radiology data “Bilateral” and “infiltrates” on chest x-ray reads [50]

Laboratory
data

PaO2/FiO2 < 300 mmHg
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Selection bias, or the failure of the population of study to represent the gener-
alizable population, can occur if all the patients, including controls, are already
seeking medical care within an EHR-based system. For example, in EHR-based
studies comparing medical versus surgical approaches to the same condition may
not be comparing equivalent patients in each group; patients seeking a surgical
correction may fundamentally differ from those seeking a more conservative
approach. Hripcsak et al. [36] used a large clinical data set from a tertiary center in
2007 to compare mortality from pneumonia to a hand-collected data set that had
been published previously; the different search criteria altered the patient popula-
tion and the subsequent risk of death. While it is not eliminated entirely, selection
bias is reduced when prospective randomization takes place [37].

Confounding bias represents the failure to appropriately account for an addi-
tional variable that influences both the dependent and independent variable. In
research with electronic health records, confounding represents a particular chal-
lenge, as identification of all possible confounding variables is nearly impossible.

Proposed research study: The researchers in this study are interested in the patient-level
outcomes of what happens to those patients exposed to antipsychotics during their stay. But
patients who are actively delirious while in the ICU are likely to be sicker than those who
are not actively delirious and sicker patients require more hospital resources. As a result,
antipsychotics will appear to be associated with a higher risk of in-hospital mortality and
use of hospital resources not due to the independent effect of the drug but rather as a result
of confounding by indication.

Missing data or unevenly sampled data collected as part of the EHR creates its
own complex set of challenges for health services research. For example, restricting
the analysis to patients with only a complete set of data may yield very different
(and poorly generalizable) inferences. The multidimentionality of this problem
often goes unexamined and underestimated. Nearly all conventional analytic soft-
ware presumes completeness of the matrix of data, leading many researchers to fail
to fully address these issues. For example, data can be misaligned due to lack of
sampling, missing data, or simple misalignment. In other words, the data could not
be measured during a period of time for an intentional reason (e.g., a patient was
extubated and therefore no values for mechanical ventilation were documented) and
should not be imputed or the data was measured but was unintentionally not
recorded and therefore can be imputed. Rusanov et al. studied 10,000 outpatients at
a tertiary center who underwent general anesthesia for elective procedures. Patients
with a higher risk of adverse outcome going into surgery had more data points
including laboratory values, medication orders and possibly admission orders
compared to less sick patients [38], making the missing data for less sick patients
intentional. Methods for handling missing data have included omitting cases are
note complete, pairwise deletion, mean substitution, regression substitution, or
using modeling techniques for maximum likelihood and multiple imputation [39].
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7.4 Future Directions for the EHR and Health Services
Research

7.4.1 Ensuring Adequate Patient Privacy Protection

It is controversial whether using EHR for research goes against our national privacy
standard. In large cohorts, many patients may be present with the same health
information, thereby rendering the data sufficiently deidentified. Further,
Ingelfinger et al. acknowledge that countries with healthcare registries such as
Scandinavia have a distinct research advantage [40]. However, health information
is a protected class of information under the Health Insurance Portability and
Accountability Act, so there is significant awareness among U.S. healthcare pro-
fessionals and researchers about its proper storage and dissemination. Some argue
that patients should be consented (versus just notified) that their information could
be used for research purposes in the future. Ingelfinger et al. [40] recommends IRB
approval of registries and a rigorous deidentification process.

Public perception on the secondary use of EHR may not be as prohibitive as
policymakers may have believed. In a survey of 3300 people, they
were more willing to have their information used for research by university hos-
pitals, compared to public health departments or for quality improvement purposes
[41]. They were much less willing to contribute to marketing efforts or have the
information used by pharmaceutical companies [41].

With the growing amount of information being entered into EHRs across the
country, the American Medical Informatics Association convened a panel to make
recommendations for how best to use EHR securely for purposes other than direct
patient care. In 2006, the panel called for a national standard to deal with the is-
sue of privacy. They described complex situations where there were security
breaches due to problems with deidentification or data was being sold by physi-
cians for profit [42]. While the panel demanded that the national framework be
transparent, comprehensive and publicly accepted, they did not propose a partic-
ular standard at that time [42]. Other groups such as the Patient-Centered Outcomes
Research Institute have since addressed the same conflict in a national forum in
2012. Similarly, while visions were discussed, no explicit recommendation was set
forth [PCORI]. Controversy continues in this area.

7.5 Multidimensional Collaborations

Going forward, the true power of integrated data can only be harnessed by forming
more collaborations, both within institutions and between them. Research on a
national scale in the U.S. has been shown to be feasible. The FDA implemented a
pilot program in 2009 called the Mini-Sentinel program. It brought together 31
academic and private organizations to monitor for safety events related to
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medications and devices currently on the market [43]. Admittedly, merging data-
bases may require significant financial resources, especially if the datasets need to
be coded and/or validated, but researchers like Bradley et al. [44] believe this is a
cost-effective use of grant money because of the vast potential to make advances in
the way we deliver care. Fundamental to the feasibility of multidimensional col-
laborations is the ability to ensure accuracy of large-scale data and integrate it
across multiple health record technologies and platforms. Efforts to ensure data
quality and accessibility must be promoted alongside patient privacy.

7.6 Conclusion

Researchers continue to ask fundamental questions of our health system, making
use of the deluge of data generated by EHRs. Unfortunately, that deluge is messy
and problematic. As the field of health services research with EHRs continues to
evolve, we must hold researchers to rigorous standards [45] and encourage more
investment in research-friendly clinical databases as well as cross-institutional
collaborations. Only then will the discoveries in health outcomes and health ser-
vices research be one click away [46, 47]. It is time for healthcare to reap the same
reward from a rich data source that is already in existence.
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Chapter 8
Residual Confounding Lurking
in Big Data: A Source of Error

John Danziger and Andrew J. Zimolzak

Take Home Messages

• Any observational study may have unidentified confounding variables that
influence the effects of the primary exposure, therefore we must rely on research
transparency along with thoughtful and careful examination of the limitations to
have confidence in any hypotheses.

• Pathophysiology is complicated and often obfuscates the measured data with
many observations being mere proxies for a physiological process and many
different factors progressing to similar dysfunction.

8.1 Introduction

Nothing is more dangerous than an idea, when you have only one…

—Emile Chartier

Big Data is defined by its vastness, often with large highly granular datasets,
which when combined with advanced analytical and statistical approaches, can
power very convincing conclusions [1]. Herein perhaps lies the greatest challenge
with using big data appropriately: understanding what is not available. In order to
avoid false inferences of causality, it is critical to recognize the influences that
might affect the outcome of interest, yet are not readily measurable.

Given the difficulty in performing well-designed prospective, randomized
studies in clinical medicine, Big Data resources such as the Medical Information
Mart for Intensive Care (MIMIC) database [2] are highly attractive. They provide a
powerful resource to examine the strength of potential associations and to test
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whether assumed physiological principles remain robust in clinical medicine.
However, given their often observational nature, causality can not be established,
and great care should be taken when using observational data to influence practice
patterns. There are numerous examples [3, 4] in clinical medicine where observa-
tional data had been used to determine clinical decision making, only to eventually
be disproven, and in the meantime, potentially causing harm. Although associations
may be powerful, missing the unseen connections leads to false inferences. The
unrecognized effect of an additional variable associated with the primary exposure
that influences the outcome of interest is known as confounding.

8.2 Confounding Variables in Big Data

Confounding is often referred to as a “mixing of effects” [5] wherein the effects of
the exposure on a particular outcome are associated with an additional factor,
thereby distorting the true relationship. In this manner, confounding may falsely
suggest an apparent association when no real association exists. Confounding is a
particular threat in observational data, as is often the case with Big Data, due to the
inability to randomize groups to the exposure. The process of randomization
essentially mitigates the influence of unrecognized influences, because these
influences should be nearly equally distributed to the groups. However, more fre-
quently observational data is composed of patient groups that have been distin-
guished based on clinical factors. For example, with critical care observational data,
such as MIMIC, such “non-random allocation” has occurred simply by reaching the
intensive care unit (ICU). There has been some decision process by an admitting
team, perhaps in the Emergency Department, that the patient is ill enough for the
ICU. That decision process is likely influenced by a host of factors, some of which
are identifiable, as in blood pressure and severity of illness, and others that are not,
as in “the patient just looks sick” intuition of the provider.

8.2.1 The Obesity Paradox

As an example of the subtlety of this confounding influence, let’s tackle the
question of obesity as a predictor of mortality. In most community-based studies
[6, 7], obesity is associated with poorer outcomes: obese patients have a higher risk
of dying than normal weighted individuals likely mediated by an increased inci-
dence of diabetes, hypertension, and cardiovascular disease. However, amongst
patients admitted to the ICU, obesity is a strong survival benefit [8, 9], with mul-
tiple studies elucidated better outcomes amongst obese critically ill patients than
normal weighted critical ill patients.
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There are potentially many explanations for this paradoxical association. On one
hand, it is plausible that critically ill obese patients have higher nutritional stores
and are better able to withstand the prolonged state of cachexia associated with
critical illness than normal weighted patients. However, let’s explore some other
possibilities. Since obesity is typically defined by the body mass index (BMI) upon
admission to the ICU, it is possible that unrecognized influences on body weight
prior to hospitalization that independently affect outcome might be the true reason
for this paradoxical association. For example, fluid accumulation, as might occur
with congestive heart failure, will increase body weight, but not fat mass, resulting
in an inappropriately elevated BMI. This fluid accumulation, when resulting in
pulmonary edema, is generally considered a marker of illness severity and a war-
rants a higher level of care, such as the ICU. Thus, this fluid accumulation would
prompt the emergency room team to admit the patient to the ICU rather than to the
general medicine ward. Now, heart failure is typically a reasonably treatable disease
process. Diuretics are an effective widely used treatment, and likely can resolve the
specific factor (i.e. fluid overload) that leads to ICU care. Thus, such a patient
would seem obese, but might not be, and would have a reasonable chance of
survival. Compare that to another such patient, who developed cachexia from
metastatic cancer, and lost thirty pounds prior to presenting to the emergency room.
That patient’s BMI would have dropped significantly over the few weeks prior to
illness, and his poor prognosis and illness might lead to an ICU admission, where
his prognosis would be poor. In the latter scenario, concluding that a low BMI was
associated with a poor outcome may not be strictly correct, since it is often rather
the complications of the underlying cancer that lead to mortality.

8.2.2 Selection Bias

Let’s explore one last possibility relating to how the obesity paradox in critical care
might be confounded. Imagine two genetically identical fraternal twins with the
exact same comorbidities and exposures, presenting with cellulitis, weakness, and
diarrhea, both of whom will need frequent cleaning and dressing changes. The only
difference is that one twin has a normal weight, whereas the other is morbidly
obese. Now, the emergency room team must decide which level of care these
patients require. Given the challenges of caring for morbidly obese patient (lifting a
heavy leg, turning to change), it is plausible that obesity itself might influence the
emergency room’s choice regarding disposition. In that case, there would be a
tremendous selection bias. In essence, the obese patient who would have been
generally healthy enough for a general ward ends up in the ICU due to obesity
alone, where the observational data begins. Not surprisingly, that patient will do
better than other ICU patients, since he was healthier in the first place and was
admitted simply because he was obese.

Such selection bias, which can be quite subtle, is a challenging problem in
non-randomly allocated studies. Patients groups are often differentiated by their
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illness severity, and thus any observational study assessing the effects of related
treatments may fail to address underlying associated factors. For example, a recent
observational Big Data study attempted to examine whether exposure to proton
pump inhibitors (PPI) was associated with hypomagnesemia [10]. Indeed, in many
thousands of examined patients, PPI users had lower admission serum magnesium
concentrations. Yet, the indication for why the patients were prescribed PPIs in the
first place was not known. Plausibly, patients who present with dyspepsia or other
related gastrointestinal symptoms, which are major indications for PPI prescription,
might have lower intake of magnesium-containing foods. Thus, the conclusion that
PPI was responsible for lower magnesium concentrations would be conjecture,
since lower dietary intake would be an equally reasonable explanation.

8.2.3 Uncertain Pathophysiology

In addition to selection bias, as illustrated in the obesity paradox and PPI associated
hypomagnesemia examples, there is another important source of confounding,
particularly in critical care studies. Given that physiology and pathophysiology are
such strong determinants of outcomes in critical illness, the ability to fully account
for the underlying pathophysiologic pathways is extraordinarily important, but also
notoriously difficult. Consider that clinicians caring for patients, standing at the
patient’s bedside in direct examination of all the details, sometimes cannot explain
the physiologic process. Recognizing diastolic heart failure remains challenging.
Accurately characterizing organ function is not straightforward. And if the caring
physician can’t delineate the underlying processes, how can observational data, so
removed from the patient? It can’t, and this is a huge source of potential mistakes.
Let’s consider some examples.

In critical care, the frequent laboratory studies that are easily measured with
precise reproducibility make a welcoming target for cross sectional analysis. In the
literature, almost every common laboratory abnormality has been associated with a
poor outcome, including abnormalities of sodium, potassium, chloride, bicarbonate,
blood urea nitrogen, creatinine, glucose, hemoglobin, etc. Many of these cross
sectional studies have led to management guidelines. The important question
however is whether the laboratory abnormality itself leads to a poor patient out-
come, or whether instead, the underlying patient pathophysiology that leads to the
laboratory abnormality is the primary cause.

Take for example hyponatremia. There is extensive observational data linking
hyponatremia to mortality. In response, there have been extensive treatment
guidelines on how to correct hyponatremia through a combination of water
restriction and sodium administration [11]. However, the mechanistic explanation
for how chronic and/or mild hyponatremia might cause a poor outcome is not
totally convincing. Some data might suggest that potential subtle cerebral edema
might lead to imbalance and falls, but this is not a completely convincing expla-
nation for the association of admission hyponatremia with in-hospital death.
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Many cross-sectional studies have not addressed the underlying reason for
hyponatremia in the first place. Most often, hyponatremia is caused by sensed
volume depletion, as might occur in liver disease and heart disease. Sensed volume
is a concept describing the body’s internal measure of intravascular volume, which
directly affects the body’s sodium avidity, and which under certain conditions
affects its water avidity. Sensed volume is quite difficult to determine clinically, and
there are no billing or diagnostic codes to describe it. Therefore, even though sensed
volume is the strongest determinant of serum sodium concentrations in large
population studies, it is not a capturable variable, and thus it cannot be included as a
covariate in adjusted analyses. Its absence likely leads to false conclusions. As of
now, despite a plethora of studies showing that hyponatremia is associated with
poor outcomes, we collectively can not conclude whether it is the water excess
itself, or the underlying cardiac or liver pathophysiologic abnormalities that cause
the hyponatremia, that is of greater importance.

Let us consider another very important example. There have been a plethora of
studies in the critical care literature linking renal function to a myriad of outcomes
[12, 13]. One undisputed conclusion is that impaired renal function is associated
with increased cardiovascular mortality, as illustrated in Fig. 8.1.

However, this association is really quite complex, with a number of important
confounding issues that undermine this conclusion. The first issue is how accurately
a serum creatinine measurement reflects the glomerular filtration rate (GFR).
Calculations such as the Modification of Diet in Renal Disease (MDRD) equation
were developed as epidemiologic tools to estimate GFR [14] but do not accurately
define underlying renal physiology. Furthermore, even if one considers the serum
creatinine as a measure of GFR, there are multiple other aspects of kidney functions
beyond the GFR, including sodium and fluid balance, erythropoietin and activated
vitamin D production, and tubular function, none of which are easily measurable,
and thus cannot be accounted for.

However, in addition to confounding due to an inability to accurately charac-
terize “renal function,” significant residual confounding due to unaccounted
pathophysiology is equally problematic. In relation to the association of renal
function with cardiovascular mortality, there are many determinants of cardiac
function that simultaneously and independently influence both the serum creatinine

Fig. 8.1 Concept map of the association of kidney function, as determined by the glomerular
filtration rate, as a determinant of cardiovascular morality
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concentration and cardiovascular outcomes. For example, increased jugular venous
pressures are a strong determinant of cardiac outcome and influence renal function
through renal vein congestion. Cardiac output, pulmonary artery pressures, and
activation of the renin-angiotensin-aldosterone axis also likely influence both renal
function and cardiac outcomes. The concept map is likely more similar to Fig. 8.2.

Since many of these variables are rarely measured or quantified in large epi-
demiologic studies, significant residual confounding likely exists, and potential bias
by failing to appreciate the complexity of the underlying pathophysiology is likely.

Multiple statistical techniques have been developed to account for residual
confounding to non-randomization and to underlying severity of illness in critical
care. Propensity scores, which attempt to better capture the factors that lead to the
non-randomized allocation (i.e. the factors which influence the decision to admit to
the ICU or to expose to a PPI) are used widely to minimize selection bias [15].
Adjustment using variables that attempt to capture severity of illness, such as the
Simplified Acute Physiology Score (SAPS) [16], or the Sequential/ Sepsis-related
Organ Failure Assessment (SOFA) score [17], or comorbidity adjustment scores,
such as Charlson or Elixhauser [18, 19], remain imprecise, as does risk adjustment
with area under the receiver operating characteristic curve (AUROC). Ultimately,
significant confounding cannot be adjusted away by the most sophisticated statis-
tical techniques, and thoughtful and careful examination of the limitations of any
observational study must be transparent.

Fig. 8.2 Concept map of the association of renal function and cardiovascular mortality revealing
more of the confounding influences
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8.3 Conclusion

In summary, tread gently when harvesting the power of Big Data, for what is not
seen is exactly what may be of most interest. Be clear about the limitations of using
observational data, and suggest that most observational studies are hypothesis
generating and require more well designed studies to better address the question at
hand.
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Part II
A Cookbook: From Research Question
Formulation to Validation of Findings

The first part of this textbook has given the reader a general perspective about
Electronic Health Records (EHRs), their potential for medical research and use for
retrospective data analyses. Part II focuses on the use of one particular EHR, the
Medical Information Mart for Intensive Care (MIMIC) database, curated by the
Laboratory for Computational Physiology at MIT. The readers will have an
opportunity to develop their analytical skills for clinical data mining while fol-
lowing a complete research project, from the initial definition of a research question
to the assessment of the final results’ robustness. This part is designed like a
cookbook, with each chapter comprising some theoretical concepts, followed by
worked examples using MIMIC. Part III of this book will be dedicated to a variety
of different case studies to further your understanding of more advanced analysis
methods.

This part is subdivided into nine chapters that follow the common process of
generating new medical evidence using clinical data mining. In Chap. 9, the reader
will learn how to transform a clinical question into a pertinent research question,
which includes defining an appropriate study design and select the exposure and
outcome of interest. In Chap. 10, the researcher will learn how to define which
patient population is most relevant for investigating the research question. Owing to
the essential and often challenging aspect of analysis of EHRs, it will be described
in the following four chapters elaborately. Chapters 11 and 12 deal with the
essential task of data preparation and pre-processing, which is mandatory before
any data can be fed into a statistical analysis tool. Chapter 11 explains how a
database is structured, what type of data they can contain and how to extract the
variables of interest using queries; Chap. 12 presents some common methods of
data pre-processing, which usually implies cleaning, integrating, then reducing the
data; Chap. 13 provides various methods for dealing with missing data; Chap. 14
discusses techniques to identify and handle outliers. In Chap. 15, common methods
for exploring the data are presented, both numerical and graphical. Exploration data
analysis gives the researcher some invaluable insight into the features and potential
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issues of a dataset, and can help with generating further hypotheses. Chapter 16,
“data analysis”, presents the theory and methods for model development (Sect. 16.1)
as well as common data analysis techniques in clinical studies, namely linear
regression (Sect. 16.2), logistic regression (Sect. 16.3) and survival analysis
including Cox proportional hazards models (Sect. 16.4). Finally, Chap. 17 discusses
the principles of model validation and sensitivity analyses, where the results of a
particular research are tested for robustness in the face of varying model
assumptions.

Each chapter includes worked examples inspired from a unique study, published
in Chest in 2015 by Hsu et al., which addressed a key question in clinical practice in
intensive care medicine: “is the placement of an indwelling arterial catheter
(IAC) associated with reduced mortality, in patients who are mechanically venti-
lated but do not require vasopressor support?” IACs are used extensively in the
intensive care unit for continuous monitoring of blood pressure and are thought to
be more accurate and reliable than standard, non-invasive blood pressure moni-
toring. They also have the added benefit of allowing for easier arterial blood gas
collection which can reduce the need for repeated arterial punctures. Given their
invasive nature, however, IACs carry risks of bloodstream infection and vascular
injury, so the evidence of a beneficial effect requires evaluation. The primary
outcome of interest selected was 28-day mortality with secondary outcomes that
included ICU and hospital length-of-stay, duration of mechanical ventilation, and
mean number of blood gas measurements made. The authors identified the
encounter-centric ‘arterial catheter placement’ as their exposure of interest and
carried out a propensity score analysis to test the relationship between the exposure
and outcomes using MIMIC. The result in this particular dataset (spoiler alert) is
that the presence of an IAC is not associated with a difference in 28-day mortality,
in hemodynamically stable patients who are mechanically ventilated. This case
study provides a basic foundation to apply the above theory to a working example,
and will give the reader first-hand perspective on various aspects of data mining and
analytical techniques. This is in no way a comprehensive exploration of EHR
analytics and, where the case lacks the necessary detail, we have attempted to
include additional relevant information for common analytical techniques. For the
interested reader, references are provided for more detailed readings.
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Chapter 9
Formulating the Research Question

Anuj Mehta, Brian Malley and Allan Walkey

Learning Objectives

• Understand how to turn a clinical question into a research question.
• Principles of choosing a sample.
• Approaches and potential pitfalls.
• Principles of defining the exposure of interest.
• Principles of defining the outcome.
• Selecting an appropriate study design.

9.1 Introduction

The clinical question arising at the time of most health-care decisions is: “will this
help my patient?” Before embarking on an investigation to provide data that may be
used to inform the clinical question, the question must be modified into a research
query. The process of developing a research question involves defining several
components of the study and also what type of study is most suited to utilize these
components to yield valid and reliable results. These components include: in whom
is this research question relevant? The population of subjects defined by the
researcher is referred to as the sample. The drug, maneuver, event or characteristic
that we are basing our alternative hypothesis on is called the exposure of interest.
Finally, the outcome of interest must be defined. With these components in mind
the researcher must decide which study design is best or most feasible for
answering the question. If an observational study design is chosen, then the choice
of a database is also crucial.

In this chapter, we will explore how researchers might work through converting
a clinical question into a research question using the clinical scenario of indwelling
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arterial catheters (IAC) use during mechanical ventilation (MV). Furthermore, we
will discuss the strengths and weaknesses of common study designs including
randomized controlled trials as well as observational studies.

9.2 The Clinical Scenario: Impact of Indwelling Arterial
Catheters

Patients who require MV because they are unable to maintain adequate breathing on
their own (e.g. from severe pneumonia or asthma attack) are often the sickest
patients in the hospital, with mortality rates exceeding 30 % [1–3]. Multiple options
are available to monitor the adequacy of respiratory support for critically ill patients
requiring MV, ranging from non-invasive trans-cutaneous measures to invasive,
indwelling monitoring systems. IACs are invasive monitoring devices that allow
continuous real time blood pressure monitoring and facilitate access to arterial
blood sampling to assess arterial blood pH, oxygen and carbon dioxide levels,
among others [4–6]. While closer monitoring of patients requiring MV with IACs
may appear at face value to be beneficial, IACs may result in severe adverse events,
including loss of blood flow to the hand and infection [7, 8]. Currently, data is
lacking whether benefits may outweigh risks of more intensive monitoring using
IACs. Examining factors associated with the decision to use IACs, and outcomes in
patients provided IACs as compared to non-invasive monitors alone, may provide
information useful to clinicians facing the decision as to whether to place an IAC.

9.3 Turning Clinical Questions into Research Questions

The first step in the process of transforming a clinical question into research is to
carefully define the study sample (or patient cohort), the exposure of interest, and
the outcome of interest. These 3 components—sample, exposure, and outcome—are
essential parts of every research question. Slight variations in each component can
dramatically affect the conclusions that can be drawn from any research study, and
whether the research will appropriately address the overarching clinical question.

9.3.1 Study Sample

In the case of IAC use, one might imagine many potential study samples of interest:
for example, one might include all ICU patients, all patients receiving MV, all
patients receiving intravenous medications that strongly affect blood pressure,
adults only, children only, etc. Alternatively, one could define samples based on
specific diseases or syndrome, such as shock (where IACs may be used to closely
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monitor blood pressure) or severe asthma (where IAC may be used to monitor
oxygen or carbon dioxide levels).

The choice of study sample will affect both the internal and the external validity
(generalizability) of the study. A study focusing only on a pediatric population may
not apply to the adult population. Similarly, a study focused on patients receiving
MV may not be applicable to non-ventilated patients. Furthermore, a study
including patients with different reasons for using an IAC, with different outcomes
related to the reason for IAC use, may lack internal validity due to bias called
‘confounding’. Confounding is a type of study bias in which an exposure variable is
associated with both the exposure and the outcome.

For instance, if the benefits of IACs on mortality are studied in all patients
receiving MV, researchers must take into account the fact that IAC placement may
actually be indicative of greater severity of illness. For example, imagine a study
with a sample of MV patients in which those with septic shock received an IAC to
facilitate vasoactive medications and provide close blood pressuring monitoring
while patients with asthma did not receive an IAC as other methods were used to
monitor their ventilation (such as end-tidal CO2 monitoring). Patients with septic
shock tend to have a much higher severity of illness compared to patients with
asthma regardless of whether an IAC is placed. In such a study, researchers may
conclude that IACs are associated with higher mortality only because IACs were
used in sicker patients with a higher risk of dying. The variable “diagnosis” is
therefore a confounding factor, associated with both the exposure (decision to insert
an IAC) and the outcome (death). Careful sample selection is one method of
attempting to address issues of confounding related to severity of illness. Restricting
study samples to exclude groups that may strongly confound results (i.e. no patients
on vasoactive medications) is one strategy to reduce bias. However, the selection of
homogeneous study samples to increase internal validity should be balanced with the
desire to generalize study findings to broader patient populations. These principles
are discussed more extensively in the Chap. 10—“Cohort Selection”.

9.3.2 Exposure

The exposure in our research question appears to be fairly clear: placement of an
IAC. However, careful attention should be paid as to how each exposure or variable
of interest is defined. Misclassifying exposures may bias results. How should IAC
be measured? For example, investigators may use methods ranging from direct
review of the medical chart to use of administrative claims data (i.e. International
Classification of Diseases—ICD-codes) to identify IAC use. Each method of
ascertaining the exposure of interest may have pros (improved accuracy of medical
chart review) and cons (many person-hours to perform manual chart review).

Defining the time window during which an exposure of interest is measured may
also have substantial implications that must be considered when interpreting the
research results. For the purposes of our IAC study, the presence of an IAC was
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defined as having an IAC placed after the initiation of MV. The time-dependent
nature of the exposure is critical for answering the clinical question; some IACs
placed prior to MV are for monitoring of low-risk surgical patients in the operating
room. Including all patients with IACs regardless of timing may bias the results
towards a benefit for IACs by including many otherwise healthy patients who had
an IAC placed for surgical monitoring. Alternatively, if the exposure group is
defined as patients who had an IAC at least 48 h after initiation of MV, the study is
at risk for a type of confounding called “immortal time bias”: only patients who
were alive could have had an IAC placed, whereas patients dying prior to 48 h
(supposedly sicker) could not have had an IAC.

Equally important to defining the group of patients who received or experienced
an exposure is to define the “unexposed” or control group. While not all research
requires a control group (e.g. epidemiologic studies), a control group is needed to
assess the effectiveness of healthcare interventions. In the case of the IAC study, the
control group is fairly straightforward: patients receiving MV who did not have an
IAC placed. However, there are important nuances when defining control groups. In
our study example, an alternate control group could be all ICU patients who did not
receive an IAC. However, the inclusion of patients not receiving MV results in a
control group with a lower severity of illness and expected mortality than patients
receiving MV, which would bias in favor of not using IACs. Careful definition of
the control group is needed to properly interpret any conclusions from research;
defining an appropriate control group is as important as defining the exposure.

9.3.3 Outcome

Finally, the investigator needs to determine the outcome of interest. Several dif-
ferent types of outcomes can be considered, including intermediate or mechanistic
outcomes (informs etiological pathways, but may not immediately impact patients),
patient-centered outcomes (informs outcomes important to patients, but may lack
mechanistic insights: e.g. comfort scales, quality of life indices, or mortality), or
healthcare-system centered outcomes (e.g. resource utilization, or costs). In our
example of IAC use, several outcomes could be considered including intermediate
outcomes (e.g. number of arterial blood draws, ventilator setting changes, or
vasoactive medication changes), patient-centered outcomes (e.g. 28-day or 90-day
mortality, adverse event rates), or healthcare utilization (e.g. hospitalization costs,
added clinician workload). As shown in our example, outcome(s) may build upon
each other to yield a constellation of findings that provides a more complete picture
to address the clinical question of interest.

After clearly defining the study sample, exposure of interest, and outcome of
interest, a research question can be formulated. A research question using our
example may be formulated as follows:
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“In the population of interest (study cohort), is the exposure to the variable of
interest associated with a different outcome than in the control group?”, which
becomes, in our example:

“Among mechanically ventilated, adult ICU patients who are not receiving
vasoactive medications (i.e., the study sample) is placement of an IAC after initi-
ation of MV (as compared with not receiving an IAC) (i.e. the exposure and control
patients) associated with improved 28-day mortality rates (primary outcome,
patient-centered) and the number of blood gas measurements per day (supporting
secondary outcome, intermediate/mechanistic)?”

9.4 Matching Study Design to the Research Question

Once the research question has been defined, the next step is to choose the optimal
study design given the question and resources available. In biomedical research, the
gold-standard for study design remains the double-blinded, randomized,
placebo-controlled trial (RCT) [9, 10]. In a RCT, patients with a given condition
(e.g. all adults receiving MV) would be randomized to receive a drug or inter-
vention of interest (e.g. IAC) or randomized to receive the control (e.g. no IAC),
with careful measurement of pre-determined outcomes (e.g. 28-day mortality). In
ideal conditions, the randomization process eliminates all measured and unmea-
sured confounding and allows for causal inferences to be drawn, which cannot
generally be achieved without randomization. As shown above, confounding is a
threat to valid inferences from study results. Alternatively, in our example of septic
shock verses asthma, severity of illness associated with the underlying condition
may represent another confounder. Randomization solely based on the exposure of
interest attempts to suppress issues of confounding. In our examples, proper ran-
domization in a large sample would theoretically create equal age distributions and
equal numbers of patients with septic shock and asthma in both the exposure and
the control group.

However, RCTs have several limitations. Although the theoretical underpinnings
of RCTs are fairly simple, the complex logistics of patient enrollment and retention,
informed consent, randomization, follow up, and blinding may result in RCTs
deviating from the ‘ideal conditions’ necessary for unbiased, causal inference.
Additionally, RCTs carry the highest potential for patient harm and require inten-
sive monitoring because the study dictates what type of treatment a patient receives
(rather than the doctor) and may deviate from routine care. Given the logistic
complexity, RCTs are often time- and cost-intensive, frequently taking many years
and millions of dollars to complete. Even when logistically feasible, RCTs often
‘weed out’ multiple groups of patients in order to minimize potential harms and
maximize detection of associations between interventions and outcomes of interest.
As a result, RCTs can consist of homogeneous patients meeting narrow criteria,
which may reduce the external validity of the studies’ findings. Despite much effort
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and cost, an RCT may miss relevance to the clinical question as to whether the
intervention of interest is helpful for your particular patient or not. Finally, some
clinical questions may not ethically be answered with RCTs. For instance, the link
between smoking and lung cancer has never been shown in a RCT, as it is unethical
to randomize patients to start smoking in a smoking intervention group, or ran-
domize patients to a control group in a trial to investigate the efficacy of parachutes
[11]!

Observational research differs from RCTs. Observational studies are
non-experimental; researchers record routine medical practice patterns and derive
conclusions based on correlations and associations without active interventions
[9, 12]. Observational studies can be retrospective (based on data that has already
been collected), prospective (data is actively collected over time), or
ambi-directional (a mix). Unlike RCTs, researchers in observational studies have no
role in deciding what types of treatments or interventions patients receive.
Observational studies tend to be logistically less complicated than RCTs as there is
no active intervention, no randomization, no data monitoring boards, and data is
often collected retrospectively. As such, observational studies carry less risk of harm
to patients (other than loss of confidentiality of data that has been collected) than
RCTs, and tend to be less time- and cost-intensive. Retrospective databases like
MIMIC-II [13] or the National Inpatient Sample [14] can also provide much larger
study samples (tens of thousands in some instances) than could be enrolled in an
RCT, thus providing larger statistical power. Additionally, broader study samples
are often included in observational studies, leading to greater generalizability of the
results to a wider range of patients (external validity). Finally, certain clinical
questions that would be unethical to study in an RCT can be investigated with
observational studies. For example, the link between lung cancer and tobacco use
has been demonstrated with multiple large prospective epidemiological studies [15,
16] and the life-saving effects of parachutes have been demonstrated mostly through
the powers of observation.

Although logistically simpler than RCTs, the theoretical underpinnings of
observational studies are generally more complex than RCTs. Obtaining causal
estimates of the effect of a specific exposure on a specific outcome depends on the
philosophical concept of the ‘counterfactual’ [17]. The counterfactual is the situa-
tion in which, all being equal, the same research subject at the same time would
receive the exposure of interest and (the counterfactual) not receive the exposure of
interest, with the same outcome measured in the exposed and unexposed research
subject. Because we cannot create cloned research subjects in the real-world, we
rely on creating groups of patients similar to the group that receives an intervention
of interest. In the case of an ideal RCT with a large enough number of subjects, the
randomization process used to select the intervention and control groups creates
two alternate ‘universes’ of patients that will be similar except as related to the
exposure of interest. Because observational studies cannot intervene on study
subjects, observational studies create natural experiments in which the counter-
factual group is defined by the investigator and by clinical processes occurring in
the real-world. Importantly, real-world clinical processes often occur for a reason,
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and these reasons can cause deviation from counterfactual ideals in which exposed
and unexposed study subjects differ in important ways. In short, observational
studies may be more prone to bias (problems with internal validity) than RCTs due
to difficulty obtaining the counterfactual control group.

Several types of biases have been identified in observational studies. Selection
bias occurs when the process of selecting exposed and unexposed patients introduces
a bias into the study. For example, the time between starting MV and receiving IAC
may introduce a type of “survivor treatment selection bias” since patients who
received IAC could not have died prior to receiving IACs. Information bias stems
from mismeasurement or misclassification of certain variables. For retrospective
studies, the data has already been collected and sometimes it is difficult to evaluate
for errors in the data. Another major bias in observational studies is confounding. As
stated, confounding occurs when a third variable is correlated with both the exposure
and outcome. If the third variable is not taken into consideration, a spurious rela-
tionship between the exposure and outcome may be inferred. For example, smoking
is an important confounder in several observational studies as it is associated with
several other behaviors such as coffee and alcohol consumption. A study investi-
gating the relationship between coffee consumption and incidence of lung cancer
may conclude that individuals who drink more coffee have higher rates of lung
cancer. However, as smoking is associated with both coffee consumption and lung
cancer, it is confounder in the relationship between coffee consumption and lung
cancer if unmeasured and unaccounted for in analysis. Several methods have been
developed to attempt to address confounding in observational research such as
adjusting for the confounder in regression equations if it is known and measured,
matching cohorts by known confounders, and using instrumental variables—
methods that will be explained in-depth in future chapters. Alternatively, one can
restrict the study sample (e.g. excluding patients with shock from a study evaluating
the utility of IACs). For these reasons, while powerful, an individual observational
study can, at best, demonstrate associations and correlations and cannot prove
causation. Over time, a cumulative sum of multiple high quality observational
studies coupled with other mechanistic evidence can lead to causal conclusions, such
as in the causal link currently accepted between smoking and lung cancer established
by observational human studies and experimental trials in animals.

9.5 Types of Observational Research

There are multiple different types of questions that can be answered with obser-
vational research (Table 9.1). Epidemiological studies are one major type of
observational research that focuses on the burden of disease in predefined popu-
lations. These types of studies often attempt to define incidence, prevalence, and
risk factors for disease. Additionally, epidemiological studies also can investigate
changes to healthcare or diseases over time. Epidemiological studies are the
cornerstone of public health and can heavily influence policy decisions, resource
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allocation, and patient care. In the case of lung cancer, predefined groups of patients
without lung cancer were monitored for years until some patients developed lung
cancer. Researchers then compared numerous risk factors, like smoking, between
those who did and did not develop lung cancer which led to the conclusion that
smoking increased the risk of lung cancer [15, 16].

There are other types of epidemiological studies that are based on similar
principles of observational research but differ in the types of questions posed.
Predictive modeling studies develop models that are able to accurately predict
future outcomes in specific groups of patients. In predictive studies, researchers
define an outcome of interest (e.g. hospital mortality) and use data collected on
patients such as labs, vital signs, and disease states to determine which factors
contributed to the outcome. Researchers then validate the models developed from
one group of patients in a separate group of patients. Predictive modeling studies
developed many common prediction scores used in clinical practice such as the
Framingham Cardiovascular Risk Score [18], APACHE IV [19], SAPS II [20], and
SOFA [21].

Comparative effectiveness research is another form of observational research
which involves the comparison of existing healthcare interventions in order to
determine effective methods to deliver healthcare. Unlike descriptive epidemiologic
studies, comparative effectiveness research compares outcomes between similar
patients who received different treatments in order to assess which intervention may
be associated with superior outcomes in real-world conditions. This could involve
comparing drug A to drug B or could involve comparing one intervention to a
control group who did not receive that intervention. Given that there are often
underlying reasons why one patient received treatment A versus B or an inter-
vention versus no intervention, comparative effectiveness studies must meticulously
account for potential confounding factors. In the case of IACs, the research question
comparing patients who had an IAC placed to those who did not have an IAC
placed would represent a comparative effectiveness study.

Pharmacovigilance studies are yet another form of observational research. As
many drug and device trials end after 1 or 2 years, observational methods are used
to evaluate if there are patterns of rarer adverse events occurring in the long-term.
Phase IV clinical studies are one form of pharmacovigilance studies in which
long-term information related to efficacy and harm are gathered after the drug has
been approved.

Table 9.1 Major types of observational research, and their purpose

Type of observational research Purpose

Epidemiological Define incidence, prevalence, and risk factors for disease

Predictive modeling Predict future outcomes

Comparative effectiveness Identify intervention associated with superior outcomes

Pharmacovigilance Detect rare drug adverse events occurring in the long-term
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9.6 Choosing the Right Database

A critical part of the research process is deciding what types of data are needed to
answer the research question. Administrative/claims data, secondary use of clinical
trial data, prospective epidemiologic studies, and electronic health record
(EHR) systems (both from individual institutions and those pooled from multiple
institutions) are several sources from which databases can be built. Administrative or
claims databases, such as the National Inpatient Sample and State Inpatient
Databases complied by the Healthcare Cost and Utilization Project or the Medicare
database, contain information on patient and hospital demographics as well as billing
and procedure codes. Several techniques have been developed to translate these
billing and procedure codes to more clinically useful disease descriptions.
Administrative databases tend to provide very large sample sizes and, in some cases,
can be representative of an entire population. However, they lack granular
patient-level data from the hospitalization such as vital signs, laboratory and
microbiology data, timing data (such as duration of MV or days with an IAC) or
pharmacology data, which are often important in dealing with possible confounders.

Another common source of data for observational research is large epidemio-
logic studies like the Framingham Heart Study as well as large multicenter RCTs
such as the NIH ARDS Network. Data that has already been can be analyzed
retrospectively with new research questions in mind. As the original data was
collected for research purposes, these types of databases often have detailed,
granular information not available in other clinical databases. However, researchers
are often bound by the scope of data collection from the original research study
which limits the questions that may be posed. Importantly, generalizability may be
limited in data from trials.

The advent of Electronic Health Records (EHR) has resulted in the digitization of
medical records from their prior paper format. The resulting digitized medical
records present opportunities to overcome some of the shortcomings of adminis-
trative data, yielding granular data with laboratory results, medications, and timing
of clinical events [13]. These “big databases” take advantage of the fact many EHRs
collect data from a variety of sources such as patient monitors, laboratory systems,
and pharmacy systems and coalesce them into one system for clinicians. This
information can then be translated into de-identified databases for research purposes
that contain detailed patient demographics, billing and procedure information,
timing data, hospital outcomes data, as well as patient-level granular data and pro-
vider notes which can searched using natural language processing tools. “Big data”
approaches may attenuate confounding by providing detailed information needed to
assess severity of illness (such as lab results and vital signs). Furthermore, the
granular nature of the data can provide insight as to the reason why one patient
received an intervention and another did not which can partly address confounding
by indication. Thus, the promise of “big data” is that it contains small, very detailed
data. “Big data” databases, such as MIMIC-III, have the potential to expand the
scope of what had previously been possible with observational research.
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9.7 Putting It Together

Fewer than 10 % of clinical decisions are supported by high level evidence [22].
Clinical questions arise approximately in every other patient [23] and provide a
large cache of research questions. When formulating a research question, investi-
gators must carefully select the appropriate sample of subjects, exposure variable,
outcome variable, and confounding variables. Once the research question is clear,
study design becomes the next pivotal step. While RCTs are the gold standard for
establishing causal inference under ideal conditions, they are not always practical,
cost-effective, ethical or even possible for some types of questions. Observational
research presents an alternative to performing RCTs, but is often limited in causal
inference by unmeasured confounding.

Our clinical scenario gave rise to the question of whether IACs improved the
outcomes of patients receiving MV. This translated into the research question:
“Among mechanically ventilated ICU patients not receiving vasoactive medications
(study sample) is use of an IAC after initiation of MV (exposure) associated with
improved 28-day mortality (outcome)?” While an RCT could answer this question,
it would be logistically complex, costly, and difficult. Using comparative effec-
tiveness techniques, one can pose the question using a granular retrospective
database comparing patients who received an IAC to measurably similar patients
who did not have an IAC placed. However, careful attention must be paid to
unmeasured confounding by indication as to why some patients received IAC and
others did not. Factors such as severity of illness, etiology of respiratory failure, and
presence of certain diseases that make IAC placement difficult (such as peripheral
arterial disease) may be considered as possible confounders of the association
between IAC and mortality. While an administrative database could be used, it
could lack important information related to possible confounders. As such, EHR
databases like MIMIC-III, with detailed granular patient-level data, may allow for
measurement of a greater number of previously unmeasured confounding variables
and allow for greater attenuation of bias in observational research.

Take Home Messages

• Most research questions arise from clinical scenarios in which the proper course
of treatment is unclear or unknown.

• Defining a research question requires careful consideration of the optimal study
sample, exposure, and outcome in order to answer a clinical question of interest.

• While observational research studies can overcome many of the limitations of
randomized controlled trials, careful consideration of study design and database
selection is needed to address bias and confounding.
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Chapter 10
Defining the Patient Cohort

Ari Moskowitz and Kenneth Chen

Learning Objectives

• Understand the process of cohort selection using large, retrospective databases.
• Learn about additional specific skills in cohort building including data visual-

ization and natural language processing (NLP).

10.1 Introduction

A critical first step in any observational study is the selection of an appropriate
patient cohort for analysis. The importance of investing considerable time and effort
into selection of the study population cannot be overstated. Failure to identify areas
of potential bias, confounding, and missing data up-front can lead to considerable
downstream inefficiencies. Further, care must be given to selecting a population of
patients tailored to the research question of interest in order to properly leverage the
tremendous amount of data captured by Electronic Health Records (EHRs).

In the following chapter we will focus on selection of the study cohort.
Specifically, we will review the basics of observational study design with a focus on
types of data often encountered in EHRs. Commonly used instrumental variables
will be highlighted—they are variables used to control for confounding and mea-
surement error in observational studies. Further, we will discuss how to utilize a
combination of data-driven techniques and clinical reasoning in cohort selection.
The chapter will conclude with a continuation of the worked example started in part
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one of this section where we will discuss how the cohort of patients was selected for
the study of arterial line placement in the intensive care unit [1].

10.2 PART 1—Theoretical Concepts

10.2.1 Exposure and Outcome of Interest

These notions are discussed in detail in Chap. 9—“Formulating the Research
Question”. Data mining in biomedical research utilizes a retrospective approach
wherein the exposure and outcome of interest occur prior to patient selection. It is
critically important to tailor the exposure of interest sought to the clinical question at
hand. Selecting an overly broad exposure may allow for a large patient cohort, but at
the expense of result accuracy. Similarly, being too specific in the choice of exposure
may allow for accuracy but at the expense of sample size and generalizability.

The selection of an exposure of interest is the first step in determining the patient
cohort. In general, the exposure of interest can be thought of as patient-centric,
episode-centric, or encounter centric. This terminology was developed by the data
warehousing firm Health Catalyst for their Cohort Builder tool and provides a
reasonable framework for identifying an exposure of interest. Patient-centric
exposures focus on traits intrinsic to a group of patients. These can include
demographic traits (e.g. gender) or medical comorbidities (e.g. diabetes). In con-
trast, episode-centric exposures are transient conditions requiring a discrete treat-
ment course (e.g. sepsis). Encounter-centric exposures refer to a single intervention
(e.g. arterial line placement) [2]. Although encounter-specific exposures tend to be
simpler to isolate, the choice of exposure should be determined by the specific
hypothesis under investigation.

The outcome of interest should be identified a priori. The outcome should relate
naturally to the exposure of interest and be as specific as possible to answer the
clinical question at hand. Care must be taken to avoid identifying spurious corre-
lations that have no pathophysiologic underpinnings (see for instance the examples
of spurious correlations shown on http://tylervigen.com). The relationship sought
must be grounded in biologic plausibility. Broad outcome measures, such as mor-
tality and length-of-stay, may be superficially attractive but ultimately confounded
by too many variables. Surrogate outcome measures (e.g. change in blood pressure,
duration of mechanical ventilation) can be particularly helpful as they relate more
closely to the exposure of interest and are less obscured by confounding.

As EHRs are not frequently oriented towards data mining and analysis, identi-
fying an exposure of interest can be challenging. Structured numerical data, such as
laboratory results and vital signs, are easily searchable with standard querying
techniques. Leveraging unstructured data such as narrative notes and radiology
reports can be more difficult and often requires the use of natural language pro-
cessing (NLP) tools. In order to select a specific patient phenotype from a large,
heterogeneous group of patients, it can be helpful to leverage both structured and
unstructured data forms.
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Once an exposure of interest is selected, the investigator must consider how to
utilize one or a combination of these data types to isolate the desired study cohort
for analysis. This can be done using a combination of data driven techniques and
clinical reasoning as will be reviewed later in the chapter.

10.2.2 Comparison Group

In addition to isolating patients mapping to the exposure of interest, the investigator
must also identify a comparison group. Ideally, this group should be comprised of
patients phenotypically similar to those in the study cohort but who lack the
exposure of interest. The selected comparison cohort should be at equal risk of
developing the study outcome. In observational research, this can be accom-
plished notably via propensity score development (Chap. 23—“Propensity Score
Analysis”). In general, the comparison group ought to be as large as or larger than
the study cohort to maximize the power of the study. It is possible to select too
many features on which to ‘match’ the comparison and study cohorts thereby
reducing the number of patients available for the comparison cohort. Care must be
taken to prevent over-matching.

In select cases, investigators can take advantage of natural experiments in which
circumstances external to the EHR readily establish a study cohort and a compar-
ison group. These so called ‘instrumental variables’ can include practice variations
between care units, hospitals, and even geographic regions. Temporal relationships
(i.e. before-and-after) relating to quality improvement initiatives or expert guideline
releases can also be leveraged as instrumental variables. Investigators should be on
the lookout for these highly useful tools.

10.2.3 Building the Study Cohort

Isolating specific patient phenotypes for inclusion in the study and comparison
cohorts requires a combination of clinical reasoning and data-driven techniques.
A close working relationship between clinicians and data scientists is an essential
component of cohort selection using EHR data.

The clinician is on the frontline of medical care and has direct exposure to
complex clinical scenarios that exist outside the realm of the available
evidence-base. According to a 2011 Institute of Medicine Committee Report, only
10–20 % of clinical decisions are evidence based [3]. Nearly 50 % of clinical
practice guidelines rely on expert opinion rather than experimental data [4]. In this
‘data desert’ it is the role of the clinician to identify novel research questions
important for direct clinical care [5]. These questions lend themselves naturally to
the isolation of an exposure of interest.
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Once a clinical question and exposure of interest have been identified, the
clinician and data scientist will need to set about isolating a patient cohort.
Phenotype querying of structured and unstructured data can be complex and
requires frequent tuning of the search criteria. Often multiple, complementary
queries are required in order to isolate the specific group of interest. In addition, the
research team must consider patient ‘uniqueness’ in that some patients have mul-
tiple ICU admissions both during a single hospitalization and over repeat hospital
visits. If the same patient is included more than once in a study cohort, the
assumption of independent measures is lost.

Researchers must pay attention to the necessity to exclude some patients on the
grounds of their background medical history or pathological status, such as preg-
nancy for example. Failing to do so could introduce confounders and corrupt the
causal relationship of interest.

In one example from a published MIMIC-II study, the investigators attempted to
determine whether proton pump inhibitor (PPI) use was associated with hypo-
magnesaemia in critically-ill patients in the ICU [6]. The exposure of interest in this
study was ‘PPI use.’ A comparison group of patients who were exposed to an
alternative acid-reducing agent (histamine-2 receptor antagonists) and a comparison
group not receiving any acid reducing medications were identified. The outcome of
interest was a low magnesium level. In order to isolate the study cohort in this case,
queries had to be developed to identify:

1. First ICU admission for each patient
2. PPI use as identified through NLP analysis of the ‘Medication’ section of the

admission History and Physical
3. Conditions likely to influence PPI use and/or magnesium levels (e.g. diarrheal

illness, end-stage renal disease)
4. Patients who were transferred from other hospitals as medications received at

other hospitals could not be accounted for (patients excluded)
5. Patients who did not have a magnesium level within 36-h of ICU admission

(patients excluded)
6. Patients missing comorbidity data (patients excluded)
7. Potential confounders including diuretic use

The SQL queries corresponding to this example are provided under the name
“SQL_cohort_selection”.

Maximizing the efficiency of data querying from EHRs is an area of active
research and development. As an example, the Informatics for Integrating Biology
and the Bedside (i2b2) network is an NIH funded program based at Partner’s Health
Center (Boston, MA) that is developing a framework for simplifying data querying
and extraction from EHRs. Software tools developed by i2b2 are free to download
and promise to simplify the isolation of a clinical phenotype from raw EHR data
https://www.i2b2.org/about/index.html. This and similar projects should help
simplify the large number of queries necessary to develop a study cohort [7].
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10.2.4 Hidden Exposures

Not all exposures of interest can be identified directly from data contained within
EHRs. In these circumstances, investigators need to be creative in identifying
recorded data points that track closely with the exposure of interest. Clinical rea-
soning in these circumstances is important.

For instance, a research team using the MIMIC II database selected ‘atrial fib-
rillation with rapid ventricular response receiving a rate control agent’ as the
exposure of interest. Atrial fibrillation is a common tachyarrhythmia in critically-ill
populations that has been associated with worse clinical outcomes. Atrial fibrilla-
tion with rapid ventricular response is often treated with one of three rate control
agents: metoprolol, diltiazem, or amiodarone. Unfortunately, ‘atrial fibrillation with
rapid ventricular response’ is not a structured variable in the EHR system connected
to the MIMIC II database. Performing an NLP search for the term ‘atrial fibrillation
with rapid ventricular response’ in provider notes and discharge summaries is
feasible however would not provide the temporal resolution needed with respect to
drug administration.

To overcome this obstacle, investigators generated an algorithm to indirectly
identify the ‘hidden’ exposure. A query was developed to isolate the first dose of an
intravenous rate control agent (metoprolol, diltiazem, or amiodarone) received by a
unique patient in the ICU. Next, it was determined whether the heart rate of the
patient within one-hour of recorded drug administration was >110 beats per minute.
Finally, an NLP algorithm was used to search the clinical chart for mention of atrial
fibrillation. Those patients meeting all three conditions were included in the final
study cohort. Examples of the Matlab code used to identify the cohort of interest is
provided (function “Afib”), as well as Perl code for NLP (function “NLP”).

10.2.5 Data Visualization

Graphic representation of alphanumeric EHR data can be particularly helpful in
establishing the study cohort. Data visualization makes EHR data more accessible
and allows for the rapid identification of trends otherwise difficult to identify. It also
promotes more effective communication both amongst research team members and
between the research team and a general audience not accustomed to ‘Big Data’
investigation. These principles are discussed more extensively in Chap. 15 of this
textbook “Exploratory Data Analysis”.

In the above mentioned project exploring the use of rate control agents for atrial
fibrillation with rapid ventricular response, one outcome of interest was time until
control of the rapid ventricular rate. Unfortunately, the existing literature does not
provide specific guidance in this area. Using data visualization, a group consensus
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was reached that rate control would be defined as a heart <110 for at least 90 % of
the time over a 4-h period. Although some aspects of this definition are arbitrary,
data visualization allowed for all team members to come to an agreement on what
definition was the most statistically and clinically defensible.

10.2.6 Study Cohort Fidelity

Query algorithms are generally unable to boast 100 % accuracy for identifying the
sought patient phenotype. False positives and false negatives are expected. In order
to guarantee the fidelity of the study cohort, manually reviewing a random subset of
selected patients can be helpful. Based on the size of the study cohort, 5–10 % of
clinical charts should be reviewed to ensure the presence or absence of the exposure
of interest. This task should be accomplished by a clinician. If resources permit, two
clinician reviewers can be tasked with this role and their independent results
compared using a Kappa statistic.

Ultimately, the investigators can use the ‘gold standard’ of manual review to
establish a Receiver Operating Characteristic (ROC). An area-under the ROC curve
of >0.80 indicates ‘good’ accuracy of the algorithm and should be used as an
absolute minimum of algorithm fidelity. If the area under the ROC curve is <0.80, a
combination of data visualization techniques and clinical reasoning should be used
to better tune the query algorithm to the exposure of interest.

10.3 PART 2—Case Study: Cohort Selection

In the case study presented, the authors analyzed the effect of indwelling arterial
catheters (IACs) in hemodynamically stable patients with respiratory failure using
multivariate data. They identified the encounter-centric ‘arterial catheter placement’
as their exposure of interest. IACs are used extensively in the intensive care unit for
beat-to-beat measuring of blood pressure and are thought to be more accurate and
reliable than standard, non-invasive blood pressure monitoring. They also have the
added benefit of allowing for simpler arterial blood gas collection which can reduce
the need for repeated venous punctures. Given their invasive nature, however, IACs
carry risks of bloodstream infection and vascular injury. The primary outcome of
interest selected was 28-day mortality with secondary outcomes that included ICU
and hospital length-of-stay, duration of mechanical ventilation, and mean number
of blood gas measurements made.

The authors elected to focus their study on patients requiring mechanical ven-
tilation that did not require vasopressor and were not admitted for sepsis. In patients
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requiring mechanical ventilation, the dual role of IACs to allow for beat-to-beat
blood pressure monitoring and to simplify arterial blood gas collection is thought to
be particularly important. Patients with vasopressor requirements and/or sepsis were
excluded as invasive arterial catheters are needed in this population to assist with
the rapid titration of vasoactive agents. In addition, it would be difficult to identify
enough patients requiring vasopressors or admitted for sepsis, who did not receive
an IAC.

The authors began their cohort selection with all 24,581 patients included in the
MIMIC II database. For patients with multiple ICU admissions, only the first ICU
admission was used to ensure independence of measurements. The function
“cohort1” contains the SQL query corresponding to this step. Next, the patients
who required mechanical ventilation within the first 24-h of their ICU admission
and received mechanical ventilation for at least 24-h stay were isolated (function
“cohort2”). After identifying a cohort of patients requiring mechanical ventilation,
the authors queried for placement of an IAC sited after initiation of mechanical
ventilation (function “cohort3”). As a majority of patients in the cardiac surgery
recovery unit had an IAC placed prior to ICU admission, all patients from the
cardiac surgical ICU were excluded from the analysis (function “cohort4”). In order
to exclude patients admitted to the ICU with sepsis, the authors utilized the Angus
criteria (function “cohort5”). Finally, patients requiring vasopressors during their
ICU admission were excluded (function “cohort6”).

The comparison group of patients who received mechanical ventilation for at
least 24-h within the first 24-h of their ICU admission but did not have an IAC
placed was identified. Ultimately, there were 984 patients in the group who received
an IAC and 792 patients who did not. These groups were compared using
propensity matching techniques described in the Chap. 23—“Propensity Score
Analysis”.

Ultimately, this cohort consists of unique identifiers of patients meeting the
inclusion criteria. Other researchers may be interested in accessing this particular
cohort in order to replicate the study results or address a different research ques-
tions. The MIMIC website will in the future provide the possibility for investigators
to share cohorts of patients, thus allowing research teams to interact and build upon
other’s work.

Take Home Messages

• Take time to characterize the exposure and outcomes of interest pre-hoc
• Utilize both structured and unstructured data to isolate your exposure and out-

come of interest. NLP can be particularly helpful in analyzing unstructured data
• Data visualization can be very helpful in facilitating communication amongst

team members
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Chapter 11
Data Preparation

Tom Pollard, Franck Dernoncourt, Samuel Finlayson
and Adrian Velasquez

Learning Objectives

• Become familiar with common categories of medical data.
• Appreciate the importance of collaboration between caregivers and data

analysts.
• Learn common terminology associated with relational databases and plain text

data files.
• Understand the key concepts of reproducible research.
• Get practical experience in querying a medical database.

11.1 Introduction

Data is at the core of all research, so robust data management practices are
important if studies are to be carried out efficiently and reliably. The same can be
said for the management of the software used to process and analyze data. Ensuring
good practices are in place at the beginning of a study is likely to result in sig-
nificant savings further down the line in terms of time and effort [1, 2].

While there are well-recognized benefits in tools and practices such as version
control, testing frameworks, and reproducible workflows, there is still a way to go
before these become widely adopted in the academic community. In this chapter we
discuss some key issues to consider when working with medical data and highlight
some approaches that can make studies collaborative and reproducible.

© The Author(s) 2016
MIT Critical Data, Secondary Analysis of Electronic Health Records,
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11.2 Part 1—Theoretical Concepts

11.2.1 Categories of Hospital Data

Data is routinely collected from several different sources within hospitals, and is
generally optimized to support clinical activities and billing rather than research.
Categories of data commonly found in practice are summarized in Table 11.1 and
discussed below:

• Billing data generally consists of the codes that hospitals and caregivers use to
file claims with their insurance providers. The two most common coding sys-
tems are the International Statistical Classification of Diseases and Related

Table 11.1 Overview of common categories of hospital data and common issues to consider
during analysis

Category Examples Common issues to consider

Demographics Age, gender, ethnicity, height,
weight

Highly sensitive data requiring
careful de-identification. Data
quality in fields such as ethnicity
may be poor

Laboratory Creatinine, lactate, white blood cell
count, microbiology results

Often no measure of sample
quality. Methods and reagents used
in tests may vary between units and
across time

Radiographic
images and
associated
reports

X-rays, computed tomography
(CT) scans, echocardiograms

Protected health information, such
as names, may be written on slides.
Templates used to generate reports
may influence content

Physiologic
data

Vital signs, electrocardiography
(ECG) waveforms,
electroencephalography
(EEG) waveforms

Data may be pre-processed by
proprietary algorithms. Labels may
be inaccurate (for example,
“fingerstick glucose”
measurements may be made with
venous blood)

Medication Prescriptions, dose, timing May list medications that were
ordered but not given. Time stamps
may describe point of order not
administration

Diagnosis and
procedural
codes

International Classification of
Diseases (ICD) codes, Diagnosis
Related Groups (DRG) codes,
Current Procedural Terminology
(CPT) codes

Often based on a retrospective
review of notes and not intended to
indicate a patient’s medical status.
Subject to coder biases. Limited by
suitability of codes

Caregiver and
procedural
notes

Admission notes, daily progress
notes, discharge summaries,
Operative reports

Typographical errors. Context is
important (for example, diseases
may appear in discussion of family
history). Abbreviations and
acronyms are common
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Health Problems, commonly abbreviated the International Classification of
Disease (ICD), which is maintained by the World Health Organization, and the
Current Procedural Terminology (CPT) codes maintained by the American
Medical Association. These hierarchical terminologies were designed to provide
standardization for medical classification and reporting.

• Charted physiologic data, including information such as heart rate, blood
pressure, and respiratory rate collected at the bedside. The frequency and
breadth of monitoring is generally related to the level of care. Data is often
archived at a lower rate than it is sampled (for example, every 5–10 min) using
averaging algorithms which are frequently proprietary and undisclosed.

• Notes and reports, created to record patient progress, summaries a patient stay
upon discharge, and provide findings from imaging studies such as x-rays and
echocardiograms. While the fields are “free text”, notes are often created with
the help of a templating system, meaning they may be partially structured.

• Images, such as those from x-rays, computerized axial tomography (CAT/CT)
scans, echocardiograms, and magnetic resonance imaging.

• Medication and laboratory data. Orders for drugs and laboratory studies are
entered by the caregiver into a physician order entry system, which are then
fulfilled by laboratory or nursing staff. Depending on the system, some times-
tamps may refer to when the physician placed the order and others may refer to
when the drug was administered or the lab results were reported. Some drugs
may be administered days or weeks after first prescribed while some may not be
administered at all.

11.2.2 Context and Collaboration

One of the greatest challenges of working with medical data is gaining knowledge
of the context in which data is collected. For this reason we cannot emphasize
enough the importance of collaboration between both hospital staff and research
analysts. Some examples of common issues to consider when working with medical
data are outlined in Table 11.1 and discussed below:

• Billing codes are not intended to document a patient’s medical status or treat-
ment from a clinical perspective and so may not be reliable [3]. Coding practices
may be influenced by issues such as financial compensation and associated
paperwork, deliberately or otherwise.

• Timestamps may differ in meaning for different categories of data. For example,
a timestamp may refer to the point when a measurement was made, when the
measurement was entered into the system, when a sample was taken, or when
results were returned by a laboratory.

• Abbreviations and misspelled words appear frequently in free text fields. The
string “pad”, for example, may refer to either “peripheral artery disease” or to an
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absorptive bed pad, or even a diaper pad. In addition, notes frequently mention
diseases that are found in the patient’s family history, but not necessarily the
patient, so care must be taken when using simple text searches.

• Labels that describe concepts may not be accurate. For example, during pre-
liminary investigations for an unpublished study to assess accuracy of fingertip
glucose testing, it was discovered that caregivers would regularly take “fin-
gerstick glucose” measurements using vascular blood where it was easily
accessible, to avoid pricking the finger of a patient.

Each hospital brings its own biases to the data too. These biases may be tied to
factors such as the patient populations served, the local practices of caregivers, or to
the type of services provided. For example:

• Academic centers often see more complicated patients, and some hospitals may
tend to serve patients of a specific ethnic background or socioeconomic status.

• Follow up visits may be less common at referral centers and so they may be less
likely to detect long-term complications.

• Research centers may be more likely to place patients on experimental drugs not
generally used in practice.

11.2.3 Quantitative and Qualitative Data

Data is often described as being either quantitative or qualitative. Quantitative data
is data that can be measured, written down with numbers and manipulated
numerically. Quantitative data can be discrete, taking only certain values (for
example, the integers 1, 2, 3), or continuous, taking any value (for example, 1.23,
2.59). The number of times a patient is admitted to a hospital is discrete (a patient
cannot be admitted 0.7 times), while a patient’s weight is a continuous (a patient’s
weight could take any value within a range).

Qualitative data is information which cannot be expressed as a number and is
often used interchangeably with the term “categorical” data. When there is not a
natural ordering of the categories (for example, a patient’s ethnicity), the data is
called nominal. When the categories can be ordered, these are called ordinal
variables (for example, severity of pain on a scale). Each of the possible values of a
categorical variable is commonly referred to as a level.

11.2.4 Data Files and Databases

Data is typically made available through a database or as a file which may have
been exported from a database. While there are many different kinds of databases
and data files in use, relational databases and comma separated value (CSV) files
are perhaps the most common.
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Comma Separated Value (CSV) Files
Comma separated value (CSV) files are a plain text format used for storing data in a
tabular, spreadsheet-style structure. While there is no hard and fast rule for struc-
turing tabular data, it is usually considered good practice to include a header row, to
list each variable in a separate column, and to list observations in rows [4].

As there is no official standard for the CSV format, the term is used somewhat
loosely, which can often cause issues when seeking to load the data into a data
analysis package. A general recommendation is to follow the definition for CSVs
set out by the Internet Engineering Task Force in the RFC 4180 specification
document [5]. Summarized briefly, RFC 4180 specifies that:

• files may optionally begin with a header row, with each field separated by a
comma;

• Records should be listed in subsequent rows. Fields should be separated by
commas, and each row should be terminated with a line break;

• fields that contain numbers may be optionally enclosed within double quotes;
• fields that contain text (“strings”) should be enclosed within double quotes;
• If a double quote appears inside a string of text then it must be escaped with a

preceding double quote.

The CSV format is popular largely because of its simplicity and versatility. CSV
files can be edited with a text editor, loaded as a spreadsheet in packages such as
Microsoft Excel, and imported and processed by most data analysis packages.
Often CSV files are an intermediate data format used to hold data that has been
extracted from a relational database in preparation for analysis. Figure 11.1 shows
an annotated example of a CSV file formatted to the RFC 4180 specification.

Fig. 11.1 Comma separated value (CSV) file formatted to the RFC 4180 specification
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Relational Databases
There are several styles of database in use today, but probably the most widely
implemented is the “relational database”. Relational databases can be thought of as
a collection of tables which are linked together by shared keys. Organizing data
across tables can help to maintain data integrity and enable faster analysis and more
efficient storage.

The model that defines the structure and relationships of the tables is known as a
“database schema”. Giving a simple example of a hospital database with four
tables, it might comprise of: Table 1, a list of all patients; Table 2, a log of hospital
admissions; Table 3, a list of vital sign measurements; Table 4, a dictionary of vital
sign codes and associated labels. Figure 11.2 demonstrates how these tables can be
linked with primary and foreign keys. Briefly, a primary key is a unique identifier
within a table. For example, subject_id is the primary key in the patients table,

Fig. 11.2 Relational databases consist of multiple data tables linked by primary and foreign keys.
The patients table lists unique patients. The admissions table lists unique hospital admissions. The
chartevents table lists charted events such as heart rate measurements. The d_items table is a
dictionary that lists item_ids and associated labels, as shown in the example query. pk is primary
key. fk is foreign key
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because each patient is listed only once. A foreign key in one table points to a
primary key in another table. For example, subject_id in the admissions table is a
foreign key, because it references the primary key in the patients table.

Extracting data from a database is known as “querying” the database. The
programming language commonly used to create a query is known as “Structured
Query Language” or SQL. While the syntax of SQL is straightforward, queries are
at times challenging to construct as a result of the conceptual reasoning required to
join data across multiple tables.

There are many different relational database systems in regular use. Some of
these systems such as Oracle Database and Microsoft SQL Server are proprietary
and may have licensing costs. Other systems such as PostgreSQL and MySQL are
open source and free to install. The general principle behind the databases is the
same, but it is helpful to be aware that programming syntax varies slightly between
systems.

11.2.5 Reproducibility

Alongside a publishing system that emphasizes interpretation of results over
detailed methodology, researchers are under pressure to deliver regular
“high-impact” papers in order to sustain their careers. This environment may be a
contributor to the widely reported “reproducibility crisis” in science today [6, 7].

Our response should be to ensure that studies are, as far as possible, repro-
ducible. By making data and code accessible, we can more easily detect and fix
inevitable errors, help each other to learn from our methods, and promote better
quality research.

When practicing reproducible research, the source data should not be modified.
Editing the raw data destroys the chain of reproducibility. Instead, code is used to
process the data so that all of the steps that take an analysis from source to outcome
can be reproduced.

Code and data should be well documented and the terms of reuse should be
made clear. It is typical to provide a plain text “README” file that gives an
introduction to the analysis package, along with a “LICENSE” file describing the
terms of reuse. Tools such as Jupyter Notebook, Sweave, and Knitr can be used to
interweave code and text to produce clearly documented, reproducible studies, and
are becoming increasingly popular in the research community (Fig. 11.3).

Version control systems such as Git can be used to track the changes made to
code over time and are also becoming an increasingly popular tool for researchers
[8]. When working with a version control system, a commit log provides a record of
changes to code by contributor, providing transparency in the development process
and acting as a useful tool for uncovering and fixing bugs.
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Collaboration is also facilitated by version control systems. Git provides pow-
erful functionality that facilitates distribution of code and allows multiple people to
work together in synchrony. Integration with Git hosting services such as Github
provide a simple mechanism for backing up content, helping to reduce the risk of
data loss, and also provide tools for tracking issues and tasks [8, 9].

Fig. 11.3 Jupyter Notebooks enable documentation and code to be combined into a reproducible
analysis. In this example, the length of ICU stay is loaded from the MIMIC-III (v1.3) database and
plotted as a histogram [11]
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11.3 Part 2—Practical Examples of Data Preparation

11.3.1 MIMIC Tables

In order to carry out the study on the effect of indwelling arterial catheters as
described in the previous chapter, we use the following tables in the MIMIC-III
clinical database:

• The chartevents table, the largest table in the database. It contains all data
charted by the bedside critical care system, including physiological measure-
ments such as heart rate and blood pressure, as well as the settings used by the
indwelling arterial catheters.

• The patients table, which contains the demographic details of each patient
admitted to an intensive care unit, such as gender, date of birth, and date of
death.

• The icustays table, which contains administrative details relating to stays in the
ICU, such as the admission time, discharge time, and type of care unit.

Before continuing with the following exercises, we recommend familiarizing
yourself with the MIMIC documentation and in particular the table descriptions,
which are available on the MIMIC website [10].

11.3.2 SQL Basics

An SQL query has the following format:

The result returned by the query is a list of rows. The following query lists the
unique patient identifiers (subject_ids) of all female patients:
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We often need to specify more than one condition. For instance, the following
query lists the subject_ids whose first or last care unit was a coronary care unit
(CCU):

Since a patient may have been in several ICUs, the same patient ID sometimes
appears several times in the result of the previous query. To return only distinct
rows, use the DISTINCT keyword:

To count how many patients there are in the icustays table, combine DISTINCT
with the COUNT keyword. As you can see, if there is no condition, we simply
don’t use the keyword WHERE:
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Taking a similar approach, we can count how many patients went through the
CCU using the query:

The operator * is used to display all columns. The following query displays the
entire icustays table:

The results can be sorted based on one or several columns with ORDER BY. To
add a comment in a SQL query, use:
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11.3.3 Joins

Often we need information coming from multiple tables. This can be achieved
using SQL joins. There are several types of join, including INNER JOIN, OUTER
JOIN, LEFT JOIN, and RIGHT JOIN. It is important to understand the difference
between these joins because their usage can significantly impact query results.
Detailed guidance on joins is widely available on the web, so we will not go into
further details here. We will however provide an example of an INNER JOIN
which selects all rows where the joined key appears in both tables.

Using the INNER JOIN keyword, let’s count how many adult patients went
through the coronary care unit. To know whether a patient is an adult, we need to
use the dob (date of birth) attribute from the patients table. We can use the INNER
JOIN to indicate that two or more tables should be combined based on a common
attribute, which in our case is subject_id:

Note that:

• we assign an alias to a table to avoid writing its full name throughout the query.
In our 0 given the alias ‘p’.

• in the SELECT clause, we wrote p.subject_id instead of simply subject_id
since both the patients and icustays tables contain the attribute subject_id. If
we don’t specify from which table subject_id comes from, we would get a
“column ambiguously defined” error.

• to identify whether a patient is an adult, we look for differences between intime
and dob of 18 years or greater using the INTERVAL keyword.
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11.3.4 Ranking Across Rows Using a Window Function

We now focus on the case study. One of the first steps is identifying the first ICU
admission for each patient. To do so, we can use the RANK () function to order
rows sequentially by intime. Using the PARTITION BY expression allows us to
perform the ranking across subject_id windows:

11.3.5 Making Queries More Manageable Using WITH

To keep SQL queries reasonably short and simple, we can use the WITH keyword.
WITH allows us to break a large query into smaller, more manageable chunks. The
following query creates a temporary table called “rankedstays” that lists the order of
stays for each patient. We then select only the rows in this table where the rank is
equal to one (i.e. the first stay) and the patient is aged 18 years or greater:
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Chapter 12
Data Pre-processing

Brian Malley, Daniele Ramazzotti and Joy Tzung-yu Wu

Learning Objectives

• Understand the requirements for a “clean” database that is “tidy” and ready for
use in statistical analysis.

• Understand the steps of cleaning raw data, integrating data, reducing and
reshaping data.

• Be able to apply basic techniques for dealing with common problems with raw
data including missing data inconsistent data, and data from multiple sources.

12.1 Introduction

Data pre-processing consists of a series of steps to transform raw data derived from
data extraction (see Chap. 11) into a “clean” and “tidy” dataset prior to statistical
analysis. Research using electronic health records (EHR) often involves the sec-
ondary analysis of health records that were collected for clinical and billing
(non-study) purposes and placed in a study database via automated processes.
Therefore, these databases can have many quality control issues. Pre-processing
aims at assessing and improving the quality of data to allow for reliable statistical
analysis.

Several distinct steps are involved in pre-processing data. Here are the general
steps taken to pre-process data [1]:

• Data “cleaning”—This step deals with missing data, noise, outliers, and
duplicate or incorrect records while minimizing introduction of bias into the
database. These methods are explored in detail in Chaps. 13 and 14.

• “Data integration”—Extracted raw data can come from heterogeneous sources
or be in separate datasets. This step reorganizes the various raw datasets into a
single dataset that contain all the information required for the desired statistical
analyses.

© The Author(s) 2016
MIT Critical Data, Secondary Analysis of Electronic Health Records,
DOI 10.1007/978-3-319-43742-2_12

115

http://dx.doi.org/10.1007/978-3-319-43742-2_11
http://dx.doi.org/10.1007/978-3-319-43742-2_13
http://dx.doi.org/10.1007/978-3-319-43742-2_14


• “Data transformation”—This step translates and/or scales variables stored in a
variety of formats or units in the raw data into formats or units that are more
useful for the statistical methods that the researcher wants to use.

• “Data reduction”—After the dataset has been integrated and transformed, this
step removes redundant records and variables, as well as reorganizes the data in
an efficient and “tidy” manner for analysis.

Pre-processing is sometimes iterative and may involve repeating this series of
steps until the data are satisfactorily organized for the purpose of statistical analysis.
During pre-processing, one needs to take care not to accidentally introduce bias by
modifying the dataset in ways that will impact the outcome of statistical analyses.
Similarly, we must avoid reaching statistically significant results through “trial and
error” analyses on differently pre-processed versions of a dataset.

12.2 Part 1—Theoretical Concepts

12.2.1 Data Cleaning

Real world data are usually “messy” in the sense that they can be incomplete (e.g.
missing data), they can be noisy (e.g. random error or outlier values that deviate
from the expected baseline), and they can be inconsistent (e.g. patient age 21 and
admission service is neonatal intensive care unit).

The reasons for this are multiple. Missing data can be due to random technical
issues with biomonitors, reliance on human data entry, or because some clinical
variables are not consistently collected since EHR data were collected for non-study
purposes. Similarly, noisy data can be due to faults or technological limitations of
instruments during data gathering (e.g. dampening of blood pressure values mea-
sured through an arterial line), or because of human error in entry. All the above can
also lead to inconsistencies in the data. Bottom line, all of these reasons create the
need for meticulous data cleaning steps prior to analysis.

Missing Data
A more detailed discussion regarding missing data will be presented in Chap. 13.
Here, we describe three possible ways to deal with missing data [1]:

• Ignore the record. This method is not very effective, unless the record
(observation/row) contains several variables with missing values. This approach
is especially problematic when the percentage of missing values per variable
varies considerably or when there is a pattern of missing data related to an
unrecognized underlying cause such as patient condition on admission.
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• Determine and fill in the missing value manually. In general, this approach is the
most accurate but it is also time-consuming and often is not feasible in a large
dataset with many missing values.

• Use an expected value. The missing values can be filled in with predicted values
(e.g. using the mean of the available data or some prediction method). It must be
underlined that this approach may introduce bias in the data, as the inserted
values may be wrong. This method is also useful for comparing and checking
the validity of results obtained by ignoring missing records.

Noisy Data
We term noise a random error or variance in an observed variable—a common
problem for secondary analyses of EHR data. For example, it is not uncommon for
hospitalized patients to have a vital sign or laboratory value far outside of normal
parameters due to inadequate (hemolyzed) blood samples, or monitoring leads
disconnected by patient movement. Clinicians are often aware of the source of error
and can repeat the measurement then ignore the known incorrect outlier value when
planning care. However, clinicians cannot remove the erroneous measurement from
the medical record in many cases, so it will be captured in the database. A detailed
discussion on how to deal with noisy data and outliers is provided in Chap. 14; for
now we limit the discussion to some basic guidelines [1].

• Binning methods. Binning methods smooth a sorted data value by considering
their ‘neighborhood’, or values around it. These kinds of approaches to reduce
noise, which only consider the neighborhood values, are said to be performing
local smoothing.

• Clustering. Outliers may be detected by clustering, that is by grouping a set of
values in such a way that the ones in the same group (i.e., in the same cluster)
are more similar to each other than to those in other groups.

• Machine learning. Data can be smoothed by means of various machine learning
approaches. One of the classical methods is the regression analysis, where data
are fitted to a specified (often linear) function.

Same as for missing data, human supervision during the process of noise
smoothing or outliers detection can be effective but also time-consuming.

Inconsistent Data
There may be inconsistencies or duplications in the data. Some of them may
be corrected manually using external references. This is the case, for instance, of
errors made at data entry. Knowledge engineering tools may also be used to detect
the violation of known data constraints. For example, known functional depen-
dencies among attributes can be used to find values contradicting the functional
constraints.
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Inconsistencies in EHR result from information being entered into the database
by thousands of individual clinicians and hospital staff members, as well as cap-
tured from a variety of automated interfaces between the EHR and everything from
telemetry monitors to the hospital laboratory. The same information is often entered
in different formats by these different sources.

Take, for example, the intravenous administration of 1 g of the antibiotic van-
comycin contained in 250 mL of dextrose solution. This single event may be
captured in the dataset in several different ways. For one patient this event may be
captured from the medication order as the code number (ITEMID in MIMIC) from
the formulary for the antibiotic vancomycin with a separate column capturing the
dose stored as a numerical variable. However, on another patient the same event
could be found in the fluid intake and output records under the code for the IV
dextrose solution with an associated free text entered by the provider. This text
would be captured in the EHR as, for example “vancomycin 1 g in 250 ml”, saved
as a text variable (string, array of characters, etc.) with the possibility of spelling
errors or use of nonstandard abbreviations. Clinically these are the exact same
event, but in the EHR and hence in the raw data, they are represented differently.
This can lead to the same single clinical event not being captured in the study
dataset, being captured incorrectly as a different event, or being captured multiple
times for a single occurrence.

In order to produce an accurate dataset for analysis, the goal is for each patient to
have the same event represented in the same manner for analysis. As such, dealing
with inconsistency perfectly would usually have to happen at the data entry or data
extraction level. However, as data extraction is imperfect, pre-processing becomes
important. Often, correcting for these inconsistencies involves some understanding
of how the data of interest would have been captured in the clinical setting and
where the data would be stored in the EHR database.

12.2.2 Data Integration

Data integration is the process of combining data derived from various data sources
(such as databases, flat files, etc.) into a consistent dataset. There are a number of
issues to consider during data integration related mostly to possible different
standards among data sources. For example, certain variables can be referred by
means of different IDs in two or more sources.

In the MIMIC database this mainly becomes an issue when some information is
entered into the EHR during a different phase in the patient’s care pathway, such as
before admission in the emergency department, or from outside records. For
example, a patient may have laboratory values taken in the ER before they are
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admitted to the ICU. In order to have a complete dataset it will be necessary to
integrate the patient’s full set of lab values (including those not associated with the
same MIMIC ICUSTAY identifier) with the record of that ICU admission without
repeating or missing records. Using shared values between datasets (such as a
hospital stay identifier or a timestamp in this example) can allow for this to be done
accurately.

Once data cleaning and data integration are completed, we obtain one dataset
where entries are reliable.

12.2.3 Data Transformation

There are many possible transformations one might wish to do to raw data values
depending on the requirement of the specific statistical analysis planned for a study.
The aim is to transform the data values into a format, scale or unit that is more
suitable for analysis (e.g. log transform for linear regression modeling). Here are
few common possible options:

Normalization
This generally means data for a numerical variable are scaled in order to range
between a specified set of values, such as 0–1. For example, scaling each
patient’s severity of illness score to between 0 and 1 using the known range
of that score in order to compare between patients in a multiple regression
analysis.

Aggregation
Two or more values of the same attribute are aggregated into one value.
A common example is the transformation of categorical variables where mul-
tiple categories can be aggregated into one. One example in MIMIC is to define
all surgical patients by assigning a new binary variable to all patients with an
ICU service noted to be “SICU” (surgical ICU) or “CSRU” (cardiac surgery
ICU).

Generalization
Similar to aggregation, in this case low level attributes are transformed into
higher level ones. For example, in the analysis of chronic kidney disease
(CKD) patients, instead of using a continuous numerical variable like the patient’s
creatinine levels, one could use a variable for CKD stages as defined by accepted
guidelines.
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12.2.4 Data Reduction

Complex analysis on large datasets may take a very long time or even be infeasible.
The final step of data pre-processing is data reduction, i.e., the process of reducing
the input data by means of a more effective representation of the dataset without
compromising the integrity of the original data. The objective of this step is to
provide a version of the dataset on which the subsequent statistical analysis will be
more effective. Data reduction may or may not be lossless. That is the end database
may contain all the information of the original database in more efficient format
(such as removing redundant records) or it may be that data integrity is maintained
but some information is lost when data is transformed and then only represented in
the new form (such as multiple values being represented as an average value).

One common MIMIC database example is collapsing the ICD9 codes into broad
clinical categories or variables of interest and assigning patients to them. This
reduces the dataset from having multiple entries of ICD9 codes, in text format, for a
given patient, to having a single entry of a binary variable for an area of interest to
the study, such as history of coronary artery disease. Another example would be in
the case of using blood pressure as a variable in analysis. An ICU patient will
generally have their systolic and diastolic blood pressure monitored continuously
via an arterial line or recorded multiple times per hour by an automated blood
pressure cuff. This results in hundreds of data points for each of possibly thousands
of study patients. Depending on the study aims, it may be necessary to calculate a
new variable such as average mean arterial pressure during the first day of ICU
admission.

Lastly, as part of more effective organization of datasets, one would also aim to
reshape the columns and rows of a dataset so that it conforms with the following 3
rules of a “tidy” dataset [2, 3]:

1. Each variable forms a column
2. Each observation forms a row
3. Each value has its own cell

“Tidy” datasets have the advantage of being more easily visualized and
manipulated for later statistical analysis. Datasets exported from MIMIC usually are
fairly “tidy” already; therefore, rule 2 is hardly ever broken. However, sometimes
there may still be several categorical values within a column even for MIMIC
datasets, which breaks rule 1. For example, multiple categories of marital status or
ethnicity under the same column. For some analyses, it is useful to split each
categorical values of a variable into their own columns. Fortunately though, we do
not often have to worry about breaking rule 3 for MIMIC data as there are not often
multiple values in a cell. These concepts will become clearer after the MIMIC
examples in Sect. 12.3
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12.3 PART 2—Examples of Data Pre-processing in R

There are many tools for doing data pre-processing available, such as R, STATA,
SAS, and Python; each differs in the level of programming background required.
R is a free tool that is supported by a range of statistical and data manipulation
packages. In this section of the chapter, we will go through some examples
demonstrating various steps of data pre-processing in R, using data from various
MIMIC dataset (SQL extraction codes included). Due to the significant content
involved with the data cleaning step of pre-processing, this step will be separately
addressed in Chaps. 13 and 14. The examples in this section will deal with some R
basics as well as data integration, transformation, and reduction.

12.3.1 R—The Basics

The most common data output from a MIMIC database query is in the form of
‘comma separated values’ files, with filenames ending in ‘.csv’. This output file
format can be selected when exporting the SQL query results from MIMIC data-
base. Besides ‘.csv’ files, R is also able to read in other file formats, such as Excel,
SAS, etc., but we will not go into the detail here.

Understanding ‘Data Types’ in R
For many who have used other data analysis software or who have a programming
background, you will be familiar with the concept of ‘data types’.

R strictly stores data in several different data types, called ‘classes’:

• Numeric – e.g. 3.1415, 1.618
• Integer – e.g. -1, 0, 1, 2, 3
• Character – e.g. “vancomycin”, “metronidazole”
• Logical – TRUE, FALSE
• Factors/categorical – e.g. male or female under variable,

gender

R also usually does not allow mixing of data types for a variable, except in a:

• List – as a one dimensional vector, e.g. c(“vancomycin”,
1.618, “red”)

• Data-frame – as a two dimensional table with rows (obser-
vations) and columns (variables)

Lists and data-frames are treated as their own ‘class’ in R.
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Query output from MIMIC commonly will be in the form of data tables with
different data types in different columns. Therefore, R usually stores these tables as
‘data-frames’ when they are read into R.

Special Values in R

• NA – ‘not available’, usually a default placeholder for
missing values.

• NAN – ‘not a number’, only applying to numeric vectors.
• NULL – ‘empty’ value or set. Often returned by expressions

where the value is undefined.
• Inf – value for ‘infinity’ and only applies to numeric

vectors.

Setting Working Directory
This step tells R where to read in the source files.

Command: setwd(“directory_path”)
Example: (If all data files are saved in directory “MIMIC_data_files” on the

Desktop)

setwd("~/Desktop/MIMIC_data_files")

# List files in directory:
list.files()
## [1] "c_score_sicker.csv"         "comorbidity_scores.csv"    
## [3] "demographics.csv"           "mean_arterial_pressure.csv"
## [5] "population.csv"

Reading in .csv Files from MIMIC Query Results
The data read into R is assigned a ‘name’ for reference later on.

Command: set_var_name <- read.csv(“filename.csv”)
Example:

demo <- read.csv("demographics.csv")
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Viewing the Dataset
There are several commands in R that are very useful for getting a ‘feel’ of your
datasets and see what they look like before you start manipulating them.

• View the first and last 2 rows. E.g.:

head(demo, 2) 

##   subject_id hadm_id marital_status_descr ethnicity_descr
## 1          4   17296               SINGLE           WHITE
## 2          6   23467              MARRIED           WHITE

tail(demo, 2)

##       subject_id hadm_id marital_status_descr  ethnicity_descr
## 27624      32807   32736              MARRIED UNABLE TO OBTAIN
## 27625      32805   34884             DIVORCED            WHITE

• View summary statistics. E.g.:

summary(demo)

##    subject_id       hadm_id      marital_status_descr
##  Min.  :    3   Min.  :    1    MARRIED  :13447     
##  1st Qu.: 8063   1st Qu.: 9204   SINGLE   : 6412     
##  Median :16060   Median :18278   WIDOWED  : 4029     
##  Mean   :16112   Mean   :18035   DIVORCED : 1623     
##  3rd Qu.:24119   3rd Qu.:26762            : 1552     
##  Max.  :32809   Max.  :36118   SEPARATED:  320     
##                                  (Other)  :  242     
##                ethnicity_descr 
##  WHITE                 :19360  
##  UNKNOWN/NOT SPECIFIED : 3446  
##  BLACK/AFRICAN AMERICAN: 2251  
##  …
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• View structure of data set (obs = number of rows). E.g.:

str(demo)

## 'data.frame':    27625 obs. of  4 variables:
##  $ subject_id          : int  4 6 3 9 15 14 11 18 18 19 ...
##  $ hadm_id             : int  17296 23467 2075 8253 4819 23919 28128 
24759 33481 25788 ...
##  $ marital_status_descr: Factor w/ 8 levels "","DIVORCED",..: 6 4 4 
1 6 4 4 4 4 1 ...
##  $ ethnicity_descr     : Factor w/ 39 levels "AMERICAN INDIAN/ALASKA 
NATIVE",..: 35 35 35 34 12 35 35 35 35 35 ...

• Find out the ‘class’ of a variable or dataset. E.g.:

class(demo)

## [1] "data.frame"

• Viewnumber of rows and column, or alternatively, the dimensionof the dataset. E.g.:

nrow(demo)

## [1] 27625

ncol(demo)

## [1] 4

dim(demo)

## [1] 27625     4

• Calculate length of a variable. E.g.:

x <- c(1:10); x

##  [1]  1  2  3  4  5  6  7  8  9 10

class(x)

## [1] "integer"
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Subsetting a Dataset and Adding New Variables/Columns
Aim: Sometimes, it may be useful to look at only some columns or some rows in a
dataset/data-frame—this is called subsetting.

Let’s create a simple data-frame to demonstrate basic subsetting and other
command functions in R. One simple way to do this is to create each column of the
data-frame separately then combine them into a dataframe later. Note the different
kinds of data types for the columns/variables created, and beware that R is
case-sensitive.

Examples: Note that comments appearing after the hash sign (#) will not be
evaluated.

subject_id <- c(1:6)                      #integer
gender <- as.factor(c("F", "F", "M", "F", "M", "M"))#factor/categorical
height <- c(1.52, 1.65, 1.75, 1.72, 1.85, 1.78)     #numeric
weight <- c(56.7, 99.6, 90.4, 85.3, 71.4, 130.5)    #numeric
data <- data.frame(subject_id, gender, height, weight)

head(data, 4)                      # View only the first 4 rows

##   subject_id gender height weight
## 1          1      F   1.52   56.7
## 2          2      F   1.65   99.6
## 3          3      M   1.75   90.4
## …

str(data)                  # Note the class of each variable/column

## 'data.frame':    6 obs. of  4 variables:
##  $ subject_id: int  1 2 3 4 5 6
##  $ gender    : Factor w/ 2 levels "F","M": 1 1 2 1 2 2
##  $ height    : num  1.52 1.65 1.75 1.72 1.85 1.78
##  $ weight    : num  56.7 99.6 90.4 85.3 71.4 ...

To subset or extract only e.g., weight, we can use either the dollar sign ($) after
the dataset, data, or use the square brackets, []. The $ selects column with the
column name (without quotation mark in this case). The square brackets [] here
selected the column weight by its column number:
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w1 <- data$weight; w1

## [1]  56.7  99.6  90.4  85.3  71.4 130.5

w2 <- data[, 4]; w2

## [1]  56.7  99.6  90.4  85.3  71.4 130.5

Generally one can subset a dataset by specifying the rows and column desired
like this: data[row number, column number]. For example:

dat_sub <- data[2:4, 1:3]; dat_sub

##   subject_id gender height
## 2          2      F   1.65
## 3          3      M   1.75
## 4          4      F   1.72

The square brackets are useful for subsetting multiple columns or rows. Note
that it is important to ‘concatenate’, c(), if selecting multiple variables/columns and
to use quotation marks when selecting with columns names

h_w1 <- data[, c(3, 4)]; h_w1

##   height weight
## 1   1.52   56.7
## 2   1.65   99.6
## 3   1.75   90.4
## …

h_w2 <- data[, c("height", "weight")]; h_w2

##   height weight
## 1   1.52   56.7
## 2   1.65   99.6
## 3   1.75   90.4
## …

To calculate the BMI (weight/height^2) in a new column—there are different
ways to do this but here is a simple method:
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data$BMI <- data$weight/data$height^2
head(data, 4)  

##   subject_id gender height weight      BMI
## 1          1      F   1.52   56.7 24.54120
## 2          2      F   1.65   99.6 36.58402
## 3          3      M   1.75   90.4 29.51837
## 4          4      F   1.72   85.3 28.83315

Let’s create a new column, obese, for BMI > 30, as TRUE or FALSE. This also
demonstrates the use of ‘logicals’ in R.

data$obese <- data$BMI > 30
head(data)

##   subject_id gender height weight      BMI obese
## 1          1      F   1.52   56.7 24.54120 FALSE
## 2          2      F   1.65   99.6 36.58402  TRUE
## 3          3      M   1.75   90.4 29.51837 FALSE
## …

One can also use logical vectors to subset datasets in R. A logical vector, named
“ob” here, is created and then we pass it through the square brackets [] to tell R to
select only the rows where the condition BMI > 30 is TRUE:

ob <- data$BMI > 30
data_ob <- data[ob, ];data_ob

##   subject_id gender height weight      BMI obese
## 2          2      F   1.65   99.6 36.58402  TRUE
## 6          6      M   1.78  130.5 41.18798  TRUE

Combining Datasets (Called Data Frames in R)
Aim: Often different variables (columns) of interest in a research question may
come from separate MIMIC tables and could have been exported as separate.csv files
if they were not merged via SQL queries. For ease of analysis and visualization,
it is often desirable to merge these separate data frames in R on their shared ID
column(s).
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Occasionally, one may also want to attach rows from one data frame after rows
from another. In this case, the column names and the number of columns of the two
different datasets must be the same.

Examples: In general, there are a couple ways of combining columns and rows
from different datasets in R:

• merge()—This function merges columns on shared ID column(s) between the
data frames so the associated rows match up correctly.

Command: merging on one ID column, e.g.:

df_merged <- merge(df1, df2, by = “column_ID_name”)

Command: merging on two ID columns, e.g.:

df_merged <- merge(df1, df2, by = c(“column1”, “column2”))

• cbind()—This function simply ‘add’ together the columns from two data frames
(must have equal number of rows). It does not match up the rows by any
identifier.

Command: joining columns. E.g.:

df_total <- cbind(df1, df2)

• rbind()—The function ‘row binds’ the two data frames vertically (must have the
same column names).

Command: joining rows. E.g.:

df_total <- rbind(df1, df2)

Using Packages in R
There are many packages that make life so much easier when manipulating data in
R. They need to be installed on your computer and loaded at the start of your R
script before you can call the functions in them. We will introduce examples of of a
couple of useful packages later in this chapter.
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For now, the command for installing packages is:

install.packages("name_of_package_case_sensitive")

The command for loading the package into the R working
environment:

library(name_of_package_case_sensitive)

Note—there are no quotation marks when loading packages as compared to
installing; you will get an error message otherwise.

Getting Help in R
There are various online tutorials and Q&A forums for getting help in R.
Stackoverflow, Cran and Quick-R are some good examples. Within the R console, a
question mark, ?, followed by the name of the function of interest will bring up the
help menu for the function, e.g.

?head 

12.3.2 Data Integration

Aim: This involves combining the separate output datasets exported from separate
MIMIC queries into a consistent larger dataset table.

To ensure that the associated observations or rows from the two different
datasets match up, the right column ID must be used. In MIMIC, the ID columns
could be subject_id, hadm_id, icustay_id, itemid, etc. Hence, knowing the context
of what each column ID is used to identify and how they are related to each other is
important. For example, subject_id is used to identify each individual patient, so
includes their date of birth (DOB), date of death (DOD) and various other clinical
detail and laboratory values in MIMIC. Likewise, the hospital admission ID,
hadm_id, is used to specifically identify various events and outcomes from an
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unique hospital admission; and is also in turn associated with the subject_id of the
patient who was involved in that particular hospital admission. Tables pulled from
MIMIC can have one or more ID columns. The different tables exported from
MIMIC may share some ID columns, which allows us to ‘merge’ them together,
matching up the rows correctly using the unique ID values in their shared ID
columns.

Examples: To demonstrate this with MIMIC data, a simple SQL query is
constructed to extract some data, saved as: “population.csv” and “demographics.
csv”.

We will these extracted files to show how to merge datasets in R.

1. SQL query:

Note: Remove the – in front of the SELECT command to run the query.

WITH 
population AS(
SELECT subject_id, hadm_id, gender, dob, icustay_admit_age, 
icustay_intime, icustay_outtime, dod, expire_flg
FROM mimic2v26.icustay_detail
  WHERE subject_icustay_seq = 1
  AND icustay_age_group = 'adult'
  AND hadm_id IS NOT NULL
)
, demo AS(
SELECT subject_id, hadm_id, marital_status_descr, ethnicity_descr
FROM mimic2v26.demographic_detail
WHERE subject_id IN (SELECT subject_id FROM population)
)

--# Extract the the datasets with each one of the following line of 
codes in turn:
--SELECT * FROM population
--SELECT * FROM demo
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2. R code: Demonstrating data integration

Set working directory and read data files into R::

setwd("~/Desktop/MIMIC_data_files")
demo <- read.csv("demographics.csv", sep = ",")
pop <- read.csv("population.csv", sep = ",")
head(demo)

##   subject_id hadm_id marital_status_descr        ethnicity_descr
## 1          4   17296               SINGLE                  WHITE
## 2          6   23467              MARRIED                  WHITE
## 3          3    2075              MARRIED                  WHITE
## …
head(pop)

##   subject_id hadm_id gender                 dob icustay_admit_age
## 1          4   17296      F 3351-05-30 00:00:00          47.84414
## 2          6   23467   F 3323-07-30 00:00:00          65.94048
## 3          3    2075      M 2606-02-28 00:00:00          76.52892
## …

##        icustay_intime     icustay_outtime                 dod 
expire_flg
## 1 3399-04-03 00:29:00 3399-04-04 16:46:00                  
N
## 2 3389-07-07 20:38:00 3389-07-11 12:47:00                              
N
## 3 2682-09-07 18:12:00 2682-09-13 19:45:00 2683-05-02 00:00:00          
Y
## …

Merging pop and demo: Note to get the rows to match up correctly, we need to
merge on both the subject_id and hadm_id in this case. This is because each
subject/patient could have multiple hadm_id from different hospital admissions
during the EHR course of MIMIC database.
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demopop <- merge(pop, demo, by = c("subject_id", "hadm_id"))
head(demopop)

##   subject_id hadm_id gender                 dob icustay_admit_age
## 1        100     445      F 3048-09-22 00:00:00          71.94482
## 2       1000   15170      M 2442-05-11 00:00:00          69.70579
## 3      10000   10444      M 3149-12-07 00:00:00          49.67315
## …

##        icustay_intime     icustay_outtime                 dod 
expire_flg
## 1 3120-09-01 11:19:00 3120-09-03 14:06:00                              
N
## 2 2512-01-25 13:16:00 2512-03-02 06:05:00 2512-03-02 00:00:00     
Y
## 3 3199-08-09 09:53:00 3199-08-10 17:43:00                              
N
## …

##   marital_status_descr        ethnicity_descr
## 1              WIDOWED  UNKNOWN/NOT SPECIFIED
## 2              MARRIED  UNKNOWN/NOT SPECIFIED
## 3                          HISPANIC OR LATINO
## 4              MARRIED BLACK/AFRICAN AMERICAN
## 5              MARRIED                  WHITE
## 6            SEPARATED BLACK/AFRICAN AMERICAN

As you can see, there are still multiple problems with this merged database, for
example, the missing values for ‘marital_status_descr’ column. Dealing with
missing data is explored in Chap. 13.

12.3.3 Data Transformation

Aim: To transform the presentation of data values in some ways so that the new
format is more suitable for the subsequent statistical analysis. The main processes
involved are normalization, aggregation and generalization (See part 1 for
explanation).

Examples: To demonstrate this with a MIMIC database example, let us look at a
table generated from the following simple SQL query, which we exported as
“comorbidity_scores.csv”.

The SQL query selects all the patient comorbidity information from the mim-
ic2v26.comorbidity_scores table on the condition of (1) being an adult, (2) in
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his/her first ICU admission, and (3) where the hadm_id is not missing according to
the mimic2v26.icustay_detail table.

1. SQL query:

SELECT *
FROM mimic2v26.comorbidity_scores
WHERE subject_id IN (SELECT subject_id
        FROM mimic2v26.icustay_detail
        WHERE subject_icustay_seq = 1
                AND icustay_age_group = 'adult'
                AND hadm_id IS NOT null)

2. R code: Demonstrating data transformation:

setwd("~/Desktop/MIMIC_data_files")
c_scores <- read.csv("comorbidity_scores.csv", sep = ",")

Note the ‘class’ or data type of each column/variable and the total number of
rows (obs) and columns (variables) in c_scores:

str(c_scores)

## 'data.frame':    27525 obs. of  33 variables:
##  $ subject_id              : int  2848 21370 2026 11890 27223 27520 
17928 31252 32083 9545 ...
##  $ hadm_id                 : int  16272 17542 11351 12730 32530 
32724 20353 30062 32216 10809 ...
##  $ category                : Factor w/ 1 level "ELIXHAUSER": 1 1 1 1 
1 1 1 1 1 1 ...
##  $ congestive_heart_failure: int  0 0 0 0 1 0 0 0 1 1 ...
##  $ cardiac_arrhythmias     : int  0 1 1 0 1 0 0 0 0 1 ...
##  $ valvular_disease        : int  0 0 0 0 1 0 0 0 0 1 ...
##  $ …

Here we add a column in c_scores to save the overall ELIXHAUSER. The rep()
function in this case repeats 0 for nrow(c_scores) times. Function, colnames(),
rename the new or last column, [ncol(c_scores)], as “ELIXHAUSER_overall”.
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c_scores <- cbind(c_scores, rep(0, nrow(c_scores)))
colnames(c_scores)[ncol(c_scores)] <- "ELIXHAUSER_overall"

Take a look at the result. Note the new “ELIXHAUSER_overall” column added
at the end:

str(c_scores)

## 'data.frame':    27525 obs. of  34 variables:
##  $ subject_id              : int  2848 21370 2026 11890 27223 27520 
17928 31252 32083 9545 ...
##  $ hadm_id                 : int  16272 17542 11351 12730 32530 
32724 20353 30062 32216 10809 ...
##  $ category                : Factor w/ 1 level "ELIXHAUSER": 1 1 1 1 
1 1 1 1 1 1 ...
##  $ congestive_heart_failure: int  0 0 0 0 1 0 0 0 1 1 ...
##  $ cardiac_arrhythmias     : int  0 1 1 0 1 0 0 0 0 1 ...
##  $ valvular_disease        : int  0 0 0 0 1 0 0 0 0 1 ...
##  $ …

Aggregation Step
Aim: To sum up the values of all the ELIXHAUSER comorbidities across each
row. Using a ‘for loop’, for each i-th row entry in column “ELIXHAUSER_
overall”, we sum up all the comorbidity scores in that row.

for (i in 1:nrow(c_scores)) {
  c_scores[i, "ELIXHAUSER_overall"] <- sum(c_scores[i,4:33])
}

Let’s take a look at the head of the resulting first and last column:

head(c_scores[, c(1, 34)])

##   subject_id ELIXHAUSER_overall
## 1       2848                  1
## 2      21370                  3
## 3       2026                  3
## …
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Normalization Step
Aim: Scale values in column ELIXHAUSER_overall to between 0 and 1, i.e. in [0,
1]. Function, max(), finds out the maximum value in column ELIXHAUSER
overall. We then re-assign each entry in column ELIXHAUSERoverall as a pro-
portion of the max_score to normalize/scale the column.

max_score <- max(c_scores[,"ELIXHAUSER_overall"])
c_scores[,"ELIXHAUSER_overall"] <- c_scores[ , 
"ELIXHAUSER_overall"]/max_score

We subset and remove all the columns in c_score, except for “subject_id”,
“hadm_id”, and “ELIXHAUSER_overall”:

c_scores <- c_scores[, c("subject_id", "hadm_id",  
"ELIXHAUSER_overall")]
head(c_scores)

##   subject_id hadm_id ELIXHAUSER_overall
## 1       2848   16272         0.09090909
## 2      21370   17542         0.27272727
## 3       2026   11351         0.27272727
## …

Generalization Step
Aim: Consider only the patient sicker than the average Elixhauser score. The
function, which(), return the row numbers (indices) of all the TRUE entries of the
logical condition set on c_scores inside the round () brackets, where the condition
being the column entry for ELIXHAUSER_overall � 0.5. We store the row indices
information in the vector, ‘sicker’. Then we can use ‘sicker’ to subset c_scores to
select only the rows/patients who are ‘sicker’ and store this information in
‘c_score_sicker’.
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sicker <- which(c_scores[,"ELIXHAUSER_overall"]>=0.5)
c_score_sicker <- c_scores[sicker, ]
head(c_score_sicker)

##    subject_id hadm_id ELIXHAUSER_overall
## 10       9545   10809          0.5454545
## 15      12049   27692          0.5454545
## 59      29801   33844          0.5454545
## …

Saving the results to file: There are several functions that will do this, e.g. write.
table() and write.csv(). We will give an example here:

write.table(c_score_sicker, file = "c_score_sicker.csv", sep = ";", 
row.names = F, col.names = F)

If you check in your working directory/folder, you should see the new
“c_score_sicker.csv” file.

12.3.4 Data Reduction

Aim: To reduce or reshape the input data by means of a more effective represen-
tation of the dataset without compromising the integrity of the original data. One
element of data reduction is eliminating redundant records while preserving needed
data, which we will demonstrate in Example Part 1. The other element involves
reshaping the dataset into a “tidy” format, which we will demonstrate in below
sections.

Examples Part 1: Eliminating Redundant Records
To demonstrate this with a MIMIC database example, we will look at multiple
records of non-invasive mean arterial pressure (MAP) for each patient. We will use
the records from the following SQL query, which we exported as “mean_arte-
rial_pressure.csv”.

The SQL query selects all the patient subject_id’s and noninvasive mean arterial
pressure (MAP) measurements from the mimic2v26.chartevents table on the con-
dition of (1) being an adult, (2) in his/her first ICU admission, and (3) where the
hadm_id is not missing according to the mimic2v26.icustay_detail table.
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1. SQL query:

SELECT subject_id, value1num
FROM mimic2v26.chartevents
WHERE subject_id IN (
SELECT subject_id
    FROM mimic2v26.icustay_detail
              WHERE subject_icustay_seq = 1
              AND icustay_age_group = 'adult'
              AND hadm_id IS NOT null)
AND itemid=456
AND value1num is not null

-- Export and save the query result as "mean_arterial_pressure.csv"

2. R code:

There are a variety of methods that can be chosen to aggregate records. In this
case we will look at averaging multiple MAP records into a single average MAP for
each patient. Other options which may be chosen include using the first recorded
value, a minimum or maximum value, etc.

For a basic example, the following code demonstrates data reduction by aver-
aging all of the multiple records of MAP into a single record per patient. The code
uses the aggregate() function:

setwd("~/Desktop/MIMIC_data_files")
all_maps <- read.csv("mean_arterial_pressure.csv", sep = ",")

str(all_maps)

## 'data.frame':    790174 obs. of  2 variables:
##  $ subject_id: int  4 4 4 4 4 4 4 4 3 4 ...
##  $ value1num : num  80.7 71.7 74.3 69 75 ...

This step averages the MAP values for each distinct subject_id:

avg_maps <- aggregate(all_maps, by=list(all_maps[,1]), FUN=mean, 
na.rm=TRUE)

head(avg_maps)

##   Group.1 subject_id value1num
## 1       3          3  75.10417
## 2       4          4  88.64102
## 3       6          6  91.37357
## …
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Examples Part 2: Reshaping Dataset
Aim: Ideally, we want a “tidy” dataset reorganized in such a way so it follows these
3 rules [2, 3]:

1. Each variable forms a column
2. Each observation forms a row
3. Each value has its own cell

Datasets exported from MIMIC usually are fairly “tidy” already. Therefore, we
will construct our own data frame here for ease of demonstration for rule 3. We will
also demonstrate how to use some common data tidying packages.

R code: To mirror our own MIMIC dataframe, we construct a dataset with a
column of subject_id and a column with a list of diagnoses for the admission.

diag <- data.frame(subject_id = 1:6,   diagnosis = c("PNA, CHF", "DKA", 
"DKA, UTI", "AF, CHF", "AF", "CHF"))
diag
##   subject_id diagnosis
## 1          1  PNA, CHF
## 2          2       DKA
## 3          3  DKA, UTI
## …

Note that the dataset above is not “tidy”. There are multiple categorical variables
in column “diagnosis”—breaks “tidy” data rule 1. There are multiple values in
column “diagnosis”—breaks “tidy” data rule 3.

There are many ways to “tidy” and reshape this dataset. We will show one way
to do this by making use of R packages “splitstackshape” [5] and “tidyr” [4] to
make reshaping the dataset easier.

R package example 1—“splitstackshape”:
Installing and loading the package into R console.

install.packages("splitstackshape")
library(splitstackshape)

The function, cSplit(), can split the multiple categorical values in each cell of
column “diagnosis” into different columns, “diagnosis_1” and “diagnosis_2”. If the
argument, direction, for cSplit() is not specified, then the function splits the original
dataset “wide”.
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diag2 <- cSplit(diag, "diagnosis", ",")
diag2

##    subject_id diagnosis_1 diagnosis_2
## 1:          1         PNA         CHF
## 2:          2         DKA          NA
## 3:          3         DKA         UTI
## …

One could possibly keep it as this if one is interested in primary and secondary
diagnoses (though it is not strictly “tidy” yet).

Alternatively, if the direction argument is specified as “long”, then cSplit split
the function “long” like so:

diag3 <- cSplit(diag, "diagnosis", ",", direction = "long")
diag3
##    subject_id diagnosis
## 1:          1       PNA
## 2:          1       CHF
## 3:          2       DKA
## …

Note diag3 is still not “tidy” as there are still multiple categorical variables under
column diagnosis—but we no longer have multiple values per cell.

R package example 2—“tidyr”:
To further “tidy” the dataset, package “tidyr” is pretty useful.

install.packages("tidyr")
library(tidyr)

The aim is to split each categorical variable under column, diagnosis, into their
own columns with 1 = having the diagnosis and 0 = not having the diagnosis. To
do this we first construct a third column, “yes”, that hold all the 1 values initially
(because the function we are going use require a value column that correspond with
the multiple categories column we want to ‘spread’ out).
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diag3$yes <- rep(1, nrow(diag3))
diag3

##    subject_id diagnosis yes
## 1:          1       PNA   1
## 2:          1       CHF   1
## 3:          2       DKA   1
## …

Then we can use the spread function to split each categorical variables into their
own columns. The argument, fill = 0, replaces the missing values.

diag4 <- spread(diag3, diagnosis, yes, fill = 0)
diag4

##    subject_id AF CHF DKA PNA UTI
## 1:          1  0   1   0   1   0
## 2:          2  0   0   1   0   0
## 3:          3  0   0   1   0   1
## …

One can see that this dataset is now “tidy”, as it follows all three “tidy” data
rules.

12.4 Conclusion

A variety of quality control issues are common when using raw clinical data col-
lected for non-study purposes. Data pre-processing is an important step in preparing
raw data for statistical analysis. Several distinct steps are involved in pre-processing
raw data as described in this chapter: cleaning, integration, transformation, and
reduction. Throughout the process it is important to understand the choices made in
pre-processing steps and how different methods can impact the validity and
applicability of study results. In the case of EHR data, such as that in the MIMIC
database, pre-processing often requires some understanding of the clinical context
under which data were entered in order to guide these pre-processing choices. The
objective of all the steps is to arrive at a “clean” and “tidy” dataset suitable for
effective statistical analyses while avoiding inadvertent introduction of bias into the
data.
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Take Home Messages

• Raw data for secondary analysis is frequently “messy” meaning it is not in a
form suitable for statistical analysis; data must be “cleaned” into a valid,
complete, and effectively organized “tidy” database that can be analyzed.

• There are a variety of techniques that can be used to prepare data for analysis,
and depending on the methods use, this pre-processing step can introduce bias
into a study.

• The goal of pre-processing data is to prepare the available raw data for analysis
without introducing bias by changing the information contained in the data or
otherwise influencing end results.
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Chapter 13
Missing Data

Cátia M. Salgado, Carlos Azevedo, Hugo Proença
and Susana M. Vieira

Learning Objectives

• What are the different types of missing data, and the sources for missingness.
• What options are available for dealing with missing data.
• What techniques exist to help choose the most appropriate technique for a

specific dataset.

13.1 Introduction

Missing data is a problem affecting most databases and electronic medical records
(EHR) are no exception. Because most statistical models operate only on complete
observations of exposure and outcome variables, it is necessary to deal with missing
data, either by deleting incomplete observations or by replacing any missing values
with an estimated value based on the other information available, a process called
imputation. Both methods can significantly effect the conclusions that can be drawn
from the data.

Identifying the source of “missingness” is important, as it influences the choice
of the imputation technique. Schematically, several cases are possible: (i) the value
is missing because it was forgotten or lost; (ii) the value is missing because it was
not applicable to the instance; (iii) the value is missing because it is of no interest to
the instance. If we were to put this in a medical context: (i) the variable is measured
but for some unidentifiable reason the values are not electronically recorded, e.g.
disconnection of sensors, errors in communicating with the database server, acci-
dental human omission, electricity failures, and others; (ii) the variable is not
measured during a certain period of time due to an identifiable reason, for instance
the patient is disconnected from the ventilator because of a medical decision;
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(iii) the variable is not measured because it is unrelated with the patient condition
and provides no clinical useful information to the physician [1].

An important distinction must be made between data missing for identifiable or
unidentified reasons. In the first case, imputing values can be inadequate and add
bias to the dataset, so the data is said to be non-recoverable. On the other hand,
when data is missing for unidentifiable reasons it is assumed that values are missing
because of random and unintended causes. This type of missing data is classified as
recoverable.

The first section of this chapter focuses on describing the theory of some
commonly used methods to handle missing data. In order to demonstrate the
advantages and disadvantages of the methods, their application is demonstrated in
the second part of the chapter on actual datasets that were created to study the
relation between mortality and insertion of indwelling arterial catheters (IAC) in the
intensive care unit (ICU).

13.2 Part 1—Theoretical Concepts

In knowledge discovery in databases, data preparation is the most crucial and time
consuming task, that strongly influences the success of the research. Variable
selection consists in identifying a useful subset of potential predictors from a large
set of candidates (please refer to Chap. 5—Data Analysis for further information on
feature selection). Rejecting variables with an excessive number of missing values
(e.g. >50 %) is usually a good rule of thumb, however it is not a risk-free proce-
dure. Rejecting a variable may lead to a loss of predictive power and ability to
detect statistically significant differences and it can be a source of bias, affecting the
representativeness of the results. For these reasons, variable selection needs to be
tailored to the missing data mechanism. Imputation can be done before and/or after
variable selection.

The general steps that should be followed for handling missing data are:

• Identify patterns and reasons for missing data;
• Analyse the proportion of missing data;
• Choose the best imputation method.

13.2.1 Types of Missingness

The mechanisms by which the data is missing will affect some assumptions sup-
porting our data imputation methods. Three major mechanisms of missingness of
the data can be described, depending on the relation between observed (available)
and unobserved (missing) data.

For the sake of simplicity, lets consider missingness in the univariate case. To
define missingness in mathematical terms, a dataset X can be divided in two parts:
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X ¼ fXo;Xmg ð1Þ

where Xo corresponds to the observed data, and Xm to the missing data, in the
dataset.

For each observation we define a binary response whether or not that observation
is missing:

R ¼ 1 if X observed
0 if X missing

�
ð2Þ

The missing value mechanism can be understood in terms of the probability that
an observation is missing PrðRÞ given the observed and missing observations, in the
form:

PrðRjxo; xmÞ ð3Þ

The three mechanisms are subject to whether the probability of response
R depends or not on the observed and/or missing values:

• Missing Completely at Random (MCAR)—When the missing observations are
dependent on the observed and unobserved measurements. In this case the
probability of an observation being missing depends only on itself, and reduces
to Pr Rjxo; xmð Þ ¼ PrðRÞ. As an example, imagine that a doctor forgets to record
the gender of every six patients that enter the ICU. There is no hidden mechanism
related to any variable and it does not depend on any characteristic of the patients.

• Missing at Random (MAR)—In this case the probability of a value being
missing is related only to the observable data, i.e., the observed data is statis-
tically related with the missing variables and it is possible to estimate the
missing values from the observed data. This case is not completely ‘random’,
but it is the most general case where we can ignore the missing mechanism, as
we control the information upon which the missingness depends, the observed
data. Said otherwise, the probability that some data is missing for a particular
variable does not depend on the values of that variable, after adjusting for
observed values. Mathematically the probability of missing reduces to
Pr Rjxo; xmð Þ ¼ PrðRjxoÞ. Imagine that if elderly people are less likely to inform
the doctor that they had had a pneumonia before, the response rate of the
variable pneumonia will depend on the variable age.

• Missing Not at Random (MNAR)—This refers to the case when neither
MCAR nor MAR hold. The missing data depends on both missing and observed
values. Determining the missing mechanism is usually impossible, as it depends
on unseen data. From that derives the importance of performing sensitivity
analyses and test how the inferences hold under different assumptions. For
example, we can imagine that patients with low blood pressure are more likely
to have their blood pressure measured less frequently (the missing data for the
variable “blood pressure” partially depends on the values of the blood pressure).
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13.2.2 Proportion of Missing Data

The percentage of missing data for each variable (between patients) and each
patient (between variables) must be computed, to help decide which variables
and/or patients should be considered candidates for removal or data imputation.
A crude example is shown in Table 13.1, where we might want to consider
removing patient 1 and the variable “AST” from the analysis, considering that most
of their values are missing.

13.2.3 Dealing with Missing Data

Overview of Methods for Handling Missing Data
The methods should be tailored to the dataset of interest, the reasons for miss-
ingness and the proportion of missing data. In general, a method is chosen for its
simplicity and its ability to introduces as little bias as possible in the dataset.

When data are MCAR or MAR a researcher can ignore the reasons for missing
data, which simplifies the choice of the methods to apply. In this case, any method
can be applied. Nevertheless it is difficult to obtain empirical evidence about
whether or not the data are MCAR or MAR. A valid strategy is to examine the
sensitivity of results to the MCAR and MAR assumptions by comparing several
analyses, where the differences in results across several analyses may provide some
information about what assumptions may be the most relevant.

A significant body of evidence has focused on comparing the performance of
missing data handling methods, both in general [2–4] and in context of specific
factors such as proportion of missing data and sample size [5–7]. More detailed
technical aspects, and application of these methods in various fields can also be
found in the works of Jones and Little [8, 9].

In summary, the most widely used methods fall into three main categories,
which are described in more detail below.

1. Deletion methods (listwise deletion, i.e. complete-case analysis, pairwise dele-
tion, i.e. available-case analysis)

2. Single Imputation Methods (mean/mode substitution, linear interpolation, Hot
deck and cold deck)

3. Model-Based Methods (regression, multiple imputation, k-nearest neighbors)

Table 13.1 Examples of
missing data in EHR

Gender Glucose AST Age

Patient 1 ? 120 ? ?

Patient 2 M 105 ? 68

Patient 3 F 203 45 63

Patient 4 M 145 ? 42

Patient 5 M 89 ? 80
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Deletion Methods
The simplest way to deal with missing data is to discard the cases or observations
that have missing values. In general, case deletion methods lead to valid inferences
only for MCAR [10]. There are three ways of doing this: complete-case analysis;
available-case analysis; and weighting methods.

Complete-Case Analysis (Listwise Deletion)

In complete case analysis, all the observations with at least one missing variable are
discarded (Fig. 13.1).

The principal assumption is that the remaining subsample is representative of the
population, and will thus not bias the analysis towards a subgroup. This assumption
is rather restrictive and assumes a MCAR mechanism. Listwise deletion often
produces unbiased regression slope estimates, as long as missingness is not a
function of the outcome variable. The biggest advantage of this method is its
simplicity, it is always reasonable to use it when the number of discarded obser-
vations is relatively small when compared to the total. Its main drawbacks are the
reduced statistical power (because it reduces the number of samples n, the estimates
will have larger standard errors), waste of information, and possible bias of the
analysis specially if data is not MCAR.

Fig. 13.1 Example of
complete-case deletion. Cases
highlighted in red are
discarded
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Available-Case Analysis

The available-case method discards data only in the variables that are needed for a
specific analysis. For example, if only 4 out of 20 variables are needed for a study,
this method would only discard the missing observations of the 4 variables of
interest. In Fig. 13.2, imagine that each one of the three represented variables would
be used for a different analysis. The analysis is performed using all cases in which
the variables of interest are present. Even though this method has the ability to
preserve more information, the populations of each analysis would be different and
possibly non-comparable.

Weighting-Case Analysis

Weighting is a way of weighting the complete-cases by modelling the missingness
in order to reduce the bias introduced in the available-case.

Single-Value Imputation
In single imputation, missing values are filled by some type of “predicted” values
[9, 11]. Single imputation ignores uncertainty and almost always underestimates the
variance. Multiple imputation overcomes this problem, by taking into account both
within—and between—imputation uncertainty.

Fig. 13.2 Example of
available-case deletion. If
each variable is used for
separate analyses, only the
cases in which the variable of
interest is missing are
discarded
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Mean and Median

The simplest imputation method is to substitute missing values by the mean or the
median of that variable. Using the median is more robust in the presence of outliers
in the observed data. The main disadvantages are that (1) it reduces variability,
thereby lowering the estimate errors compared to deletion approaches, and (2) it
disregards the relationship between variables, decreasing therefore their correlation.
While this method diminishes the bias of using a non-representative sample, it
introduces other bias.

Linear Interpolation

This method is particularly suitable for time-series. In linear interpolation, a missing
value is computed by interpolating the values of the previous and next available
measurements for the patient. For example, if the natremia changes from 132 to
136 mEq/L in 8 h, one can reasonably assume that its value was close to
134 mEq/L at midpoint.

Hot Deck and Cold Deck

In the hot deck method, a missing attribute value is replaced with a value from an
estimated distribution of the current data. It is especially used in survey research [9].
Hot deck is typically implemented in two stages. First, the data is partitioned into
clusters, and then each instance with missing data is associated with one cluster.
The complete cases in a cluster are used to fill in the missing values. This can be
done by calculating the mean or mode of the attribute within a cluster. Cold deck
imputation is similar to hot deck, except that the data source is different from the
current dataset. Hot-deck imputation replaces the missing data by realistic values
that preserve the variable distribution. However it underestimates the standard
errors and the variability [12].

Last Observation Carried Forward

Sometimes called “sample-and-hold” method [13]. The last value carried forward
method is specific to longitudinal designs. This technique imputes the missing value
with the last available observation of the individual. This method makes the
assumption that the observation of the individual has not changed at all since the
last measured observation, which is often unrealistic [14].
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Model-Based Imputation
In model-based imputation, a predictive model is created to estimate values that will
substitute the missing data. In this case, the dataset is divided into two subsets: one
with no missing values for the variable under evaluation (used for training the
model) and one containing missing values, that we want to estimate. Several
modeling methods can be used such as: regression, logistic regression, neural
networks and other parametric and non-parametric modeling techniques. There are
two main drawbacks in this approach: the model estimates values are usually more
well-behaved than the true values, and the models perform poorly if the observed
and missing variables are independent.

Linear Regression

In this model, all the available variables are used to create a linear regression model
using the available observations of the variable of interest as output. The advantages
of this method is that it takes into account the relationship between variables, unlike
the mean/median imputation. The disadvantages are that it overestimates the model
fit and the correlation between the variables, as it does not take into account the
uncertainty in the missing data and underestimates variances and covariances.
A method that was created to introduce uncertainty is the stochastic linear
regression (see below).

The case of multivariate imputation is more complex as missing values exist for
several variables, which do not follow the same pattern of missingness through the
observations. The method used is a multivariate extension of the linear model and
relies on an iterative process carried until convergence.

Stochastic Regression

Stochastic regression imputation aims to reduce the bias by an extra step of aug-
menting each predicted score with a residual term. This residual term is normally
distributed with a mean of zero and a variance equal to the residual variance from
the regression of the predictor on the target. This method allows to preserve the
variability in the data and unbiased parameter estimates with MAR data. However,
the standard error tends to be underestimated, because the uncertainty about the
imputed values is not included, which increases the risk of type I error [15].

Multiple-Value Imputation

Multiple Imputation (MI) is a powerful statistical technique developed by Rubin in
the 1970s for analysing datasets containing missing values [7, 16]. It is a Monte
Carlo technique that requires 3 steps (Fig. 13.3).
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– Imputation, where the missing values are filled in using any method of choice,
leading to M � 2 completed datasets (5–10 is generally sufficient) [10]. In
these M multiply-imputed datasets, all the observed values are the same, but the
imputed values are different, reflecting the uncertainty about imputation [10].

– Analysis: each of the M completed datasets is analysed (e.g. a logistic regression
classifier for mortality prediction is built), which gives M analyses.

– Pooling: the M analyses are integrated into a final result, for example by
computing the mean (and 95 % CI) of the M analyses.

K-Nearest Neighbors

K-nearest neighbors (kNN) can be used for handling missing values. Here, they will
be filled with the mean of the k values coming from the k most similar complete
observations. The similarity of two observations is determined, after normalization
of the dataset, using a distance function which can be Euclidean, Manhattan,
Mahalanobis, Pearson, etc. The main advantage of the kNN algorithm is that given
enough data it can predict with a reasonable accuracy the conditional probability
distribution around a point and thus make well informed estimations. It can predict
qualitative and quantitative (discrete and continuous) attributes. Another advantage
of this method is that the correlation structure of the data is taken into consideration.
The choice of the k-value is very critical. A higher value of k would include
attributes which are significantly different from our target observation, while lower
value of k implies missing out of significant attributes.

Fig. 13.3 The concept of multiple imputation, with M = 3
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13.2.4 Choice of the Best Imputation Method

Different imputation methods are expected to perform differently on various data-
sets. We describe here a generic and simple method that can be used to evaluate the
performance of various imputation methods on your own dataset, in order to help
selecting the most appropriate method. Of note, this simple approach does not test
the effect of deletion methods. A more complex approach is described in the case
study below, in which the performance of a predictive model is tested on the dataset
completed by various imputation methods.

Here is how to proceed:

1. Use a sample of your own dataset that does not contain any missing data (will
serve as ground truth).

2. Introduce increasing proportions of missing data at random (e.g. 5–50 % in 5 %
increments).

3. Reconstruct the missing data using the various methods.
4. Compute the sum of squared errors between the reconstructed and the original

data, for each method and each proportion of missing data.
5. Repeat steps 1–4 a number of times (10 times for example) and compute the

average performance of each method (average SSE).
6. Plot the average SSE versus proportion of missing data (1 plot per imputation

method), similarly to the example shown in Fig. 13.4.

Fig. 13.4 Average SSE between original and reconstructed data, for various levels of missingness
and 2 imputation methods (data only for illustrative purposes)
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7. Choose the method that performs best at the level of missing data in your
dataset. E.g. if your data had 10 % of missing data, you would want to pick
k-NN; at 40 % linear regression performs better (made-up data, for illustrative
purpose only).

13.3 Part 2—Case Study

In this section, various imputation methods will be applied to two “real world”
clinical datasets used in a study that investigated the effect of inserting an
indwelling arterial catheter (IAC) in patients with respiratory failure. Two datasets
are used, and include patients that received an IAC (IAC group) and patients that
did not (non-IAC). Each dataset is subdivided into 2 classes, with class 1 corre-
sponding to patients that died within 28 days and class 0 to survivors. The pro-
portion of missing data and potential reasons for missingness are discussed first.
The following analyses were then carried out:

1. Various proportions of missing data at random were inserted into the variable
“age”, then imputed using the various methods described above. The distribu-
tion of the imputed observations was compared to the original distribution for all
the methods.

2. The performance of imputed datasets with different degrees of missingness was
tested on a predictive model (logistic regression to predict mortality), first for
univariate missing data (the variable age), then for all the variables
(multivariate).

The code used to generate the analyses and the figures is provided in the in the
accompanying R functions document.

13.3.1 Proportion of Missing Data and Possible Reasons
for Missingness

Table 13.2 shows the proportion of missing data in some of the variables of the
datasets. 26 variables represent the subset that was considered for testing the dif-
ferent imputation methods, and were selected based on the assumption that missing
data occurring in these variables is recoverable.

Since IAC are mainly used for continuous hemodynamic monitoring and for
arterial blood sampling for blood gas analysis, we can expect a higher percentage of
missing data in blood gas-related variables in the non-IAC group. We can also
expect that patient diagnoses are often able to provide an explanation for the lack of
specific laboratory results: if a certain test is not ordered because it will most likely
provide no clinical insight, a missing value will occur; it is fair to estimate that such
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value lies within a normal range. In both cases, the fact that data is missing contains
information about the response, thus it is MNAR. Body mass index (BMI) has a
relatively high percentage of missing data. Assuming that this variable is calculated
automatically from the weight and height of patients, we can conclude that this data
is MAR: because the height and/or weight are missing, BMI cannot be calculated. If
the weight is missing because someone forgot to introduce it into the system then it
is MCAR. Besides the missing data mechanism, it is also important to consider the
sample distribution in each variable, as some imputation methods assume specific
data distributions, usually the normal distribution.

13.3.2 Univariate Missingness Analysis

In this section, the specific influence of each imputation method will be explored for
the variable age, using all the other variables. Two different levels of missingness
(20 and 40 %) were artifically introduced in the datasets. The original dataset
represents the ground truth, to which the imputed datasets were compared using
frequency histograms.

Complete-Case Analysis
The complete-case analysis method discards all the incomplete observations with at
least one missing value. The distribution of the “imputed” dataset is going to be
equal to the original dataset minus the observations that have a missing value in
variable age. Figure 13.5 shows an example of the distribution of the variable age in
the IAC group.

Table 13.2 Missing data in
some of the variables of the
IAC and non-IAC datasets

IAC Non-IAC

#
points

% #
points

%

Arterial line time
day

0 0 792 100

Hospital length of
stay

0 0 0 0

Age 0 0 0 0

Gender 0 0 0 0

Weight first 39 3.96 71 8.96

SOFA first 2 0.20 4 0.51

Hemoglobin first 2 0.20 5 0.63

Bilirubin first 418 42.48 365 46.09

…
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This method is only exploitable when there is a small percentage of missing data.
This method does not require any assumption in the distribution of the missing data,
besides that the complete cases should be representative of the original population,
which is difficult to prove.

Single Value Imputation
Mean and Median Imputation
Mean and median methods are very crude imputation techniques, which ignore the
relationship between age and the other variables and introduce a heavy bias towards
the mean/median values. These simple methods allow us to better understand the
biasing effect, something that is obvious in the examples Fig. 13.6.

Fig. 13.5 Histogram of variable age in the IAC group before and after univariate complete case
method

Fig. 13.6 Histogram of variable age in the IAC group before (original) and after (imputed) mean
for univariate imputation
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Linear Regression Imputation

The linear regression method imputes most of the data at the center of the distri-
bution (example in Fig. 13.7). The extremities of the distribution are not well
modeled and are easily ignored. This is due to two features of this technique: first,
the assumption that the linear regression is a good fit to the data, and second, the
assumption that the missing data lays over the regression line, bending the reality to
fit the deterministic nature of the model. Compared to the mean/median imputation,
the linear regression assumes a relation between the variables, however it overes-
timates this relation by assuming that the missing points are over the regression line.
The model assumes that the percentage of variance explained is 100 %, thus it
underestimates variability.

Stochastic Linear Regression Imputation

The stochastic linear regression is an attempt to loosen the deterministic assumption
of the linear regression. In this case, the distribution of the imputed data fits better
the original data than previous methods (Fig. 13.8). This method can introduce
impossible values, such as negative age. It is a first step to model the uncertainty
present in the dataset that represents a trade-off between the precision of the values
and the uncertainty introduced by the missing data.

K-Nearest Neighbors
We limit the demonstration to the case where k = 1. In the extreme case where all
neighbors are used without weights, this method converges to the mean imputation.

Figure 13.9 demonstrates that this method introduces in our particular dataset a
huge bias towards the central value. The reason for this arises from the fact that

Fig. 13.7 Histogram of the variable age in the IAC group before (original) and after (imputed)
linear for univariate imputation
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almost half of the variables are binary, which end up having a much higher weight
on the distances than continuous variables (which are always less than 1, due to the
unitary normalization performed in data pre-processing). Computations with kNN
increase in quality with the number of observations in the dataset, and indeed this
method is very powerful given the right conditions.

Multiple Imputation
Multiple imputation with linear regression and multivariate normal regression are
extensions of the single imputation methods of the same name and use sampling to
create multiple different datasets, that represent different possibilities of what might
be the original dataset. These methods allow a better modeling of the uncertainty
present in the missing values and are, usually, more solid in terms of statistical

Fig. 13.8 Histogram of variable age in the IAC group before (original) and after (imputed)
stochastic linear for univariate imputation

Fig. 13.9 Histogram of variable age in the IAC group before (original) and after (imputed) KNN
for univariate imputation
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properties and results. We chose to work with 10 datasets, which were averaged so
that the graphical representation would look similar to the previous methods.

Multivariate normal regression

Multiple imputation multivariate normal distribution gave more importance to the
values of the center of the distribution (Fig. 13.10). The main assumption of this
method is that the data follows a multivariate normal distribution, something that is
not completely true for this dataset, which contains numerous binary variables.
Nonetheless, even in the presence of categorical variables and distributions that are
not strictly normal, it should perform reasonably well [10, 19]. The multiple
imputation method enhances the modeling of uncertainty by adding a bootstrap
sampling to the expectation maximization algorithm, giving raise to better pre-
dictions of the possible missing data by considering multiple possibilities of the
original data. Obviously, when averaging the data for histogram representation,
some of that richness is lost. Nonetheless, the quality of the regression is obvious
when compared to the previous methods.

Linear regression

The multiple imputation linear regression method uses all the variables except the
target variable (age) to estimate the missing data of this last variable. The data is
modelled using linear regression and Gibbs sampling. Figure 13.11 demonstrates
that this represents by far the most accurate imputation method in this particular
dataset.

Fig. 13.10 Histogram of variable age in the IAC group before (original) and after (imputed)
multiple imputation multivariate normal regression for univariate imputation
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13.3.3 Evaluating the Performance of Imputation Methods
on Mortality Prediction

This test aims to assess the generalization capabilities of the models constructed
using imputed data, and check their performance by comparing them to the original
data. All the methods described previously were used to reconstruct a sample of
both IAC and non-IAC datasets, with increasing proportions of missing data at
random, first only on the variable age (univariate), then on all the variables in the
dataset (multivariate). A logistic regression model was built on the reconstructed
data and tested on a sample of the original data (that does not contain imputations or
missing data).

The performance of the models is evaluated in terms of area under the receiver
operating characteristic curve (AUC), accuracy (correct classification rate), sensi-
tivity (true positive classification rate—TPR, also known as recall), specificity (true
negative classification rate—TNR) and Cohen’s kappa. All the methods were
compared against a reference logistic regression that was fitted with the original
data without missingness. The results were averaged over a 10-fold cross validation
and the AUC results are presented graphically.

The influence of one variable has a limited effect, even if age is the variable most
correlated with mortality (Fig. 13.12). At most, the AUC decreased from 0.84 to
0.81 for IAC and from 0.90 to 0.87 for the non-IAC case, if we exclude the
complete-case analysis method that performs poorly from the beginning. For lower
values of missingness (less than 50 %), all the other models perform similarly.
Among univariate techniques, the methods that performed the best on both datasets
are the two multiple imputation methods, namely the linear regression and the
multivariate normal distribution, and the one-nearest neighbors algorithm. In the
case of univariate missingness, the nearest neighbors reveals to be a good estimator
if several complete observations exist, as it is the case. With increasing of the

Fig. 13.11 Histogram of variable age in the IAC group before (original) and after (imputed)
multiple imputation generalized regression for univariate imputation
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missingness, the simpler methods introduced more bias in the modeling of the
datasets.

The quality of the imputation methods was also evaluated in the presence of
multivariate missingness with an uniform probability in all variables (Fig. 13.13). It
has to be noted that obtaining results for more than 40 % of missingness in all the
variables is quite infeasible in most cases, and there are no assurances of good
performances with any of the methods. Some methods were not able to perform
complete imputations over a certain degree of missingness (e.g. the complete-case
analysis stopped having enough observations after 20 % of missingness).

Overall, and quite surprisingly, the methods had a reasonable performance even
for 80 % of missingness in every variable. The reason behind this is that almost half
of the variables are binary, and because of their relation with the output, recon-
structing them from frequent values in each class is usually the best guess. The
decrease in AUC was due to a decrease in the sensitivity, as the specificity values
remained more or less unchanged with the increase in missingness. The method that
performed the best overall in terms of AUC was the multiple imputation linear

Fig. 13.12 Mean AUC performance of the logistic regression models modelled with different
imputation methods for different degrees of univariate missingness of the Age variable

Fig. 13.13 Mean AUC of the logistic regression models for different degrees of multivariate
missingness
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regression. In IAC it achieved a minimum value of AUC of 0.81 at 70 % of
missingness, corresponding to a reference AUC of 0.84 and in non-IAC it achieved
an AUC of 0.85 at 70 % of missingness, close to the reference AUC of 0.89.

13.4 Conclusion

Missing data is a widespread problem in EHR due to the nature of medical
information itself, the massive amounts of data collected, the heterogeneity of data
standards and recording devices, data transfers and conversions, and finally Human
errors and omissions. When dealing with the problem of missing data, just like in
many other domains of data mining, there is no one-size-fits-all approach, and the
data scientist should ultimately rely on robust evaluation tools when choosing an
imputation method to handle missing values in a particular dataset.

Take-Home Messages

– Always evaluate the reasons for missingness: is it MCAR/MAR/MNAR?
– What is the proportion of missing data per variable and per record?
– Multiple imputation approaches generally perform better than other methods.
– Evaluation tools must be used to tailor the imputation methods to a particular

dataset.
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Chapter 14
Noise Versus Outliers

Cátia M. Salgado, Carlos Azevedo, Hugo Proença
and Susana M. Vieira

Learning Objectives

• What common methods for outlier detection are available.
• How to choose the most appropriate methods.
• How to assess the performance of an outlier detection method and how to

compare different methods.

14.1 Introduction

An outlier is a data point which is different from the remaining data [1]. Outliers are
also referred to as abnormalities, discordants, deviants and anomalies [2]. Whereas
noise can be defined as mislabeled examples (class noise) or errors in the values of
attributes (attribute noise), outlier is a broader concept that includes not only errors
but also discordant data that may arise from the natural variation within the pop-
ulation or process. As such, outliers often contain interesting and useful information
about the underlying system. These particularities have been exploited in fraud
control, intrusion detection systems, web robot detection, weather forecasting, law
enforcement and medical diagnosis [1], using in general methods of supervised
outlier detection (see below).

Within the medical domain in general, the main sources of outliers are equip-
ment malfunctions, human errors, anomalies arising from patient specific behaviors
and natural variation within patients. Consider for instance an anomalous blood test
result. Several reasons can explain the presence of outliers: severe pathological
states, intake of drugs, food or alcohol, recent physical activity, stress, menstrual
cycle, poor blood sample collection and/or handling. While some reasons may point
to the existence of patient-specific characteristics discordant with the “average”
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patient, in which case the observation being an outlier provides useful information,
other reasons may point to human errors, and hence the observation should be
considered for removal or correction. Therefore, it is crucial to consider the causes
that may be responsible for outliers in a given dataset before proceeding to any type
of action.

The consequences of not screening the data for outliers can be catastrophic. The
negative effects of outliers can be summarized in: (1) increase in error variance and
reduction in statistical power; (2) decrease in normality for the cases where outliers
are non-randomly distributed; (3) model bias by corrupting the true relationship
between exposure and outcome [3].

A good understanding of the data itself is required before choosing a model to
detect outliers, and several factors influence the choice of an outlier identification
method, including the type of data, its size and distribution, the availability of
ground truth about the data, and the need for interpretability in a model [2]. For
example, regression-based models are better suited for finding outliers in linearly
correlated data, while clustering methods are advisable when the data is not linearly
distributed along correlation planes. While this chapter provides a description of
some of the most common methods for outlier detection, many others exist.

Evaluating the effectiveness of an outlier detection algorithm and comparing the
different approaches is complex. Moreover, the ground-truth about outliers is often
unavailable, as in the case of unsupervised scenarios, hampering the use of quan-
titative methods to assess the effectiveness of the algorithms in a rigorous way. The
analyst is left with the alternative of qualitative and intuitive evaluation of results
[2]. To overcome this difficulty, we will use in this chapter logistic regression
models to investigate the performance of different outlier identification techniques
in the medically relevant case study.

14.2 Part 1—Theoretical Concepts

Outlier identification methods can be classified into supervised and unsupervised
methods, depending on whether prior information about the abnormalities in the
data is available or not. The techniques can be further divided into univariable and
multivariable methods, conditional on the number of variables considered in the
dataset of interest.

The simplest form of outlier detection is extreme value analysis of unidimen-
sional data. In this case, the core principle of discovering outliers is to determine the
statistical tails of the underlying distribution and assume that either too large or too
small values are outliers. In order to apply this type of technique to a multidi-
mensional dataset, the analysis is performed one dimension at a time. In such a
multivariable analysis, outliers are samples which have unusual combinations with
other samples in the multidimensional space. It is possible to have outliers with
reasonable marginal values (i.e. the value appears normal when confining oneself to
one dimension), but due to linear or non-linear combinations of multiple attributes
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these observations unveil unusual patterns in regards to the rest of the population
under study.

To better understand this, the Fig. 14.1 provides a graphical example of a sce-
nario where outliers are only visible in a 2-dimensional space. An inspection of the
boxplots will reveal no outliers (no data point above and below 1.5 IQR (the
interquartile range, refer to Chap. 15—Exploratory Data Analysis), a widely uti-
lized outlier identification method), whereas a close observation of the natural
clusters present in data will uncover irregular patterns. Outliers can be identified by
visual inspection, highlighting data points that seem to be relatively out of the
inherent 2-D data groups.

14.3 Statistical Methods

In the field of statistics, the data is assumed to follow a distribution model (e.g.,
normal distribution) and an instance is considered an outlier if it deviates signifi-
cantly from the model [2, 4]. The use of normal distributions simplifies the analysis,

Fig. 14.1 Univariable (boxplots) versus multivariable (scatter plot) outlier investigation
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as most of the existing statistical tests, such as the Z-score, can be directly inter-
preted in terms of probabilities of significance. However, in many real world
datasets the underlying distribution of the data is unknown or complex. Statistical
tests still provide a good approximation of outlier scores, but results of the tests
need to be interpreted carefully and cannot be expressed statistically [2]. The next
sections describe some of the most widely used statistical tests for outliers
identification.

14.3.1 Tukey’s Method

Quartiles are the values that divide an array of numbers into quarters. The (IQR) is
the distance between the lower (Q1) and upper (Q3) quartiles in the boxplot, that is
IQR = Q3 − Q1. It can be used as a measure of how spread out the values are.
Inner “fences” are located at a distance of 1.5 IQR below Q1 and above Q3, and
outer fences at a distance of 3 IQR below Q1 and above Q3 [5]. A value between
the inner and outer fences is a possible outlier, whereas a value falling outside the
outer fences is a probable outlier. The removal of all possible and probable outliers
is referred to as the Interquartile (IQ) method, while in Tukey’s method only the
probable outliers are discarded.

14.3.2 Z-Score

The Z-value test computes the number of standard deviations by which the data
varies from the mean. It presents a reasonable criterion for the identification of
outliers when the data is normally distributed. It is defined as:

zi ¼ xi � x
s

ð14:1Þ

where x and s denote the sample mean and standard deviation, respectively. In cases
where mean and standard deviation of the distribution can be accurately estimated
(or are available from domain knowledge), a good “rule of thumb” is to consider
values with zij j � 3 as outliers. Of note, this method is of limited value for small
datasets, since the maximum z-score is at most n� 1=

ffiffiffi
n

p
[6].

14.3.3 Modified Z-Score

The estimators used in the z-Score, the sample mean and sample standard deviation,
can be affected by the extreme values present in the data. To avoid this problem, the

166 14 Noise Versus Outliers



modified z-score uses the median ex and the median absolute deviation
(MAD) instead of the mean and standard deviation of the sample [7]:

Mi ¼ 0:6745ðxi � exÞ
MAD

ð14:2Þ

where

MAD ¼ medianfjxi � exjg ð14:3Þ

The authors recommend using modified z-scores with Mij j � 3:5 as potential
outliers. The assumption of normality of the data still holds.

14.3.4 Interquartile Range with Log-Normal Distribution

The statistical tests discussed previously are specifically based on the assumption
that the data is fairly normally distributed. In the health care domain it is common to
find skewed data, for instance in surgical procedure times or pulse oxymetry [8].
Refer to Chap. 15-Exploratory Data Analysis for a formal definition of skewness. If
a variable follows a log-normal distribution then the logarithms of the observations
follow a normal distribution. A reasonable approach then is to apply the ln to the
original data and they apply the tests intended to the “normalized” distributions. We
refer to this method as the log-IQ.

14.3.5 Ordinary and Studentized Residuals

In a linear regression model, ordinary residuals are defined as the difference
between the observed and predicted values. Data points with large residuals differ
from the general regression trend and may represent outliers. The problem is that
their magnitudes depend on their units of measurement, making it difficult to, for
example, define a threshold at which a point is considered an outlier. Studentized
residuals eliminate the units of measurement by dividing the residuals by an esti-
mate of their standard deviation. One limitation of this approach is it assumes the
regression model is correctly specified.

14.3.6 Cook’s Distance

In a linear regression model, Cook’s distance is used to estimate the influence of a
data point on the regression. The principle of Cook’s distance is to measure the
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effect of deleting a given observation. Data points with a large distance may rep-
resent outliers. For the ith point in the sample, Cook’s distance is defined as:

Di ¼
Pn

j¼1ðŷjŷjðiÞÞ2
ðkþ 1Þs2 ð14:4Þ

Where ŷjðiÞ is the prediction of yj by the revised regression model when the ith
point is removed from the sample, and s is the estimated root mean square error.
Instinctively, Di is a normalized measure of the influence of the point i on all
predicted mean values ŷj with j = 1, …, n. Different cut-off values can be used for
flagging highly influential points. Cook has suggested that a distance >1 represents
a simple operational guideline [9]. Others have suggested a threshold of 4/n, with
n representing the number of observations.

14.3.7 Mahalanobis Distance

This test is based on Wilks method designed to detect a single outlier from a normal
multivariable sample. It approaches the maximum squared Mahalanobis Distance
(MD) to an F-distribution function formulation, which is often more appropriate
than a v2 distribution [10]. For a p-dimensional multivariate sample xi (i = 1,…,n),
the Mahalanobis distance of the ith case is defined as:

MDi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � tÞTC�1ðxi � tÞ

q
ð14:5Þ

where t is the estimated multivariate location, which is usually the arithmetic mean,
and C is the estimated covariance matrix, usually the sample covariance matrix.

Multivariate outliers can be simply defined as observations having a large
squared Mahalanobis distance. In this work, the squared Mahalanobis distance is
compared with quantiles of the F-distribution with p and p − 1 degrees of freedom.
Critical values are calculated using Bonferroni bounds.

14.4 Proximity Based Models

Proximity-based techniques are simple to implement and unlike statistical models
they make no prior assumptions about the data distribution model. They are suitable
for both supervised and unsupervised multivariable outlier detection [4].

Clustering is a type of proximity-based technique that starts by partitioning a N–
dimensional dataset into c subgroups of samples (clusters) based on their similarity.
Then, some measure of the fit of the data points to the different clusters is used in
order to determine if the data points are outliers [2]. One challenge associated with
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this type of technique is that it assumes specific shapes of clusters depending on the
distance function used within the clustering algorithm. For example, in a
3-dimensional space, the Euclidean distance would consider spheres as equidistant,
whereas the Mahalanobis distance would consider ellipsoids as equidistant (where
the length of the ellipsoids in one axis is proportional to the variance of the data in
that direction).

14.4.1 k-Means

The k-means algorithm is widely used in data mining due to its simplicity and
scalability [11]. The difficulty associated with this algorithm is the need to deter-
mine k, the number of clusters, in advance. The algorithm minimizes the
within-cluster sum of squares, the sum of distances between each point in a cluster
and the cluster centroid. In k-means, the center of a group is the mean of mea-
surements in the group. Metrics such as the Akaike Information Criterion or the
Bayesian Information Criterion, which add a factor proportional to k to the cost
function used during clustering, can help determine k. A k value which is too high
will increase the cost function even if it reduces the within-cluster sum of squares
[12, 13].

14.4.2 k-Medoids

Similarly to k-means, the k-medoids clustering algorithm partitions the dataset into
groups so that it minimizes the sum of distances between a data point and its center.
In contrast to the k-means algorithm, in k-medoids the cluster centers are members
of the group. Consequently, if there is a region of outliers outside the area with
higher density of points, the cluster center will not be pushed towards the outliers
region, as in k-means. Thus, k-medoids is more robust towards outliers than
k-means.

14.4.3 Criteria for Outlier Detection

After determining the position of the cluster center with either k-means or
k-medoids, the criteria to classify an item as an outlier must be specified, and
different options exist:

Criterion 1: The first criterion proposed to detect outliers is based on the
Euclidean distance to the cluster centers C, such that points more distant to their
center than the minimum interclusters distance are considered outliers:
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x 2 Ck is outlier if d x;Ckð Þ[ min
k 6¼jfdðCk;CjÞg � w ð14:6Þ

where dðx;CkÞ is the Euclidean distance between point x and Ck center, dðCk;CjÞ is
the distance between Ck and Cj centers and w ¼ f0:5; 0:7; 1; 1:2; 1:5; . . .g is a
weighting parameter that determines how aggressively the method will remove
outliers.

Figure 14.2 provides a graphical example of the effect of varying values of w in
the creation of boundaries for outlier detection. While small values of w aggres-
sively remove outliers, as w increases the harder it is to identify them.

Criterion 2: In this criterion, we calculate the distance of each data point to its
centroid (case of k-means) or medoid (case of k-medoids) [14]. If the ratio of the
distance of the nearest point to the cluster center and these calculated distances are
smaller than a certain threshold, than the point is considered an outlier. The
threshold is defined by the user and should depend on the number of clusters
selected, since the higher the number of clusters the closer are the points inside the
cluster, i.e., the threshold should decrease with increasing c.

Fig. 14.2 Effect of different weights w in the detection of cluster-based outliers, using criterion 1
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14.5 Supervised Outlier Detection

In many scenarios, previous knowledge about outliers may be available and can be
used to label the data accordingly and to identify outliers of interest. The methods
relying on previous examples of data outliers are referred to as supervised outlier
detection methods, and involve training classification models which can later be
used to identify outliers in the data. Supervised methods are often devised for
anomaly detection in application domains where anomalies are considered occur-
rences of interest. Examples include fraud control, intrusion detection systems, web
robot detection or medical diagnosis [1]. Hence, the labels represent what an analyst
might be specifically looking for rather than what one might want to remove [2].
The key difference comparing to many other classification problems is the inherent
unbalanced nature of data, since instances labeled as “abnormal” are present much
less frequently than “normal” labeled instances. Interested readers can find further
information about this topic in the textbook by Aggarwal, for instance [2].

14.6 Outlier Analysis Using Expert Knowledge

In univariate analyses, expert knowledge can be used to define thresholds of values
that are normal, critical (life-threatening) or impossible because they fall outside
permissible ranges or have no physical meaning [15]. Negative measurements of
heart rate or body temperatures are examples of impossible values. It is very
important to check the dataset for these types of outliers, as they originated
undoubtedly from human error or equipment malfunction, and should be deleted or
corrected.

14.7 Case Study: Identification of Outliers
in the Indwelling Arterial Catheter
(IAC) Study

In this section, various methods will be applied to identify outliers in two “real
world” clinical datasets used in a study that investigated the effect of inserting an
indwelling arterial catheter (IAC) in patients with respiratory failure. Two datasets
are used, and include patients that received an IAC (IAC group) and patients that
did not (non-IAC). The code used to generate the analyses and the figures is
available in the GitHub repository for this book.
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14.8 Expert Knowledge Analysis

Table 14.1 provides maximum and minimum values for defining normal, critical
and permissible ranges in some of the variables analyzed in the study, as well as
maximum and minimum values present in the dataset.

14.9 Univariate Analysis

In this section, univariate outliers are identified for each variable within pre-defined
classes (survivors and non-survivors), using the statistical methods described above.

Table 14.2 summarizes the number and percentage of outliers identified by each
method in the Indwelling Arterial Catheter (IAC) and non-IAC groups. Overall,
Tukey’s and log-IQ are the most conservative methods, i.e., they identify the

Table 14.1 Normal, critical and impossible ranges for the selected variables, and maximum and
minimum values present in the datasets

Reference value Analyzed data

Variable Normal
range

Critical Impossible IAC Non-IAC Units

Age – – <17
(adults)

15.2–99.1 15.2–97.5 Years

SOFA – – <0
and >24

1–17 0–14 No units

WBC 3 9–10.7 � 100 <0 0.3–86.0 0 2–109.8 �109 cells/L

Hemoglobin Male:
13.5–17.5

� 6
and � 20

<0 Male:
3 2–19.0

4.9–18.6 g/dL

Female:
12–16

Female:
2.0–18.l

4.2–18.1

Platelets 150–400 � 40
and � 1000

<0 7.0–680.0 9.0–988.0 �l09/L

Sodium 136–145 � 120
and � 160

<0 105 0–
165.0

111.0–
154.0

mmol/L

Potassium 3.5–5 � 2.5
and � 6

<0 1 9–9.8 1.9–8.3 mmol/L

TCO2 22–28 � 10
and � 40 [4]

<0 2.0–62.0 5.0–52.0 mmol/L

Chloride
[29]

95–105 � 70
and � 120

<0
and � 160

81.0–133.0 78.0–127.0 mmol/L

BUN 7–18 � 100 [1] <0 2.0–139.0 2.0-126.0 mg/dL

Creatinine 0.6–1.2 � 10 <0 0.2–12 5 0.0–18.3 mg/dL

PO2 75–105 � 40 <0 25 0–594.0 22.0–634.0 mmHg

PCO2 33–45 � 20
and � 70

<0 8.0–141.0 14.0–158.0 mmHg
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smallest number of points as outliers, whereas IQ identifies more outliers than any
other method. With a few exceptions, the modified z-score identifies more outliers
than the z-score.

A preliminary investigation of results showed that values falling within reference
normal ranges (see Table 14.1) are never identified as outliers, whatever the
method. On the other hand, critical values are often identified as such. Additional
remarks can be made as in general (1) more outliers are identified in the variable
BUN than in any other and (2) the ratio of number of outliers and total number of
patients is smaller in the class 1 cohorts (non-survivors). As expected, for variables
that approximate more to lognormal distribution than to a normal distribution, such
as potassium, BUN and PCO2, the IQ method applied to the logarithmic trans-
formation of data (log-IQ method) identifies less outliers than the IQ applied to the
real data. Consider for instance the variable BUN, which follows approximately a
lognormal distribution. Figure 14.3 shows a scatter of all data points and the
identified outliers in the IAC group.

Fig. 14.3 Outliers identified by statistical analysis for the variable BUN, in the IAC cohort. Class
0: survivors; Class 1: non survivors
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On the other hand, when the values follow approximately a normal distribution,
as in the case of chloride (see Fig. 14.4), the IQ method identifies less outliers than
log-IQ. Of note, the range of values considered outliers differs between classes, i.e.,
what is considered an outlier in class 0 is not necessarily an outlier in class 1. An
example of this is values smaller than 90 mmol/L in the modified z-score.

Since this is a univariate analysis, the investigation of extreme values using
expert knowledge is of interest. For chloride, normal values are in the range of 95–
105 mmol/L, whereas values <70 or >120 mmol/L are considered critical, and
concentrations above 160 mmol/L are physiologically impossible [15]. Figure 14.4
confirms that normal values are always kept, whatever the method. Importantly,
some critical values are not identified in both z-score and modified z-score (espe-
cially in class 1). Thus, it seems that the methods identify outliers that should not be
eliminated, as they likely represent actual values in extremely sick patients.

Fig. 14.4 Outliers identified by statistical analysis for the variable chloride, in the IAC cohort.
Class 0: survivors; Class 1: non survivors
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14.10 Multivariable Analysis

Using model based approaches, unusual combination of values for a number of
variables can be identified. In this analysis we will be concerned with multivariable
outliers for the complete set of variables in the datasets, including those that are
binary. In order to investigate multivariable outliers in IAC and non-IAC patients,
the Mahalanobis distance and cluster based approaches are tested within pre-defined
classes. Table 14.3 shows the average results in terms of number of clusters c de-
termined by the silhouette index, and the percentage of patients identified as

Table 14.3 Multivariable outliers identified by k-means, k-medoids and Mahalanobis distance

Criterion Weight c % of outliers Class 0

Class 0 Class 1 Class 0 Class 1

IAC

K-means,
silhouette
index

1 1.2 4 ± 3.1 2 ± 0.0 25.2 ± 7.4 20.9 ± 11.0

1 1.5 3 ± 2.9 2 ± 0.0 7.9 ± 4.6 3.3 ± 5.9

1 1.7 3 ± 2.6 2 ± 0.0 3.6 ± 2.5 0.4 ± 2.2

1 2.0 4 ± 3.1 2 ± 0.0 1.0 ± 1.1 0.1 ± 0.3

K-means,
c = 2

2 0.05 2 ± 0.0 2 ± 0.0 28.5 ± 4.8 21.4 ± 11.9

2 0.06 2 ± 0.0 2 ± 0.0 9.3 ± 4.2 2.9 ± 5.2

K-medoids,
silhouette
index

1 1.2 4 ± 3.0 2 ± 0.0 4.1 ± 2.2 0.8 ± 3.1

1 1.5 3 ± 2.6 2 ± 0.0 1.1 ± 1.0 0.1 ± 0.3

1 1.7 3 ± 2.9 2 ± 0.0 0.2 ± 0.2 0.0 ± 0.0

1 2.0 4 ± 3.0 2 ± 0.0 0.7 ± 0.4 0.0 ± 0.0

K-medoids,
c = 2

2 0.01 2 ± 0.0 2 ± 0.0 34.6 ± 8.6 2.5 ± 0.0

2 0.02 2 ± 0.0 2 ± 0.0 20.8 ± 6.1 0.0 ± 0.0

Mahalanobis – – – – 16.7 ± 5.5 0.0 ± 0.0

Non-IAC

K-means,
silhouette
index

1 1.2 9 ± 1.8 7 ± 2.4 12.8 ± 4.1 13.0 ± 9.5

1 1.5 9 ± 1.7 7 ± 2.5 2.8 ± 1.8 1.0 ± 1.7

1 1.7 9 ± 1.8 7 ± 2.5 0.9 ± 1.2 0.0 ± 0.2

1 2.0 9 ± 2.4 7 ± 2.5 0.2 ± 0.7 0.0 ± 0.0

K-means,
c = 2

2 0.05 2 ± 0.0 2 ± 0.0 25.5 ± 4.5 41.0 ± 11.9

2 0.06 2 ± 0.0 2 ± 0.0 10.6 ± 2.6 4.8 ± 7.2

K-medoids,
silhouette
index

1 1.2 9 ± 1.5 7 ± 2.5 3.8 ± 1.6 1.4 ± 1.6

1 1.5 9 ± 2.0 7 ± 2.4 0.9 ± 1.9 0.0 ± 0.0

1 1.7 9 ± 2.0 7 ± 2.4 0.3 ± 0.6 0.0 ± 0.0

1 2.0 9 ± 1.3 7 ± 2.5 0.4 ± 0.9 0.0 ± 0.0

K-medoids,
c = 2

2 0.01 2 ± 0.0 2 ± 0.0 19.7 ± 4.0 2.7 ± 8.8

2 0.02 2 ± 0.0 2 ± 0.0 11.0 ± 2.8 1.0 ± 5.0

Mahalanobis – – – – 6.8 ± 2.6 0.8 ± 4.0

Results are presented as mean ± standard deviation
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outliers. In order to account for variability, the tests were performed 100 times. The
data was normalized for testing the cluster based approaches only.

Considering the scenario where two clusters are created for the complete IAC
dataset separated by classes, we investigate outliers by looking at multivariable
observations around cluster centers. Figure 14.5 shows an example of the outliers
detected using k-means and k-medoids with the criterion 1 and weight equal to 1.5.
For illustrative purposes, we present only the graphical results of patients that died
in the IAC group (class 1). The x-axis represents each of the selected features (see
Table 14.1) and the y-axis represents the corresponding values normalized between
0 and 1. K-medoids does not identify any outlier, whereas k-means identifies 1
outlier in the first cluster and 2 outliers in the second cluster. This difference can be
attributed to the fact that the intercluster distance is smaller in k-medoids than in
k-means.

The detection of outliers seems to be more influenced by binary features than by
continuous features: red lines are, with some exceptions, fairly close to black lines
for the continuous variables (1 to 2 and 15 to 25) and distant in the binary variables.
A possible explanation is that clustering was essentially designed for multivariable
continuous data; binary variables produce a maximum separation, since only two
values exist, 0 and 1, with nothing between them.

Fig. 14.5 Outliers identified by clustering based approaches for patients that died after IAC.
Criterion 1, based on interclusters distance, with c = 2 and w = 1.5 was used. K-medoids does not
identify outliers, whereas k-means identifies 1 outlier in cluster 1 and 2 outliers in cluster 2
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14.11 Classification of Mortality in IAC and Non-IAC
Patients

Logistic regression models were created to assess the effect of removing outliers
using the different methods in the classification of mortality in IAC and non-IAC
patients, following the same rationale as in Chap. 13-Missing Data. A 10-fold cross
validation approach was used to assess the validity and robustness of the models. In
each round, every outlier identification method was applied separately for each
class of the training set, and the results were averaged over the rounds. Before
cross-validation, the values were normalized between 0 and 1 using the min-max
procedure. For the log-IQ method, the data was log-transformed before normal-
ization, except for variables containing null values (binary variables in Table 14.1,
SOFA and creatinine). We also investigate the scenario where only the 10 % worst
examples detected by each statistical method within each class are considered, and
the case where no outliers were removed (all data is used). In the clustering based
approaches, the number of clusters c was chosen between 2 and 10 using the
silhouette index method. We also show the case where c is fixed as 2. The weight of
the clustering based approaches was adjusted according to the particularities of the
method. Since a cluster center in k-medoids is a data point belonging to the dataset,
the distance to its nearest neighbor is smaller than in the case of k-means, especially
because a lot of binary variables are considered. For this reason, we chose higher
values of w for k-means criterion 2.

The performance of the models is evaluated in terms of area under the receiver
operating characteristic curve (AUC), accuracy (ACC, correct classification rate),
sensitivity (true positive classification rate), and specificity (true negative classifi-
cation rate). A specific test suggested by DeLong and DeLong can then test whether
the results differ significantly [16].

The performance results for the IAC group are shown in Table 14.4, and the
percentage of patients removed using each method in Table 14.5. For conciseness,
the results for the non-IAC group are not shown. The best performance for IAC is
AUC = 0.83 and ACC = 0.78 (highlighted in bold). The maximum sensitivity is
87 % and maximum specificity is 79 %, however these two do not occur simul-
taneously. Overall, the best AUC is obtained when all the data is used and when
only a few outliers are removed. The worst performances are obtained using the
z-score without trimming the results and k-means and k-medoids using c = 2,
criterion 1 and weight 1.2. As for non-IAC, the best performance corresponds to
AUC = 0.88, ACC = 0.84, sensitivity = 0.85 and specificity = 0.85. Again, the
best performance is achieved when all the data is used and in the cases where less
outliers are removed. The worst performance by far is obtained when all outliers
identified by the z-score are removed. Similarly to IAC, for k-means and k-medoids
criterion 1, increasing values of weight provide better results.
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Table 14.4 IAC logistic regression results using 10-fold cross validation, after removal of outliers
and using the original dataset

Statistical Cutoff AUC ACC Sensitivity Specificity

IQ – 0.81 ± 0.05 0.76 ± 0.05 0.71 ± 0.14 0.76 ± 0.06

10 0.82 ± 0.06 0.77 ± 0.06 0.76 ± 0.11 0.77 ± 0.07

Tukey’s – 0.82 ± 0.05 0.75 ± 0.06 0.76 ± 0.09 0.75 ± 0.06

10 0.83 – 0.06 0 78 ± 0.05 0.75 ± 0 10 0.78 ± 0.06

Log-IQ – 0.82 ± 0.06 0.76 ± 0.05 0.74 ± 0 14 0.76 ± 0.06

10 0.83 – 0.06 0.78 – 0.04 0.73 ± 0 10 0.79 ± 0.05

Z-score – 0.78 ± 0.03 0.67 ± 0.06 0.85 ± 0 09 0.64 ± 0.08

10 0.81 ± 0.07 0.75 ± 0.06 0.74 ± 013 0.75 ± 0.07

Modified z-score – 0.82 ± 0.05 0.76 ± 0.05 0.77 ± 0 14 0.76 ± 0.05

10 0.82 ± 0.06 0.77 ± 0.06 0.75 ± 0 10 0.77 ± 0.06

Mahalanobis – 0.81 ± 0.08 0.75 ± 0.06 0.73 ± 0 10 0.76 ± 0.07

Cluster based Weight AUC ACC Sensitivity Specificity

K-means
silhouette
criterion 1

1.2 0.81 ± 0.08 0.72 ± 0.05 0.80 ± 0.12 0.70 ± 0.06

1.5 0.82 ± 0.05 0.76 ± 0.06 0.76 ± 011 0.76 ± 0.06

1.7 0.83 – 0.06 0.78 – 0.05 0.77 ± 0 10 0.78 ± 0.06

2 0.83 – 0.06 0.78 – 0.05 0.74 ± 0.09 0.78 ± 0.06

K-means c = 2
criterion 1

1.2 0.79 ± 0.08 0.66 ± 0.05 0.84 ± 0 10 0.63 ± 0.06

1.5 0.82 ± 0.06 0.73 ± 0.06 0.79 ± 0 09 0.72 ± 0.07

1.7 0.82 ± 0.06 0.75 ± 0.06 0.78 ± 0.08 0.75 ± 0.08

2 0.83 – 0.07 0.78 – 0.06 0.76 ± 0 09 0.78 ± 0.06

K-means
criterion 2

0 05 0.83 – 0.07 0.77 ± 0.05 0.74 ± 0.09 0.78 ± 0.06

0.06 0.83 – 0.06 0.77 ± 0.06 0.75 ± 0 10 0.78 ± 0.06

K-medoids
silhouette
criterion 1

1.2 0.81 ± 0.04 0.68 ± 0.04 0.85 ± 0 09 0.64 ± 0.05

1.5 0.83 – 0.05 0.74 ± 0.04 0.80 ± 0 10 0.73 ± 0.06

1.7 0.83 ± 0.05 0.75 ± 0.06 0.78 ± 0 10 0.74 ± 0.07

2 0.83 ± 0.06 0.77 ± 0.05 0.77 ± 0 09 0.77 ± 0.06

K-medoids
c = 2 criterion 1

1.2 0.78 ± 0.06 0.62 ± 0.07 0.87 ± 0 08 0.57 ± 0.07

1.5 0.81 ± 0.06 0.70 ± 0.06 0.83 ± 0 10 0.68 ± 0.08

1.7 0.82 ± 0.06 0.72 ± 0.06 0.80 ± 0 10 0.71 ± 0.08

2 0.83 – 0.07 0.76 ± 0.06 0.77 ± 0 10 0.75 ± 0.07

K-medoids
criterion 2

0.01 0.83 ± 0.07 0.74 ± 0.07 0.77 ± 0 10 0.74 ± 0.08

0 02 0.81 ± 0.06 0.67 ± 0.06 0.85 ± 0 09 0.63 ± 0.08

All data – 0.83 – 0.06 0.78 – 0.05 0.76 ± 0.11 0.79 ± 0.06

Results are presented as mean ± standard deviation
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14.12 Conclusions and Summary

The univariable outlier analysis provided in the case study showed that a large
number of outliers were identified for each variable within the predefined classes,
meaning that the removal of all the identified outliers would cause a large portion of

Table 14.5 Percentage of IAC patients removed by each method in the train set, during
cross-validation

Statistical Cutoff Class 0 Class 1 Total

IQ – 23.1 ± 1.4 33.3 ± 1.9 24.8 ± 1.4

10 3.3 ± 0.2 5.2 ± 0.3 3.6 ± 0.2

Tukey’s – 8.7 ± 0.05 10.1 ± 1.1 9.0 ± 0.5

10 1.2 ± 0.1 1.3 ± 0.2 1.3 ± 0 1

Log-IQ – 22.8 ± 1.1 25.4 ± 2.0 23.2 ± 1.1

10 3.1 ± 0.2 3.7 ± 0.5 3.2 ± 0 1

Z-score – 35.0 ± 1.6 0.67 ± 0.06 32.6 ± 1.4

10 5.3 ± 0.2 2.9 ± 1.3 4.9 ± 0.3

Modified z-score – 18.3 ± 0.05 24.5 ± 1.3 19.4 ± 0.5

10 2.4 ± 0.1 3.5 ± 0.4 2.6 ± 0.1

Mahalanobis – 19.6 ± 9.6 17.4 ± 3.0 19.2 ± 8.1

Cluster based Weight Class 0 Class 1 Total

K-means silhouette criterion 1 1.2 19.6 ± 9.6 17.4 ± 3.0 19.2 ± 8.1

1.5 6.1 ± 5.1 1.9 ± 0.5 5.4 ± 4.2

1.7 2.5 ± 2.6 0.3 ± 0.3 2.2 ± 2.2

2 0.7 ± 0.9 0.0 ± 0.0 0.6 ± 0.8

K-means c = 2 criterion 1 1.2 29.7 ± 3.5 17.4 ± 3.0 27.6 ± 2.9

1.5 11.9 ± 3.0 1.9 ± 0.5 10.2 ± 2.5

1.7 5.5 ± 2.0 0.3 ± 0.3 4.7 ± 1.6

2 1.7 ± 0.8 0.0 ± 0.0 1.4 ± 0 7

K-means criterion 2 0 05 0.3 ± 0.2 0.0 ± 0.0 0.3 ± 0.2

0.06 1.1 ± 0.5 0.0 ± 0.0 0.9 ± 0 4

K-medoids silhouette criterion 1 1.2 25.0 ± 10.7 3.8 ± 2.0 21.5 ± 8.8

1.5 12.9 ± 7.4 0.0 ± 0.0 10.8 ± 6.2

1.7 9.5 ± 6.1 0.0 ± 0.0 7.9 ± 5.1

2 3.1 ± 2.3 0.0 ± 0.0 2.5 ± 1.9

K-medoids c = 2 criterion 1 1.2 34.7 ± 0.7 3.8 ± 2.0 29.5 ± 0.7

1.5 19.6 ± 0.6 0.0 ± 0.0 16.3 ± 0 5

1.7 14.9 ± 1.1 0.0 ± 0.0 12.4 ± 0 9

2 5.1 ± 0.4 0.0 ± 0.0 4.2 ± 0 4

K-medoids criterion 2 0.01 8.3 ± 2.1 0.0 ± 0.0 6.9 ± 1.7

0 02 28.9 ± 3.9 1.8 ± 3.8 24.4 ± 3.6

Results are presented as mean ± standard deviation
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data to be excluded. For this reason, ranking the univariate outliers according to
score values and discarding only those with highest scores provided better classi-
fication results.

Overall, none of the outlier removal techniques was able to improve the per-
formance of a classification model. As it had been cleaned these results suggest that
the dataset did not contain impossible values, extreme values are probably due to
biological variation rather than experimental mistakes. Hence, the “outliers” in this
study appear to contain useful information in their extreme values, and automati-
cally excluding resulted in a loss of this information.

Some modeling methods already accommodate for outliers so they have minimal
impact in the model, and can be tuned to be more or less sensitive to them. Thus,
rather than excluding outliers from the dataset before the modeling step, an alter-
native strategy would be to use models that are robust to outliers, such as robust
regression.

Take Home Messages

1. Distinguishing outliers as useful or uninformative is not clear cut.
2. In certain contexts, outliers may represent extremely valuable information that

must not be discarded.
3. Various methods exist and will identify possible or likely outliers, but the expert

eye must prevail before deleting or correcting outliers.

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.
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Commons license, unless indicated otherwise in the credit line; if such material is not included in
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Code Appendix

The code used in this chapter is available in the GitHub repository for this book:
https://github.com/MIT-LCP/critical-data-book. Further information on the code is
available from this website.
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Chapter 15
Exploratory Data Analysis

Matthieu Komorowski, Dominic C. Marshall, Justin D. Salciccioli
and Yves Crutain

Learning Objectives

• Why is EDA important during the initial exploration of a dataset?
• What are the most essential tools of graphical and non-graphical EDA?

15.1 Introduction

Exploratory data analysis (EDA) is an essential step in any research analysis. The
primary aim with exploratory analysis is to examine the data for distribution,
outliers and anomalies to direct specific testing of your hypothesis. It also provides
tools for hypothesis generation by visualizing and understanding the data usually
through graphical representation [1]. EDA aims to assist the natural patterns
recognition of the analyst. Finally, feature selection techniques often fall into EDA.
Since the seminal work of Tukey in 1977, EDA has gained a large following as the
gold standard methodology to analyze a data set [2, 3]. According to Howard
Seltman (Carnegie Mellon University), “loosely speaking, any method of looking at
data that does not include formal statistical modeling and inference falls under the
term exploratory data analysis” [4].

EDA is a fundamental early step after data collection (see Chap. 11) and
pre-processing (see Chap. 12), where the data is simply visualized, plotted,
manipulated, without any assumptions, in order to help assessing the quality of the
data and building models. “Most EDA techniques are graphical in nature with a few
quantitative techniques. The reason for the heavy reliance on graphics is that by its
very nature the main role of EDA is to explore, and graphics gives the analysts
unparalleled power to do so, while being ready to gain insight into the data. There
are many ways to categorize the many EDA techniques” [5].
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The interested reader will find further information in the textbooks of Hill and
Lewicki [6] or the NIST/SEMATECH e-Handbook [1]. Relevant R packages are
available on the CRAN website [7].

The objectives of EDA can be summarized as follows:

1. Maximize insight into the database/understand the database structure;
2. Visualize potential relationships (direction and magnitude) between exposure

and outcome variables;
3. Detect outliers and anomalies (values that are significantly different from the

other observations);
4. Develop parsimonious models (a predictive or explanatory model that performs

with as few exposure variables as possible) or preliminary selection of appro-
priate models;

5. Extract and create clinically relevant variables.

EDA methods can be cross-classified as:

• Graphical or non-graphical methods
• Univariate (only one variable, exposure or outcome) or multivariate (several

exposure variables alone or with an outcome variable) methods.

15.2 Part 1—Theoretical Concepts

15.2.1 Suggested EDA Techniques

Tables 15.1 and 15.2 suggest a few EDA techniques depending on the type of data
and the objective of the analysis.

Table 15.1 Suggested EDA techniques depending on the type of data

Type of data Suggested EDA techniques

Categorical Descriptive statistics

Univariate
continuous

Line plot, Histograms

Bivariate
continuous

2D scatter plots

2D arrays Heatmap

Multivariate:
trivariate

3D scatter plot or 2D scatter plot with a 3rd variable represented in
different color, shape or size

Multiple groups Side-by-side boxplot
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15.2.2 Non-graphical EDA

These non-graphical methods will provide insight into the characteristics and the
distribution of the variable(s) of interest.

Univariate Non-graphical EDA

Tabulation of Categorical Data (Tabulation of the Frequency of Each Category)

A simple univariate non-graphical EDA method for categorical variables is to build
a table containing the count and the fraction (or frequency) of data of each category.
An example of tabulation is shown in the case study (Table 15.3).

Characteristics of Quantitative Data: Central Tendency, Spread, Shape of the
Distribution (Skewness, Kurtosis)

Sample statistics express the characteristics of a sample using a limited set of
parameters. They are generally seen as estimates of the corresponding population
parameters from which the sample comes from. These characteristics can express
the central tendency of the data (arithmetic mean, median, mode), its spread
(variance, standard deviation, interquartile range, maximum and minimum value) or
some features of its distribution (skewness, kurtosis). Many of those characteristics
can easily be seen qualitatively on a histogram (see below). Note that these char-
acteristics can only be used for quantitative variables (not categorical).

Table 15.2 Most useful EDA techniques depending on the objective

Objective Suggested EDA techniques

Getting an idea of the distribution of a variable Histogram

Finding outliers Histogram, scatterplots,
box-and-whisker plots

Quantify the relationship between two variables (one
exposure and one outcome)

2D scatter plot +/curve fitting
Covariance and correlation

Visualize the relationship between two exposure variables
and one outcome variable

Heatmap

Visualization of high-dimensional data t-SNE or PCA + 2D/3D
scatterplot

t-SNE t-distributed stochastic neighbor embedding, PCA Principal component analysis

Table 15.3 Example of
tabulation table

Group count Frequency (%)

Green ball 15 75

Red ball 5 25

Total 20 100
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Central tendency parameters
The arithmetic mean, or simply called the mean is the sum of all data divided by the
number of values. The median is the middle value in a list containing all the values
sorted. Because the median is affected little by extreme values and outliers, it is said
to be more “robust” than the mean (Fig. 15.1).

Variance
When calculated on the entirety of the data of a population (which rarely occurs),
the variance r2 is obtained by dividing the sum of squares by n, the size of the
population.

The sample formula for the variance of observed data conventionally has n-1 in
the denominator instead of n to achieve the property of “unbiasedness”, which
roughly means that when calculated for many different random samples from the
same population, the average should match the corresponding population quantity
(here r2). s2 is an unbiased estimator of the population variance r2.

s2 ¼
Pn

i¼1
ðxi � xÞ2

ðn� 1Þ ð15:1Þ

The standard deviation is simply the square root of the variance. Therefore it has
the same units as the original data, which helps make it more interpretable.

The sample standard deviation is usually represented by the symbol s. For a
theoretical Gaussian distribution, mean plus or minus 1, 2 or 3 standard deviations
holds 68.3, 95.4 and 99.7 % of the probability density, respectively.

Fig. 15.1 Symmetrical versus asymmetrical (skewed) distribution, showing mode, mean and
median

188 15 Exploratory Data Analysis



Interquartile range (IQR)
The IQR is calculated using the boundaries of data situated between the 1st and the
3rd quartiles. Please refer to the Chap. 13 “Noise versus Outliers” for further detail
about the IQR.

IQR ¼ Q3 � Q1 ð15:2Þ

In the same way that the median is more robust than the mean, the IQR is a more
robust measure of spread than variance and standard deviation and should therefore
be preferred for small or asymmetrical distributions.

Important rule:

• Symmetrical distribution (not necessarily normal) and N > 30: express results
as mean ± standard deviation.

• Asymmetrical distribution or N < 30 or evidence for outliers: use
median ± IQR, which are more robust.

Skewness/kurtosis
Skewness is a measure of a distribution’s asymmetry. Kurtosis is a summary
statistic communicating information about the tails (the smallest and largest values)
of the distribution. Both quantities can be used as a means to communicate infor-
mation about the distribution of the data when graphical methods cannot be used.
More information about these quantities can be found in [9]).

Summary
We provide as a reference some of the common functions in R language for
generating summary statistics relating to measures of central tendency (Table 15.4).

Testing the Distribution

Several non-graphical methods exist to assess the normality of a data set (whether it
was sampled from a normal distribution), like the Shapiro-Wilk test for example.
Please refer to the function called “Distribution” in the GitHub repository for this
book (see code appendix at the end of this Chapter).

Table 15.4 Main R functions for basic measure of central tendencies and variability

Function Description

summary(x) General description of a vector

max(x) Maximum value

mean(x) Average or mean value

median(x) Median value

min(x) Smallest value

sd(x) Standard deviation

var(x) Variance, measure the spread or dispersion of the values

IQR(x) Interquartile range
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Finding Outliers

Several statistical methods for outlier detection fall into EDA techniques, like
Tukey’s method, Z-score, studentized residuals, etc [8]. Please refer to the Chap. 14
“Noise versus Outliers” for more detail about this topic.

Multivariate Non-graphical EDA

Cross-Tabulation

Cross-tabulation represents the basic bivariate non-graphical EDA technique. It is
an extension of tabulation that works for categorical data and quantitative data with
only a few variables. For two variables, build a two-way table with column
headings matching the levels of one variable and row headings matching the levels
of the other variable, then fill in the counts of all subjects that share a pair of levels.
The two variables may be both exposure, both outcome variables, or one of each.

Covariance and Correlation

Covariance and correlation measure the degree of the relationship between two
random variables and express how much they change together (Fig. 15.2).

The covariance is computed as follows:

covðx; yÞ ¼
Pn

i¼1
ðxi � �xÞðyi � �yÞ

n� 1
ð15:3Þ

where x and y are the variables, n the number of data points in the sample, �x the
mean of the variable x and �y the mean of the variable y.

A positive covariance means the variables are positively related (they move
together in the same direction), while a negative covariance means the variables are
inversely related. A problem with covariance is that its value depends on the scale
of the values of the random variables. The larger the values of x and y, the larger the

Fig. 15.2 Examples of covariance for three different data sets
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covariance. It makes it impossible for example to compare covariances from data
sets with different scales (e.g. pounds and inches). This issue can be fixed by
dividing the covariance by the product of the standard deviation of each random
variable, which gives Pearson’s correlation coefficient.

Correlation is therefore a scaled version of covariance, used to assess the linear
relationship between two variables and is calculated using the formula below.

Corðx; yÞ ¼ Covðx; yÞ
sxsy

ð15:4Þ

where Covðx; yÞ is the covariance between x and y and sx; sy are the sample standard
deviations of x and y.

The significance of the correlation coefficient between two normally distributed
variables can be evaluated using Fisher’s z transformation (see the cor.test function
in R for more details). Other tests exist for measuring the non-parametric rela-
tionship between two variables, such as Spearman’s rho or Kendall’s tau.

15.2.3 Graphical EDA

Univariate Graphical EDA

Histograms

Histograms are among the most useful EDA techniques, and allow you to gain
insight into your data, including distribution, central tendency, spread, modality and
outliers.

Histograms are bar plots of counts versus subgroups of an exposure variable. Each
bar represents the frequency (count) or proportion (count divided by total count) of
cases for a range of values. The range of data for each bar is called a bin. Histograms
give an immediate impression of the shape of the distribution (symmetrical,
uni/multimodal, skewed, outliers…). The number of bins heavily influences the final
aspect of the histogram; a good practice is to try different values, generally from 10 to
50. Some examples of histograms are shown below as well as in the case studies.
Please refer to the function called “Density” in the GitHub repository for this book
(see code appendix at the end of this Chapter) (Figs. 15.3 and 15.4).

Histograms enable to confirm that an operation on data was successful. For
example, if you need to log-transform a data set, it is interesting to plot the his-
togram of the distribution of the data before and after the operation (Fig. 15.5).

Histograms are interesting for finding outliers. For example, pulse oximetry can
be expressed in fractions (range between 0 and 1) or percentage, in medical records.
Figure 15.6 is an example of a histogram showing the distribution of pulse
oximetry, clearly showing the presence of outliers expressed in a fraction rather
than as a percentage.
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Stem Plots

Stem and leaf plots (also called stem plots) are a simple substitution for histograms.
They show all data values and the shape of the distribution. For an example, Please
refer to the function called “Stem Plot” in the GitHub repository for this book (see
code appendix at the end of this Chapter) (Fig. 15.7).

Fig. 15.5 Example of the effect of a log transformation on the distribution of the dataset

Fig. 15.4 Example of histogram with density estimate

Fig. 15.3 Example of histogram
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Boxplots

Boxplots are interesting for representing information about the central tendency,
symmetry, skew and outliers, but they can hide some aspects of the data such as
multimodality. Boxplots are an excellent EDA technique because they rely on
robust statistics like median and IQR.

Figure 15.8 shows an annotated boxplot which explains how it is constructed.
The central rectangle is limited by Q1 and Q3, with the middle line representing the
median of the data. The whiskers are drawn, in each direction, to the most extreme
point that is less than 1.5 IQR beyond the corresponding hinge. Values beyond 1.5
IQR are considered outliers.

The “outliers” identified by a boxplot, which could be called “boxplot outliers”
are defined as any points more than 1.5 IQRs above Q3 or more than 1.5 IQRs
below Q1. This does not by itself indicate a problem with those data points.
Boxplots are an exploratory technique, and you should consider designation as a
boxplot outlier as just a suggestion that the points might be mistakes or otherwise
unusual. Also, points not designated as boxplot outliers may also be mistakes. It is
also important to realize that the number of boxplot outliers depends strongly on the
size of the sample. In fact, for data that is perfectly normally distributed, we expect
0.70 % (about 1 in 140 cases) to be “boxplot outliers”, with approximately half in
either direction.

Fig. 15.6 Distribution of pulse oximetry

Fig. 15.7 Example of stem plot
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2D Line Plot

2D line plots represent graphically the values of an array on the y-axis, at regular
intervals on the x-axis (Fig. 15.9).

Probability Plots (Quantile-Normal Plot/QN Plot, Quantile-Quantile Plot/QQ Plot)

Probability plots are a graphical test for assessing if some data follows a particular
distribution. They are most often used for testing the normality of a data set, as
many statistical tests have the assumption that the exposure variables are approx-
imately normally distributed. These plots are also used to examine residuals in
models that rely on the assumption of normality of the residuals (ANOVA or
regression analysis for example).

The interpretation of a QN plot is visual (Fig. 15.10): either the points fall
randomly around the line (data set normally distributed) or they follow a curved
pattern instead of following the line (non-normality). QN plots are also useful to
identify skewness, kurtosis, fat tails, outliers, bimodality etc.

Fig. 15.9 Example of 2D line plot

Fig. 15.8 Example of boxplot with annotations
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Besides the probability plots, there are many quantitative statistical tests (not
graphical) for testing for normality, such as Pearson Chi2, Shapiro-Wilk, and
Kolmogorov-Smirnov.

Deviation of the observed distribution from normal makes many powerful
statistical tools useless. Note that some data sets can be transformed to a more
normal distribution, in particular with log-transformation and square-root trans-
formations. If a data set is severely skewed, another option is to discretize its values
into a finite set.

Multivariate Graphical EDA

Side-by-Side Boxplots

Representing several boxplots side by side allows easy comparison of the charac-
teristics of several groups of data (example Fig. 15.11). An example of such
boxplot is shown in the case study.

Fig. 15.10 Example of QQ plot

Fig. 15.11 Side-by-side boxplot showing the cardiac index for five levels of Positive
end-expiratory pressure (PEEP)
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Scatterplots

Scatterplots are built using two continuous, ordinal or discrete quantitative variables
(Fig. 15.12). Each data point’s coordinate corresponds to a variable. They can be
complexified to up to five dimensions using other variables by differentiating the
data points’ size, shape or color.

Scatterplots can also be used to represent high-dimensional data in 2 or 3D
(Fig. 15.13), using T-distributed stochastic neighbor embedding (t-SNE) or prin-
cipal component analysis (PCA). t-SNE and PCA are dimension reduction features
used to reduce complex data set in two (t-SNE) or more (PCA) dimensions.

Fig. 15.12 Scatterpolot showing an example of actual mortality per rate of predicted mortality

Fig. 15.13 3D representation of the first three dimension of a PCA
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For binary variables (e.g. 28-day mortality vs. SOFA score), 2D scatterplots are
not very helpful (Fig. 15.14, left). By dividing the data set in groups (in our
example: one group per SOFA point), and plotting the average value of the outcome
in each group, scatterplots become a very powerful tool, capable for example to
identify a relationship between a variable and an outcome (Fig. 15.14, right).

Curve Fitting

Curve fitting is one way to quantify the relationship between two variables or the
change in values over time (Fig. 15.15). The most common method for curve fitting
relies on minimizing the sum of squared errors (SSE) between the data and the

Fig. 15.14 Graphs of SOFA versus mortality risk

Fig. 15.15 Example of linear regression
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fitted function. Please refer to the “Linear Fit” function to create linear regression
slopes in R.

More Complicated Relationships
Many real life phenomena are not adequately explained by a straight-line
relationship. An always increasing set of methods and algorithms exist to deal
with that issue. Among the most common:

• Adding transformed explanatory variables, for example, adding x2 or x3 to the
model.

• Using other algorithms to handle more complex relationships between variables
(e.g., generalized additive models, spline regression, support vector machines,
etc.).

Heat Maps and 3D Surface Plots

Heat maps are simply a 2D grid built from a 2D array, whose color depends on the
value of each cell. The data set must correspond to a 2D array whose cells contain
the values of the outcome variable. This technique is useful when you want to
represent the change of an outcome variable (e.g. length of stay) as a function of
two other variables (e.g. age and SOFA score).

The color mapping can be customized (e.g. rainbow or grayscale). Interestingly,
the Matlab function imagesc scales the data to the full colormap range. Their 3D
equivalent is mesh plots or surface plots (Fig. 15.16).

Fig. 15.16 Heat map (left) and surface plot (right)
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15.3 Part 2—Case Study

This case study refers to the research that evaluated the effect of the placement of
indwelling arterial catheters (IACs) in hemodynamically stable patients with res-
piratory failure in intensive care, from the MIMIC-II database.

For this case study, several aspects of EDA were used:

• The categorical data was first tabulated.
• Summary statistics were then generated to describe the variables of interest.
• Graphical EDA was used to generate histograms to visualize the data of interest.

15.3.1 Non-graphical EDA

Tabulation

To analyze, visualize and test for association or independence of categorical vari-
ables, they must first be tabulated. When generating tables, any missing data will be
counted in a separate “NA” (“Not Available”) category. Please refer to the Chap. 13
“Missing Data” for approaches in managing this problem. There are several
methods for creating frequency or contingency tables in R, such as for example,
tabulating outcome variables for mortality, as demonstrated in the case study. Refer
to the “Tabulate” function found in the GitHub repository for this book (see code
appendix at the end of this Chapter) for details on how to compute frequencies of
outcomes for different variables.

Statistical Tests

Multiple statistical tests are available in R and we refer the reader to the Chap. 16
“Data Analysis” for additional information on use of relevant tests in R. For
examples of a simple Chi-square…” as “For examples of a simple Chi-squared test,
please refer to the “Chi-squared” function found in the GitHub repository for this
book (see code appendix at the end of this Chapter). In our example, the hypothesis
of independence between expiration in ICU and IAC is accepted (p > 0.05). On the
contrary, the dependence link between day-28 mortality and IAC is rejected.

Summary statistics

Summary statistics as described above include, frequency, mean, median, mode,
range, interquartile range, maximum and minimum values. An extract of summary
statistics of patient demographics, vital signs, laboratory results and comorbidities,
is shown in Table 6. Please refer to the function called “EDA Summary” in the
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GitHub repository for this book (see code appendix at the end of this Chapter)
(Table 15.5).

When separate cohorts are generated based on a common variable, in this case
the presence of an indwelling arterial catheter, summary statistics are presented for
each cohort.

It is important to identify any differences in subject baseline characteristics. The
benefits of this are two-fold: first it is useful to identify potentially confounding
variables that contribute to an outcome in addition to the predictor (exposure)
variable. For example, if mortality is the outcome variable then differences in
severity of illness between cohorts may wholly or partially account for any variance
in mortality. Identifying these variables is important as it is possible to attempt to
control for these using adjustment methods such as multivariable logistic regres-
sion. Secondly, it may allow the identification of variables that are associated with
the predictor variable enriching our understanding of the phenomenon we are
observing.

The analytical extension of identifying any differences using medians, means
and data visualization is to test for statistically significant differences in any given
subject characteristic using for example Wilcoxon-Rank sum test. Refer to Chap. 16
for further details in hypothesis testing.

15.3.2 Graphical EDA

Graphical representation of the dataset of interest is the principle feature of
exploratory analysis.

Table 15.5 Comparison between the two study cohorts (subsample of variables only)

Variables Entire Cohort (N = 1776)

Non-IAC IAC p-value

Size 984 (55.4 %) 792 (44.6 %) NA

Age (year) 51 (35–72) 56 (40–73) 0.009

Gender (female) 344 (43.5 %) 406 (41.3 %) 0.4

Weight (kg) 76 (65–90) 78 (67–90) 0.08

SOFA score 5 (4–6) 6 (5–8) <0.0001

Co-morbidities

CHF 97 (12.5 %) 116 (11.8 %) 0.7

… … … …

Lab tests

WBC 10.6 (7.8–14.3) 11.8 (8.5–15.9) <0.0001

Hemoglobin (g/dL) 13 (11.3–14.4) 12.6 (11–14.1) 0.003

… … … …
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Histograms
Histograms are considered the backbone of EDA for continuous data. They can be
used to help the researcher understand continuous variables and provide key
information such as their distribution. Outlined in noise and outliers, the histogram
allows the researcher to visualize where the bulk of the data points are placed
between the maximum and minimum values. Histograms can also allow a visual
comparison of a variable between cohorts. For example, to compare severity of
illness between patient cohorts, histograms of SOFA score can be plotted side by
side (Fig. 15.17). An example of this is given in the code for this chapter using the
“side-by-side histogram” function (see code appendix at the end of this Chapter).

Boxplot and ANOVA
Outside of the scope of this case study, the user may be interested in analysis of
variance. When performing EDA and effective way to visualize this is through the
use of boxplot. For example, to explore differences in blood pressure based on
severity of illness subjects could be categorized by severity of illness with blood
pressure values at baseline plotted (Fig. 15.18). Please refer to the function called
“Box Plot” in the GitHub repository for this book (see code appendix at the end of
this Chapter).

The box plot shows a few outliers which may be interesting to explore indi-
vidually, and that people with a high SOFA score (>10) tend to have a lower blood
pressure than people with a lower SOFA score.

Fig. 15.17 histograms of SOFA scores by intra-arterial catheter status
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15.4 Conclusion

In summary, EDA is an essential step in many types of research but is of particular
use when analyzing electronic health care records. The tools described in this
chapter should allow the researcher to better understand the features of a dataset and
also to generate novel hypotheses.

Take Home Messages

1. Always start by exploring a dataset with an open mind for discovery.
2. EDA allows to better apprehend the features and possible issues of a dataset.
3. EDA is a key step in generating research hypothesis.

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

Code Appendix

The code used in this chapter is available in the GitHub repository for this book:
https://github.com/MIT-LCP/critical-data-book. Further information on the code is
available from this website.

Fig. 15.18 Side-by-side boxplot of MAP for different levels of severity at admission
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Chapter 16
Data Analysis

Jesse D. Raffa, Marzyeh Ghassemi, Tristan Naumann,
Mengling Feng and Douglas Hsu

Learning Objectives

• Understand how the study objective and data types determine the type of data
analysis.

• Understand the basics of the three most common analysis techniques used in the
studies involving health data.

• Execute a case study to fulfil the study objective, and interpret the results.

16.1 Introduction to Data Analysis

16.1.1 Introduction

This chapter presents an overview of data analysis for health data. We give a brief
introduction to some of the most common methods for data analysis of health care
data, focusing on choosing appropriate methodology for different types of study
objectives, and on presentation and the interpretation of data analysis generated
from health data. We will provide an overview of three very powerful analysis
methods: linear regression, logistic regression and Cox proportional hazards
models, which provide the foundation for most data analysis conducted in clinical
studies.

Chapter Goals
By the time you complete this chapter you should be able to:

1. Understand how different study objectives will influence the type of data
analysis (Sect. 16.1)

2. Be able to carry out three different types of data analysis that are common for
health data (Sects. 16.2–16.4).

3. Present and interpret the results of these analyses types (Sects. 16.2–16.4)

© The Author(s) 2016
MIT Critical Data, Secondary Analysis of Electronic Health Records,
DOI 10.1007/978-3-319-43742-2_16
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4. Understand the limitations and assumptions underlying the different types of
analyses (Sects. 16.2–16.4).

5. Replicate an analysis from a case study using some of the methods learned in the
chapter (Sect. 16.5)

Outline
This chapter is composed of five sections. First, in this section we will cover
identifying data types and study objectives. These topics will enable us to pick an
appropriate analysis method among linear (Sect. 16.2) or logistic (Sect. 16.3)
regression, and survival analysis (Sect. 16.4), which comprise the next three sec-
tions. Following that, we will use what we learned on a case study using real data
from Medical Information Mart for Intensive Care II (MIMIC-II), briefly discuss
model building and finally, summarize what we have learned (Sect. 16.5)

16.1.2 Identifying Data Types and Study Objectives

In this section we will examine how different study objectives and data types affect
the approaches one takes for data analysis. Understanding the data structure and
study objective is likely the most important aspect to choosing an appropriate
analysis technique.

Study Objectives
Identifying the study objective is an extremely important aspect of planning data
analysis for health data. A vague or poorly described objective often leads to a
poorly executed analysis. The study objective should clearly identify the study
population, the outcome of interest, the covariate(s) of interest, the relevant time
points of the study, and what you would like to do with these items. Investing time
to make the objective very specific and clear often will save time in the long run.

An example of a clearly stated study objective would be:

To estimate the reduction in 28 day mortality associated with vasopressor use during the
first three days from admission to the MICU in MIMIC II.

An example of a vague and difficult to execute study objective may be:

To predict mortality in ICU patients.

While both may be trying to accomplish the same goal, the first gives a much
clearer path for the data scientist to perform the necessary analysis, as it identifies
the study population (those admitted to the MICU in MIMIC II), outcome (28 day
mortality), covariate of interest (vasopressor use in the first three days of the MICU
admission), relevant time points (28 days for the outcome, within the first three
days for the covariate). The objective does not need to be overly complicated, and
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it’s often convenient to specify primary and secondary objectives, rather than an
overly complex single objective.

Data Types
After specifying a clear study objective, the next step is to determine the types of
data one is dealing with. The first distinction is between outcomes and covariates.
Outcomes are what the study aims to investigate, improve or affect. In the above
example of a clearly stated objective, our outcome is 28 day mortality. Outcomes
are also sometimes referred to as response or dependent variables. Covariates are
the variables you would like to study for their effect on the outcome, or believe may
have some nuisance effect on the outcome you would like to control for. Covariates
also go by several different names, including: features, predictors, independent
variables and explanatory variables. In our example objective, the primary covariate
of interest is vasopressor use, but other covariates may also be important in
affecting 28 day mortality, including age, gender, and so on.

Once you have identified the study outcomes and covariates, determining the
data types of the outcomes will often be critical in choosing an appropriate analysis
technique. Data types can generally be identified as either continuous or discrete.
Continuous variables are those which can plausibly take on any numeric (real
number) value, although this requirement is often not explicitly met. This contrasts
with discrete data, which usually takes on only a few values. For instance, gender
can take on two values: male or female. This is a binary variable as it takes on two
values. More discussion on data types can be found in Chap. 11.

There is a special type of data which can be considered simultaneously as
continuous and discrete types, as it has two components. This frequently occurs in
time to event data for outcomes like mortality, where both the occurrence of death
and the length of survival are of interest. In this case, the discrete component is if
the event (e.g., death) occurred during the observation period, and the continuous
component is the time at which death occurred. The time at which the death
occurred is not always available: in this case the time of the last observation is used,
and the data is partially censored. We discuss censoring in more detail later in
Sect. 16.4.

Figure 16.1 outlines the typical process by which you can identify outcomes
from covariates, and determine which type of data type your outcome is. For each
of the types of outcomes we highlighted—continuous, binary and survival, there are
a set of analysis methods that are most common for use in health data—linear
regression, logistic regression and Cox proportional hazards models, respectively.

Other Important Considerations
The discussion thus far has given a basic outline of how to choose an analysis
method for a given study objective. Some caution is merited as this discussion has
been rather brief and while it covers some of the most frequently used methods for
analyzing health data, it is certainly not exhaustive. There are many situations
where this framework and subsequent discussion will break down and other
methods will be necessary. In particular, we highlight the following situations:
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1. When the data is not patient level data, such as aggregated data (totals) instead
of individual level data.

2. When patients contribute more than one observation (i.e., outcome) to the
dataset.

In these cases, other techniques should be used.

Fig. 16.1 Flow diagram of simplified process for choosing an analysis method based on the study
objective and outcome data types
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16.1.3 Case Study Data

We will be using a case study [1] to explore data analysis approaches in health data.
The case study data originates from a study examining the effect of indwelling
arterial catheters (IAC) on 28 day mortality in the intensive care unit (ICU) in
patients who were mechanically ventilated during the first day of ICU admission.
The data comes from MIMIC II v2.6. At this point you are ready to do data analysis
(the data extraction and cleaning has already been completed) and we will be using
a comma separated (.csv) file generated after this process, which you can load
directly off of PhysioNet [2, 3]:

The header of this file with the variable names can be accessed using the names
function in R.

There are 46 variables listed. The primary focus of the study was on the effect
that IAC placement (aline_flg) has on 28 day mortality (day_28_flg). After we
have covered the basics, we will identify a research objective and an appropriate
analysis technique, and execute an abbreviated analysis to illustrate how to use
these techniques to address real scientific questions. Before we do this, we need to
cover the basic techniques, and we will introduce three powerful data analysis
methods frequently used in the analysis of health data. We will use examples from
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the case study dataset to introduce these concepts, and will return to the the question
of the effect of IAC has on mortality towards the end of thischapter.

16.2 Linear Regression

16.2.1 Section Goals

In this section, the reader will learn the fundamentals of linear regression, and how
to present and interpret such an analysis.

16.2.2 Introduction

Linear regression provides the foundation for many types of analyses we perform
on health data. In the simplest scenario, we try to relate one continuous outcome, y,
to a single continuous covariate, x, by trying to find values for b0 and b1 so that the
following equation:

y ¼ b0 þ b1 � x

fits the data ‘optimally’.1 We call these optimal values: b̂0 and b̂1 to distinguish
them from the true values of b0 and b1 which are often unknowable. In Fig. 16.2,
we see a scatter plot of TCO2 (y: outcome) levels versus PCO2 (x: covariate) levels.
We can clearly see that as PCO2 levels increase, the TCO2 levels also increase.
This would suggest that we may be able to fit a linear regression model which
predicts TCO2 from PCO2.

It is always a good idea to visualize the data when you can, which allows one to
assess if the subsequent analysis corresponds to what you could see with your eyes.
In this case, a scatter plot can be produced using the plot function:

which produces the scattered points in Fig. 16.2.
Finding the best fit line for the scatter plot in Fig. 16.2 in R is relatively

straightforward:

1Exactly what optimally means is beyond the scope of this chapter, but for those who are inter-
ested, we are trying to find values of b0 and b1 which minimize the squared distance between the
fitted line and the observed data point, summed over all data points. This quantity is known as
sum of squares error, or when divided by the number of observations is known as the mean
squared error.
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Dissecting this command from left to right. The co2.lm <- part assigns the
right part of the command to a new variable or object called co2.lm which
contains information relevant to our linear regression model. The right side of this
command runs the lm function in R. lm is a powerful function in R that fits linear
models. As with any command in R, you can find additional help information by
running ?lm from the R command prompt. The basic lm command has two parts.
The first is the formula which has the general syntax outcome * covariates.
Here, our outcome variable is called tco2_first and we are just fitting one
covariate, pco2_first, so our formula is tco2_first * pco2_first. The
second argument is separated by a comma and is specifying the data frame to use.
In our case, the data frame is called dat, so we pass data = dat, noting that both
tco2_first and pco2_first are columns in the dataframe dat. The overall
procedure of specifying a model formula (tco2_first * pco2_first), a data
frame (data = dat) and passing it an appropriate R function (lm) will be used
throughout this chapter, and is the foundation for many types of statistical modeling
in R.

We would like to see some information about the model we just fit, and often a
good way of doing this is to run the summary command on the object we created:

0 50 100 150

0
10

20
30

40
50

60

PCO2

TC
O

2

Fig. 16.2 Scatterplot of PCO2 (x-axis) and TCO2 (y-axis) along with linear regression estimates
from the quadratic model (co2.quad.lm) and linear only model (co2.lm)
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This outputs information about the lm object we created in the previous
step. The first part recalls the model we fit, which is useful when we have fit many
models, and are trying to compare them. The second part lists some summary
information about what are called residuals—an important topic for validating
modeling assumptions covered in [8]. Next lists the coefficient estimates—these are
the b̂0, (Intercept), and b̂1, pco2_first, parameters in the best fit line we are
trying to estimate. This output is telling us that the best fit equation for the data is:

tco2 first ¼ 16:21þ 0:189� pco2 first:

These two quantities have important interpretations. The estimated intercept (b̂0)
tells us what TCO2 level we would predict for an individual with a PCO2 level of 0.
This is the mathematical interpretation, and often this quantity has limited practical
use. The estimated slope (b̂1) on the other hand can be interpreted as how quickly
the predicted value of TCO2 goes up for every unit increase in PCO2. In this case,
we estimate that TCO2 goes up about 0.189 mmol/L for every 1 mm Hg increase in
PCO2. Each coefficient estimate has a corresponding Std. Error (standard
error). This is a measure of how certain we are about the estimate. If the standard
error is large relative to the coefficient then we are less certain about our estimate.
Many things can affect the standard error, including the study sample size. The next
column in this table is the t value, which is simply the coefficient estimate
divided by the standard error. This is followed by Pr(>|t|) which is also known
as the p-value. The last two quantities are relevant to an area of statistics called
hypothesis testing which we will cover briefly now.
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Hypothesis Testing
Hypothesis testing in statistics is fundamentally about evaluating two competing
hypotheses. One hypothesis, called the null hypothesis is setup as a straw man (a
sham argument set up to be defeated), and is the hypothesis you would like to
provide evidence against. In the analysis methods we will discuss in this chapter,
this is almost always bk ¼ 0, and it is often written as H0 : bk ¼ 0. The alternative
(second) hypothesis is commonly assumed to be bk 6¼ 0, and will often be written
as HA : bk 6¼ 0. A statistical significance level, a, should be established before any
analysis is performed. This value is known as the Type I error, and is the probability
of rejecting the null hypothesis when the null hypothesis is true, i.e. of incorrectly
concluding that the null hypothesis is false. In our case, it is the probability that we
falsely conclude that the coefficient is non-zero, when the coefficient is actually
zero. It is common to set the Type I error at 0.05.

After specifying the null and alternative hypotheses, along with the significance
level, hypotheses can be tested by computing a p-value. The actual computation of
p-values is beyond the scope of this chapter, but we will cover the interpretation and
provide some intuition. P-values are the probability of observing data as extreme or
more extreme than what was seen, assuming the null hypothesis is true. The null
hypothesis is bk ¼ 0, so when would this be unlikely? It is probably unlikely when
we estimate bk to be rather large. However, how large is large enough? This would
likely depend on how certain we are about the estimate of bk. If we were very
certain, b̂k likely would not have to be very large, but if we are less certain, then we
might not think it to be unlikely for even very large values of b̂k. A p-value
balances both of these aspects, and computes a single number. We reject the null
hypothesis when the p-value is smaller than the significance level, a.

Returning to our fit model, we see that the p-value for both coefficients are tiny
(<2e-16), and we would reject both null hypotheses, concluding that neither
coefficient is likely zero. What do these two hypotheses mean at a practical level?
The intercept being zero, b0 ¼ 0 would imply the best fit line goes through the
origin [ the (x, y) point (0, 0)], and we would reject this hypothesis. The slope being
zero would mean that the best fit line would be a flat horizontal line, and did not
increase as PCO2 increases. Clearly there is a relationship between TCO2 and
PCO2, so we would also reject this hypothesis. In summary, we would conclude
that we need both an intercept and a slope in the model. A next obvious question
would be, could the relationship be more complicated than a straight line? We will
examine this next.

16.2.3 Model Selection

Model selection are techniques related to selecting the best model from a list
(perhaps rather large list) of candidate models. We will cover some basics here, as
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more complicated techniques will be covered in a later chapter. In the simplest case,
we have two models, and we want to know which one we should use.

We will begin by examining if the relationship between TCO2 and PCO2 is
more complicated than the model we fit in the previous section. If you recall, we fit
a model where we considered a linear pco2_first term: tco2_-
first = b0 þ b1� pco2_first. One may wonder if including a quadratic term
would fit the data better, i.e. whether:

tco2 first ¼ b0 þ b1 � pco2 firstþ b2 � pco2 first2;

is a better model. One way to evaluate this is by testing the null hypothesis: b2 ¼ 0.
We do this by fitting the above model, and looking at the output. Adding a
quadratic term (or any other function) is quite easy using the lm function. It is best
practice to enclose any of these functions in the I() function to make sure they get
evaluated as you intended. The I() forces the formula to evaluate what is passed to
it as is, as the ^ operator has a different use in formulas in R (see ?formula for
further details). Fitting this model, and running the summary function for the
model:

You will note that we have abbreviated the output from the summary function
by appending $coef to the summary function: this tells R we would like infor-
mation about the coefficients only. Looking first at the estimates, we see the best fit
line is estimated as:

tco2 first ¼ 160:09þ 0:19� pco2 firstþ 0:00004� pco2 first2:

We can add both best fit lines to Fig. 16.2 using the abline function:

and one can see that the red (linear term only) and blue (linear and quadratic
terms) fits are nearly identical. This corresponds with the relatively small coefficient
estimate for the I(pco2_firstˆ2) term. The p-value for this coefficient is about
0.86, and at the 0.05 significance level we would likely conclude that a quadratic
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term is not necessary in our model to fit the data, as the linear term only model fits
the data nearly as well.

Statistical Interactions and Testing Nested Models
We have concluded that a linear (straight line) model fit the data quite well, but thus
far we have restricted our exploration to just one variable at a time. When we
include other variables, we may wonder if the same straight line is true for all
patients. For example, could the relationship between PCO2 and TCO2 be different
among men and women? We could subset the data into a data frame for men and a
data frame for women, and then fit separate regressions for each gender. Another
more efficient way to accomplish this is by fitting both genders in a single model,
and including gender as a covariate. For example, we may fit:

tco2 first ¼ b0 þ b1 � pco2 firstþ b2 � gender num:

The variable gender_num takes on values 0 for women and 1 for men, and for
men the model is:

tco2 first ¼ ðb0 þ b2Þ|fflfflfflfflffl{zfflfflfflfflffl}
intercept

þ b1 � pco2 first;

and in women:

tco2 first ¼ b0 þ b1 � pco2 first:

As one can see these models have the same slope, but different intercepts (the
distance between the slopes is b2). In other words, the lines fit for men and women
will be parallel and be separated by a distance of b2 for all values of pco2_first.
This isn’t exactly what we would like, as the slopes may also be different. To allow
for this, we need to discuss the idea of an interaction between two variables. An
interaction is essentially the product of two covariates. In this case, which we will
call the interaction model, we would be fitting:

tco2 first ¼ b0 þ b1 � pco2 firstþ b2 � gender numþ b3
� gender num� pco2 first|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

interaction term

:

Again, separating the cases for men:

tco2 first ¼ ðb0 þ b2Þ|fflfflfflfflffl{zfflfflfflfflffl}
intercept

þ ðb1 þ b3Þ|fflfflfflfflffl{zfflfflfflfflffl}
slope

�pco2 first;

and women:
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tco2 first ¼ ðb0Þ|{z}
intercept

þ ðb1Þ|{z}
slope

�pco2 first:

Now men and women have different intercepts and slopes.
Fitting these models in R is relatively straightforward. Although not absolutely

required in this particular circumstance, it is wise to make sure that R handles data
types in the correct way by ensuring our variables are of the right class. In this
particular case, men are coded as 1 and women as 0 (a discrete binary covariate)
but R thinks this is numeric (continuous) data:

Leaving this unaltered, will not affect the analysis in this instance, but it can be
problematic when dealing with other types of data such as categorical data with
several categories (e.g., ethnicity). Also, by setting the data to the right type, the
output R generates can also be more informative. We can set the gender_num
variable to the class factor by using the as.factor function.

Here we have just overwritten the old variable in the dat data frame with a new
copy which is of class

Now that we have the gender variable correctly encoded, we can fit the models
we discussed above. First the model with gender as a covariate, but no interaction.
We can do this by simply adding the variable gender_num to the previous
formula for our co2.lm model fit.
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This output is very similar to what we had before, but now there’s a gen-
der_num term as well. The 1 is present in the first column after gender_num,
and it tells us who this coefficient is relevant to (subjects with 1 for the gen-
der_num – men). This is always relative to the baseline group, and in this case this
is women.

The estimate is negative, meaning that the line fit for males will be below the line
for females. Plotting this fit curve in Fig. 16.3:

we see that the lines are parallel, but almost indistinguishable. In fact, this plot
has been cropped in order to see any difference at all. From the estimate from the
summary output above, the difference between the two lines is −0.182 mmol/L,
which is quite small, so perhaps this isn’t too surprising. We can also see in the
above summary output that the p-value is about 0.42, and we would likely not
reject the null hypothesis that the true value of the gender_num coefficient is
zero.

And now moving on to the model with an interaction between pco2_first and
gender_num. To add an interaction between two variables use the * operator
within a model formula. By default, R will add all of the main effects (variables
contained in the interaction) to the model as well, so simply adding pco2_-
first*gender_num will add effects for pco2_first and gender_num in
addition to the interaction between them to the model fit.

The estimated coefficients are b̂0; b̂1; b̂2 and b̂3, respectively, and we can
determine the best fit lines for men:
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tco2 first ¼ 15:85þ 0:81ð Þþ 0:20� 0:023ð Þ � pco2 first

¼ 16:67þ 0:18� pco2 first;

and for women:

tco2 first ¼ 15:85þ 0:20� pco2 first:

Based on this, the men’s intercept should be higher, but their slope should be not
as steep, relative to the women. Let’s check this and add the new model fits as
dotted lines and add a legend to Fig. 16.3.

We can see that the fits generated from this plot are a little different than the one
generated for a model without the interaction. The biggest difference is that the
dotted lines are no longer parallel. This has some serious implications, particularly
when it comes to interpreting our result. First note that the estimated coefficient for
the gender_num variable is now positive. This means that at pco2_first = 0,
men (red) have higher tco2_first levels than women (black). If you recall in the
previous model fit, women had higher levels of tco2_first at all levels of
pco2_first. At some point around pco2_first = 35 this changes and women
(black) have higher tco2_first levels than men (red). This means that the effect
of gender_num may vary as you change the level of pco2_first, and is why
interactions are often referred to as effect modification in the epidemiological
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Fig. 16.3 Regression fits of PCO2 on TCO2 with gender (black female; red male; solid no
interaction; dotted with interaction). Note Both axes are cropped for illustration purposes
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literature. The effect need not change signs (i.e., the lines do not need to cross) over
the observed range of values for an interaction to be present.

The question remains, is the variable gender_num important? We looked at
this briefly when we examined the t value column in the no interaction model
which included gender_num. What if we wanted to test (simultaneously) the null
hypothesis: b2 and b3 ¼ 0. There is a useful test known as the F-test which can help
us in this exact scenario where we want to look at if we should use a larger model
(more covariates) or use a smaller model (fewer covariates). The F-test applies only
to nested models—the larger model must contain each covariate that is used in the
smaller model, and the smaller model cannot contain covariates which are not in the
larger model. The interaction model and the model with gender are nested models
since all the covariates in the model with gender are also in the larger interaction
model. An example of a non-nested model would be the quadratic model and the
interaction model: the smaller (quadratic) model has a term (pco2 first2) which
is not in the larger (interaction) model. An F-test would not be appropriate for this
latter case.

To perform an F-test, first fit the two models you wish to consider, and then run
the anova command passing the two model objects.

As you can see, the anova command first lists the models it is considering.
Much of the rest of the information is beyond the scope of this chapter, but we will
highlight the reported F-test p-value (Pr(>F)), which in this case is 0.2515. In
nested models, the null hypothesis is that all coefficients in the larger model and not
in the smaller model are zero. In the case we are testing, our null hypothesis is b2
and b3 ¼ 0. Since the p-value exceeds the typically used significance level
(a ¼ 0:05), we would not reject the null hypothesis, and likely say the smaller
model explains the data just as well as the larger model. If these were the only
models we were considering, we would use the smaller model as our final model
and report the final model in our results. We will now discuss what exactly you
should report and how you can interpret the results.
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16.2.4 Reporting and Interpreting Linear Regression

We will briefly discuss how to communicate a linear regression analysis. In general,
before you present the results, some discussion of how you got the results should be
done. It is a good idea to report: whether you transformed the outcome or any
covariates in anyway (e.g., by taking the logarithm), what covariates you consid-
ered and how you chose the covariates which were in the model you reported. In
our above example, we did not transform the outcome (TCO2), we considered
PCO2 both as a linear and quadratic term, and we considered gender on its own and
as an interaction term with PCO2. We first evaluated whether a quadratic term
should be included in the model by using a t-test, after which we considered a
model with gender and a gender-PCO2 interaction, and performed model selection
with an F-test. Our final model involved only a linear PCO2 term and an intercept.

When reporting your results, it’s a good idea to report three aspects for each
covariate. Firstly, you should always report the coefficient estimate. The coefficient
estimate allows the reader to assess the magnitude of the effect. There are many
circumstances where a result may be statistically significant, but practically
meaningless. Secondly, alongside your estimate you should always report some
measure of uncertainty or precision. For linear regression, the standard error (Std.
Error column in the R output) can be reported. We will cover another method
called a confidence interval later on in this section. Lastly, reporting a p-value for
each of the coefficients is also a good idea. An example of appropriate presentation
of our final model would be something similar to: TCO2 increased 0.18 (SE: 0.008,
p-value <0.001) units per unit increase of PCO2. You will note we reported p-value
<0.001, when in fact it is smaller than this. It is common to report very small p-
values as <0.001 or <0.0001 instead of using a large number of decimal places.
While sometimes it’s simply reported whether p < 0.05 or not (i.e., if the result is
statistically significant or not), this practice should be avoided.

Often it’s a good idea to also discuss how well the overall model fit. There are
several ways to accomplish this, but reporting a unitless quantity known as R2

(pronounced r-squared) is often done. Looking back to the output R provided for
our chosen final model, we can find the value of R2 for this model under
Multiple R-squared: 0.2647. This quantity is a proportion (a number between
0 and 1), and describes how much of the total variability in the data is explained by
the model. An R2 of 1 indicates a perfect fit, where 0 explains no variability in the
data. What exactly constitutes a ‘good’ R2 depends on subject matter and how it
will be used. Another way to describe the fit in your model is through the residual
standard error. This is also in the lm output when using the summary function.
This roughly estimates square-root of the average squared distance between the
model fit and the data. While it is in the same units as the outcome, it is in general
more difficult to interpret than R2. It should be noted that for evaluating prediction
error, these values are likely too optimistic when applied to new data, and a better
estimate of the error should be evaluated by other methods (e.g., cross-validation),
which will be covered in another chapter and elsewhere [4, 5].
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Interpreting the Results
Interpreting the results is an important component to any data analysis. We have
already covered interpreting the intercept, which is the prediction for the outcome
when all covariates are set at zero. This quantity is not of direct interest in most
studies. If one does want to interpret it, subtracting the mean from each of the
model’s covariates will make it more interpretable—the expected value of the
outcome when all covariates are set to the study’s averages.

The coefficient estimates for the covariates are in general the quantities most of
scientific interest. When the covariate is binary (e.g., gender_num), the coeffi-
cient represents the difference between one level of the covariate (1) relative to the
other level (0), while holding any other covariates in the model constant. Although
we won’t cover it until the next section, extending discrete covariates to the case
when they have more than two levels (e.g., ethnicity or service_unit) is quite
similar, with the noted exception that it’s important to reference the baseline group
(i.e., what is the effect relative to). We will return to this topic later on in the
chapter. Lastly, when the covariate is continuous the interpretation is the expected
change in the outcome as a result of increasing the covariate in question by one unit,
while holding all other covariates fixed. This interpretation is actually universal for
any non-intercept coefficient, including for binary and other discrete data, but relies
more heavily on understanding how R is coding these covariates with dummy
variables.

We examined statistical interactions briefly, and this topic can be very difficult to
interpret. It is often advisable, when possible, to represent the interaction graphi-
cally, as we did in Fig. 16.3.

Confidence and Prediction Intervals
As mentioned above, one method to quantify the uncertainty around coefficient

estimates is by reporting the standard error. Another commonly used method is to
report a confidence interval, most commonly a 95 % confidence interval. A 95 %
confidence interval for b is an interval for which if the data were collected
repeatedly, about 95 % of the intervals would contain the true value of the
parameter, b, assuming the modeling assumptions are correct.

To get 95 % confidence intervals of coefficients, R has a confint function,
which you pass an lm object to. It will then output 2.5 and 97.5 % confidence
interval limits for each coefficient.

The 95 % confidence interval for pco2_first is about 0.17–0.20, which may
be slightly more informative than reporting the standard error. Often people will
look at if the confidence interval includes zero (no effect). Since it does not, and in
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fact since the interval is quite narrow and not very close to zero, this provides some
additional evidence of its importance. There is a well known link between
hypothesis testing and confidence intervals which we will not get into detail here.

When plotting the data with the model fit, similar to Fig. 16.2, it is a good idea to
include some sort of assessment of uncertainty as well. To do this in R, we will first
create a data frame with PCO2 levels which we would like to predict. In this case,
we would like to predict the outcome (TCO2) over the range of observed covariate
(PCO2) values. We do this by creating a data frame, where the variable names in
the data frame must match the covariates used in the model. In our case, we have
only one covariate (pco2_first), and we predict the outcome over the range of
covariate values we observed determined by the min and max functions.

Then, by using the predict function, we can predict TCO2 levels at these
PCO2 values. The predict function has three arguments: the model we have
constructed (in this case, using lm), newdata, and interval. The newdata
argument allows you to pass any data frame with the same covariates as the model
fit, which is why we created grid.pred above. Lastly, the interval argument
is optional, and allows for the inclusion of any confidence or prediction intervals.
We want to illustrate a prediction interval which incorporates both uncertainty
about the model coefficients, in addition to the uncertainty generated by the data
generating process, so we will pass interval = ”prediction”.

We have printed out the first two rows of our predictions, preds, which are the
model’s predictions for PCO2 at 8 and 9. We can see that our predictions (fit) are
about 0.18 apart, which make sense given our estimate of the slope (0.18). We also
see that our 95 % prediction intervals are very wide, spanning about 9 (lwr) to 26
(upr). This indicates that, despite coming up with a model which is very statisti-
cally significant, we still have a lot of uncertainty about the predictions generated
from such a model. It is a good idea to capture this quality when plotting how well
your model fits by adding the interval lines as dotted lines. Let’s plot our final
model fit, co2.lm, along with the scatterplot and prediction interval in Fig. 16.4.
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16.2.5 Caveats and Conclusions

Linear regression is an extremely powerful tool for doing data analysis on con-
tinuous outcomes. Despite this, there are several aspects to be aware of when
performing this type of analysis.

1. Hypothesis testing and the interval generation are reliant on modelling
assumptions. Doing diagnostic plots is a critical component when conducting
data analysis. There is subsequent discussion on this elsewhere in the book, and
we will refer you to [6–8] for more information about this important topic.

2. Outliers can be problematic when fitting models. When there are outliers in the
covariates, it’s often easiest to turn a numeric variable into a categorical one (2 or
more groups cut along values of the covariate). Removing outliers should be
avoided when possible, as they often tell you a lot of information about the data
generating process. In other cases, they may identify problems for the extraction
process. For instance, a subset of the data may use different units for the same
covariate (e.g., inches and centimeters for height), and thus the data needs to be
converted to common units. Methods robust to outliers are available in R, a brief
introduction of how to get started with some of the functions in R is available [7].
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Fig. 16.4 Scatterplot of PCO2 (x-axis) and TCO2 (y-axis) along with linear regression estimates
from the linear only model (co2.lm). The dotted line represents 95 % prediction intervals for the
model
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3. Be concerned about missing data. R reports information about missing data in
the summary output. For our model fit co2.lm, we had 186 observations with
missing pco2_first observations. R will leave these observations out of the
analysis, and fit on the remaining non-missing observations. Always check the
output to ensure you have as many observations as you think that you are
supposed to. When many observations have missing data and you try to build a
model with a large number of coefficients, you may be fitting the model on only
a handful of observations.

4. Assess potential multi-colinearity. Co-linearity can occur when two or more
covariates are highly correlated. For instance, if blood pressure on the left and
right arms were simultaneously measured, and both used as covariates in the
model. In this case, consider taking the sum, average or difference (whichever is
most useful in the particular case) to craft a single covariate. Co-linearity can
also occur when a categorical variable has been improperly generated. For
instance, defining groups along the PCO2 covariate of 0–25, 5–26, 26–50, >50
may cause linear regression to encounter some difficulties as the first and second
groups are nearly identical (usually these types of situations are programming
errors). Identifying covariates which may be colinear is a key part of the
exploratory analysis stage, where they can often (but not always) be seen by
plotting the data.

5. Check to see if outcomes are dependent. This most commonly occurs when one
patient contributes multiple observations (outcomes). There are alternative
methods for dealing with this situation [9], but it is beyond the scope of this
chapter.

These concerns should not discourage you from using linear regression. It is
extremely powerful and reasonably robust to some of the problems discussed
above, depending on the situation. Frequently a continuous outcome is converted to
a binary outcome, and often there is no compelling reason this is done. By dis-
cretizing the outcome you may be losing information about which patients may
benefit or be harmed most by a therapy, since a binary outcome may treat patients
who had very different outcomes on the continuous scale as the same. The overall
framework we took in linear regression will closely mirror the way in which we
approach the other analysis techniques we discuss later in this chapter.

16.3 Logistic Regression

16.3.1 Section Goals

In this section, the reader will learn the fundamentals of logistic regression, and
how to present and interpret such an analysis.
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16.3.2 Introduction

In Sect. 16.2 we covered a very useful methodology for modeling quantitative or
continuous outcomes. We of course know though that health outcomes come in all
different kinds of data types. In fact, the health outcomes we often care about most
—cured/not cured, alive/dead, are discrete binary outcomes. It would be ideal if we
could extend the same general framework for continuous outcomes to these binary
outcomes. Logistic regression allows us to incorporate much of what we learned in
the previous section and apply the same principles to binary outcomes.

When dealing with binary data, we would like to be able to model the probability
of a type of outcome given one or more covariates. One might ask, why not just
simply use linear regression? There are several reasons why this is generally a bad
idea. Probabilities need to be somewhere between zero and one, and there is
nothing in linear regression to constrain the estimated probabilities to this interval.
This would mean that you could have an estimated probability 2, or even a negative
probability! This is one unattractive property of such a method (there are others),
and although it is sometimes used, the availability of good software such as R
allows us to perform better analyses easily and efficiently. Before introducing such
software, we should introduce the analysis of small contingency tables.

16.3.3 2 � 2 Tables

Contingency tables are the best way to start to think about binary data.
A contingency table cross-tabulates the outcome across two or more levels of a
covariate. Let’s begin by creating a new variable (age.cat) which dichotomizes
age into two age categories: � 55 and [ 55. Note, because we are making age a
discrete variable, we also change the data type to a factor. This is similar to what we
did for the gender_num variable when discussing linear regression in the pre-
vious section. We can get a breakdown of the new variable using the table
function.

We would like to see how 28 day mortality is distributed among the age cate-
gories. We can do so by constructing a contingency table, or in this case what is
commonly referred to as a 2 � 2 table.
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From the above table, you can see that 40 patients in the young group � 55ð Þ
died within 28 days, while 243 in the older group died. These correspond to
Pðdiejage� 55Þ ¼ 0:043) or 4.3 % and P(die|age > 55) = 0.284 or 28.4 %, where
the “|” can be interpreted as “given” or “for those who have.” This difference is
quite marked, and we know that age is an important factor in mortality, so this is not
surprising.

The odds of an event happening is a positive number and can be calculated from
the probability of an event, p, by the following formula

Odds ¼ p
1� p

:

An event with an odds of zero never happens, and an event with a very large
odds (>100) is very likely to happen. Here, the odds of dying within 28 days in the
young group is 0.043/(1 − 0.043) = 0.045, and in the older group is 0.284/(1
−0.284) = 0.40. It is convenient to represent these two figures as a ratio, and the
choice of what goes in the numerator and the denominator is somewhat arbitrary. In
this case, we will choose to put the older group’s odds on the numerator and the
younger in the denominator, and it’s important to make it clear which group is in
the numerator and denominator in general. In this case the Odds ratio is
0.40/0.045 = 8.79, which indicates a very strong association between age and
death, and means that the odds of dying in the older group is nearly 9 fold higher
than when compared to the younger group. There is a convenient shortcut for doing
odds ratio calculation by making an X on a 2 � 2 table and multiplying top left by
bottom right, then dividing it by the product of bottom left and top right. In this case
883�243
610�40 ¼ 8:79.

Now let us look at a slightly different case—when the covariate takes on more
than two values. Such a variable is the service_unit. Let’s see how the deaths
are distributed among the different units:
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we can get frequencies of these service units by applying the prop.table
function to our cross-tabulated table.

It appears as though the FICU may have a lower rate of death than either the
MICU or SICU. To compute an odds ratios, first compute the odds:

and then we need to pick which of FICU, MICU or SICU will serve as the
reference or baseline group. This is the group which the other two groups will be
compared to. Again the choice is arbitrary, but should be dictated by the study
objective. If this were a clinical trial with two drug arms and a placebo arm, it
would be foolish to use one of the treatments as the reference group, particularly if
you wanted to compare the efficacy of the treatments. In this particular case, there is
no clear reference group, but since the FICU is so much smaller than the other two
units, we will use it as the reference group. Computing the odds ratio for MICU and
SICU we get 4.13 and 3.63, respectively. These are also very strong associations,
meaning that the odds of dying in the SICU and MICU are around 4 times higher
than in the FICU, but relatively similar.

Contingency tables and 2 � 2 tables in particular are the building blocks of
working with binary data, and it’s often a good way to begin looking at the data.

16.3.4 Introducing Logistic Regression

While contingency tables are a fundamental way of looking at binary data, they are
somewhat limited. What happens when the covariate of interest is continuous? We
could of course create categories from the covariate by establishing cut points, but
we may still miss some important aspect of the relationship between the covariate
and the outcome by not choosing the right cut points. Also, what happens when we
know that a nuisance covariate is related to both the outcome and the covariate of
interest. This type of nuisance variable is called a confounder and occurs frequently
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in observational data, and although there are ways of accounting for confounding in
contingency tables, they become more difficult to use when there are more than one
present.

Logistic regression is a way of addressing both of these issues, among many
others. If you recall, using linear regression is problematic because it is prone to
estimating probabilities outside of the [0, 1] range. Logistic regression has no such
problem per se, because it uses a link function known as the logit function which
maps probabilities in the interval ½0; 1� to a real number ð�1;1Þ. This is important
for many practical and technical reasons. The logit of px (i.e. the probability of an
event for certain covariate values xÞ is related to the covariates in the following way

logitðpxÞ ¼ logðOddsxÞ ¼ logð px
1� px

Þ ¼ b0 þ b1 � x:

It is worth pointing out here that log here, and in most places in statistics is
referring to the natural logarithm, sometimes denoted ln.

The first covariate we were considering, age.cat was also a binary variable,
where it takes on values 1 when the age [ 55 and 0 when age � 55. So plugging
these values in, first for the young group ðx ¼ 0Þ:

logitðpx¼0Þ ¼ logðOddsx¼0Þ ¼ logð px¼0

1� px¼0
Þ ¼ b0 þ b1 � 0 ¼ b0;

and then for the older group ðx ¼ 1Þ:

logitðpx¼1Þ ¼ logðOddsx¼1Þ ¼ logð px¼1

1� px¼1
Þ ¼ b0 þ b1 � 1 ¼ b0 þ b1:

If we subtract the two cases
logitðpx¼1Þ � logitðpx¼0Þ ¼ logðOddsx¼1Þ � logðOddsx¼0Þ, and we notice that this
quantity is equal to b1. If you recall the properties of logarithms, that the difference
of two logs is the log of their ratio, so logðOddsx¼1Þ � logðOddsx¼0Þ ¼
logðOddsx¼1=Oddsx¼0Þ, which may be looking familiar. This is the log ratio of the
odds or the log odds ratio in the x ¼ 1 group relative to the x ¼ 0 group. Hence, we
can estimate odds ratios using logistic regression by exponentiating the coefficients
of the model (the intercept notwithstanding, which we will get to in a moment).

Let’s fit this model, and see how this works using a real example. We fit logistic
regression very similarly to how we fit linear regression models, with a few
exceptions. First, we will use a new function called glm, which is a very powerful
function in R which allow one to fit a class of models known as generalized linear
models or GLMs [10]. The glm function works in much the same way the lm
function does. We need to specify a formula of the form: outcome * co-
variates, specify what dataset to use (in our case the dat data frame), and then
specify the family. For logistic regression family = ‘binomial’ will be our
choice. You can run the summary function, just like you did for lm and it pro-
duces output very similar to what lm did.
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As you can see, we get a coefficients table that is similar to the lm table we used
earlier. Instead of a t value, we get a z value, but this can be interpreted
similarly. The rightmost column is a p-value, for testing the null hypothesis b ¼ 0.
If you recall, the non-intercept coefficients are log-odds ratios, so testing if they are
zero is equivalent to testing if the odds ratios are one. If an odds ratio is one the
odds are equal in the numerator group and denominator group, indicating the
probabilities of the outcome are equal in each group. So, assessing if the coefficients
are zero will be an important aspect of doing this type of analysis.

Looking more closely at the coefficients. The intercept is −3.09 and the
age.cat coefficient is 2.17. The coefficient for age.cat is the log odds ratio for
the 2 � 2 table we previously did the analysis on. When we exponentiate 2.17, we
get exp(2.17) = 8.79. This corresponds with the estimate using the 2 � 2 table.
For completeness, let’s look at the other coefficient, the intercept. If you recall,
logðOddsx¼0Þ ¼ b0, so b0 is the log odds of the outcome in the younger
group. Exponentiating again, exp(−3.09) = 0.045, and this corresponds with the
previous analysis we did. Similarly, logðOddsx¼1Þ ¼ b0 þ b1, and the estimated
odds of 28 day death in the older group is exp(−3.09 + 2.17) = 0.4, as was found
above. Converting estimated odds into a probability can be done directly using the
plogis function, but we will cover a more powerful and easier way of doing this
later on in the section.

Beyond a Single Binary Covariate
While the above analysis is useful for illustration, it does not readily demonstrate
anything we could not do with our 2 � 2 table example above. Logistic regression
allows us to extend the basic idea to at least two very relevant areas. The first is the
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case where we have more than one covariate of interest. Perhaps we have a con-
founder, we are concerned about, and want to adjust for it. Alternatively, maybe
there are two covariates of interest. Secondly, it allows use to use covariates as
continuous quantities, instead of discretizing them into categories. For example,
instead of dividing age up into exhaustive strata (as we did very simply by just
dividing the patients into two groups, � 55 and [ 55), we could instead use age as
a continuous covariate.

First, having more than one covariate is simple. For example, if we wanted to
add service_unit to our previous model, we could just add it as we did when
using the lm function for linear regression. Here we specify *day_28_flg
age.cat + service_unit and run the summary function.

A coefficient table is produced, and now we have four estimated coefficients.
The same two, (Intercept) and age.cat which were estimated in the unad-
justed model, but also we have service_unitMICU and
service_unitSICU which correspond to the log odds ratios for the MICU and
SICU relative to the FICU. Taking the exponential of these will result in an odds
ratio for each variable, adjusted for the other variables in the model. In this case the
adjusted odds ratios for Age > 55, MICU and SICU are 8.68, 3.25, and 3.08,
respectively. We would conclude that there is an almost 9-fold increase in the odds
of 28 day mortality for those in the >55 year age group relative to the younger
� 55 group while holding service unit constant. This adjustment becomes impor-
tant in many scenarios where groups of patients may be more or less likely to
receive treatment, but also more or less likely to have better outcomes, where one
effect is confounded by possibly many others. Such is almost always the case with
observational data, and this is why logistic regression is such a powerful data
analysis tool in this setting.

Another case we would like to be able to deal with is when we have a continuous
covariate we would like to include in the model. One can always break the con-
tinuous covariate into mutually exclusive categories by selecting break or cut
points, but selecting the number and location of these points can be arbitrary, and in
many cases unnecessary or inefficient. Recall that in logistic regression we are
fitting a model:
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logitðpxÞ ¼ logðOddsxÞ ¼ logð px
1� px

Þ ¼ b0 þ b1 � x;

but now assume x is continuous. Imagine a hypothetical scenario where you know
b0 and b1 and have a group of 50 year olds, and a group of 51 year olds. The
difference in the log Odds between the two groups is:

logðOdds51Þ � logðOdds50Þ ¼ ðb0 þ b1 � 51Þ � ðb0 þ b1 � 50Þ ¼ b1ð51� 50Þ
¼ b1:

Hence, the odds ratio for 51 year olds versus 50 year olds is expðb1Þ. This is
actually true for any group of patients which are 1 year apart, and this gives a useful
way to interpret and use these estimated coefficients for continuous covariates. Let’s
work with an example. Again fitting the 28 day mortality outcome as a function of
age, but treating age as it was originally recorded in the dataset, a continuous
variable called age.

We see the estimated coefficient is 0.07 and still very statistically significant.
Exponentiating the log odds ratio for age, we get an estimated odds ratio of 1.07,
which is per 1 year increase in age. What if the age difference of interest is ten years
instead of one year? There are at least two ways of doing this. One is to replace age
with I(age/10), which uses a new covariate which is age divided by ten. The
second is to use the agects.glm estimated log odds ratio, and multiple by ten
prior to exponentiating. They will yield equivalent estimates of 1.92, but it is now
per 10 year increases in age. This is useful when the estimated odds ratios (or log
odds ratios) are close to one (or zero). When this is done, one unit of the covariate is
10 years, so the generic interpretation of the coefficients remains the same, but the
units (per 10 years instead of per 1 year) changes.

This of course assumes that the form of our equation relating the log odds of the
outcome to the covariate is correct. In cases where odds of the outcome decreases
and increases as a function of the covariate, it is possible to estimate a relatively
small effect of the linear covariate, when the outcome may be strongly affected by
the covariate, but not in the way the model is specified. Assessing the linearity of
the log odds of the outcome and some discretized form of the covariate can be done
graphically. For instance, we can break age into 5 groups, and estimate the log odds
of 28 day mortality in each group. Plotting these quantities in Fig. 16.5 (left), we
can see in this particular case, age is indeed strongly related to the odds of the
outcome. Further, expressing age linearly appears like it would be a good
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approximation. If on the other hand, 28 day mortality has more of a “U”-shaped
curve, we may falsely conclude that no relationship between age and mortality
exists, when the relationship may be rather strong. Such may be the case when
looking at the the log odds of mortality by the first temperature (temp_1st) in
Fig. 16.5 (right).

16.3.5 Hypothesis Testing and Model Selection

Just as in the case for linear regression, there is a way to test hypotheses for logistic
regression. It follows much of the same framework, with the null hypothesis being
b ¼ 0. If you recall, this is the log odds ratio, and testing if it is zero is equivalent to
a test for the odds ratio being equal to one. In this chapter, we focus on how to
conduct such a test in R.

As was the case when using lm, we first fit the two competing models, a larger
(alternative model), and a smaller (null model). Provided that the models are nested,
we can again use the anova function, passing the smaller model, then the larger
model. Here our larger model is the one which contained service_unit and
age.cat, and the smaller only contains age.cat, so they are nested. We are
then testing if the log odds ratios for the two coefficients associated with ser-
vice_unit are zero. Let’s call these coefficients bMICU and bSICU . To test if
bMICU and bSICU ¼ 0, we can use the anova function, where this time we will
specify the type of test, in this case set the test parameter to “Chisq”.

Here the output of the anova function when applied to glm objects looks
similar to the output generated when used on lm objects. A couple good practices to
get in a habit are to first make sure the two competing models are correctly spec-
ified. He we are are testing * age.cat versus age.cat + service_unit.
Next, the difference between the residual degrees of freedom (Resid. Df) in the
two models tell us how many more parameters the larger model has when compared
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to the smaller model. Here we see 1774 − 1772 = 2 which means that there are
two more coefficients estimated in the larger model than the smaller one, which
corresponds with the output from the summary table above. Next looking at the p-
value (Pr(>Chi)), we see a test for bMICU and bSICU ¼ 0 has a p-value of around
0.08. At the typical 0.05 significance level, we would not reject the null, and use the
simpler model without the service unit. In logistic regression, this is a common way
of testing whether a categorical covariate should be retained in the model, as it can
be difficult to assess using the z value in the summary table, particularly when
one is very statistically significant, and one is not.

16.3.6 Confidence Intervals

Generating confidence intervals for either the log-odds ratios or the odds ratios are
relatively straightforward. To get the log-odds ratios and respective confidence
intervals for the ageunit.glm model which includes both age and service unit.
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Fig. 16.5 Plot of log-odds of mortality for each of the five age and temperature groups. Error
bars represent 95 % confidence intervals for the log odds
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Here the coefficient estimates and confidence intervals are presented in much the
same way as for a linear regression. In logistic regression, it is often convenient to
exponentiate these quantities to get it on a more interpretable scale.

Similar to linear regression, we will look at if the confidence intervals for the log
odds ratios include zero. This is equivalent to seeing if the intervals for the odds
ratios include 1. Since the odds ratios are more directly interpretable it is often more
convenient to report them instead of the coefficients on the log odds ratio scale.

16.3.7 Prediction

Once you have decided on your final model, you may want to generate predictions
from your model. Such a task may occur when doing a propensity score analysis
(Chap. 25) or creating tools for clinical decision support. In the logistic regression
setting this involves attempting to estimate the probability of the outcome given the
characteristics (covariates) of a patient. This quantity is often denoted
PðoutcomejXÞ. This is relatively easy to accomplish in R using the predict
function. One must pass a dataset with all the variables contained in the model.
Let’s assume that we decided to include the service_unit in our final model,
and want to generate predictions from this based on a new set of patients. Let’s first
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create a new data frame called newdat using the expand.grid function which
computes all combinations of the values of variables passed to it.

We followed this by adding a pred column to our new data frame by using the
predict function. The predict function for logistic regression works similar to
when we used it for linear regression, but this time we also specify
type = ”response” which ensures the quantities computed are what we need, P
(outcome|X). Outputting this new object shows our predicted probability of 28 day
mortality for six hypothetical patients. Two in each of the service units, where one
is in the younger group and another in the older group. We see that our lowest
prediction is for the youngest patients in the FICU, while the patients with highest
risk of 28 day mortality are the older group in the MICU, but the predicted
probability is not all that much higher than the same age patients in the SICU.

To do predictions on a different dataset, just replace the newdata argument
with the other dataset. We could, for instance, pass newdata = dat and receive
predictions for the dataset we built the model on. As was the case with linear
regression, evaluating the predictive performance of our model on data used to
build the model will generally be too optimistic as to how well it would perform in
the real world. How to get a better sense of the accuracy of such models is covered
in Chap. 17.

16.3.8 Presenting and Interpreting Logistic Regression
Analysis

In general, presenting the results from a logistic regression model will follow quite
closely to what was done in the linear regression setting. Results should always be
put in context, including what variables were considered and which variables were
in the final model. Reporting the results should always include some form of the
coefficient estimate, a measure of uncertainty and likely a p-value. In medical and
epidemiological journals, coefficients are usually exponentiated so that they are no
longer on the log scale, and reported as odds ratios. Frequently, multivariable
analyses (analysis with more than one covariate) is distinguished from univariate
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analyses (one covariate) by denoting the estimated odds ratios as adjusted odds
ratios (AOR).

For the age.glm model, an example of what could be reported is:

Mortality at 28 days was much higher in the older ([ 55 years) group than the younger
group (� 55 years), with rates of 28.5 and 4.3 %, respectively (OR = 8.79, 95 % CI:
6.27-12.64, p < 0.001).

When treating age as a continuous covariate in the agects.glm model we
could report:

Mortality at 28 days was associated with older age (OR = 1.07 per year increase, 95 % CI:
1.06–1.08, p < 0.001).

And for the case with more than one covariate, (ageunit.glm) an example of
what could be reported:

Older age ([ 55 versus � 55 years) was independently associated with 28 day mortality
(AOR = 8.68, 95 % CI: 6.18-12.49, p < 0.001) after adjusting for service unit.

16.3.9 Caveats and Conclusions

As was the case with linear regression, logistic regression is an extremely powerful
tool for data analysis of health data. Although the study outcomes in each approach
are different, the framework and way of thinking of the problem have similarities.
Likewise, many of the problems encountered in linear regression are also of con-
cern in logistic regression. Outliers, missing data, colinearity and
dependent/correlated outcomes are all problems for logistic regression as well, and
can be dealt with in a similar fashion. Modelling assumptions are as well, and we
briefly touched on this when discussing whether it was appropriate to use age as a
continuous covariate in our models. Although continuous covariates are frequently
modeled in this way, it is important to ensure if the relationship between the log
odds of the outcome is indeed linear with the covariate. In cases where the data has
been divided into too many subgroups (or the study may be simply too small), you
may encounter a level of a discrete variable where none (or very few) of one of the
outcomes occurred. For example, if we had an additional service_unit with 50
patients, all of whom lived. In such a case, the estimated odds ratios and subsequent
confidence intervals or hypothesis testing may not be appropriate to use. In such a
case, collapsing the discrete covariate into fewer categories will often help return
the analysis into a manageable form. For our hypothetical new service unit, creating
a new group of it and FICU would be a possible solution. Sometimes a covariate is
so strongly related to the outcome, and this is no longer possible, and the only
solution may be to report this finding, and remove these patients.

Overall, logistic regression is a very valuable tool in modelling binary and
categorical data. Although we did not cover this latter case, a similar framework is
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available for discrete data which is ordered or has more than one category (see
?multinom in the nnet package in R for details about multinomial logistic
regression). This and other topics such as assessing model fit, and using logistic
regression in more complicated study designs are discussed in [11].

16.4 Survival Analysis

16.4.1 Section Goals

In this section, the reader will learn the fundamentals of survival analysis, and how
to present and interpret such an analysis.

16.4.2 Introduction

As you will note that in the previous section on logistic regression, we specifically
looked at the mortality outcome at 28 days. This was deliberate, and illustrates a
limitation of using logistic regression for this type of outcome. For example, in the
previous analysis, someone who died on day 29 was treated identically as someone
who went on to live for 80+ years. You may wonder, why not just simply treat the
survival time as a continuous variable, and perform linear regression analysis on
this outcome? There are several reasons, but the primary reason is that you likely
won’t be able to wait around for the lifetime for each study participant. It is likely in
your study only a fraction of your subjects will die before you’re ready to publish
your results.

While we often focus on mortality this can occur for many other outcomes,
including times to patient relapse, re-hospitalization, reinfection, etc. In each of
these types of outcomes, it is presumed the patients are at risk of the outcome until
the event happens, or until they are censored. Censoring can happen for a variety of
different reasons, but indicates the event was not observed during the observation
time. In this sense, survival or more generally time-to-event data is a bivariate
outcome incorporating the observation or study time in which the patient was
observed and whether the event happened during the period of observation. The
particular case we will be most interested is right censoring (subjects are observed
only up to a point in time, and we don’t know what happens beyond this point), but
there is also left censoring (we only know the event happened before some time
point) and interval censoring (events happen inside some time window). Right
censoring is generally the most common type, but it is important to understand how
the data was collected to make sure that it is indeed right censored.

Establishing a common time origin (i.e., a place to start counting time) is often
easy to identify (e.g., admission to the ICU, enrollment in a study, administration of
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a drug, etc.), but in other scenarios it may not be (e.g., perhaps interest lies in
survival time since disease onset, but patients are only followed from the time of
disease diagnosis). For a good treatment on this topic and other issues, see Chap. 3
of [12].

With this additional complexity in the data (relative to logistic and linear
regression), there are additional technical aspects and assumptions to the data
analysis approaches. In general, each approach attempts to compare groups or
identify covariates which modify the survival rates among the patients studied.

Overall survival analysis is a complex and fascinating area of study, and we will
only touch briefly on two types of analysis here. We largely ignore the technical
details of these approaches focusing on general principles and intuition instead.
Before we begin doing any survival analysis, we need to load the survival
package in R, which we can do by running:

Normally, you can skip the next step, but since this dataset was used to analyze
the data in a slightly different way, we need to correct the observation times for a
subset of the subjects in the dataset.

16.4.3 Kaplan-Meier Survival Curves

Now that we have the technical issues sorted out, we can begin by visualizing the
data. Just as the 2 � 2 table is a fundamental step in the analysis of binary data, the
fundamental step for survival data is often plotting what is known as a
Kaplan-Meier survival function [13]. The survival function is a function of time,
and is the probability of surviving at least that amount of time. For example, if there
was 80 % survival at one year, the survival function at one year is 0.8. Survival
functions normally start at time = 0, where the survivor function is 1 (or 100 % –

everyone is alive), and can only stay the same or decrease. If it were to increase as
time progressed, that would mean people were coming back to life! Kaplan-Meier
plots are one of the most widely used plots in medical research.

Before plotting the Kaplan-Meier plot, we need to setup a survfit object. This
object has a familiar form, but differs slightly from the previous methodologies we
covered. Specifying a formula for survival outcomes is somewhat more compli-
cated, since as we noted, survival data has two components. We do this by creating
a Surv object in R. This will be our survival outcome for subsequent analysis.
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The first step setups a new kind of R object useful for survival data. The Surv
function normally takes two arguments: a vector of times, and some kind of indi-
cator for which patients had an event (death in our case). In our case, the vector of
death and censoring times are the mort_day_censored, and deaths are coded
with a zero in the censor_flg variable (hence we identify the events where
censor_flg == 0). The last step prints out 5 entries of the new object (obser-
vations 101 to 105). We can see there are three entries of 731.00+.
The + indicates that this observation is censored. The other entries are not cen-
sored, indicating deaths at those times.

Fitting a Kaplan-Meier curve is quite easy after doing this, but requires two
steps. The first specifies a formula similar to how we accomplished this for linear
and logistic regression, but now using the survfit function. We want to ‘fit’ by
gender (gender_num), so the formula is, datSurv * gender_num. We can
then plot the newly created object, but we pass some additional arguments to the
plot function which include 95 % confidence intervals for the survival functions
(conf.int = TRUE), and includes a x- and y- axis label (xlab and ylab).
Lastly we add a legend, coding black for the women and red for the men. This plot
is in Fig. 16.6.

In Fig. 16.6, there appears to be a difference between the survival function
between the two gender groups, with again the male group (red) dying at slightly
slower rate than the female group (black). We have included 95 % point-wise
confidence bands for the survival function estimate, which assesses how much
certain we are about the estimated survivorship at each point in time. We can do the
same for service_unit, but since it has three groups, we need to change the
color argument and legend to ensure the plot is properly labelled. This plot is in
Fig. 16.7.
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16.4.4 Cox Proportional Hazards Models

Kaplan-Meier curves are a good first step in examining time to event data before
proceeding with any more complex statistical model. Time to event outcomes are in
general more complex than the other types of outcomes we have examined thus far.
There are several different modelling approaches, each of which has some advan-
tages and limitations. The most popular approach for health data is likely the Cox
Proportional Hazards Model [14], which is also sometimes called the Cox model or
Cox Regression. As the name implies this method models something called the
hazard function. We will not dwell on the technical details, but attempt to provide
some intuition. The hazard function is a function of time (hours, days, years) and is
approximately the instantaneous probability of the event occurring (i.e., chance the
event is happening in some very small time window) given the event has not

0 100 200 300 400 500 600 700

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Days

P
ro

po
rti

on
 W

ho
 S

ur
vi

ve
d

FICU
MICU
SICU

Fig. 16.7 Kaplan-Meier plot of the estimated survivor function stratified by service unit
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Fig. 16.6 Kaplan-Meier plot of the estimated survivor function stratified by gender
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already happened. It is frequently used to study mortality, sometimes going by the
name force of mortality or instantaneous death rate, and can be interpreted simply
as the risk of death at a particular time, given that the person has survived up until
that point. The “proportional” part of Cox’s model assumes that the way covariates
effect the hazard function for different types of patients is through a proportionality
assumption relative to the baseline hazard function. For illustration, consider a
simple case where two treatments are given, for treatment 0 (e.g., the placebo) we
determine the hazard function is h0ðtÞ, and for treatment 1 we determine the hazard
function is h1ðtÞ, where t is time. The proportional hazards assumption is that:

h1ðtÞ ¼ HR� h0ðtÞ:

It’s easy to see that HR ¼ h1ðtÞ=h0ðtÞ. This quantity is often called the hazard
ratio, and if for example it is two, this would mean that the risk of death in the
treatment 1 group was twice as high as the risk of death in the treatment zero
group. We will note, that HR is not a function of time, meaning that the risk of
death is always twice as high in the first group when compared to the second
group. This assumption means that if the proportional hazards assumption is valid
we need only know the hazard function from group 0, and the hazard ratio to know
the hazard function for group 1. Estimation of the hazard function under this model
is often considered a nuisance, as the primary focus is on the hazard ratio, and this
is key to being able to fit and interpret these models. For a more technical treatment
of this topic, we refer you to [12, 15–17].

As was the case with logistic regression, we will model the log of the hazard
ratio instead of the hazard ratio itself. This allows us to use the familiar framework
we have used thus far for modeling other types of health data. Like logistic
regression, when the logðHRÞ is zero, the HR is one, meaning the risk between the
groups is the same. Furthermore, this extends to multiple covariate models or
continuous covariates in the same manner as logistic regression.

Fitting Cox regression models in R will follow the familiar pattern we have seen
in the previous cases of linear and logistic regressions. The coxph function (from
the survival package) is the fitting function for Cox models, and it continues the
general pattern of passing a model formula (outcome * covariate), and the
dataset you would like to use. In our case, let’s continue our example of using
gender (gender_num) to model the datSurv outcome we created, and running
the summary function to see what information is outputted.
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The coefficients table has the familiar format, which we’ve seen before. The
coef for gender_num is about −0.29, and this is the estimate of our log-hazard
ratio. As discussed, taking the exponential of this gives the hazard ratio (HR),
which the summary output computes in the next column (exp(coef)). Here, the
HR is estimated at 0.75, indicating that men have about a 25 % reduction in the
hazards of death, under the proportional hazards assumption.

The next column in the coefficient table has the standard error for the log hazard
ratio, followed by the z score and p-value (Pr(>|z|)), which is very similar to
what we saw in the case of logistic regression. Here we see the p-value is quite
small, and we would reject the null hypothesis that the hazard functions are the
same between men and women. This is consistent with the exploratory figures we
produced using Kaplan-Meier curves in the previous section. For coxph, the
summary function also conveniently outputs the confidence interval of the HR a
few lines down, and here our estimate of the HR is 0.75 (95 % CI: 0.63–0.89,
p = 0.001). This is how the HR would typically be reported.

Using more than one covariate works the same as our other analysis techniques.
Adding a co-morbidity to the model such as atrial fibrillation (afib_flg) can be
done as you would do for logistic regression.
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Here again male gender is associated with reduced time to death, while atrial
fibrillation increases the hazard of death by almost four-fold. Both are statistically
significant in the summary output, and we know from before that we can test a large
number of other types of statistical hypotheses using the anova function. Again we
pass anova the smaller (gender_num only) and larger (gender_num and
afib_flg) nested models.

As expected, atrial fibrillation is very statistically significant, and therefore we
would like to keep it in the model.

Cox regression also allows one to use covariates which change over time. This
would allow one to incorporate changes in treatment, disease severity, etc. within
the same patient without need for any different methodology. The major challenge
to do this is mainly in the construction of the dataset, which is discussed in some of
the references at the end of this chapter. Some care is required when the time
dependent covariate is only measure periodically, as the method requires that it be
known at every event time for the entire cohort of patients, and not just those
relevant to the patient in question. This is more practical for changes in treatment
which may be recorded with some precision, particularly in a database like
MIMIC II, and less so for laboratory results which may be measured at the reso-
lution of hours, days or weeks. Interpolating between lab values or carrying the last
observation forward has been shown to introduce several types of problems.

16.4.5 Caveats and Conclusions

We will conclude this brief overview of survival analysis, but acknowledge we
have only scratched the surface. There are many topics we have not covered or we
have only briefly touched on.

Survival analysis is distinguished from other forms of analyses covered in this
Chapter, as it allows the data to be censored. As was the case for the other
approaches we considered, there are modeling assumptions. For instance, it is
important that the censoring is not informative of the survival time. For example, if
censoring occurs when treatment is withdrawn because the patient is too sick to
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continue therapy, this would be an example of informative censoring. The validity
of all methods discussed in this section are then invalid. Care should be taken to
make sure you understand the censoring mechanism as to avoid any false inferences
drawn.

Assessment of the proportional hazards assumption is an important part of any
Cox regression analysis. We refer you to the references (particularly [17] and see
?cox.zph) at the end of this chapter for strategies and alternatives for when the
proportional hazards assumption breaks down. In some circumstances, the pro-
portional hazards assumption is not valid, and alternative approaches can be used.
As is always the case, when outcomes are dependent (e.g., one patient may con-
tribute more than one observation), the methods discussed in this section should not
be used directly. Generally the standard error estimates will be too small, and p-
values will be incorrect. The concerns in logistic regression regarding outliers,
co-linearity, missing data, and covariates with sparse outcomes apply here as well,
as do the concerns about model misspecification for continuous covariates.

Survival analysis is a powerful analysis technique which is extremely relevant
for health studies. We have only given a brief overview of the subject, and would
encourage you to further explore these methods.

16.5 Case Study and Summary

16.5.1 Section Goals

In this section, we will work through a case study, and discuss the data analysis
components which should be included in an original research article suitable for a
clinical journal. We will also discuss some approaches for model and feature
selection.

16.5.2 Introduction

We will now use what we learned in the previous sections to examine if indwelling
arterial catheters (IAC) have any effect on patient mortality. As reiterated
throughout, clearly identifying a study objective is important for a smooth data
analysis. In our case, we’d like to estimate the effect of IAC on mortality, but
acknowledge a few potential problem areas. First, the groups who receive IAC and
and those who don’t are likely different in many respects, and many of these
differences likely also have some effect on mortality. Second, we would like to be
able to limit ourselves on mortality events which occur in close proximity to the
ICU admission. The dataset includes 28 day mortality, so that would seem to be in
close proximity to the ICU admission. As for the first issue, we also have many
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covariates which capture some of the features we may be concerned with, including
severity of illness (sapsi_first and sofa_first), age (age), patient gender
(gender_num) and co-morbidities (chf_flg, afib_flg, renal_flg, etc.).

With all these in mind, we should have a good start on determining our study
objective. In our case, it might be,

To estimate the effect that administration of IAC during an ICU admission has on 28 day
mortality in patients within the MIMIC II study who received mechanical ventilation, while
adjusting for age, gender, severity of illness and comorbidities.

For now, this describes our outcome and covariates quite well. One of the first
things that is often done is to describe our population by computing summary
statistics of all or a subset of variables collected in the study. This description
allows the reader to understand how well the study would generalize to other
populations. We have made available an R package on GitHub that will allow one
to construct preliminary forms of such a table quite quickly. To install the R
package, first install and load the devtools package:

and then install and load our package by using the install_github
function.

Before we do any in depth analysis, let’s make sure we are using the original
dataset, first by removing and then reloading the dat data frame. In order to ensure
our research is reproducible, it’s a good idea to make sure the entire process of
doing the analysis is documented. By starting from the original copy of the dataset,
we are able to present precisely what methods we used in an analysis.

As mentioned before, recoding binary encoded variables (ones which are 0s and
1s) to the R data class factor can sometimes make interpreting the R output
easier. The following piece of code cycles through all the columns in dat and
converts any binary variables to a factor.
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We are now ready to generate a summary of the patient characteristics in our
study. The MIMICbook package has a produce.table1 function. This gen-
erates a summary table of the data frame you pass to it, using an appropriate
summary for continuous variables (average and standard deviation) and categorical
variables (number and percentages) for each variable. In its most simple form,
produce.table1 can be passed a data frame as an argument, which we do
(passing it the dat data frame). This output is not very nice, and we can make it
look nicer by using a powerful R package called knitr, which provides many
tools to assist in performing reproducible research. You can find out more about
knitr (which can be installed using install.packages (‘knitr’)), by
running ?knitr on the R console after loading it. We will be using the kable
command, which will take our tab1 variable—a summary table we generated
using the produce.table1 function, and make it look a little nicer.

The row descriptors are not very informative, and what we have produced would
not be usable for final publication, but it suits our purposes for now. knitr allows
one to output such tables in HTML, LaTeX or even a Word document, which you
can edit and make the table more informative. The results are contained in
Table 16.1.

A couple things we may notice from the baseline characteristics are:

1. Some variables have a lot of missing observations (e.g., bmi, po2_first,
iv_day_1).

2. None of the patients have sepsis.

Both of these points are important, and illustrates why it is always a good idea to
perform basic descriptive analyses before beginning any modeling. The missing
data is primarily related to weight/BMI, or lab values. For the purpose of this
chapter, we are going to ignore both of these classes of variables. While we would
likely want to adjust for some of these covariates in a final version of the paper, and
Chap. 11 gives some useful techniques for dealing with such a situation, we are
going to focus on the set of covariates we had identified in our study objective,
which do not include these variables. The issue related to sepsis is also of note.
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Table 16.1 Overall patient
characteristics

Average (SD), or N (%)

aline_flg==1 984 (55.4 %)

icu_los_day 3.3 (3.4)

hospital_los_day 8.1 (8.2)

age 54.4 (21.1)

gender_num==1 1025 (57.7 %) [Missing: 1]

weight_first 80.1 (22.5) [Missing: 110]

bmi 27.8 (8.2) [Missing: 466]

sapsi_first 14.1 (4.1) [Missing: 85]

sofa_first 5.8 (2.3) [Missing: 6]

service_unit==SICU 982 (55.3 %)

service_num==1 982 (55.3 %)

day_icu_intime==Saturday 278 (15.7 %)

day_icu_intime_num 4.1 (2)

hour_icu_intime 10.6 (7.9)

hosp_exp_flg==0 1532 (86.3 %)

icu_exp_flg==0 1606 (90.4 %)

day_28_flg ==0 1493 (84.1 %)

mort_day_censored 614.3 (403.1)

censor_flg==1 1279 (72 %)

sepsis_flg==0 1776 (100 %)

chf_flg==0 1563 (88 %)

afib_flg==0 1569 (88.3 %)

renal_flg==0 1716 (96.6 %)

liver_flg==0 1677 (94.4 %)

copd_flg==0 1619 (91.2 %)

cad_flg==0 1653 (93.1 %)

stroke_flg==0 1554 (87.5 %)

mal_flg==0 1520 (85.6 %)

resp_flg==0 1211 (68.2 %)

map_1st 88.2 (17.6)

hr_1st 87.9 (18.8)

temp_1st 97.8 (4.5) [Missing: 3]

spo2_1st 98.4 (5.5)

abg_count 6 (8.7)

wbc_first 12.3 (6.6) [Missing: 8]

hgb_first 12.6 (2.2) [Missing: 8]

platelet_first 246.1 (99.9) [Missing: 8]

sodium_first 139.6 (4.7) [Missing: 5]

potassium_first 4.1 (0.8) [Missing: 5]

tco2_first 24.4 (5) [Missing: 5]

chloride_first 103.8 (5.7) [Missing: 5]
(continued)
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Sepsis certainly would contribute to higher rates of mortality when compared to
patients without sepsis, but since we do not have any patients with sepsis, we
cannot and do not need to adjust for this covariate per se. What we do need to do is
acknowledge this fact by revising our study objective. We originally identified our
population as patients within MIMIC, but because this is a subset of MIMIC—those
without sepsis, we should revise the study objective to:

To estimate the effect that administration of IAC during an ICU admission has on 28 day
mortality in patients without sepsis who received mechanical ventilation within MIMIC II,
while adjusting for age, gender, severity of illness and comorbidities.

We will also not want to include the sepsis_flg variable as a covariate in any
of our models, as there are no patients with sepsis within this study to estimate the
effect of sepsis. Now that we have examined the basic overall characteristics of the
patients, we can begin the next steps in the analysis.

The next steps will vary slightly, but it is often useful to put yourself in the shoes
of a peer reviewer. What problems will a reviewer likely find with your study and
how can you address them? Usually, the reviewer will want to see how the pop-
ulation differs for different values of the covariate of interest. In our case study, if
the treated group (IAC) differed substantially from the untreated group (no IAC),
then this may account for any effect we demonstrate. We can do this by summa-
rizing the two groups in a similar fashion as was done for Table 16.1. We can reuse
the produce.table1 function, but we pass it the two groups separately by
splitting the dat data frame into two using the split function (by the aline_flg
variable), later combining them into one table using cbind to yield Table 16.2. It’s
important to ensure that the same reference groups are used across the two study
groups, and that’s what the labels argument is used for (see ?produce.table1
for more details).

Table 16.1 (continued) Average (SD), or N (%)

aline_flg==1 984 (55.4 %)

bun_first 19.3 (14.4) [Missing: 5]

creatinine_first 1.1 (1.1) [Missing: 6]

po2_first 227.6 (144.9) [Missing: 186]

pco2_first 43.4 (14) [Missing: 186]

iv_day_1 1622.9 (1677.1) [Missing: 143]
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Table 16.2 Patient characteristics stratified by IAC administration

Average (SD), or N (%),
No-IAC

Average (SD), or N (%),
IAC

aline_flg==0 792 (100 %) 0 (0 %)

icu_los_day 2.1 (1.9) 4.3 (3.9)

hospital_los_day 5.4 (5.4) 10.3 (9.3)

age 53 (21.7) 55.5 (20.5)

gender_num==1 447 (56.5 %) [Missing: 1] 578 (58.7 %)

weight_first 79.2 (22.6) [Missing: 71] 80.7 (22.4) [Missing: 39]

bmi 28 (9.1) [Missing: 220] 27.7 (7.5) [Missing: 246]

sapsi_first 12.7 (3.8) [Missing: 70] 15.2 (4) [Missing: 15]

sofa_first 4.8 (2.1) [Missing: 4] 6.6 (2.2) [Missing: 2]

service_unit==MICU 480 (60.6 %) 252 (25.6 %)

service_num==0 504 (63.6 %) 290 (29.5 %)

day_icu_intime==Saturday 138 (17.4 %) 140 (14.2 %)

day_icu_intime_num 4 (2) 4.1 (2)

hour_icu_intime 9.9 (7.7) 11 .2 (8. 1)

hosp_exp_flg==0 702 (88.6 %) 830 (84.3 %)

icu_exp_flg==0 734 (92.7 %) 872 (88.6 %)

day_28_flg==0 679 (85.7 %) 814 (82.7 %)

mort_day_censored 619.1 (388.3) 610.5 (414.8)

censor_flg==1 579 (73.1 %) 700 (71.1 %)

sepsis_flg==0 792 (100 %) 984 (100 %)

chf_flg==0 695 (87.8 %) 868 (88.2 %)

afib_flg==0 710 (89.6 %) 859 (87.3 %)

renal_flg==0 764 (96.5 %) 952 (96.7 %)

liver_flg==0 754 (95.2 %) 923 (93.8 %)

copd_flg==0 711 (89.8 %) 908 (92.3 %)

cad_flg==0 741 (93.6 %) 912 (92.7 %)

stroke_flg==0 722 (91.2 %) 832 (84.6 %)

mal_flg==0 700 (88.4 %) 820 (83.3 %)

resp_flg==0 514 (64.9 %) 697 (70.8 %)

map_1st 87.5 (15.9) 88.9 (18.8)

hr_st 88.4 (18.8) 87.5 (18.7)

temp_1st 97.9 (3.8) [Missing: 3] 97.7 (5.1)

spo2_1st 98.4 (5.7) 98.5 (5.4)

abg_count 1.4 (1.6) 9.7 (10.2)

wbc_first 11.7 (6.5) [Missing: 6] 12.8 (6.6) [Missing: 2]

hgb_first 12.7 (2.2) [Missing: 6] 12.4 (2.2) [Missing: 2]

platelet_first 254.3 (104.5) [Missing: 6] 239.5 (95.6) [Missing: 2]

sodium_first 139.8 (4.8) [Missing: 3] 139.4 (4.7) [Missing: 2]

potassium_first 4.1 (0.8) [Missing: 3] 4.1 (0.8) [Missing: 2]
(continued)
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As you can see in Table 16.2, the IAC group differs in many respects to the
non-IAC group. Patients who were given IAC tended to have higher severity of
illness at baseline (sapsi_first and sofa_first), slightly older, less likely to
be from the MICU, and have slightly different co-morbidity profiles when com-
pared to the non-IAC group.

Next, we can see how the covariates are distributed among the different out-
comes (death within 28 days versus alive at 28 days). This will give us an idea of
which covariates may be important for affecting the outcome. The code to generate
this is nearly identical to that used to produce Table 16.2, but instead, we replace
aline_flg with day_28_flg (the outcome) to get Table 16.3.

As can be seen in Table 16.3, those patients who died within 28 days differ in
many ways with those who did not. Those who died had higher SAPS and SOFA
scores, were on average older, and had different co-morbidity profiles.

16.5.3 Logistic Regression Analysis

In Table 16.3, we see that of the 984 subjects receiving IAC, 170 (17.2 %) died
within 28 days, whereas 113 of 792 (14.2 %) died in the no-IAC group. In a
univariate analysis we can assess if the lower rate of mortality is statistically sig-
nificant, by fitting a single covariate aline_flg logistic regression.

Table 16.2 (continued)

Average (SD), or N (%),
No-IAC

Average (SD), or N (%),
IAC

tco2_first 24.7 (4.9) [Missing: 3] 24.2 (5.1) [Missing: 2]

chloride_first 103.3 (5.4) [Missing: 3] 104.3 (5.9) [Missing: 2]

bun_first 18.9 (14.5) [Missing: 3] 19.6 (14.3) [Missing: 2]

creatinine_first 1.1 (1.2) [Missing: 4] 1.1 (1) [Missing: 2]

po2_first 223.8 (152.9) [Missing: 178] 230.1 (139.6) [Missing: 8]

pco2_first 44.9 (15.9) [Missing: 178] 42.5 (12.5) [Missing: 8]

iv_day_1 [1364.2 (1406.8) Missing: 110] 1808.4 (1825) [Missing: 33]
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Table 16.3 Patient characteristics stratified by 28 day mortality

Average (SD), or N (%), alive Average (SD), or N (%),
dead

aline_flg==1 814 (54.5 %) 170 (60.1 %)

icu_los_day 3.2 (3.2) 4 (4)

hospital_los_day 8.4 (8.4) 6.4 (6.4)

age 50.8 (20.1) 73.3 (15.3)

gender_num==1 886 (59.4 %) [Missing: 1] 139 (49.1 %)

weight_first 81.4 (22.7) [Missing: 77] 72.4 (19.9) [Missing: 33]

bmi 28.2 (8.3) [Missing: 392] 26 (7.2) [Missing: 74]

sapsi_first 13.6 (3.9) [Missing: 51] 17.3 (3.8) [Missing: 34]

sofa_first 5.7 (2.3) [Missing: 3] 6.6 (2.4) [Missing: 3]

service_unit==SICU 829 (55.5 %) 153 (54.1 %)

service_num==1 829 (55.5 %) 153 (54.1 %)

day_icu_intime==Saturday 235 (15.7 %) 43 (15.2 %)

day_icu_intime_num 4 (2) 4.1 (2)

hour_icu_intime 10.5 (7.9) 11 (8)

hosp_exp_flg==0 1490 (99.8 %) 42 (14.8 %)

icu_exp_flg==0 1493 (100 %) 113 (39.9 %)

day_28_flg==0 1493 (100 %) 0 (0 %)

mort_day_censored 729.6 (331.4) 6.1 (6.4)

censor_flg==1 1279 (85.7 %) 0 (0 %)

sepsis_flg==0 1493 (100 %) 283 (100 %)

chf_flg==0 1348 (90.3 %) 215 (76 %)

afib_flg==0 1372 (91.9 %) 197 (69.6 %)

renal_flg==0 1447 (96.9 %) 269 (95.1 %)

liver_flg==0 1413 (94.6 %) 264 (93.3 %)

copd_flg==0 1377 (92.2 %) 242 (85.5 %)

cad_flg==0 1403 (94 %) 250 (88.3 %)

stroke_flg==0 1386 (92.8 %) 168 (59.4 %)

mal_flg==0 1294 (86.7 %) 226 (79.9 %)

resp_flg==0 1056 (70.7 %) 155 (54.8 %)

map_1st 88.2 (17.5) 88.3 (17.9)

hr_1st 88.3 (18.4) 85.8 (20.6)

temp_1st 97.8 (4.6) [Missing: 1] 97.7 (4.5) [Missing: 2]

spo2_1st 98.6 (5) 97.8 (7.6)

abg_count 5.7 (7.7) 7.5 (12.5)

wbc_first 12.2 (6.4) [Missing: 6] 12.7 (7.5) [Missing: 2]

hgb_first 12.7 (2.2) [Missing: 6] 11.9 (2.1) [Missing: 2]
(continued)
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Those who received IAC had over a 25 % increase in odds of 28 day mortality
when compared to those who did not receive IAC. The confidence interval includes
one, so we would expect the p-value would be >0.05. Running the summary
function, we see that this is the case.

Indeed, the p-value for aline_flg is about 0.09. As we saw in Table 16.2,
there are likely several important covariates that differed among those who received
IAC and those who did not. These may serve as confounders, and the possible
association we observed in the univariate analysis may be stronger, non-existent or
in the opposite direction (i.e., IAC having lower rates of mortality) depending on
the situation. Our next step would be to adjust for these confounders. This is an

Table 16.3 (continued)

Average (SD), or N (%), alive Average (SD), or N (%),
dead

platelet_first 246.8 (97.3) [Missing: 6] 242.1 (112.6) [Missing: 2]

sodium_first 139.6 (4.6) [Missing: 4] 139.1 (5.4) [Missing: 1]

potassium_first 4.1 (0.8) [Missing: 4] 4.2 (0.9) [Missing: 1]

tco2_first 24.3 (4.8) [Missing: 4] 25 (5.8) [Missing: 1]

chloride_first 104.1 (5.6) [Missing: 4] 102.6 (6.4) [Missing: 1]

bun_first 18 (12.9) [Missing: 4] 26.2 (19) [Missing: 1]

creatinine_first 1.1 (1.1) [Missing: 5] 1.2 (0.9) [Missing: 1]

po2_first 231.3 (146.3) [Missing: 153] 207.9 (135.8) [Missing: 33]

pco2_first 43.3 (12.9) [Missing: 153] 43.8 (18.6) [Missing: 33]

iv_day_1 1694.2 (1709.5) [Missing:
127]

1258 (1449.4) [Missing: 16]
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exercise in what is known as model building, and there are several ways people do
this in the literature. A common approach is to fit all univariate models (one
covariate at a time, as we did with aline_flg, but separately for each covariate
and without aline_flg), and perform a hypothesis test on each model. Any
variables which had statistical significance under the univariate models would then
be included in a multivariable model. Another approach begins with the model we
just fit (uvr.glm which only has aline_flg as a covariate), and then sequentially
adds variables one at a time. This approach is often called step-wise forward
selection. We will make a choice to do step-wise backwards selection, which is as it
sounds—the opposite direction of step-wise forward selection. Model selection is a
challenging task in data analysis, and there are many other methods [18] we
couldn’t possibly describe in full detail here. As an overall philosophy, it is
important to outline and describe the process by which you will do model selection
before you actually do it and stick with the process.

In our stepwise backwards elimination procedure, we are going to fit a model
containing IAC (aline_flg), age (age), gender, (gender_num), disease severity
(sapsi_first and sofa_first), service type (service_unit), and comor-
bidities (chf_flg, afib_flg, renal_flg, liver_flg, copd_flg, cad_flg,
stroke_flg, mal_flg and resp_flg). This is often called the full model, and is
fit below (mva.full.glm). From the full model, we will proceed by eliminating
one variable at a time, until we are left with a model with only statistically sig-
nificant covariates. Because aline_flg is the covariate of interest, it will remain in
the model regardless of its statistical significance. At each step we need to come up
with a criteria to choose which variable we will eliminate. There are several ways of
doing this, but one way we can make this decision is performing a hypothesis test
for each covariate, and choosing to eliminate the covariate with the largest p-value,
unless all p-values are <0.05 or the largest p-value is aline_flg, in which case we
would stop or eliminate the next largest p-value, respectively.

Most of the covariates are binary or categorical in nature, and we’ve already
converted them to factors. The disease severity scores (SAPS and SOFA) are
continuous. We could add them as we did age, but this assumes a linear trend in the
odds of death as these scores change. This may or may not be appropriate (see
Fig. 16.8). Indeed, when we plot the log odds of 28 day death by SOFA score, we
note that while the log odds of death generally increase as the SOFA score increases
the relationship may not be linear (Fig. 16.8).
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What can be done in this situation is to turn a continuous covariate into a discrete
one. A quick way of doing this is using the cut2 function in the Hmisc package.2

Applying cut2(sofa_first, g = 5) turns the sofa_first variable into five
approximately equal sized groups by SOFA score. For illustration, SOFA breaks
down into the following sized groups by SOFA scores:

with not quite equal groups, due to the already discretized nature of SOFA to
begin with. We will treat both SAPS and SOFA in this way in order to avoid any
model misspecification that may occur as a result of assuming a linear relationship.

Returning to fitting the full model, we use these new disease severity scores,
along with the other covariates we identified to include in the full model.
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Fig. 16.8 Plot of log-odds of mortality for each of the SOFA groups. Error bars represent 95 %
confidence intervals for the log odds

2You may need to install Hmisc, which can be done by running install.packages
(‘Hmisc’) from the R command prompt.
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The summary output show that some of the covariates are very statistically
significant, while others may be expendable. Ideally, we would like as simple of a
model as possible that can explain as much of the variation in the outcome as
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possible. We will attempt to remove our first covariate by the procedure we outlined
above. For each of the variables we consider removing, we could fit a logistic
regression model without that covariate, and then test it against the current model. R
has a useful function that automates this process for us, called drop1. We pass to
drop1 our logistic regression object (mva.full.glm) and the type of test you
would like to do. If you recall from the logistic regression section, we used
test = ”Chisq”, and this is what we will pass the drop1 function as well.

As you see from the output, each covariate is listed, along with a p-value (Pr
(> Chi)). Each row represents a hypothesis test with the bigger (alternative
model) being the full model (mva.full.glm), and each null being the full model
without the row’s covariate. The p-values here should match those output if you
were to do this exact test with anova. As we can see from the listed p-values,
aline_flg has the largest p-value, but we stipulated in our model selection plan
that we would retain this covariate as it’s our covariate of interest. We will then go
to the next largest p-value which is the cad_flg variable (coronary artery disease).
We will update our model, and repeat the backwards elimination step on the
updated model. We could just cut and paste the mva.full.glm command and
remove + cad_flg, but an easier way less prone to errors is to use the update
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command. The update function can take a glm or lm object, and alter one of the
covariates. To do a backwards elimination, the second argument is.*. -
variable. The.*. part indicates keep the outcome and the rest of the variables
the same, and the - variable indicates to fit the model without the variable
called variable. Hence, to fit a new model from the full model, but without the
cad_flg variable, we would run:

We then repeat the drop1 step:

and see that aline_flg still has the largest p-value, but chf_flag has the
second largest, so we’ll choose to remove it next. To update the new model, and run
another elimination step, we would run:
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where again aline_flg has the largest p-value, and gender_num has the
second largest. We continue, eliminating gender_num, copd_flg, liver_flg,
cut2(sofa_first, g = 5), renal_flg, and service_unit, in that order
(results omitted). The table produced by drop1 from our final model is as follows:

All variables are statistically significant at the 0.05 significance level. Looking at
the summary output, we see that aline_flg is not statistically significant
(p = 0.98), but all other terms are statistically significant, with the exception of the
cut2(sapsi_first, g = 5)[12,14), which suggest that the second to

258 16 Data Analysis



lowest SAPS group may not be statistically significantly different than the baseline
(lowest SAPS group).

We would call this model our final model, and would present it in a table similar
to Table 16.4. Since the effect of IAC was of particular focus, we will highlight it
by saying that it is not associated with 28 day mortality with an estimated adjusted
odds ratio of 1.01 (95 % CI: 0.71–1.43, p = 0.98). We may conclude that after
adjusting for the other potential confounders found in Table 16.4, we do not find
any statistically significant impact of using IAC on mortality.

16.5.4 Conclusion and Summary

This brief overview of the modeling techniques for health data has provided you
with the foundation to perform the most common types of analyses in health
studies. We have cited how important having a clear study objective before
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conducting data analysis is, as it identifies all the important aspects you need to plan
and execute your analysis. In particular by identifying the outcome, you should be
able to determine what analysis methodology would be most appropriate. Often you
will find that you will be using multiple analysis techniques for different study
objectives within the same study. Table 16.5 summarizes some of the important
aspects of each analysis approach.

Fortunately, R’s framework for conducting these analyses is very similar across
the different types of techniques, and this framework will often extend more gen-
erally to other more complex models (including machine learning algorithms)
and data structures (including dependent/correlated data such as longitudinal data).

Table 16.4 Multivariable logistic regression analysis for mortality at 28 days outcome (final
model

Covariate AOR Lower 95 %
CI

Upper 95 %
CI

p-
value

IAC 1.01 0.71 1.43 0.977

Age (per year increase) 1.04 1.03 1.05 <0.001

SAPSI [12–14)* (relative to SAPSI
<2)

1.35 0.63 2.97 0.440

SAPSI [14–16)* 3.09 1.61 6.28 0.001

SAPSI [16–19)* 2.80 1.45 5.74 0.003

SAPSI [19–32]* 6.58 3.42 13.46 <0.001

Atrial fibrillation 1.69 1.13 2.51 0.010

Stroke 6.49 4.40 9.64 <0.001

Malignancy 1.81 1.21 2.68 0.003

Non-COPD respiratory disease 2.66 1.90 3.73 <0.001

Table 16.5 Summary of different methods

Linear regression Logistic regression Cox proportional
hazards model

Outcome data type Continuous Binary Time to an event
(possibly censored)

Useful preliminary
analysis

Scatterplot Contingency and
2 � 2 tables

Kaplan-Meier
survivor function
estimate

Presentation
Output

Coefficient Odds Ratio Hazard ratio

R output Coefficient Log Odds ratio Log hazard ratio

Presentation
Interpretation

An estimate of the
expected change in
the outcome per one
unit increase in the
covariate, while
keeping all other
covariates constant

An estimate of the
fold change in the
odds of the outcome
per unit increase in
the covariate, while
keeping all other
covariates constant

An estimate of the
fold change in the
hazards of the
outcome per unit
increase in the
covariate, while
keeping all other
covariates constant
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We have highlighted some areas of concern that careful attention should be paid to
including missing data, colinearity, model misspecification, and outliers. Some of
these items will be looked at more closely in Chap. 17.

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction
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Chapter 17
Sensitivity Analysis and Model Validation

Justin D. Salciccioli, Yves Crutain, Matthieu Komorowski
and Dominic C. Marshall

Learning Objectives

• Appreciate that all models possess inherent limitations for generalizability.
• Understand the assumptions for making causal inferences from available data.
• Check model fit and performance.

17.1 Introduction

Imagine that you have now finished the primary analyses of your current research
and have been able to reject the null hypothesis. Even after your chosen methods
have been applied and robust models generated, some doubts may remain.
“How confident are you in the results? How much will the results change if your
basic data is slightly wrong? Will that have a minor impact on your results? Or
will it give a completely different outcome?” Causal inference is often limited by the
assumptions made in study design and analysis and this is particularly pronounced
when working with observational health data. An important approach for any
investigator is to avoid relying on any single analytical approach to assess the
hypothesis and as such, a critical next step is to test the assumptions made in the
analysis.

Sensitivity Analysis and Model Validation are linked in that they are both
attempts to assess the appropriateness of a particular model specification and to
appreciate the strength of the conclusions being drawn from such a model. Whereas
model validation is useful for assessing the model fit within a specific research
dataset, sensitivity analysis is particularly useful in gaining confidence in the results
of the primary analysis and is important in situations where a model is likely to be
used in a future research investigation or in clinical practice. Herein, we discuss
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concepts relating to the assessment of model fit and outline broadly the steps
relating to cross and external validation with direct application to the arterial line
project. We will discuss briefly a few of the common reasons why models fail
validity testing and the potential implications of such failure.

17.2 Part 1—Theoretical Concepts

17.2.1 Bias and Variance

In statistics and machine learning, the bias–variance trade-off (or dilemma) is the
problem of simultaneously minimizing two sources of error that prevent supervised
learning algorithms from generalizing beyond their training set. A model with high
bias fails to accurately estimate the data. For example, a linear regression model
would have high bias when trying to model a quadratic relationship—no matter
how the parameters are set (as shown in Fig. 17.1). Variance, on the other hand,
relates to the stability of your model in response to new training examples. An
algorithm that fits the training data very well but generalizes poorly to new
examples (showing over-fitting) is said to have high variance.

Some common strategies for dealing with bias and variance are outlined below.

• High bias:

– Adding features (predictors) tends to decrease bias, at the expense of
introducing additional variance.

– Adding training examples will not fix high bias, because the underlying
model will still not be able to approximate the correct function.

• High variance:

– Reducing model complexity can help decrease variance. Dimensionality
reduction and feature selection are two examples of methods to decrease
model parameters and thus reduce variance (parameter selection is discussed
below).

– A larger training set tends to decrease variance.

Fig. 17.1 Comparison between bias and variance in model development
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17.2.2 Common Evaluation Tools

A variety of statistical techniques exist to quantitatively assess the performance of
statistical models. These techniques are important, but generally beyond the scope
of this textbook. We will, however, briefly mention two of the most common
techniques: the R2 value used for regressions and the Receiver Operating
Characteristic (ROC) curve used for binary classifier (dichotomous outcome).

The R2 value is a summary statistic representing the proportion of total variance
in the outcome variable that is captured by the model. The R2 has a range from 0 to 1
where values close to 0 reflect situations where the model does not appreciably
summarise variation in the outcome of interest and values close to 1 indicate that the
model captures nearly all of the variation in the outcome of interest. High R2 values
means that a high proportion of the variance is explained by the regression model.
In R programming, the R2 is computed when the linear regression function is used.
For an example of R-code to produce the R2 value please refer to the “R2” function.

The R2 value is an overall measure of strength of association between the model
and the outcome and does not reflect the contribution of any single independent
predictor variable. Further, while we may expect intuitively that there is a pro-
portional relationship between the number of predictor variables and the overall
model R2, in practice, adding predictors does not necessarily increase R2 in new
data. It is possible for an individual predictor to decrease the R2 depending on how
this variable interacts with the other parameters in the model.

For the purpose of this discussion we expect the reader to be familiar with the
computation and utility of the values of sensitivity and specificity. In situations such
as developing a new diagnostic test, investigators may define a single threshold
value to classify a test result as positive. When dealing with a dichotomous out-
come, the Receiver Operating Characteristic (ROC) curve is a more complete
description of a model’s ability to classify outcomes. The ROC curve is a common
method to show the relationship between the sensitivity of a classification model
and its false positive rate (1 - specificity). The resultant Area Under the Curve of the
ROC reflects the prediction estimate of the model, can take values from 0.5 to 1
with values of 0.5 implying near random chance in outcomes and values nearer to 1
reflecting greater prediction. For an example of ROC curves in R, please refer to the
“ROC” function in the accompanying code. For further reading on the ROC curve,
see for example the article by Fawcett [1] (Fig. 17.2).

17.2.3 Sensitivity Analysis

Sensitivity analysis involves a series of methods to quantify how the uncertainty in
the output of a model is related to the uncertainty in its inputs. In other words,
sensitivity analysis assesses how “sensitive” the model is to fluctuations in the
parameters and data on which it is built. The results of sensitivity analysis can have
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important implications at many stages of the modeling process, including for
identifying errors in the model itself, informing the calibration of model parameters,
and exploring more broadly the relationship between the inputs and outputs of the
model.

The principles of a sensitivity analysis are: (a) to allow the investigator to
quantify the uncertainty in a model, (b) to test the model of interest using a sec-
ondary experimental design, and (c) using the results of the secondary experimental
design to calculate the overall sensitivity of the model of interest. The justification
for sensitivity analysis is that a model will always perform better (i.e. over-perform)
when tested on the dataset from which it was derived. Sub-group analysis is a
common variation of sensitivity analysis [2].

17.2.4 Validation

As discussed in Chap. 16—Data Analysis validation is used to confirm that the
model of interest will perform similarly under modified testing conditions. As such,
it is the primary responsibility of the investigator to assess the suitability of model fit
to the data. This may be accomplished with a variety of methodological approaches
and for a more detailed discussion of model fit diagnostics the reader is referred to
other sources [3]. Although it is beyond the scope of this textbook to discuss vali-
dation in detail, the general theory is to select a model based on two principles:
model parsimony and clinical relevance. A number of pre-defined model selection
algorithm-based approaches including Forward selection, Backward, and Stepwise
selection, but also lasso and genetic algorithms, available in common statistical
packages. Please refer to Chap. 16 for further information about model selection.

Cross validation is a technique used to assess the predictive ability of a
regression model. The approach has been discussed in detail previously [4]. The
concept of cross-validation relies on the principle that a large enough dataset can

Fig. 17.2 Example of receiver operator characteristic (ROC) curve which may be used to assess
the ability of a model to discriminate between dichotomous outcomes
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split into two or more (not necessarily equally sized) sub-groups, the first being
used to derive the model and the additional data set(s) reserved for model testing
and validation. To avoid losing information by training the model only on a subset
of available data, a variant called k-fold cross validation exist (not discussed here).

External validation is defined as testing the model on a sample of subjects taken
from a population different than the original cohort. External validation is usually a
more robust approach for testing the derived model in that the maximum amount of
information has been used from the initial dataset to derive a model and an entirely
independent dataset is used subsequently to verify the suitability of the model of
interest. Although external validation is the most rigorous and an essential vali-
dation method, finding a suitably similar albeit entirely independent cohort for
external validation is challenging and is often unavailable for researchers. However,
with the increasing amount of healthcare data being captured electronically it is
likely that researchers will also have increasing capacity for external validation.

17.3 Case Study: Examples of Validation and Sensitivity
Analysis

This case study used the dataset produced for the “IAC study”, which evaluated the
impact of inserting an arterial line in intensive care patients with respiratory failure.
Three different sensitivity analyses were performed:

1. Test the effects of varying the inclusion criteria of time to mechanical ventilation
and mortality;

2. Test the effects of changes in caliper level for propensity matching on associ-
ation between arterial catheter insertion and the mortality;

3. Hosmer-Lemeshow Goodness-of-Fit test to assess the overall fit of the data to
the model of interest.

A number of R packages from CRAN, were used to conduct these analyses:
Multivariate and Propensity Score Matching [5], analysis of complex survey
samples [6], ggplot2 for generating graphics [7], pROC for ROC curves [8] and
Twang for weighting and analyzing non-equivalent groups [9].

17.3.1 Analysis 1: Varying the Inclusion Criteria of Time
to Mechanical Ventilation

The first sensitivity analysis evaluates the effect of varying the inclusion criteria of
time to mechanical ventilation and mortality. Mechanical ventilation is one of the
more common invasive interventions performed in the ICU and the timing of
intervention may serve as a surrogate for the severity of critical illness, as we might
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expect patients with worse illness to require assisted ventilation earlier in the course
of intensive care. As such, mechanical ventilation along with indwelling arterial
catheter (IAC), another invasive intervention, may both be related to the outcome of
interest, 28-day mortality. An example of R-code to inspect the distribution across
groups of patients by ventilation status is provided in the “Cohort” function, in the
accompanying R functions document (Fig. 17.3).

By modifying the time of first assisted mechanical ventilation we may also
obtain important information about the effect of the primary exposure on the out-
come. An example of R-code for this analysis is provided in the “Ventilation”
function.

17.3.2 Analysis 2: Changing the Caliper Level
for Propensity Matching

The second sensitivity analysis performed tests the impact of different caliper levels
for propensity matching on the association between arterial catheter and the mor-
tality. In this study, the propensity score matches a subject who did not received an
arterial catheter with a subject who did. The matching algorithm creates a pair of
two independent subjects whose propensity scores are the most similar. However,
the investigator is responsible for setting a maximum reasonable difference in
propensity score which would allow the matching algorithm to generate a suitable
match; this maximum reasonable difference is also known as the propensity score
‘caliper’. The choice of caliper for the propensity score match will directly influ-
ence the variance bias trade-off such that a wider caliper will result in matching of
subjects which are more dissimilar with respect to likelihood of treatment. An

Fig. 17.3 Simple sensitivity analysis to compare outcomes between groups by varying the
inclusion criteria. Modification of the inclusion criteria for subjects entered into the model is a
common sensitivity analysis
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example of the R-code to produce a sensitivity analysis for varying the propensity
score caliper level is provided in the accompanying R functions document as the
“Caliper” function.

The Fig. 17.4 displays the effect of adjustments of the caliper level on the
propensity score. The full model shows a lower coefficient due to the presence of
additional variables.

17.3.3 Analysis 3: Hosmer-Lemeshow Test

The Hosmer-Lemeshow Goodness-of-Fit test may be used to assess the overall fit
of the data to the model of interest [10]. For this test, the subjects are grouped
according to a percentile of risk (usually deciles). A Pearson Chi square statistic is
generated to compare observed subject grouping with the expected risk according to
the model. An example of the R-code to conduct this test is provided in the
accompanying R functions document as the “HL” function.

17.3.4 Implications for a ‘Failing’ Model

In the favorable situation of a robust model, each sensitivity analysis and validation
technique supports the model as an appropriate summary of the data. However, in
some situations, the chosen validation method or sensitivity analysis reveals an
inadequate fit of the model for the data such that the model fails to accurately
predict the outcome of interest. A ‘failing’ model may be the result of a number of
different factors. Occasionally, it is possible to modify the model derivation

Fig. 17.4 A sensitivity analysis to assess the effect of modifying the propensity score caliper level
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procedure in order to claim a better fit on the data. In the situations where modi-
fying the model does not allow to achieve an acceptable level of error, however, it is
good practice to renounce the investigation and re-start with an assessment of the a
priori assumptions, in an attempt to develop a different model.

17.4 Conclusion

The analysis of observational health data carries the inherent limitation of
unmeasured confounding. After model development and primary analysis, an
important step is to confirm a model’s performance with a series of confirmatory
tests to verify a valid model. While validation may be used to check that the model
is an appropriate fit for the data and is likely to perform similarly in other cohorts,
sensitivity analysis may be used to interrogate inherent assumptions of the primary
analysis. When performed adequately these additional steps help improve the
robustness of the overall analysis and aid the investigator in making meaningful
inferences from observational health data.

Take Home Messages

1. Validation and sensitivity analyses test the robustness of the model assumptions
and are a key step in the modeling process;

2. The key principle of these analyses is to vary the model assumptions and
observe how the model responds;

3. Failing the validation and sensitivity analyses might require the researcher to
start with a new model.

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

Code Appendix

The code used in this chapter is available in the GitHub repository for this book:
https://github.com/MIT-LCP/critical-data-book. Further information on the code is
available from this website.
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Part III
Case Studies Using MIMIC

Introduction

This section presents twelve case studies of secondary analyses of electronic health
records (EHRs). The case studies exhibit a wide range of research topics and
methodologies, making them of interest to a wide range of researchers. They are
written primarily for the beginner, although the experienced researcher will also
benefit much from the detailed explanations offered by experts in the field. The case
studies provide an opportunity to thoroughly engage with high-level research
studies, since they are accompanied by both publicly available data and analytical
code. This section should not be approached as a continuous narrative. Rather, each
case study can be read independently. Indeed, it is advisable to begin with those
which lie closest to your interests. An overview of the research areas and
methodologies of the case studies is now provided.

The case studies are ordered according to their research areas. The first two case
studies concern system-level analyses, beginning with an analysis of the trends in
clinical practice with regard to mechanical ventilation (Chap. 18). This is followed
by an investigation into the effect of caring for critically-ill patients in “non-target
ICUs”, otherwise known as boarding, on mortality (Chap. 19). The next three case
studies focus on mortality prediction using a plethora of inputs such as demo-
graphics, vital signs and laboratory test results (Chaps. 20–22). Two case studies
investigate the effectiveness of a clinical intervention, with assessments of clinical
effectiveness (Chap. 23) and cost effectiveness (Chap. 24). A study of the rela-
tionship between blood pressure and the risk of Acute Kidney Injury is presented,
illustrating the physiological insights that can be gained by analysis of EHRs
(Chap. 25). Two case studies are then presented on monitoring techniques: an
investigation into the estimation of respiratory rate, a key physiological parameter,
from routinely acquired physiological signals (Chap. 26); and a detailed study of
the potential for false alarm reduction using machine learning classification tech-
niques (Chap. 27). Finally two studies consider particular aspects of research
methodology, focusing on patient cohort identification (Chap. 28) and mathematical
techniques for selection of hyperparameters (Chap. 29).
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A plethora of methodologies are demonstrated in the case studies. The machine
learning techniques used include: regression, support vector machines, decision trees
(Chap. 21), random forest classification (Chap. 27), Markov models (Chap. 24), and
a Super Learner algorithm to fuse multiple techniques (Chap. 20). Other analytical
approaches include instrumental variable analysis (Chap. 19), propensity score
matching (Chap. 23), case-control and case-crossover designs (Chap. 25), signal
processing (Chaps. 26 and 27), and natural language processing (Chap. 28).

The aim of this section is to provide readers with examples of secondary EHR
analyses to empower them in their own research. We hope that the clinical rele-
vance of the investigations will inspire researchers to realize the full potential of
EHRs for the benefit of the patients of tomorrow. The detailed descriptions of study
methodologies are intended to provide an understanding of the nuances of EHR
analyses. Finally, a range of tools are available to underpin novel investigations:
both the data and the analytical code used in this Section are publicly available.
Further details of these tools are provided in the accompanying GitHub repository:
https://github.com/MIT-LCP/critical-data-book.
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Chapter 18
Trend Analysis: Evolution of Tidal
Volume Over Time for Patients Receiving
Invasive Mechanical Ventilation

Anuj Mehta, Franck Dernoncourt and Allan Walkey

Learning Objectives

Learn the importance of trend analysis

• To understand epidemiological changes in health and delivery of healthcare.
• To assess the implementation of new evidence into clinical practice.
• Assess real world effectiveness of discoveries (interrupted time series design;

difference in differences, regression discontinuity).

Learn methods of performing trend analysis

• Cochrane-Armitage test for trend.
• Differences Logistic/linear regression analysis with time as an independent

variable.

Addressing changes in aspects of the study population over time with relation to the
main dependent and independent variables

• Adjustment/confounding.
• Interaction of covariates with time and outcomes.

Refining the research question

• Addressing limitations in the data.

18.1 Introduction

Healthcare is a dynamic field that is constantly evolving in response to changes in
disease epidemiology, population demographics, and new discoveries.
Epidemiologic changes in disease prevalence and outcomes have important impli-
cations for determining healthcare resource allocation. For example, identifying
trends that show increasing utilization of invasive mechanical ventilation may
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suggest local or societal needs for more intensive care unit beds, critical care nurses
and physicians, and mechanical ventilators. Additionally, changes in healthcare
outcomes over time can provide insight into the adoption of new scientific knowl-
edge and identify targets for quality improvement where implementation of evidence
has been slow or where results from tightly-controlled trials are not realized in the
“real world”. Trend analyses utilize statistical methods in an attempt to quantify
changes to better understand the evolution of health and healthcare delivery.

To highlight the uses of trend analysis, we present a study evaluating how
scientific evidence supporting treatment of one condition may be generalized by
healthcare professionals to other conditions in which the treatment is untested. We
investigated adoption of evidence supporting lower tidal volumes during mechan-
ical ventilation for patients admitted to the medical intensive care unit (MICU)
compared to the cardiac care unit (CCU).

Critically ill patients can develop severe difficulty breathing and may require the
assistance of a breathing machine (ventilator) through a process called invasive
mechanical ventilation. Patients may require invasive mechanical ventilation for a
wide variety of conditions such as pneumonia, asthma, and heart failure. In some
cases, the lungs fall victim to massive inflammation triggered by severe systemic
diseases such as infection, trauma, or aspiration. The inflammation leads to leakage
of fluid into the lungs (pulmonary edema) in a condition called the acute respiratory
distress syndrome (ARDS). ARDS is defined by four criteria [1]:

1. Acute in nature
2. Bilateral infiltrates on chest x-ray
3. Not caused by heart failure (as heart failure can also cause pulmonary edema)
4. Severe hypoxia defined by the partial pressure of arterial oxygen to fraction of

inspired oxygen (P/F) ratio

Regardless of the cause of respiratory failure, many patients receiving invasive
mechanical ventilation develop ARDS.

Mechanical Ventilators are most often set to deliver one volume of air for each
breath (i.e. tidal volume). Too much air delivered during each breath can cause
over-stretch and injury to already impaired lungs, resulting in yet further damage by
the systemic release of inflammatory chemicals. In the setting of ARDS, large tidal
volumes cause already inflamed lungs to release more inflammatory chemicals that
can cause further lung damage but also damage to other organs. Based on the theory
that lower tidal volumes may act to protect the lungs and other organs by decreasing
lung over-distention and release of inflammatory chemicals during invasive
mechanical ventilation, a landmark study demonstrated that use of lower tidal
volumes for patients receiving invasive mechanical ventilation with ARDS resulted
in an absolute mortality reduction of 8.8 % [2]. Since then, several studies have
demonstrated improvements in mortality over time for patients with ARDS [3–6] as
well as a reduction in the tidal volumes used in all patients in MICUs [3, 7].

Because the definition of ARDS strictly excludes patients with heart failure,
patients with heart failure have been excluded from studies evaluating effects and
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epidemiology of tidal volume reduction. In order to fill current knowledge gaps
regarding tidal volume selection among patients with heart failure, we sought to use
trend analysis to explore temporal changes in tidal volumes among patients with
heart failure as compared to patients with ARDS. In order to address difficulties
with identifying the indication for mechanical ventilation in electronic health
records, we adjusted our analytic plan to focus on trends in tidal volume selection in
CCUs (where heart failure is the most common cause of invasive mechanical
ventilation) as compared to MICUs (where most patients with ARDS receive care).

18.2 Study Dataset

In this case study we used the Medical Information Mart for Intensive Care II
(MIMIC-II) database version 3 [8], which contains de-identified, granular
patient-level information for 48,018 patients across 57,995 ICU hospitalizations at a
single academic center from 2002 to 2011. The MIMIC II Clinical Database is a
relational database that contains individual values for a variety of patient variables
such as lab results, vital signs, and billing codes.

18.3 Study Pre-processing

We identified patients in MIMIC-II who received invasive mechanical ventilation.
We excluded patients <18 years of age; pediatric critical care practices and the
physiology of pediatric patients differ from adult patients. While we initially sought
to compare patients with ARDS to patients with heart failure, accurate identification
of specific indications for mechanical ventilation in electronic health records was
difficult and subject to misclassification. Thus, we selected patients admitted to the
MICU as a surrogate for patients with ARDS [3, 7] and patients admitted to the
CCU as a surrogate for patients with heart failure. We excluded patients whose
initial ICU service was a surgical ICU as the majority of patients would likely have
been receiving invasive mechanical ventilation for routine post-operative care. For
patients who were admitted to multiple different intensive care units (ICU) during a
single hospitalization, we based inclusion/exclusion criteria on the initial ICU
admission. We further excluded patients who had missing data on tidal volume.

18.4 Study Methods

Our primary outcome was average tidal volume ordered by clinicians during
assist-control ventilation. We used the Cochrane-Armitage test for trends to eval-
uate changes over time in the percentage of patients in each unit who required
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invasive mechanical ventilation. We calculated the average tidal volume for the
entire period of assisted invasive mechanical ventilation for each patient and then
calculated the average of tidal volumes for the MICU and CCU each year. In order
to assess for a temporal trend in tidal volume, we performed multivariable linear
regression (see Sect. 5.2 in Chap. 5 on Data Analysis for details) stratified by ICU
type. Analyses for trends in tidal volume change over time included a dependent
(outcome) variable of tidal volume and independent variable (exposure) of time
(year of intensive care admission). Year of admission is a common time variable
chosen for trend analysis. Smaller sample sizes can result in large amounts of noise
and fluctuations when analyzing shorter time frames such as ‘month’. We chose
multivariable linear regression because tidal volume is a continuous variable and
because regression techniques allowed for adjustment of effect estimates for pos-
sible confounders of the relationship between time and tidal volume. We adjusted
for patient age and gender as both could affect tidal volume selection. To determine
differences in tidal volume trends between the MICU and CCU, we included an
interaction term between time and patient location in regression models. In order to
determine if variability in average tidal volumes had changed over time, we
compared the coefficient of variation (standard deviation normalized to the sample
mean) at the beginning of the study to the end of the study, in each unit [9]. All
testing was done at an alpha level = 0.05.

All studies were deemed exempt by the Institutional Review Boards of Boston
Medical Center and Beth Israel Deaconess. All statistical testing was performed
with SAS 9.4 (Cary, NC).

18.5 Study Analysis

We identified 7083 patients receiving invasive mechanical ventilation in the MICU
and 3085 patients in the CCU from 2002 to 2011. The number of patients receiving
invasive mechanical ventilation in the MICU fluctuated during the study period, but
the net change was consistent with a 20.2 % increase in mechanical ventilation
between 2002 and 2011. The percentage of MICU patients who received invasive
mechanical ventilation decreased from 48.1 % in 2002 to 30.8 % in 2011
(p < 0.0001 for trend) (Fig. 18.1). Thus, the driver of increasing mechanical ven-
tilation utilization was a rising MICU census rather than a greater likelihood of
using mechanical ventilation among MICU patients. In contrast to trends in the
MICU, mechanical ventilation in the CCU declined by 35.6 %, with trends driven
by a lower CCU census and a reduction in the proportion of patients receiving
invasive mechanical ventilation decreased (from 58.4 % in 2002 to 46.8 % in 2011)
(p < 0.0001 for trend) (Fig. 18.2).

Average tidal volumes in the CCU decreased by 24.4 % over the study period,
from 661 mL (SD = 132 mL) in 2002 to 500 mL (SD = 59) in 2011 (p < 0.0001).
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Tidal volume in the MICU decreased by 17.6 %, from 568 mL (SD = 121 mL) in
2002 to 468 mL (SD = 65 mL) in 2011 (p < 0.0001) (Fig. 18.3). During each year
of the study period, the CCU used higher tidal volumes than the MICU (p < 0.0001
for comparison between units for each year). After adjusting for age and gender,
tidal volume in the CCU decreased by an average of 18 mL per year (95 % CI
16–19 mL, p < 0.0001) while tidal volumes in the MICU decreased by 11 mL per
year (95 % CI 10–11, p < 0.0001). The decrease in tidal volume in the CCU was
greater than the decrease in the MICU (pinteraction < 0.0001). Additionally, the
coefficient of variation decreased in both units during the study period (MICU:
20.0 % in 2002 to 11.8 % in 2011, p < 0.0001; CCU: 21.3 % in 2002 to 13.9 % in
2011, p < 0.0001).

Fig. 18.1 Percent of all admissions (left y-axis) and number of cases (right y-axis) receiving
invasive mechanical ventilation in the MICU. MV—invasive mechanical ventilation, MICU—
medical intensive care unit

Fig. 18.2 Percent of all admissions (left y-axis) and number of cases (right y-axis) receiving
invasive mechanical ventilation in the CCU. MV—invasive mechanical ventilation, CCU—cardiac
care unit
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18.6 Study Conclusions

While there is strong evidence indicating survival benefits for lower tidal volumes
in patients with non-cardiogenic pulmonary edema (ARDS) [2] there is little evi-
dence for its use in patients with cardiogenic pulmonary edema (heart failure).
Using the MIMIC-II database, we identified a decrease in rates of invasive
mechanical ventilation in both the MICU and CCU, despite an increase in the actual
number of invasive mechanical ventilation cases in the MICU. Tidal volumes
decreased in both ICUs over the course of the study period. Interestingly, tidal
volumes decreased at a faster rate in the CCU as compared to the MICU, with tidal
volumes nearly equivalent in the MICU and CCU by 2011. The more rapid rate of
tidal volume decline in the CCU occurred despite little evidence supporting use of
low tidal volumes for patients with cardiogenic pulmonary edema or heart failure.
In addition to declining tidal volumes, variability in tidal volume selection also
declined over time, demonstrating an evolving tendency towards greater uniformity
in tidal volume selection. Our findings demonstrate a generalization of the evidence
for ARDS towards the treatment of patients previously excluded from studies
investigating tidal volumes during mechanical ventilation.

18.7 Next Steps

Our analysis has several limitations. First, many factors affect tidal volume choice
in ICUs including patient height, respiratory drive, and acid/base status. If these
unmeasured factors were to have changed over time in our study population, they
would be potential confounders of our observation that tidal volumes have been set

Fig. 18.3 Average tidal volume in the MICU and CCU per year. For each year, the average tidal
volume was higher in the CCU, p < 0.0001 for comparison for each year. The decrease (slope) of
the change in tidal volume was greater for the CCU, p < 0.001. MICU—medical intensive care
unit. CCU—cardiac care unit
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lower over time. Including covariates related to these factors in the regression
analysis could reduce possible confounding. For the purposes of this case study, we
limited our covariates to demographic characteristics, but others could be added to
the model in future analyses. Second, our primary outcome variable is mean tidal
volume. We did not look at changes in tidal volumes during a patient’s hospital-
ization, an analysis that may also be performed in future studies. Third, tidal vol-
umes are generally normalized to the ideal body weight, as normal lung size
correlates with ideal body weight. We did not have ideal body weights available in
MIMIC-II.

The next step from this study would be determine associations between changes
in tidal volume and changes in clinical outcomes. Studies attempting to assess the
association of changing tidal volumes with clinical outcomes would need to be
vigilant to measure multiple potentially confounding variables that may have been
co-linear secular trends along with decreasing tidal volumes. Additionally, we used
patients admitted to the MICU as a surrogate for patients with ARDS and to the
CCU as a surrogate for patients with heart failure. In future studies we would hope
to refine our search algorithms within EHR databases to be able to identify patients
with ARDS and heart failure with minimal risk of misclassification bias. The
strengths of EHR databases such as MIMIC-II lie in their unique granularity,
providing a wealth of opportunities to measure clinical details such as pharmacy
data, laboratory results, physician notes (via natural language processing), etc., that
allow a greater ability to attenuate confounding.

18.8 Connections

Trend analyses assess health care changes over time. In our case study we used
linear regression techniques to determine the association of time on a continuous
variable (tidal volume). Regression methods allow researchers to account for
confounding variables that may have changed over time along with exposures and
outcomes of interest. However linear regression techniques are limited to data that
have a linear relationship. For non-linear data, transformation techniques (e.g.
log-transformation) can be used to convert a nonlinear distribution to a more linear
relationship, higher-order polynomial regression, or spline regression may be used;
alternatively Poisson regression may be used for count data.

Other techniques should be used for categorical outcomes. The
Cochrane-Armitage test for trends is a modified Pearson chi-squared test that allows
for ordering of one of the variables (i.e. a time variable). Additionally multivariable
logistic regression tools allow for trend analysis for categorical data with the
potential for addition of possible confounders as covariates.

These analytic techniques can be applied broadly beyond our case study. The
fundamental aspect of trend analyses stems from the fact that the main
independent/exposure variable is time. With this concept, numerous conditions and
treatments can be studied to see how their utilization changes over time such as
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subgroups of patients receiving invasive mechanical ventilation [10], patients with
tracheostomy [11], etc. Trend analysis is important to evaluate how well clinical
trial findings have penetrated usual care by assessing changes in trends with rela-
tionship to new research findings or new guidelines. Additionally, trend analyses
are critical for quality assessment in determining if certain interventions or process
have significantly changed outcomes. As with all statistics, one must understand the
assumptions involved in the types of tests being performed and ensure that the data
meet those criteria.

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

Code Appendix

The code used in this case study is available from the GitHub repository accom-
panying this book: https://github.com/MIT-LCP/critical-data-book. Further infor-
mation on the code is available from this website.
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Chapter 19
Instrumental Variable Analysis
of Electronic Health Records

Nicolás Della Penna, Jennifer P. Stevens and Robert Stretch

Learning Objectives
In this case study we Illustrate how to

• Estimate causal effects of a potential intervention when there is an instrumental
variable available.

• Identify appropriate model classes with which to estimate effects using instru-
mental variables.

• Examine potential sources of treatment effect heterogeneity.

19.1 Introduction

The goal of observational research is to identify the causal effects of exposures or
treatments on clinical outcomes of interest. The availability of data derived from
electronic health records (EHRs) has improved the feasibility of large-scale
observational studies. However, both treatments and patient characteristics (co-
variates) affect outcomes. Since in general the two are dependent, it is not accurate
to simply compare the outcomes of those receiving different treatments to decide
which treatment is more effective. While regression analysis can account for the
variation in those covariates that can be observed, estimates remain biased if there
are unobservable covariates that affect treatment propensity and outcomes.

Idealized randomized controlled experiments overcome the problem of unob-
served covariates by virtue of them being randomly distributed in a balanced
manner between the treatment and control groups as the sample size becomes large.
In practice, however, such experiments are affected by participant non-compliance.
Instrumental variable techniques, which use treatment assignment as the instrument
and actual treatment taken as the endogenous variables (those that result from
choices that may be affected by unobservables), are useful in this setting.

Instrumental variable analyses (IVAs) attempt to exploit “natural experi-
ments”—sources of unintentional but effective randomization of subjects to
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different treatments. To take advantage of such natural experiments, subjects must
find themselves in a situation in which some observable characteristic makes them
more likely to receive a specified treatment, but does not otherwise affect the
outcome of interest, and is independent of unobservable covariates (see Fig. 19.1).
The estimation then relies on using only the variation caused by this observable
characteristic, called an instrument or instrumental variable (IV), to identify the
effect.

There are three key considerations in the selection of appropriate controls and
valid instruments:

1. Control variables should be pre-treatment characteristics of the patients or
providers: One should not control for outcomes or decisions that occur after the
treatment, even if they are not the outcome of interest, as this would bias results.
Drawing the causal model and analyzing the paths provides a principled way of
understanding the underlying assumptions that are being made. Web-based
software [1] is available to facilitate this.

2. The instrument must be correlated with the treatment and explain a sub-
stantial portion of the variation in the treatment: The less variation in the
treatment that the instrument explains (the “weaker” the instrument), the higher
the variance of the estimates obtained. This higher variance may deny any
benefits from bias reduction.

3. The instrument must be independent of the outcome through any mecha-
nism other than the treatment: This remains one of the greatest challenges of
employing IVAs accurately in medical data, as identifying instruments that have
no relationship with any unobservable clinical variation beyond the treatment is
difficult.

To illustrate these concepts we propose using an IVA to estimate the effect on
intensive care unit (ICU) mortality of receiving care in a “non-target” ICU, defined
as a unit that has a different specialty focus than the ICU to which patients would
have been assigned in the absence of capacity constraints. For example, patients
being cared for by a medical ICU team ideally care for their patients in a defined

Fig. 19.1 Instrumental
variable analyses employ
instruments that affect the
likelihood of the exposure but
do not otherwise affect the
outcome
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geographic area designated as the medical ICU (MICU), but when no beds are
available in that unit a patient may instead be assigned to an unoccupied bed in a
non-target ICU such as a surgical ICU (SICU). In this study, we define those
patients assigned beds in non-target ICUs as boarders.

Although the physicians of the MICU team retain responsibility for the care of
boarders, most other staff involved in the patient’s care (e.g. nurses, respiratory
therapists, physical therapists) will change as a result of boarding status. This is
because these staff are assigned to a specific geographically-defined ICU such as the
SICU. As a result, boarders are typically cared for by nurses and other staff who
possess expertise more appropriate for managing surgical patients than medical
patients. Additionally, since physicians and nurses who work in different ICUs may
not be as familiar with each other’s clinical practices, communication difficulties
can arise. Lastly, there are also greater geographic distances between boarders and
their physicians compared to non-boarders. This can contribute to delays in care
and impairment of a physician’s level of situational awareness. It therefore seems
reasonable to hypothesize that boarding may negatively impact upon clinical out-
comes, including survival.

19.2 Methods

19.2.1 Dataset

The Medical Information Mart for Intensive Care (MIMIC-III) database contains
clinical and administrative data on over 60,000 ICU stays at Beth Israel Deaconess
Medical Center (BIDMC) between 2001 and 2012. It includes operational-level
data on bed assignments and service transfers, as well as ICD-9-CM diagnoses and
several mortality measures (ICU stay mortality, hospital mortality, and survival
duration up to one year).

19.2.2 Methodology

Cohort Selection
We included all adult subjects, aged 18 years or older, cared for by the MICU at
any point during their admission. The study period was defined as June, 2002
through December, 2012. In order to ensure independence of observations only the
last ICU admission for each subject was included in the analysis.

Exclusion criteria included subjects whose primary hospital team at any point
during their admission was non-medical (i.e. surgical or cardiac), as this might
imply a specific reason aside from capacity constraints for a patient to be a boarder
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in a non-medical ICU (for example, a postoperative subject in the surgical ICU
being transferred from the surgical ICU team to the medical ICU team for persistent
respiratory failure).

The final study population included 8442 subjects, of whom 1881 (22 %) were
exposed to the effects of boarding.

Statistical Approach
A naive estimate of the effect of boarding on mortality would compare the out-
comes of patients who were boarders to those who were not. However, the decision
to board a patient is not random. It takes into account the level of severity of a given
patient’s condition, as well as how that compares with the severity levels of other
incoming patients also in need of an ICU bed. It is likely that much of the infor-
mation that informs this decision is unobservable. As a consequence, if we con-
ducted this study as a simple regression analysis we would obtain biased estimates
of the effect of boarding.

For example, assume that boarding increases mortality, but also that ICU staff
preferentially select less severely ill patients to be boarders. In this hypothetical
scenario, the observed association between boarding and mortality could appear
protective if the negative effect of boarding on mortality is smaller than the positive
effect on observed mortality of selecting healthier patients. While one may, and
should, control for patients’ severity of illness and pre-existing health levels, it is
not usually possible to observe these with the same granularity and accuracy as the
hospital staff who decide whether the patient will become a boarder. As a result,
boarders may still be healthier than non-boarders even after conditioning on a
measure of severity of illness.

An IVA is an attractive approach in this situation. In this study, we focus on
MICU patients. We propose that the number of remaining available beds in the
western campus MICU at time of patient intake (west_initial_remaining_beds) may
serve as a valid instrument for boarding status. It is important to note that
west_initial_remaining_beds does not include beds that are available outside of the
MICU (i.e. beds to which boarders can be assigned). The boarder status of the
patient is the causal variable and the outcome is death during ICU stay (Fig. 19.2).

The Oxford Acute Severity of Illness Score (OASIS) is employed to help
account for residual differences between the health status of boarders and
non-boarders at the time of their intake into the ICU. OASIS is an ICU scoring
system that has been shown to have non-inferior performance characteristics rela-
tive to APACHE (Acute Physiology and Chronic Health Evaluation), MPM
(Mortality Probability Model), and SAPS (Simplified Acute Physiology Score) [2].
We preferentially use OASIS for severity of illness adjustment because its scores
can be more accurately reconstructed in MIMIC-III in a retrospective manner than
the aforementioned alternatives.

At times when hospital load is high, the total number of patients being cared
for by the ICU team (west_initial_team_census) is likely to be high, and
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west_initial_remaining_beds is likely to be low. Furthermore, it is plausible that
higher values of west_initial_team_censusmight affect mortality as a relatively fixed
quantity of ICU resources (e.g. physicians) is stretched across a greater number of
patients.

At first it may be unclear why there is imperfect correlation between west_ini-
tial_team_census and west_initial_remaining_beds, as one might anticipate that the
number of remaining beds is simply inversely proportional to the total number of
patients being cared for by the ICU team. The source of variation between these
variables is two-fold. The primary driver is the stochastic pattern of ICU discharges.
It is improbable that all boarders will be discharged prior to any of the non-boarders.
Discharging a non-boarder while other patients remain as boarders creates a situation
where the total team census may continue to be higher than the bed capacity of the
MICU, yet the number of available beds in the MICU becomes non-zero. The
second, smaller source of variation is occupancy of MICU beds by patients being
cared for by other ICU teams (e.g a SICU patient boarding in the MICU).

Using west_initial_remaining_beds as an instrument is therefore valid, but we
must control for west_initial_team_census. To check that west_initial_remain-
ing_beds is correlated to the propensity of patients to board, we fit a generalized
additive model with a logistic link function.

Once a natural experiment has been identified and the validity of the instru-
mental variable confirmed, an IVA can be conducted to estimate the causal effect of
the treatment. The standard in the econometrics literature has been to use a two-step
ordinary least squares (OLS) regression. There are two important limitations to this
approach in biomedical settings. Firstly, it requires continuous treatment and out-
come variables, both of which tend to be discrete or binary in medical applications.

Fig. 19.2 Simplified causal
diagram illustrating
confounding of the
relationship between boarding
and mortality due to
unobservable heterogeneity in
patient risk, and potential
conditional instrument
west_initial_remaining_beds.
The diagram can be
manipulated at http://dagitty.
net/dags.html?id=AVKMi0
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Secondly, it requires knowledge of the functional form of the underlying rela-
tionships such that the data can be transformed to make the relationships linear in
the parameters of the estimated model. This is often beyond what is known in the
biomedical field.

Several approaches have been developed to address these limitations. Probit
models are part of a family of generalized linear models (GLM) that is well suited to
working with discrete data, thereby addressing the first aforementioned limitation.
Furthermore, use of a basis expansion may allow the functional form to be
approximated flexibly using penalized splines, substantially relaxing the second
limitation related to knowledge of functional forms. At least one statistical package,
SemiParBIVProbit for R, combines these two approaches in an accessible
implementation.

In addition to the probit model, we used the survival package for R to estimate a
non-instrumental Cox proportional hazards model as a robustness check. In order to
minimize selection bias in this non-instrumental model, we used a subset of the
dataset in which it is intuitive that selective pressures would be reduced or
non-existent: west_initial_remaining_beds equal to zero (all patients must board
irrespective of their severity of illness) or west_initial_remaining_beds greater than
or equal to three (no imminent capacity constraint exerting pressure on physicians to
board patients). The linear assumptions of the Cox models are strong and not jus-
tified a priori, therefore in order to test for potential nonlinearities in the instrumental
model we used the Vuong and Clarke tests of the SemiParBIVProbit package.

All of our models included controls for patient age, gender, OASIS and
Elixhauser comorbidity scores, length of hospital stay prior to ICU admission, and
calendar year. In addition to controlling for the west_initial_team_census, we also
controlled for the total number of boarders under the care of the MICU team.

19.2.3 Pre-processing

We used a software package called Chatto-Transform [3] that connects to a local
PostgreSQL instance of MIMIC-III and simplifies the process of importing table
data into an interactive Jupyter notebook [4]. Python 3 and the Pandas library [5]
were used for data extraction and analysis (see code supplement).

The publicly available version of MIMIC-III applies random time-shifts to
records to help prevent subjects from being identified. After institutional review
board approval, we obtained the exact dates and bed assignments for each subject’s
ICU stay and used this to reconstruct the entire hospital ICU census.

The services table in MIMIC-III documents the specific service (e.g. medicine,
general surgery, cardiology) responsible for a patient at a given moment in time.
The service providing MICU care is classified as ‘medicine’. Therefore general
medicine patients who are initially admitted to a ward and later require a MICU bed
will still only have one entry per admission in this table, provided that they are not
transferred to the care of a different service. We consider a refined copy of the
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services table (‘med_service_only’) that retains only those rows pertaining to
patients cared for exclusively by the medicine service during their stay. The
resulting table therefore has only one row per hospital admission.

The transfers table documents every change in a patient’s location during their
hospital admission, including exact bed assignments and timestamp data. A new
table df can be created by performing a left join between transfers and med_ser-
vice_only. In the resulting table, rows pertaining to the population of interest (i.e.
medicine patients who incurred a MICU stay at some point during their admission)
will have data corresponding to both the left (transfers) and right (med_ser-
vice_only) tables. Rows pertaining to all other patients will only have data from the
transfers table. We further subdivide this table into inboarders (which contains
rows pertaining to non-MICU patients occupying beds in the MICU) and df5
(which contains rows pertaining to our population of interest).

Looping through each row in df5, we identify rows in inboarders that represent a
MICU bed occupied by a non-MICU patient at the time a MICU patient began their
ICU stay. We also determine whether the new MICU patient was assigned a bed
outside the geographic confines of the MICU, in which case they were classified as
a boarder. Lastly, a count of the total number of patients being cared for by the
MICU team is generated and added to each row of df5. These variables allow for
calculation of the number of remaining MICU beds through the formula:

Remaining Beds ¼ ðMICU Capacity� No: of InboardersÞ � ðTeam Census
� No: of BoardersÞ

Death during ICU stay was determined a priori to be our primary outcome of
interest. We identified a number of instances in the dataset where death occurred
within minutes or hours of discharge from the ICU. This was most likely due to
combination of expected deaths (subjects transitioned to comfort-focused care who
were transferred out of the ICU shortly prior to death), unexpected deaths, and
minor time discrepancies inherent to large datasets that include administrative
details. Prior to data analysis it was decided that our preferred definition of death
during ICU stay would include those within 24 h of leaving the ICU.

19.3 Results

Looking at the fitted models, we observe an increase in mortality from boarding
across the different specifications. In the semiparametric bivariate probit model,
using the west_initial_remaining_beds as an instrument, the estimated causal [6]
average risk ratio is 1.44 (95 % interval: 1.17, 1.79). In the non-instrumental Cox
proportional hazards model we observe a similar estimate of 1.34 (1.06, 1.70).

Often treatments result in different effects of different patients, thus it is sensible
to think of average treatment effects (ATE). Instrumental variable analyses, how-
ever, restrict the estimation to the variation in the data that is attributable to the
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instrument. That is, the effect they estimate is the local effect on those patients
whose treatment is affected by the instrument. This is termed the Local Average
Treatment Effect (LATE), and is what is estimated by an IVA when there is
heterogeneity in treatment effects.

19.4 Next Steps

Much of the existing medical literature utilizing IVAs has addressed policy ques-
tions as opposed to the effect of medical treatments. This has been driven by the
interest in such questions by health care economists, as well as the greater avail-
ability and suitability of administrative—rather than clinical—data within the
medical field. In contrast, the growing adoption and increasing sophistication of
EHRs now presents us with an opportunity to investigate the effects of medical
treatments through their provision of a rich source of observable variables and
potential instruments. Examples include measurable variation in the number and
characteristics of hospital staff, as well as load levels that cause spillover between
units and thus are exogenous to a particular patient in a given unit. There is also a
large body of literature that has explored Mendelian randomization as a source of
instruments, however these usually create limited variation therefore instrument
weakness is a substantial concern.

Aside from serving as candidate instruments or controls, some variables easily
extracted from EHRs may be useful for checking the plausibility of a proposed
pseudo-randomization process: if an instrument is truly randomizing patients with
respect to a treatment then we would expect a balanced distribution of a wide range
of observable variables (e.g. patient demographics). This is akin to tables that
compare the baseline characteristics between groups in the results of randomized
controlled trial. Estimating causal effects from natural experiments is an important
part of the econometrics literature. For an influential practitioners reference, see
Mostly Harmless Econometrics [7]. A excellent counterpoint can be found in part
III of Shalizi [8].

Instrumental variables are powerful tools in the identification of causal rela-
tionships, but it is critical to remain mindful of potential sources of confounding.
Garabedian et al. reviewed the studies published in the medical literature using
IVAs and found that the four most commonly used instrument categories—distance
to facility, regional variation, facility variation, and physician variation—all suf-
fered from “potential unadjusted instrument–outcome confounders … including
patient race, socioeconomic status, clinical risk factors, health status, and urban or
rural residency; facility and procedure volume; and co-occurring treatments” [9].
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19.5 Conclusions

This case study demonstrates the steps involved in the identification and validation
of an instrumental variable. It also illustrates the process of conducting an IVA to
estimate effect sizes and infer causal relationships from observational data.

The results of our study support the hypothesis that boarding of critically ill
patients has deleterious effects on ICU survival. We recommend that institutions
take steps to minimize boarding among ICU patients and that further studies be
undertaken to more precisely characterize the effect size. Better understanding of
the mediators through which boarding influences mortality is also important, and
may help to identify groups of patients who are able to board without detrimental
effects, and those for whom boarding should be particularly avoided.

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
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Code Appendix

The code used in this case study is available from the GitHub repository accom-
panying this book: https://github.com/MIT-LCP/critical-data-book. Further infor-
mation on the code is available from this website.
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Chapter 20
Mortality Prediction in the ICU Based
on MIMIC-II Results from the Super ICU
Learner Algorithm (SICULA) Project

Romain Pirracchio

Learning Objectives
In this chapter, we illustrate the use of MIMIC II clinical data, non-parametric
prediction algorithm, ensemble machine learning, and the Super Learner algorithm.

20.1 Introduction

Predicting mortality in patients hospitalized in intensive care units (ICU) is crucial
for assessing severity of illness and adjudicating the value of novel treatments,
interventions and health care policies. Several severity scores have been developed
with the objective of predicting hospital mortality from baseline patient charac-
teristics, defined as measurements obtained within the first 24 h after ICU admis-
sion. The first scores proposed, APACHE [1] (Acute Physiology and Chronic
Health Evaluation), APACHE II [2], and SAPS [3] (Simplified Acute Physiology
Score), relied upon subjective methods for variable importance measure, namely by
prompting a panel of experts to select and assign weights to variables according to
perceived relevance for mortality prediction. Further scores, such as the SAPS II [4]
were subsequently developed using statistical modeling techniques [4–7]. To this
day, the SAPS II [4] and APACHE II [2] scores remain the most widely used in
clinical practice. However, since first being published, they have been modified
several times in order to improve their predictive performance [6–11]. Despite these
extensions of SAPS, predicted hospital mortality remains generally overestimated
[8, 9, 12–14]. As an illustration, Poole et al. [9] compared the SAPS II and the
SAPS3 performance in a cohort of more than 28,000 admissions to 10 different
Italian ICUs. They concluded that both scores provided unreliable predictions, but
unexpectedly the newer SAPS 3 turned out to overpredict mortality more than the

© The Author(s) 2016
MIT Critical Data, Secondary Analysis of Electronic Health Records,
DOI 10.1007/978-3-319-43742-2_20

295



older SAPS II. Consistently, Nassar et al. [8] assessed the performance of the
APACHE IV, the SAPS 3 and the Mortality Probability Model III [MPM(0)-III] in
a population admitted at 3 medical-surgical Brazilian intensive care units and found
that all models showed poor calibration, while discrimination was very good for all
of them.

Most ICU severity scores rely on a logistic regression model. Such models
impose stringent constraints on the relationship between explanatory variables and
risk of death. For instance, main term logistic regression relies on the assumption of
a linear and additive relationship between the outcome and its predictors. Given the
complexity of the processes underlying death in ICU patients, this assumption
might be unrealistic.

Given that the true relationship between risk of mortality in the ICU and
explanatory variables is unknown, we expect that prediction can be improved by
using an automated nonparametric algorithm to estimate risk of death without
requiring any specification about the shape of the underlying relationship. Indeed,
nonparametric algorithms offer the great advantage of not relying on any
assumption about the underlying distribution, which make them more suited to fit
such complex data. Some studies have evaluated the benefit of nonparametric
approaches, namely based on neural networks or data-mining, to predict hospital
mortality in ICU patients [15–20]. These studies unanimously concluded that
nonparametric methods might perform at least as well as standard logistic regres-
sion in predicting ICU mortality.

Recently, the Super Learner was developed as a nonparametric technique for
selecting an optimal regression algorithm among a given set of candidate algo-
rithms provided by the user [21]. The Super Learner ranks the algorithms according
to their prediction performance, and then builds an aggregate algorithm obtained as
the optimal weighted combination of the candidate algorithms. Theoretical results
have demonstrated that the Super Learner performs no worse than the optimal
choice among the provided library of candidate algorithms, at least in large sam-
ples. It capitalizes on the richness of the library it builds upon and generally offers
gains over any specific candidate algorithm in terms of flexibility to accurately fit
the data.

The primary aim of this study was to develop a scoring procedure for ICU
patients based on the Super Learner using data from the Medical Information Mart
for Intensive Care II (MIMIC-II) study [22–24], and to determine whether it results
in improved mortality prediction relative to the SAPS II, the APACHE II and the
SOFA scores. Complete results of this study have been published in 2015 in the
Lancet Respiratory Medicine [25]. We also wished to develop an easily-accessible
user-friendly web implementation of our scoring procedure, even despite the
complexity of our approach (http://webapps.biostat.berkeley.edu:8080/sicula/).
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20.2 Dataset and Pre-preprocessing

20.2.1 Data Collection and Patients Characteristics

The MIMIC-II study [22–24] includes all patients admitted to an ICU at the Beth
Israel Deaconess Medical Center (BIDMC) in Boston, MA since 2001. For the sake
of the present study, only data from MIMIC-II version 26 (2001–2008) on adult
ICU patients were included. Patients younger than 16 years were not included. For
patients with multiple admission, we only considered the first ICU stay. A total of
24,508 patients were included in this study.

20.2.2 Patient Inclusion and Measures

Two categories of data were collected: clinical data, aggregated from ICU infor-
mation systems and hospital archives, and high-resolution physiologic data
(waveforms and time series of derived physiologic measurements), recorded on
bedside monitors. Clinical data were obtained from the CareVue Clinical
Information System (Philips Healthcare, Andover, Massachusetts) deployed in all
study ICUs, and from hospital electronic archives. The data included time-stamped
nurse-verified physiologic measurements (e.g., hourly documentation of heart rate,
arterial blood pressure, pulmonary artery pressure), nurses’ and respiratory thera-
pists’ progress notes, continuous intravenous (IV) drip medications, fluid balances,
patient demographics, interpretations of imaging studies, physician orders, dis-
charge summaries, and ICD-9 codes. Comprehensive diagnostic laboratory results
(e.g., blood chemistry, complete blood counts, arterial blood gases, microbiology
results) were obtained from the patient’s entire hospital stay including periods
outside the ICU. In the present study, we focused exclusively on outcome variables
(specifically, ICU and hospital mortality) and variables included in the SAPS II [4]
and SOFA scores [26].

We first took an inventory of all available recorded characteristics required to
evaluate the different scores considered. Raw data from the MIMIC II database
version 26 were then extracted. We decided to use only R functions (without any
SQL routines) as most of our researchers only have R package knowledge. Each
table within each patient datafile were checked for the different characteristics and
extracted. Finally, we created a global CSV file including all data and easily
manipulable with R.

Baseline variables and outcomes are summarized in Table 20.1.
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Table 20.1 Baseline characteristics and outcome measures

Overall population
(n = 24,508)

Dead at hospital
discharge (n = 3002)

Alive at hospital
discharge (n = 21,506)

Age 65 [51–77] 74 [59–83] 64 [50–76]

Gender
(female)

13,838 (56.5 %) 1607 (53.5 %) 12,231 (56.9 %)

First SAPS 13 [10–17] 18 [14–22] 13 [9–17]

First SAPS II 38 [27–51] 53 [43–64] 36 [27–49]

First SOFA 5 [2–8] 8 [5–12] 5 [2–8]

Origin

Medical 2453 (10 %) 240 (8 %) 2213 (10.3 %)

Trauma 7703 (31.4 %) 1055 (35.1 %) 6648 (30.9 %)

Emergency
surgery

10,803 (44.1 %) 1583 (52.7 %) 9220 (42.9 %)

Scheduled
surgery

3549 (14.5 %) 124 (4.1 %) 3425 (15.9 %)

Site

MICU 7488 (30.6 %) 1265 (42.1 %) 6223 (28.9 %)

MSICU 2686 (11 %) 347 (11.6 %) 2339 (10.9 %)

CCU 5285 (21.6 %) 633 (21.1 %) 4652 (21.6 %)

CSRU 8100 (33.1 %) 664 (22.1 %) 7436 (34.6 %)

TSICU 949 (3.9 %) 93 (3.1 %) 856 (4 %)

HR (bpm) 87 [75–100] 92 [78–109] 86 [75–99]

MAP
(mmHg)

81 [70–94] 78 [65–94] 82 [71–94]

RR (cpm) 14 [12–20] 18 [14–23] 14 [12–18]

Na (mmol/l) 139 [136–141] 138 [135–141] 139 [136–141]

K (mmol/l) 4.2 [3.8–4.6] 4.2 [3.8–4.8] 4.2 [3.8–4.6]

HCO3

(mmol/l)
26 [22–28] 24 [20–28] 26 [23–28]

WBC
(103/mm3)

10.3 [7.5–14.4] 11.6 [7.9–16.9] 10.2 [7.4–14.1]

P/F ratio 281 [130–447] 174 [90–352] 312 [145–461]

Ht (%) 34.7 [30.4–39] 33.8 [29.8–38] 34.8 [30.5–39.1]

Urea
(mmol/l)

20 [14–31] 28 [18–46] 19 [13–29]

Bilirubine
(mg/dl)

0.6 [0.4–1] 0.7 [0.4–1.5] 0.6 [0.4–0.9]

Hospital LOS
(days)

8 [4–14] 9 [4–17] 8 [4–14]

ICU death
(%)

1978 (8.1 %) 1978 (65.9 %) –

Hospital
death (%)

3002 (12.2 %) – –

Continuous variables are presented as median [InterQuartile Range]; binary or categorical
variables as count (%)
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20.3 Methods

20.3.1 Prediction Algorithms

The primary outcome measure was hospital mortality. A total of 1978 deaths
occurred in ICU (estimated mortality rate: 8.1 %, 95 %CI: 7.7–8.4), and 1024
additional deaths were observed after ICU discharge, resulting in an estimated
hospital mortality rate of 12.2 % (95 %CI: 11.8–12.7).

The data recorded within the first 24 h following ICU admission were used to
compute two of the most widely used severity scores, namely the SAPS II [4] and
SOFA [26] scores. Individual mortality prediction for the SAPS II score was cal-
culated as defined by its authors [4]:

log
pr(deathÞ

1� pr(death)

� �
¼ �7:7631þ 0:0737 � SAPSII + 0:9971 � log(1 + SAPSII)

In addition, we developed a new version of the SAPS II score, by fitting to our
data a main-term logistic regression model using the same explanatory variables as
those used in the original SAPS II score [4]: age, heart rate, systolic blood pressure,
body temperature Glasgow Coma Scale, mechanical ventilation, PaO2, FiO2, urine
output, BUN (blood urea nitrogen), blood sodium, potassium, bicarbonates,
bilirubin, white blood cells, chronic disease (AIDS, metastatic cancer, hematologic
malignancy) and type of admission (elective surgery, medical, unscheduled sur-
gery). The same procedure was used to build a new version of the APACHE II
score [2]. Finally, because the SOFA score [26] is widely used in clinical practice as
a proxy for outcome prediction, it was also computed for all subjects. Mortality
prediction based on the SOFA score was obtained by regressing hospital mortality
on the SOFA score using a main-term logistic regression. These two algorithms for
mortality prediction were compared to our Super Learner-based proposal.

The Super Learner has been proposed as a method for selecting via
cross-validation the optimal regression algorithm among all weighted combinations
of a set of given candidate algorithms, henceforth referred to as the library [21, 27, 28]
(Fig. 20.1). To implement the Super Learner, a user must provide a customized
collection of various data-fitting algorithms. The Super Learner then estimates the
risk associated to each algorithm in the provided collection using cross-validation.
One round of cross-validation involves partitioning a sample of data into comple-
mentary subsets, performing the analysis on one subset (called the training set), and
validating the analysis on the other subset (called the validation set or testing set). To
reduce variability, multiple rounds of cross-validation are performed using different
partitions, and the validation results are averaged over the rounds. From this esti-
mation of the risk associated with each candidate algorithm, the Super Learner builds
an aggregate algorithm obtained as the optimal weighted combination of the candi-
date algorithms. Theoretical results suggest that to optimize the performance of the
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resulting algorithm, the inputted library should include as many sensible algorithms
as possible.

In this study, the library size was limited to 12 algorithms (list available in the
Appendix) for computational reasons. Among these 12 algorithms, some were
parametric such as logistic regression of affiliated methods classically used for ICU
scoring systems, and some non-parametric i.e. methods that fit the data without any
assumption concerning the underlying data distribution. In the present study, we
chose the library to include most of parametric (including regression models with
various combinations of main and interaction terms as well as splines, and fitted
using maximum likelihood with or without penalization) and nonparametric algo-
rithm, previously evaluated for the prediction of mortality in critically ill patients in
the literature. The main term logistic regression is the parametric algorithm that has
been used for constructing both the SAPS II and APACHE II scores. This algorithm
was included in the SL library so that revised fits of the SAPS II score based on the
current data also competed against other algorithms.

Comparison of the 12 algorithms relied on 10-fold cross-validation. The data are
first split into 10 mutually exclusive and exhaustive blocks of approximately equal
size. Each algorithm is fitted on a the 9 blocks corresponding to the training set and
then this fit used to predict mortality for all patients in the remaining block used a

Fig. 20.1 Super learner algorithm. From van der Laan, targeted learning 2011 (with permission)
[41]
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validation set. The squared errors between predicted and observed outcomes are
averaged. The performance of each algorithm is evaluated in this manner. This
procedure is repeated exactly 10 times, with a different block used as validation set
every time. Performance measures are aggregated over all 10 iterations, yielding a
cross-validated estimate of the mean-squared error (CV-MSE) for each algorithm.
A crucial aspect of this approach is that for each iteration not a single patient
appears in both the training and validation sets. The potential for overfitting,
wherein the fit of an algorithm is overly tailored to the available data at the expense
of performance on future data, is thereby mitigated, as overfitting is more likely to
occur when training and validation sets intersect.

Candidate algorithms were ranked according to their CV-MSE and the algorithm
with least CV-MSE was identified. This algorithm was then refitted using all
available data, leading to a prediction rule referred to as the Discrete Super Learner.
Subsequently, the prediction rule consisting of the CV-MSE-minimizing weighted
convex combination of all candidate algorithms was also computed and refitted on
all data. This is what we refer to as the Super Learner combination algorithm [28].

The data used in fitting our prediction algorithm included the 17 variables used
in the SAPS II score: 13 physiological variables (age, Glasgow coma scale, systolic
blood pressure, heart rate, body temperature, PaO2/FiO2 ratio, urinary output, serum
urea nitrogen level, white blood cells count, serum bicarbonate level, sodium level,
potassium level and bilirubin level), type of admission (scheduled surgical,
unscheduled surgical, or medical), and three underlying disease variables (acquired
immunodeficiency syndrome, metastatic cancer, and hematologic malignancy
derived from ICD-9 discharge codes). Two sets of predictions based on the Super
Learner were produced: the first based on the 17 variables as they appear in the
SAPS II score (SL1), and the second, on the original, untransformed variables
(SL2).

20.3.2 Performance Metrics

A key objective of this study was to compare the predictive performance of scores
based on the Super Learner to that of the SAPS II and SOFA scores. This com-
parison hinged on a variety of measures of predictive performance, described
below.

1. A mortality prediction algorithm is said to have adequate discrimination if it
tends to assign higher severity scores to patients that died in the hospital
compared to those that did not. We evaluated discrimination using the
cross-validated area under the receiver-operating characteristic curve (AUROC),
reported with corresponding 95 % confidence interval (95 % CI).
Discrimination can be graphically illustrated using the receiver-operating
(ROC) curves. Additional tools for assessing discrimination include boxplots of
predicted probabilities of death for survivors and non-survivors, and
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corresponding discrimination slopes, defined as the difference between the mean
predicted risks in survivors and non-survivors. All these are provided below.

2. A mortality prediction algorithm is said to be adequately calibrated if predicted
and observed probabilities of death coincide rather well. We assessed calibration
using the Cox calibration test [9, 29, 30]. Because of its numerous shortcoming,
including poor performance in large samples, the more conventional
Hosmer-Lemeshow statistic was avoided [31, 32]. Under perfect calibration, a
prediction algorithm will satisfy the logistic regression equation ‘observed
log-odds of death = α + β* predicted log-odds of death’ with α = 0. To
implement the Cox calibration test, a logistic regression is performed to estimate
α and β; these estimates suggest the degree of deviation from ideal calibration.
The null hypothesis (α, β) = (0, 1) is tested formally using a U-statistic [33].

3. Summary reclassification measures, including the Continuous Net
Reclassification Index (cNRI) and the Integrated Discrimination Improvement
(IDI), are relative metrics which have been devised to overcome the limitations
of usual discrimination and calibration measures [34–36]. The cNRI comparing
severity score A to score B is defined as twice the difference between the
proportion of non-survivors and of survivors, respectively, deemed more severe
according to score A rather than score B. The IDI comparing severity score A to
score B is the average difference in score A between survivors and
non-survivors minus the average difference in score B between survivors and
non-survivors. Positive values of the cNRI and IDI indicate that score A has
better discriminative ability than score B, whereas negative values indicate the
opposite. We computed the reclassification tables and associated summary
measures to compare each Super Learner proposal to the original SAPS II score
and each of the revised fits of the SAPS II and APACHE II scores.

All analyses were performed using statistical software R version 2.15.2 for
Mac OS X (The R Foundation for Statistical Computing, Vienna, Austria; specific
packages: cvAUC, Super Learner and ROCR). Relevant R codes are provided in
Appendix.

20.4 Analysis

20.4.1 Discrimination

The ROC curves for hospital mortality prediction are provided below (Fig. 20.2).
The cross-validated AUROC was 0.71 (95 %CI: 0.70–0.72) for the SOFA score,
and 0.78 (95 %CI: 0.77–0.78) for the SAPS II score. When refitting the SAPS II
score on our data, the AUROC reached 0.83 (95 %CI: 0.82–0.83); this is similar to
the results obtained with the revised fit of the APACHE II, which led to an AUROC
of 0.82 (95 %CI: 0.81–0.83). The two Super Learner (SL1 and SL2) prediction
models substantially outperformed the SAPS II and the SOFA score. The AUROC
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was 0.85 (95 %CI: 0.84–0.85) for SL1, and 0.88 (95 %CI: 0.87–0.89) for SL2,
revealing a clear advantage of the Super Learner-based prediction algorithms over
both the SOFA and SAPS II scores.

Discrimination was also evaluated by comparing differences between the pre-
dicted probabilities of death among the survivors and the non-survivors using each
prediction algorithm. The discrimination slope equaled 0.09 for the SOFA score,
0.26 for the SAPS II score, 0.21 for SL1, and 0.26 for SL2.

20.4.2 Calibration

Calibration plots (Fig. 20.3) indicate a lack of fit for the SAPS II score. The esti-
mated values of α and β were of −1.51 and 0.72 respectively (U statistic = 0.25,
p < 0.0001). The calibration properties were markedly improved by refitting the
SAPS II score: α < 0.0001 and β = 1 (U < 0.0001, p = 1.00). The prediction based
on the SOFA and the APACHE II scores exhibited excellent calibration properties,
as reflected by α < 0.0001 and β = 1 (U < 0.0001, p = 1.00). For the Super
Learner-based predictions, despite U-statistics significantly different from zero, the
estimates of α and β were close to the null values: SL1: 0.14 and 1.04, respectively
(U = 0.0007, p = 0.0001); SL2: 0.24 and 1.25, respectively (U = 0.006,
p < 0.0001).

Fig. 20.2 Receiver-operating
characteristics curves. Super
learner 1: super learner with
categorized variables; super
learner 2: super learner with
non-transformed variables
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Fig. 20.3 Calibration and discrimination plots for SAPS 2 (upper panel) and SL1 (lower panel)
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20.4.3 Super Learner Library

The performance of the 12 candidate algorithms, the Discrete Super Learner and
the Super Learner combination algorithms, as evaluated by CV-MSE and
CV-AUROC, are illustrated in Fig. 20.4.

As suggested by theory, when using either categorized variables (SL1) or
untransformed variables (SL2), the Super Learner combination algorithm achieved
the same performance as the best of all 12 candidates, with an average CV-MSE of
0.084 (SE = 0.001) and an average AUROC of 0.85 (95 %CI: 0.84–0.85) for SL1
[best single algorithm: Bayesian Additive Regression Trees, with CV-MSE = 0.084
and AUROC = 0.84 (95 %CI: 0.84, 0.85)]. For the SL2, the average CV-MSE was
of 0.076 (SE = 0.001) and the average AUROC of 0.88 (95 %CI: 0.87–0.89) [best
single algorithm: Random Forests, with CV-MSE = 0.076 and AUROC = 0.88
(95 %CI: 0.87–0.89)]. In both cases (SL1 and SL2), the Super Learner outper-
formed the main term logistic regression used to develop the SAPS II or the
APACHE II score [main term logistic regression: CV-MSE = 0.087 (SE = 0.001)
and AUROC = 0.83 (95 %CI: 0.82–0.83)].

20.4.4 Reclassification Tables

The reclassification tables involving the SAPS II score in its original and its actu-
alized versions, the revised APACHE II score, and the SL1 and SL2 scores are
provided in Table 20.2. When compared to the classification provided by the
original SAPS II, the actualized SAPS II or the revised APACHE II score, the Super
Learner-based scores resulted in a downgrade of a large majority of patients to a
lower risk stratum. This was especially the case for patients with a predicted
probability of death above 0.5.

We computed the cNRI and the IDI considering each Super Learner proposal
(score A) as the updated model and the original SAPS II, the new SAPS II and the
new APACHE II scores (score B) as the initial model. In this case, positive values
of the cNRI and IDI would indicate that score A has better discriminative ability
than score B, whereas negative values indicate the opposite. For SL1, both the cNRI
(cNRI = 0.088 (95 %CI: 0.050, 0.126), p < 0.0001) and IDI (IDI = −0.048 (95 %
CI: −0.055, −0.041), p < 0.0001) were significantly different from zero. For SL2,
the cNRI was significantly different from zero (cNRI = 0.247 (95 %CI: 0.209,
0.285), p < 0.0001), while the IDI was close to zero (IDI = −0.001 (95 %CI:
−0.010, −0.008), p = 0.80). When compared to the classification provided by the
actualized SAPS II, the cNRI and IDI were significantly different from zero for both
SL1 and SL2: cNRI = 0.295 (95 %CI: 0.257, 0.333), p < 0.0001 and IDI = 0.012
(95 %CI: 0.008, 0.017), p < 0.0001 for SL1; cNRI = 0.528 (95 %CI: 0.415,
0.565), p < 0.0001 and IDI = 0.060 (95 %CI: 0.054, 0.065), p < 0.0001 for SL2.
When compared to the actualized APACHE II score, the cNRI and IDI were also
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Fig. 20.4 Cross-validated mean-squared error for the super learner and the 12 candidate
algorithms included in the library. Upper panel concerns the super learner with categorized
variables (super learner 1): mean squared error (MSE) associated with each candidate algorithm
(top figure)—receiver operating curves (ROC) for each candidate algorithm (bottom figure); lower
panel concerns the super learner with non-transformed variables (super learner 2): mean squared
error (MSE) associated with each candidate algorithm (top figure)—receiver operating curves
(ROC) for each candidate algorithm (bottom figure)
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Table 20.2 Reclassification tables

Updated model

0–0.25 0.25–0.5 0.5–0.75 0.75–1 % Reclassified

Super learner 1

Initial model: original
SAPS II

0–0.25 13,341 134 3 0 1 %

0.25–0.5 4529 723 50 0 86 %

0.5–0.75 2703 1090 174 2 96 %

0.75–1 444 705 473 137 92 %

Super learner 2

Initial model: original
SAPS II

0–0.25 12,932 490 55 1 4 %

0.25–0.5 4062 1087 142 11 79 %

0.5–0.75 2531 1165 258 15 93 %

0.75–1 485 775 448 51 97 %

Super learner 1

Initial model: new
SAPS II

0–0.25 20,104 884 30 2 4 %

0.25–0.5 894 1426 238 9 44 %

0.5–0.75 18 328 361 62 53 %

0.75–1 1 14 71 66 57 %

Super learner 2

Initial model: new
SAPS II

0–0.25 19,221 1667 124 8 9 %

0.25–0.5 765 1478 318 6 42 %

0.5–0.75 24 346 367 32 52 %

0.75–1 0 26 94 32 79 %

Super learner 1

Initial model: new
APACHE II

0–0.25 19,659 1140 107 6 6 %

0.25–0.5 1262 1195 296 34 57 %

0.5–0.75 89 298 264 71 63 %

0.75–1 7 19 33 28 68 %

Super learner 2

Initial model: new
APACHE II

0–0.25 18,930 1764 200 18 9 %

0.25–0.5 1028 1395 345 19 50 %
(continued)
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significantly different from zero for both SL1 and SL2: cNRI = 0.336 (95 %CI:
0.298, 0.374), p < 0.0001 and IDI = 0.029 (95 %CI: 0.023, 0.035), p < 0.0001 for
SL1; cNRI = 0.561 (95 %CI: 0.524, 0.598), p < 0.0001 and IDI = 0.076 (95 %CI:
0.069, 0.082) for SL2. When compared either to the new SAPS II or the new
APACHE II score, both Super Learner proposals resulted in a large proportion of
patients reclassified, especially from high predicted probability strata to lower ones.

20.5 Discussion

The new scores based on the Super Learner improve the prediction of hospital
mortality in this sample, both in terms of discrimination and calibration, as com-
pared to the SAPS II or the APACHE II scoring systems. The Super Learner
severity score based on untransformed variables, also referred to as SL2 or
SICULA, is available online through a web application. An ancillary important
result is that the MIMIC-II database can easily and reliably serve to develop new
severity score for ICU patients.

Our results illustrate the crucial advantage of the Super Learner that can include
as many candidate algorithms as inputted by investigators, including algorithms
reflecting available scientific knowledge, and in fact borrows strength from diver-
sity in its library. Indeed, established theory indicates that in large samples the
Super Learner performs at least as well as the (unknown) optimal choice among the
library of candidate algorithms [28]. This is illustrated by comparing the CV-MSE
associated with each algorithm included in the library: SL1 achieves similar per-
formance as BART, which is the best candidate in the case, while SL2 achieves
similar performance as random forest, which outperformed all other candidates in
this case. Hence, the Super Learner offers a more flexible alternative to other
nonparametric methods.

Given the similarity in calibration of the two Super Learner-based scores (SL1
and SL2), we recommend using the Super Learner with untransformed explanatory
variables (SL2) in view of its greater discrimination. When considering risk
reclassification, the two Super Learner prediction algorithms had similar cNRI, but
SL2 clearly had a better IDI. It should be emphasized that, when considering the
IDI, the SL1 seemed to perform worse that the SAPS II score. Nonetheless, the IDI
must be used carefully since it suffers from similar drawbacks as the AUROC: it

Table 20.2 (continued)

Updated model

0–0.25 0.25–0.5 0.5–0.75 0.75–1 % Reclassified

0.5–0.75 50 333 309 30 57 %

0.75–1 2 25 49 11 87 %

Super learner 1: super learner with categorized variables; super learner 2: super learner with
non-transformed variables
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summarizes prediction characteristics uniformly over all possible classification
thresholds even though many of these are unacceptable and would never be con-
sidered in practice [37].

20.6 What Are the Next Steps?

The SICULA should be compared to more recent severity scores. Nonetheless, such
scores (e.g., SAPS 3 and APACHE III) have been reported to face the same
drawbacks as SAPS II [9, 12, 38]. Moreover, those scores remain the most widely
used scores in practice [39]. Despite the fact that MIMIC II encompasses data from
multiple ICUs, the sample still comes from a single hospital and thus needs further
external validation. However, the patients included in the MIMIC-II cohort seem
representative of the overall ICU patient population, as reflected by a hospital
mortality rate in the MIMIC-II cohort that is similar to the one reported for ICU
patients during the same time period [40]. Consequently, our score can be rea-
sonably expected to exhibit, in other samples, performance characteristics similar to
those reported here, at least in samples drawn from similar patient populations.
A large representation in our sample of CCU or CSRU patients, who often have
lower severity scores than medical or surgical ICU patients, may have limited our
score’s applicability to more critically ill patients. Finally, a key assumption jus-
tifying this study was that the poor calibration associated with current severity
scores derives from the use of insufficiently flexible statistical models rather than an
inappropriate selection of variables included in the model. For this reason and for
the sake of providing a fair comparison of our novel score with the SAPS II score,
we included the same explanatory variables as used in SAPS II. Expanding the set
of explanatory variables used could potentially result in a score with even better
predictive performance. In the future, expending the number of explanatory vari-
ables will probably further improve the predictive performances of the score.

20.7 Conclusions

Thanks to a large collection of potential predictors and a sufficient sample size,
MIMIC II dataset offers a unique opportunity to develop and validate new severity
scores. In this population, the prediction of hospital mortality based on the Super
Learner achieves significantly improved performance, both in terms of calibration
and discrimination, as compared to conventional severity scores. The SICULA
prediction algorithm is a promising alternative that could prove valuable in clinical
practice and for research purposes. Externally validating results of this study in
different populations (especially population outside the U.S.), providing regular
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update of the SICULA fit and assessing the potential benefit of including additional
variables in the score remain important future challenges that are to be faced in the
second stage of the SICULA project.

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

Code Appendix

This case study used code from the Super Learner Library, implemented in R.
Further details and code are available from the GitHub repository accompanying
this book: https://github.com/MIT-LCP/critical-data-book. The following algo-
rithms are included in the Super Learner Library.

Parametric algorithms:

– Logistic regression: standard logistic regression, including only main terms for
each covariate and including interaction terms [42] (SL.glm),

– Stepwise regression: logistic regression using a variable selection procedure
based on the Akaike Information Criteria [43] (SL.stepAIC),

– Generalized additive model [43] (SL.gam):,
– Generalized linear model with penalized maximum likelihood [44] (SL.glmnet),
– Multivariate adaptive polynomial spline regression [44] (SL.polymars),
– Bayesian generalized linear model [45] (SL.bayesglm).

Non parametric algorithms:

– Random Forest [46] (SL.randomForest),
– Neural Networks [47] (SL.nnet),
– Bagging classification trees [48] (SL.ipredbagg),
– Generalized boosted regression model [49] (SL.gbm),
– Pruned Recursive Partitioning and Regression Trees [50] (SL.rpartPrune),
– Bayesian Additive Regression Trees [51] (SL.bart).
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Chapter 21
Mortality Prediction in the ICU

Joon Lee, Joel A. Dubin and David M. Maslove

Learning Objectives
Build and evaluate mortality prediction models.

1. Learn how to extract predictor variables from MIMIC-II.
2. Learn how to build logistic regression, support vector machine, and decision

tree models for mortality prediction.
3. Learn how to utilize adaptive boosting to improve the predictive performance of

a weak learner.
4. Learn how to train and evaluate predictive models using cross-validation.

21.1 Introduction

Patients admitted to the ICU suffer from critical illness or injury and are at high risk
of dying. ICU mortality rates differ widely depending on the underlying disease
process, with death rates as low as 1 in 20 for patients admitted following elective
surgery, and as high as 1 in 4 for patients with respiratory diseases [1]. The risk of
death can be approximated by evaluating the severity of a patient’s illness as
determined by important physiologic, clinical, and demographic determinants.

In clinical practice, estimates of mortality risk can be useful in triage and
resource allocation, in determining appropriate levels of care, and even in discus-
sions with patients and their families around expected outcomes. Estimates of
mortality risk are, however, based on studying aggregate data from large, hetero-
geneous groups of patients, and as such their validity in the context of any single
patient encounter cannot be assured. This shortcoming can be mitigated by
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personalized mortality risk estimation, which is well discussed in [2, 3], but is not a
subject of the present study.

Perhaps even more noteworthy uses of mortality prediction in the ICU are in the
areas of health research and administration, which often involve looking at cohorts
of critically ill patients. Traditionally, such population-level studies have been more
widely accepted as applications of mortality prediction given the cohort-based
derivation of prediction models. In this context, mortality prediction is used to
compare the average severity of illness between groups of critically ill patients (for
example, between patients in different ICUs, hospitals, or health care systems) and
between groups of patients enrolled in clinical trials. Predicted mortality can be
compared with observed mortality rates for the purpose of benchmarking and
performance evaluation of ICUs and health systems.

A number of severity of illness (SOI) scores have been introduced in the ICU to
predict outcomes including death. These include the APACHE scores [4], the
Simplified Acute Physiology Score (SAPS) [5], the Mortality Probability Model
(MPM) [6], and the Sequential Organ Failure Assessment (SOFA) score [7]. These
scoring systems perform well, with areas under the receiver operator characteristic
(ROC) curves (AUROCs) typically between 0.8 and 0.9 [5, 6, 8]. Current research
is exploring ways to leverage the enhanced completeness and expressivity of
modern electronic medical records (EMRs) in order to improve prediction accuracy.
In particular, the granular nature (i.e., a rich set of clinical variables recorded in high
temporal resolution) of EMRs can lead to creating a personalized predictive model
for a given patient by identifying and utilizing data from similar patients.

21.2 Study Dataset

This case study aimed to create mortality prediction models using the first ICU
admissions from all adult patients in MIMIC-II version 2.6. In the icustay_detail
table, adult patients in MIMIC-II can be identified by icustay_age_group=‘adult’,
whereas the first ICU admission of each patient can be selected by subject_icus-
tay_seq=1. In addition, all ICU stays with a null icustay_id were excluded, since
icustay_id was used to find the data in other tables that correspond to the included
ICU stays. A total of 24,581 ICU admissions in MIMIC-II met these inclusion
criteria.

The following demographic/administrative variables were extracted to be used
as predictors: age at ICU admission, gender, admission type (elective, urgent,
emergency), and first ICU service type of the ICU admission. Furthermore, the first
measurement in the ICU of the following vital signs and lab tests was each
extracted as a predictor: heart rate, mean and systolic blood pressure (invasive and
noninvasive measurements combined), body temperature, SpO2, respiratory rate,
creatinine, potassium, sodium, chloride, bicarbonate, hematocrit, white blood cell
count, glucose, magnesium, calcium, phosphorus, and lactate. Although the very
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first measurements in the ICU were extracted, the exact measurement time with
respect to the ICU admission time would have varied between patients. Also, this
approach to variable-by-variable data extraction does not ensure concurrent mea-
surements within patient. For the vast majority of the ICU admissions in MIMIC-II,
however, measurements of these common clinical variables were obtained at the
beginning of the ICU admission, or at most within the first 24 h.

As the patient outcome to be predicted, mortality at 30 days post-discharge from
the hospital was extracted. In MIMIC-II, this binary outcome variable can be
obtained by comparing the date of death (found in the d_patients table) and the
hospital discharge date (found in the icustay_detail table). If our focus were on a
greater time period to post-discharge death, we would have extracted mortality date
in an attempt to predict survival time.

21.3 Pre-processing

Some of the extracted variables require further processing before they can be used
for predictive modeling. In MIMIC-II, some ages are unrealistically large
(*200 years), as they were intentionally inserted to mask the actual ages of those
patients who were 90 years or older and still alive (according to the latest social
security death index data), which is protected health information. For these patients,
the median of such masked ages (namely, 91.4) was substituted. Furthermore,
regarding ICU service type, FICU (Finard ICU; this is a term specific to Beth Israel
Deaconess Medical Center where MIMIC-II data were collected) was converted to
MICU (medical ICU) since there are only a small number of FICU admissions in
MIMIC-II and FICU is nothing more than a special MICU.

There are abundant missing data in MIMIC-II. Although there are ways to make
use of ICU admissions with incomplete data (e.g., imputation), this case study
simply excluded cases with incomplete data since missing data is discussed in depth
in [insert reference to Missing Data Chapter, Part 2]. After exclusion of cases with
incomplete data, only 9269 ICU admissions remained. This still is a sufficient
sample size to conduct the present case study, but approaches such as imputation
and/or exclusion of variables with frequent missing data should be considered if a
larger patient sample size is required.

With default settings in R, numeric variables are normally imported correctly
with proper handling of missing data (flagged as NA), but special care may be
needed for importing categorical variables. In order to avoid the empty field being
imported as a category on its own, this case study (1) imported the categorical
variables as strings, (2) converted all empty fields to NA, and then (3) converted the
categorical variables to factors. This case study includes the following categorical
variables: gender, admission type, ICU service type, and 30-day mortality.
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21.4 Methods

The following predictive models were employed: logistic regression (LR), support
vector machine (SVM), and decision tree (DT). These models were chosen due to
their widespread use in machine learning. Although the reader should refer to
appropriate chapters in Part 2 to learn more about these models, a brief description
of each model is provided here.

LR is a model that can learn the mathematical relationship, within a restricted
framework using a logistic function, between a set of covariates (i.e., predictor
variables in this case study) and a binary outcome variable (i.e., mortality in this
case study). Once this relationship is learned, the model can make a prediction for a
new case given the predictor values from the new case. LR is very widely used in
health research thanks to its easy interpretability.

SVMs are similar to LR in the sense that it can classify (or predict) a given case
in terms of the outcome, but they do so by coming up with an optimal decision
boundary in the data space where the dimensions are the covariates and all available
data points are plotted. In other words, SVMs attempt to draw a decision boundary
that puts as many negative (survived) cases as possible on one side of the boundary
and as many positive (expired) cases as possible on the other side.

Lastly, DTs have a tree-like structure that consists of decision nodes in a hier-
archy. Each decision node leads to two branches depending on the value of a
particular covariate (e.g., age >65 or not). Each case follows appropriate branches
until it reaches a terminal leaf node which is associated with a particular outcome.
DT learning algorithms automatically learn an optimal decision tree structure given
a set of data.

We also attempted to improve the predictive performance of the DT by applying
adaptive boosting, i.e., AdaBoost [9]. AdaBoost can effectively improve a weak
predictive model by building an ensemble of models that progressively focus more
on the cases that are inaccurately predicted by the previous model. In other words,
AdaBoost allowed us to build a series of DTs where the ones built later were
experts on more challenging cases. In AdaBoost, the final prediction is the average
of the predictions from the individual models.

In order to run the provided R code, the following R packages should be
installed via install.packages(): e1071, ada, rpart, and ROCR. The training func-
tions for LR, SVM, and DT are glm(), svm(), and rpart(), respectively. For all
models, default parameter settings were used.

For training and testing, 10-fold cross-validation was utilized. Under such a
scheme, the ICU admissions included in the case study were randomly partitioned
into 10 similarly sized groups (a.k.a. folds). The procedure rotated through the 10
folds to train predictive models based on 9 folds (training data) and test them on the
remaining fold (test data), until each fold is utilized as test data.

Predictive performance was measured using AUROC which is a widely used
performance metric for binary classification. For each predictive model, the
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AUROC was calculated for each fold of the cross-validation. In the provided R
code, the comp.auc() function is called to calculate the AUROC given a set of
predicted probabilities from a model and the corresponding actual mortality data.

21.5 Analysis

The following were the AUROCs of the predictive models (shown in mean [s-
tandard deviation]): LR—0.790 [0.015]; SVM—0.782 [0.014]; DT—0.616 [0.049];
AdaBoost—0.801 [0.013]. Hence, in terms of mean AUROC, AdaBoost resulted in
the best performance, while DT was clearly the worst predictive model. DT was
only moderately better than random guessing (which would correspond to an
AUROC of 0.5) and as a result can be considered a weak learner. Note that
AdaBoost was able to substantially improve DT, which is consistent with its known
ability to effectively improve weak learners. Because of the random data parti-
tioning of cross-validation, slightly different results will be produced every time the
provided R code is run. Using set.seed() in R can seed the random number gen-
eration in sample() and make the results reproducible, but this was not used in this
case study for a more robust evaluation of the results.

As a comparison, a previous study [2] reported mean AUROCs of 0.658 (95 %
confidence interval (CI): [0.648,0.668]) and 0.633 (95 % CI: [0.624,0.642]) for
SAPS I and SOFA, respectively, for predicting 30-day mortality for 17,152 adult
ICU stays in MIMIC-II, despite that the analyzed patient cohort was a bit different
from the one in this case study. More advanced SOI scores such as APACHE IV
would have achieved a comparable or better performance than the predictive
models investigated in this case study (only SAPS I and SOFA are available in
MIMIC-II), but it should be noted that those advanced SOI scores tend to use a
much more comprehensive set of predictors than the ones used in this case study.

21.6 Visualization

Figure 21.1 shows the performances of the predictive models in a boxplot. It is
visually apparent that AdaBoost, LR, and SVM resulted in similar performance,
while DT yielded not only the worst performance but also the largest variability in
AUROC, which sheds light on its sensitivity to the random data partitioning in
cross-validation.

Figure 21.2 is an interesting visualization of the prediction results, where each
circle represents a patient and the color of the circle indicates the prediction result
(correct or incorrect) of the patient. Random horizontal jitter was added to each
point (this simply means that a small random shift was applied to the x-value of
each point) to reduce overlap with other points. Prediction results from only one of
the ten cross-validation folds are shown, with a threshold of 0.5 (arbitrarily selected;
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the reader may be interested in studying how this threshold affects this figure)
applied to the estimated mortality risks from the predictive models (by calling the
th.pred() function in the R code). Figure 21.2 shows the prediction results as a
function of age, but the variable on the y-axis can easily be changed to some other
variable of interest (e.g., heart rate, creatinine). One observation that is clear in
Fig. 21.2 but not in Fig. 21.1 is that predictive accuracy is higher for younger

Fig. 21.1 A box and whisker plot showing mortality prediction performances of several predictive
models from 10-fold cross-validation. AUROC Area under the receiver operating characteristic
curve; DT Decision tree; LR Logistic regression; SVM Support vector machine

Fig. 21.2 Prediction results for individual patients as a function of age, stratified by predictive
model. Results from only one of the ten cross-validation folds are plotted here
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patients (e.g., <40 years) than for older patients, across all predictive models. This
is most likely due to the fact that mortality rate is much lower among younger
patients than older patients, and predictive models can achieve a high accuracy by
biasing towards predicting low mortality risks (however, this would lead to a low
sensitivity). Hence, it is important to note that although Fig. 21.2 conveys a sense
of overall accuracy, it does not reveal sensitivity, specificity, positive predictive
value, or negative predictive value.

21.7 Conclusions

Using clinical and demographic data from the MIMIC II database, this case study
used machine learning algorithms to classify patients as alive or dead at 30 days
after hospital discharge. Results were comparable to those obtained by the most up
to date SOI scores currently in use. Unlike these scores, however, the learning
algorithms used did not have access to specific diagnoses and procedures, which
can add considerable predictive power. An advantage of using only clinical and
demographic data, however, is that they are more routinely available and as a result
predictive models based on them can be used more widely. Moreover, our algo-
rithms were applied to an undifferentiated population of critically ill patients, rather
than tailored to specific groups such as those following cardiovascular surgery (i.e.,
cardiac surgery recovery unit (CSRU) patients), which has also been shown to
enhance predictive performance [3]. The success of prediction seen in this case
study likely reflects the power of the learning algorithms used, as well as the utility
of both the size and granularity of the database studied.

One useful prospect that leverages the dynamic nature of EMR data is the
potential to update training data and prediction models as the most recent clinical
data become available. This would theoretically lead to equally dynamic scoring
systems that generate more accurate predictions by reflecting current practices.
A trade-off becomes apparent between the use of the most current data, which is
likely to be the most representative, and the inclusion of older data as well, which
may be less relevant but provides greater statistical power.

21.8 Next Steps

Although AUROCs near 0.8 represent good performance, the fact that LR, SVM,
and AdaBoost resulted in similar performance may imply that performance could
be limited by the predictor variables rather than model selection. A meaningful
future study could further investigate predictor selection or different representations
of the same variables (e.g., temporal patterns rather than measurements at a specific
time point; see the Hyperparameter Selection chapter of Part 3).
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Since the default parameter settings were used for the LR, SVM, DT, and
AdaBoost, another reasonable next step is to investigate how changing the
parameters affect predictive performance. Please refer to R Help or appropriate R
package documentation to learn more about the model parameters.

To improve predictive performance, we have previously considered a person-
alized mortality prediction approach where only the data from patients that are
similar to an index patient (for whom prediction is to be made) are used for training
customized predictive models [2]. Using a particular cosine-similarity-based patient
similarity metric and LR, the maximum AUROC this study reported was 0.83. In
light of this promising result, the reader is invited to pursue similar personalized
approaches with new patient similarity metrics.

Bayesian methods [10] offer another prediction paradigm that may be worth
investigating. Bayesian methods strike a balance between subject-matter expertise
(for mortality prediction in the ICU, this would correspond to clinical expertise
regarding mortality risk) and empirical evidence in the clinical data. Since the
machine learning models discussed in this chapter were purely empirical, the
explicit addition of clinical expertise through the Bayesian paradigm can potentially
improve predictive performance.

Aside from AUROC, there are other ways to evaluate predictive performance,
including the scaled Brier score. Please see [11] for more information. Once a
threshold is applied to predicted mortality risk, more conventional performance
measures such as accuracy, sensitivity, specificity, etc. can also be calculated. Since
each performance measure has pros and cons (e.g., while AUROC provides a more
complete assessment than simple accuracy, it becomes biased for skewed datasets
[12]), it may be best to calculate a variety of measures for a holistic assessment of
predictive performance.

Lastly, data quality is often overlooked but plays an important role in deter-
mining what predictive performance is possible with a given set of data. This is a
particularly critical issue with retrospective EMR data, the recording of which may
have had minimal data quality checks. Implementation of more rigorous data
quality checks (e.g., outliers, physiologic feasibility) prior to predictive model
training is a meaningful next step.

21.9 Connections

While this chapter focused on mortality prediction, the data extraction and analytic
techniques discussed here are widely applicable to prediction of other discrete (e.g.,
hospital re-admission) and continuous (e.g., length of stay) patient outcomes. In
addition, the nuances related to MIMIC-II such as handling ages near 200 years and
the service type FICU are important issues for any MIMIC-II study.

The machine learning models (LR, DT, SVM) and techniques (cross-validation,
AdaBoost, AUROC) are widely used in a variety of prediction, detection, and data
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mining applications, not only in but beyond medicine. Furthermore, given that R is
one of the most popular programming languages in data science, being able to
manipulate EMR data and apply machine learning in R is an invaluable skill to
have.

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

Code Appendix

The code used in this case study is available from the GitHub repository accom-
panying this book: https://github.com/MIT-LCP/critical-data-book. Further infor-
mation on the code is available from this website. The reader can reproduce the
present case study by running the following SQL and R codes verbatim:

• query.sql: used to extract data from the MIMIC II database.
• analysis.R: used to perform data processing.
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Chapter 22
Data Fusion Techniques for Early
Warning of Clinical Deterioration

Peter H. Charlton, Marco Pimentel and Sharukh Lokhandwala

Learning Objectives
Design and evaluate early warning score (EWS) algorithms which fuse vital signs
with additional physiological parameters commonly available in hospital electronic
health records (EHRs).

1. Extract physiological, demographic and biochemical variables from the
MIMIC II database.

2. Extract patient outcomes from the MIMIC II database.
3. Prepare EHR data for analysis in Matlab®.
4. Design data fusion algorithms in Matlab®.
5. Compare the performances of data fusion algorithms.

22.1 Introduction

Acutely-ill hospitalized patients are at risk of clinical deteriorations such as
infection, congestive heart failure and cardiac arrest [1]. The early detection and
management of such deteriorations can improve patient outcomes, and reduce
healthcare resource utilization [2, 3]. Currently, early warning scores (EWSs) are
used to assist in the identification of deteriorating patients. EWSs were designed for
use at the bedside: they can be calculated by hand, and the required inputs (vital
signs) can be easily measured at the bedside. Now that EHRs are becoming more
widespread in acute hospital care there is scope to develop improved EWSs by
using more complex algorithms calculated by computer, and by incorporating
additional physiological data from the EHR.

Most methods for detection of deteriorations are based on the assumption that
changes in physiology are manifested during the early stages of deteriorations. This
assumption is well documented. Schein et al. published landmark results in 1990
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that 84 % of patients “had documented observations of clinical deterioration or new
complaints” in the eight hours preceding cardiac arrest [4]. This was further sup-
ported by a study by Franklin et al. [5]. Physiological abnormalities have also been
observed prior to other deteriorations such as unplanned Intensive Care Unit
(ICU) admissions [6] and preventable deaths [7]. Evidence of deterioration can be
observed 8–12 h before major events [8, 9].

It was proposed that the incidence of deteriorations could be reduced by
recognising and responding to early changes in physiology [10–12]. Subsequently,
EWSs were developed to allow timely recognition of patients at risk of deteriora-
tion. EWSs are aggregate scores calculated from a set of routinely and frequently
measured physiological parameters, known as vital signs. The higher the score, the
more abnormal the patient’s physiology, and the higher the risk of future deterio-
ration. EWSs are now in widespread use in acute hospital wards [13].

Current EWSs correlate with important patient-centered endpoints such as levels
of intervention [14], hospital mortality [14, 15], and length of stay [15], and have
been shown to be a better predictor of cardiac arrest than individual parameters
[16]. However, there is scope for improving their performance since most EWSs
use simple formulae which can be calculated by hand at the bedside, and use only a
limited set of vital signs as inputs [17]. Now that electronic health records (EHRs)
are becoming widely used in acute hospital care, there is opportunity to use more
complex, automated algorithms and a broader range of inputs. Consequently,
algorithms have been proposed in the literature which improve performance by
using data fusion techniques to combine vital signs with other parameters such as
biochemistry and demographic data [18, 19].

The remainder of this chapter is designed to equip the reader with the necessary
tools to develop and evaluate data fusion algorithms for prediction of clinical
deteriorations.

22.2 Study Dataset

Data was extracted from the MIMIC II database (v. 2.26) [21], which is publicly
available on PhysioNet [22]. This database was chosen because it contains routinely
recorded EHR data for thousands of patients who, being critically-ill, are at high
risk of deterioration. Data extraction was performed using the three SQL queries
cohort_labs.sql, cohort_vitals.sql, and cohort_selection.
sql. For ease of analysis data were extracted from only 500 patients. Only adult
data were extracted since paediatrics have different normal physiological ranges to
those of adults. The parameters extracted from the database, listed in Table 22.1,
were chosen in line with those used previously in the literature [18, 19].

Traditionally the performance of EWSs has been assessed using three outcome
measures with which rapid response systems have been assessed: mortality, car-
diopulmonary arrest and ICU admission rates [20]. However, cardiopulmonary
arrests are difficult to reliably identify in the MIMIC II dataset, and the dataset only
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contains data from patients already staying on the ICU. Therefore, mortality, which
can be reliably and easily extracted from the dataset, was chosen as the outcome
measure for this case study.

22.3 Pre-processing

Data analysis was conducted in Matlab®. The first pre-processing step was to
import the CSV files generated by the SQL query into Matlab® (using LoadData.
m). The purpose of this step was to create:

1. A design matrix of predictor variables (the parameters listed in Table 22.1): This
MxN matrix contained values for each of the N parameters at each of M time
points. This was performed using the methodology in [19]: the time-points were
calculated as the end times of successive four-hour periods spanning each
patient’s ICU stay; parameter values at the time-points were set to the last
measured value during that time period.

2. An Mx3 response matrix of the three easily acquired dependent variables,
namely, binary variables of death in ICU and death in ICU within the next 24 h,
and a continuous variable of time to ICU death.

The remaining pre-processing steps and analyses were conducted using only
data from within these matrices.

Further pre-processing was required to prepare the data for analysis
(PreProcessing.m). Firstly, it was observed that the temperature values
exhibited a bimodal distribution centred on 37.1 and 98.8 °C, indicating that some
had been measured in Celsius, and others in Fahrenheit. Those measured in

Table 22.1 EHR Parameters extracted from the MIMIC II database records for input into data
fusion algorithms

Biochemisty Vital signs

Albumin
Anion gap
Arterial pCO2

Arterial pH
Aspartate aminotransferase (AST)
Bicarbonate
Blood urea nitrogen (BUN)
Calcium
Creatinine
Glucose
Hemoglobin
Platelets
Potassium
Sodium
Total bilirubin
White blood cell count (WBC)

Respiratory rate
Heart rate
Blood pressure—systolic and diastolic
Temperature
Oxygen saturation
Level of consciousness

Demographics
Age
Gender
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Fahrenheit were converted to Celcius. Secondly, the dataset contained blood
pressures (BPs) acquired invasively and non-invasively. Invasive measurements
were retained since they had been acquired more frequently. Non-invasive mea-
surements were replaced with surrogate invasive values by correcting for the
observed biases between the two measurement techniques when both had been used
in the same four-hour periods (the median differences between invasive and
non-invasive measurements were 2, 7 and 6 mmHg for systolic, diastolic and mean
BPs respectively). Finally, the dataset contained missing values where parameters
had not been measured within particular four-hour periods. These missing data had
to be imputed since the analysis technique to be used, logistic regression, requires a
complete data set. To do so, we followed the approach proposed previously of
imputing the last measured value, unless no value had yet been measured in which
case the population median value was imputed [19]. Note that this approach could
be applied to a dataset in real-time.

22.4 Methods

Novel data fusion algorithms were created using CreateDataFusionAlgs.m.
Generalized linear models were used to fuse both continuous and binary variables
to provide an output indicative of the patient’s risk of deterioration. A training
dataset, containing 50 % of the data, was used to create the algorithms.

Logistic regression was used to estimate the probability of each of the binary
response variables of “death in ICU”, and “death in ICU within 24 h” being true.
Logistic regression differs from ordinary linear regression in that it bounds the output
to be between 0 and 1, thus making it suitable for estimation of the probability of a
response variable being true. Logistic regression provides an estimate for

y ¼ ln
pðxÞ

1� pðxÞ
� �

where p(x) is the probability of the response variable being true and x is a vector of
predictor variables. Notice that p(x) is constrained to be between 0 and 1 for all real
values of y.

When using logistic regression one must decide how to model the relationships
between the n predictor variables contained within x, and the output, y. The simplest
method is to assume that y is linearly related to the predictor variables as

y ¼ aþ Pn
i¼1

bixi; where α is the intercept term, and β is a vector of coefficients. For

variables such as diastolic blood pressure the assumption of a linear relationship is
reasonable because they consistently change in one particular direction during a
deterioration. However, other variables such as sodium level could change in either
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direction away from normality. For these variables a non-linear relationship is more
appropriate, such as the quadratic

y ¼ aþ
Xn
i¼1

bixi þ
Xn
i¼1

cix
2
i ;

where ɣ is a vector of coefficients for the squares of the predictor variables. Note
that this ‘purely quadratic’ relationship does not contain interaction terms such as
xixj. The importance of the choice of relationship between the predictor variables
and the estimate is demonstrated in Fig. 22.1.

In this case study separate algorithms were created using linear and quadratic
relationships. Firstly, only the parameters which are used in EWSs (vital signs) were
included. Secondly, all the extracted EHR parameters were included. Thirdly, step-
wise regression was used to avoid including terms which do not increase the per-
formance of the model. This consisted of building a model by including terms until no
further terms would increase the performance of the model, and then removing terms
whose removal would not significantly decrease the performance of the model.
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Fig. 22.1 A comparison of the contributions of input variables to the algorithm output, Y, under
the assumptions of either a linear or a non-linear relationship between the input variables and
Y. The choice of relationship had little impact on the contribution of Diastolic Blood Pressure
(above left), since it tended to be reduced in those patients who died (below left). However, a
quadratic relationship provided a very different contribution for Sodium Level (above right), since
the Sodium Levels of those patients who died exhibited a biomodal distribution indicating either
an increase or a decrease away from the normal range (below right)

22.4 Methods 329



22.5 Analysis

EWS algorithms must trigger an effective clinical response in order to impact patient
outcomes. Typically, a particular response is mandated when the algorithm’s output
is elevated above a threshold value. The response may include clinical review by
ward staff or a centralised rapid response team. The following analysis is based on
the assumption that the algorithms would be used to mandate responses such as this.

The performance of each algorithm was analysed using the latter 50 % of the
data—the validation dataset. At all 4 h time points the model was used to estimate
the probability of a patient dying during their ICU stay. Figure 22.2 shows
exemplary plots of the output for four patients throughout their ICU stays.
Throughout the analysis, each time point was classified as either positive or neg-
ative, indicating that the model predicted that the patient either subsequently died
on ICU, or survived to ICU discharge. Hence, a true positive is identified at a
particular time point when the model correctly predicts the death of a patient who
died on ICU, whereas a false positive is identified when the model incorrectly
predicts the death of a patient who survived to ICU discharge. True and false
negatives were similarly identified.

Table 22.2 shows the performances of each algorithm assessed using the area
under the receiver operating characteristic (ROC) curve (AUROC). The algorithm
with the highest AUROC of 0.810 used stepwise inclusion of parameters and the
quadratic relationship. The ROC curves for this algorithm and the corresponding
algorithm using vital signs alone are shown in Fig. 22.3. Algorithms using all
available parameters as inputs had higher AUROCs than those using vital signs
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Fig. 22.2 Exemplary plots of the output of algorithm outputs (Y) over the duration of patients’
ICU stays. The left hand plots show patients who survived their ICU stays, whereas the right hand
plots show patients who died. The upper plots show examples in which the algorithm performed
well, whereas the lower plots show examples in which the algorithm did not perform well
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alone, demonstrating the benefit of fusing vital signs with additional parameters. In
most instances the use of a quadratic relationship resulted in a higher AUROC.
Furthermore, stepwise selection of parameters did reduce the number of parameters
required, whilst maintaining or improving the AUROC.

Table 22.2 The performances of data fusion algorithms for prediction of death in ICU, given as
the area under the receiver-operator curve (AUROC), and the maximum sensitivities when the
algorithms were constrained to satisfy the clinical requirements of a PPV ≥ 0.33, and an alert rate
of ≤ 17 %

Relationship between
predictor variables
and output

Candidate
predictor
variables

Number of
predictor
variables
included

AUROC Maximum Sensitivities
[%]

PPV ≥ 0.33 Alert
rate ≤ 17 %

Linear Vital signs
only

6 0.757 14.4 42.5

Linear All 25 0.800 46.6 49.7

Linear Stepwise
inclusion of
all

23 0.800 45.8 48.9

Purely quadratic Vital signs
only

6 0.774 13.2 41.4

Purely quadratic All 25 0.799 55.5 53.9

Purely quadratic Stepwise
inclusion of
all

21 0.810 59.3 56.3

1 - specificity
0 0.2 0.4 0.6 0.8 1

S
en

si
tiv

ity

0

0.2

0.4

0.6

0.8

1

vital signs
stepwise all params

Fig. 22.3 Receiver operating
characteristic curves showing
the performances of the best
algorithms using stepwise
inclusion of all parameters,
and vital signs alone. These
algorithms assumed a
quadratic relationship
between the predictor
variables and the output
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Other metrics for comparison of algorithms have been suggested including
sensitivity, positive predictive value (PPV) and alert rate [23]. However, these are
more difficult to use since each metric varies according to the threshold value.
A useful method for comparing algorithms using these metrics is to compare their
sensitivities when a threshold is used which provides algorithmic performance in
line with clinical requirements. In the case of EWS algorithms, key clinical
requirements are that the PPV is at or above a minimum acceptable level, and the
alert rate is at or below a maximum acceptable level. In the absence of
evidence-based values, for demonstration purposes we used a minimally acceptable
PPV of 0.33, indicating that one in three alerts is a true positive, and a maximally
acceptable alert rate of 17 %, indicating that one in six observation sets results in an
alert. Table 22.2 shows the sensitivities provided by each algorithm when con-
strained to satisfy these clinical requirements. The PPVs and alert rates at all
thresholds are shown in Fig. 22.4 for the best performing algorithms using vital
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Fig. 22.4 A comparison of
the PPVs and alert rates for
algorithms using vital signs
alone and using all
parameters. Exemplary
clinical requirements of a
PPV ≥ 0.33 and an alert
rate ≥17 % are shown by the
dashed lines. The quadratic
algorithm using vital signs
alone has a much lower
sensitivity of 13.2 % than the
equivalent algorithm using
stepwise inclusion of all
parameters, at 59.3 % when
the PPV criterion is met.
Similarly, when the alert rate
criterion is used, the
sensitivity of the vital signs
algorithm is 41.4 %, also
lower than that of the
algorithm using stepwise
inclusion of all parameters, at
56.3 %
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signs alone and using stepwise inclusion of all parameters. The highest sensitivities
were achieved when using stepwise inclusion of all parameters, with a purely
quadratic relationship. The benefit of using additional parameters beyond vital signs
is clearly shown by the algorithms’ sensitivities at the minimum acceptable PPV,
which were 13.2 % when using vital signs alone, and 59.3 % when using stepwise
inclusion of all parameters.

In [19] additional visualisations were used to demonstrate the effect of choosing
different thresholds. Firstly, the dependent variable of time before death on ICU was
used to examine how the output changed with time before death, as shown in
Fig. 22.5. This shows that a lower threshold results in more advanced warning of
deterioration. Secondly, the proportion of patients who reached each output during
their stay was presented, as shown in Fig. 22.6. This suggests that a lower threshold
results in more false alerts and fewer true alerts.

22.6 Discussion

The introduction of EHRs has provided opportunity to improve the clinical algo-
rithms used to identify deteriorations. The data fusion algorithms described in this
chapter estimate the probability of a patient dying during their ICU stay every 4 h.
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Fig. 22.5 Mean algorithm
outputs during the 48 h prior
to death on ICU (after
exponential smoothing).
A lower choice of threshold
for alerting results in more
advanced warning of
deterioration
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who reached each algorithm
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in more false alerts, and fewer
true alerts
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The inclusion of additional physiological parameters beyond vital signs alone
resulted in improvements in algorithm performance in this study when assessed
using the AUROC, as also observed previously [18, 19], and when assessed using
the minimum sensitivities corresponding to clinical requirements.

This case study has demonstrated the fundamental steps required to design and
evaluate data fusion algorithms for prediction of deteriorations. During
pre-processing the required data were extracted from the raw data files, and pro-
cessed into matrices ready for analysis. It was important to perform this step sep-
arately to the analysis to reduce the time required for algorithm design. During this
step we identified deficiencies in the dataset. Unfortunately, there is no systematic
way to ensure that all deficiencies have been identified. We recommend that firstly
the distributions of each variable are inspected to identify obvious discrepancies
such as the different units used for temperature in this dataset. Secondly, it is helpful
to plot the raw data over time to identify any changes in practice that may have
occurred during data acquisition. Thirdly, it is often valuable to seek the guidance
of a clinician or database curator at the host institution, or a researcher who has
worked with the dataset before.

The results presented here cannot be generalised to a hospital-wide patient
population for two reasons. Firstly, the dataset consists of data from critically-ill
patients, whereas EWSs are primarily designed to identify deteriorations in
acutely-ill patients. Since the disease processes of critically-ill patients are more
advanced and they have additional clinical interventions such as mechanical ven-
tilation and organ support, both the baseline physiology and the physiological
changes accompanying deteriorations may differ in this population compared to
acutely-ill patients. Secondly, death in ICU was used as the dependent variable in
this study. Death is the latest possible stage of deterioration, and therefore an
algorithm which predicts death may not predict the onset of deteriorations early
enough to be of clinical utility in acutely-ill patients.

The choice of statistical methods to assess the performance of EWSs is the
subject of debate [23]. The AUROC has often been used to quantify the perfor-
mance of EWS algorithms, such as in [17]. This statistic is calculated from an
algorithm’s sensitivities and specificities at a range of threshold values. However, it
has been recently suggested that the AUROC is misleading due to the low preva-
lence of deteriorations [23]. In [23] alternative statistical measures were proposed to
account for the clinical requirements of EWS algorithms. Statistical measures
should firstly assess the benefits and costs of using EWSs. The benefit is that EWSs
can act as a safety net to catch deteriorating patients who have been missed in
routine clinical assessments. This requires a high sensitivity (the proportion of EWS
assessments of deteriorating patients which do alert). The cost of EWSs is the time
taken to respond to false alerts. This cost is relatively small, since the additional
clinical assessment triggered by an alert takes only a short amount of time. This
means that a high specificity (the proportion of negative tests which are true neg-
atives) is not of great importance. Secondly, it is important to ensure that the
positive predictive value (the proportion of alerts which are true) is high enough to
prevent caregivers suffering from desensitisation to alerts, which may result in less
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effective responses to patients who are correctly identified as deteriorating [24].
Thirdly, the alert rate must be manageable to avoid excessive resource utilization. In
this case study we presented the AUROC and the maximum sensitivities when
algorithms were constrained to a minimally acceptable PPV and a maximally
acceptable alert rate [23].

22.7 Conclusions

This case study has demonstrated the potential utility of data fusion techniques to
predict clinical deteriorations. Currently identification of deteriorations is achieved
using EWSs which take vital signs as inputs. The performance of the data fusion
algorithms assessed in this study was improved by increasing the set of inputs to
include physiological parameters which are routinely available in EHRs, but are not
measured at the bedside.

The fundamental techniques for design and evaluation of data fusion algorithms
have been demonstrated. Logistic regression algorithms were used to predict a
binary response variable, death in ICU. The use of both linear and quadratic
relationships between the predictor and response variables were demonstrated as
well as the use of stepwise inclusion of variables. A range of statistical measures
were presented for evaluation of algorithms, illustrating the benefits of using
alternative statistical measures to the commonly used AUROC.

The results should not be interpreted as representative of the results that could be
expected when EWSs are used in acute settings since the study dataset consists of
critically-ill patients, and death in ICU was used as the dependent variable.
However, the techniques used to design and evaluate algorithms can be easily
applied to a wide range of patient settings, providing a basis for further work.

22.8 Further Work

Two particular areas have been identified for further research. Firstly, the work
could be repeated using a dataset acquired from acutely-ill, rather than critically-ill
patients, and by using a dependent variable other than death. This would facilitate
design of algorithms that are generalisable to the target hospital population.
Secondly, a range of additional functions could be explored to model the rela-
tionship between the predictor variables and the output. More complex functions
than the linear or purely quadratic functions such as higher order polynomials or
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logistic functions may improve performance. In addition it would be prudent to
investigate the effect of the inclusion of interaction terms to account for the rela-
tionships between predictor variables.

22.9 Personalised Prediction of Deteriorations

The algorithms presented here are limited in scope by the input parameters.
Currently they obtain a detailed description of a patient’s physiological state from
the vital signs and biochemistry values, which make up 23 out of the 25 inputs.
However, these parameters provide very little differentiation between individual
patients according to their state on admission to hospital. In contrast, additional
information present upon hospital admission is used by clinicians during a patient’s
hospital stay to contextualise physiological assessments.

To illustrate this, consider the response of the algorithms to two fictional 65-year
old males, patients A and B. Patient A has a history of hypertension, and a high
systolic blood pressure (SBP) prior to hospital admission of 147 mmHg. Patient B
has led an active life, has a healthy diet, and has a relatively low SBP prior to
admission of 114 mmHg. During their hospital stay, the SBP of both patients is
measured to be 114 mmHg. The algorithms cannot distinguish whether this is
representative of patient A during a significant deterioration, such as the early
stages of hypotension preceding septic shock, or whether it is representative of
patient B’s usual state in the absence of any deterioration. If the algorithms used a
wider range of inputs indicative of patient state prior to admission, such as the
presence or absence of co-morbidities (existing medical conditions) including
hypertension, they might be able to differentiate between patients A and B in this
situation.

This illustrates the potential benefit of incorporating additional inputs indicating
co-morbidities. Even greater benefit may be derived by also personalising EWS
algorithms according to physiological state prior to admission. Personalised EWS
algorithms would not only stratify patients using additional inputs to contextualise
physiology, but would also personalise the regression coefficients according to a
patient’s physiological state measured previously at a time of relative health.
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Code Appendix

The code used in this case study is available from the GitHub repository accom-
panying this book: https://github.com/MIT-LCP/critical-data-book. Further infor-
mation on the code is available from this website. The following key scripts were
used to extract data from the MIMIC II database:

• cohort_selection.sql: used to identify a cohort of patients for whom
data would be extracted.

• cohort_labs.sql: used to extract laboratory test results.
• cohort_vitals.sql: used to extract vital signs.

Data was extracted in CSV format. Subsequent analysis was performed in
Matlab® using RunFusionAnalysis.m. It contains the following script:

• SetupUniversalParams: used to set universal parameters (in this case, file
paths), which are used to load and save files throughout the analysis). These
parameters should be adapted when using the code.

It then called the following scripts:

• LoadData.m: used to load CSV data into Matlab® for analysis.
• PreProcessing.m: performs pre-processing to prepare data for analysis.
• CreateDataFusionAlgs.m: creates data fusion algorithms using training

data.
• AnalysePerformances.m: analyses the performances of data fusion

algorithms using validation data.
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Chapter 23
Comparative Effectiveness: Propensity
Score Analysis

Kenneth P. Chen and Ari Moskowitz

Learning Objectives
Understand the incentives and disadvantages of using propensity score analysis for
statistical modeling and causal inference in EHR-based research.

This case study introduces concepts that should improve understanding of the
following:

1. Be aware of different approaches for estimating propensity scores: parametric,
non-parametric, and machine learning approaches; and understand the pros and
cons of each.

2. Learn different ways of using propensity scores to adjust for pre-treatment
conditions, and to assess the balance of pre-treatment conditions among different
treatment groups.

3. Appreciate concepts underlying propensity score analysis with EHRs including
stratification, matching, and inverse probability weighting (including straight
weight, stabilized weight, and doubly robust weighted regression).

23.1 Incentives for Using Propensity Score Analysis

When conducting research with electronic health records (EHRs) or other big data
sources, we have access to a large number of covariates [1]. These covariates
include patient demographics, physical parameters (e.g., vitals signs and physical
examinations), laboratory parameters, home medications, pre-morbid conditions,
etc. All these covariates could be confounders when considering the association
between an exposure and an outcome. We can use statistical modeling to account
for the confounding effect of these covariates and establish an association between
the exposure and the outcome of interest [2, 3]. Propensity score analysis is
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particularly advantageous when dealing with a large number of covariates [1]. The
remainder of this chapter assumes a basic understanding of statistics and regression
modeling (especially logistic regression).

Adjusting for as many covariates as possible sets the ground for a convincing
causal inference by reducing latent biases due to latent variates [4]. However, this
results in increased dimension [5]. Although large scale EHRs often have large
enough sample size to allow high-dimensional study, dimension reduction is still
useful for the following reasons: (i) to simplify the final model and make inter-
pretation easier, (ii) to allow sensitivity analyses to explore higher order terms or
interaction terms for those covariates that might have correlation or interaction with
the outcome, and (iii) depending on the research question, the study cohort might
still be small despite coming from a large database, and dimension reduction
therefore becomes crucial for a model to be valid.

23.2 Concerns for Using Propensity Score

Although propensity score analysis has the above mentioned advantages, it is
important to understand the theory of propensity score analysis and appreciate its
limitations. A propensity score is an ‘estimated probability’ of one subject being
assigned to either the treatment group or the control group given the subject’s
‘characteristics’, or ‘pre-treatment conditions’. It is a surrogate for all the covariates
that are used to estimate it. It is not hard to imagine that using a single propensity
score to represent all characteristics of a subject could introduce bias [6]. Therefore,
implementing propensity scores in a statistical analysis model has to take into
account the research question, the dataset, and the covariates included in the
analysis. Furthermore, results must always be validated with sensitive analyses [7].

23.3 Different Approaches for Estimating Propensity
Scores

In a randomized controlled trial, a causal relationship between exposure (treatment)
and outcome can be readily determined if the randomization is carried out properly,
i.e. if there is no difference in pre-treatment conditions between the two groups.
However, in retrospective studies a difference in pre-treatment conditions between
the two groups almost always exists. In order to demonstrate comparative effec-
tiveness, causal inference with statistical modeling can be carried out in a number of
ways [8, 9]. For propensity score analyses [3, 10], the pre-treatment conditions can
be used as predictors in determining the likelihood of a subject being in the
treatment group or the control group. In other words, the probability of being in the
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treatment or control group is a function of pre-treatment conditions. There are a
number of ways to generate this function. The most basic one is regression.

When using regression to estimate propensity scores, the outcome of the
regression equation is either treatment group or control group, i.e. a binary out-
come, and the variables in the regression equation can be a combination of numeric
and nominal variables. This is a multivariate logistic regression that can be easily
performed using most free or commercial statistical packages. If there is more than
one treatment group (e.g., treatment A, treatment B, and control group) [11], then
the propensity score can be estimated using a multivariate multinomial logistic
regression.

The conventional regression model is a parametric model. Consequently, the
estimated propensity score will be subject to any inherent limitations of the para-
metric model, i.e. model misspecification [12]. It is possible to use a non-parametric
model to estimate the propensity score [13], such as regression trees, piecewise
approaches, and kernel distributions. However, these methodologies are less
established and are likely to require the use of machine learning algorithms [14].
Although non-parametric methods often require machine learning algorithms,
machine learning techniques can be applied to both parametric and non-parametric
methods. For example, some studies use a genetic algorithm to select variables and
model specification for a conventional logistic regression to estimate propensity
score [15].

23.4 Using Propensity Score to Adjust for Pre-treatment
Conditions

The goal of using propensity score analysis is to create a treatment group and a
control group that are indistinguishable from each other in terms of the
pre-treatment conditions statistics (e.g., means and standard deviations of numeric
variables, distribution of nominal variables). In other words, a treatment group and
a control group are created that mimic a post-randomization assignment result of a
randomized controlled trial, so that a causal inference can be made. Propensity
score analysis is one of the tools to reach this goal [8, 9, 16].

For example, consider one subject that received the study drug or treatment
(treatment group) and one subject that received placebo or standard treatment
(control group). If they have similar pre-treatment conditions then their chance
(probability) of being in the treatment group is the same. Consequently, it is
comparable to two identical subjects being randomly assigned to either treatment or
control group. When we find two subjects that have similar propensity scores where
one actually received treatment and the other actually received placebo, we ‘match’
them in our final study cohorts before we look at the treatment effect (outcome
variable). This process is called “propensity score matching.” By doing this, we will

23.3 Different Approaches for Estimating Propensity Scores 341



have similar propensity score distributions (or pre-treatment conditions distribu-
tions) between the treatment and control groups.

If the model used to estimate propensity scores is well-specified [17, 18], we
would expect the propensity scores to be representative of subjects’ pre-treatment
conditions. However, this might not always be the case, so we always look at the
group statistics after propensity score matching. Since the ultimate goal is to
eliminate the difference in pre-treatment conditions between groups, other methods
like propensity score weighting have been proposed to achieve this. More
sophisticated machine learning algorithms have also been developed that look at the
balance of pre-treatment variables between two groups during the process of esti-
mating a propensity score to ensure a valid model in simulating a randomized
controlled trial-like result [19].

In EHR data research, we have access to a large number of pre-treatment
covariates that we can extract from the database and use in the propensity score
model. Although we cannot use an indefinite number of covariates to simulate a real
RCT (which accounts for all unobserved variables), we can gain greater confidence
in our conclusion by including more variables [20, 21]. Propensity score analysis is
a powerful tool to simplify the final model while allowing a large number of
pre-treatment conditions to be included. Figure 23.1 summarizes the above dis-
cussion of applying a propensity score model.

We now present a case study that used the MIMIC II database (v.2.26) [22, 23],
and focus on the application of propensity scores in the analytic phase. The study
was a retrospective cohort study of Intensive Care Unit (ICU) patients who were
treated with at least one rate control agent (metroprolol, amiodarone or diltiazem).
Propensity score analysis was performed using the following covariates: demo-
graphics, vital signs, basic metabolic panels, past medical conditions, disease
severity scores, types of admission, and types of ICU. The outcomes measured

Fig. 23.1 Integration of propensity score analysis into a statistical design
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were: (i) whether rate control was achieved by a single agent, or multiple agents
(binary outcome); and, for those patients who reached rate control, (ii) the time to
reach rate control (continuous outcome).

23.5 Study Pre-processing

In order to identify those patients with atrial fibrillation and rapid ventricular
response (Afib with RVR) in the dataset, we used a combination of structured and
unstructured data. Specifically, the structured data used included ICD-9 codes (the
code for “Atrial Fibrillation” is 427.31) and medication administration data. The
unstructured data used included waveform ECG data, serial heart rate (HR) data,
discharge summaries and nursing notes. Unfortunately, only a small fraction of
patients in the database have waveform data (approximately 2000 out of 32,000
patients). Consequently, we were unable to take full advantage of waveform
analysis.

Patients who had Afib with RVR mentioned in their discharge summaries were
identified by text searching equivalent keywords in discharge summaries while
excluding the past medical history section. Once these patients had been identified
we used the serial HR and medication administration data to find the subset of
patients who had a HR of over 110 beats per minute (bpm) for more than 15 min
and who received at least one of the rate control agents of interest (metoprolol,
diltiazem, or amiodarone). Raw data was extracted using the Oracle® variety of
SQL and was further processed using Python®, for text-searching discharge sum-
maries, and Matlab®, for processing and plotting serial HR data and establishing
temporal relationship between rapid ventricular response and medication
administration.

Serial HR data existed for almost every patient in the database. However,
contrary to the continuous waveform ECG data, it is only recorded every 5, 10, or
15 min and inconsistently. To make the data more homogenous and easier for
plotting and processing, we interpolated the HR every 5 min: during the patient’s
ICU stay, if a raw HR data was not available for any given 5-min period, a value
was interpolated using the two adjacent data points. Because of the infrequent
sampling of HR for this data entity, one HR data point above 110 bpm would
correspond to an episode of a rapid HR of 5-min duration. We arbitrarily chose a
15-min duration as a significant episode of rapid HR that warrants the algorithm
(described below) to bring in more information from other data entity to determine
if the tachycardic episode reflected Afib with RVR or another form of rapid rhythm
(e.g. sinus tachycardia). This doesn’t mean that a patient has to have 15 min of Afib
with RVR before the physician decides to treat in clinical practice. Instead, it is a
measure to reduce the noise of solitary rapid HRs. One can experiment on imple-
menting different cut-off values and then review the result to determine an appro-
priate threshold.
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After identifying an episode of rapid HR which appeared to last for at least
15 min, we next determined whether the patient received a pharmacologic control
agent of interest within 2 h before or after the identified episode. A 2-h window was
used because medication data and HR data are two different data entities, and the
time stamps they carried might not be aligned exactly. Furthermore, the time stamps
associated with medication data might subject to inaccurate data entry by human
loggers. This window was arbitrarily determined; a smaller window would have
increase specificity but decreased the sensitivity of detecting the cohort of interest,
and vice versa for a larger window.

A major criterion for determining the effectiveness of a pharmacologic agent in
the control of Afib with RVR is the time until termination of the RVR episode. As
this information is not explicitly contained in the database, one has to define when
the rate is ‘controlled’ and then run an algorithm to find the time lapse between the
onset and resolution of RVR. The half-life of intravenous metoprolol and dilitazem
are each approximately 4 h and, therefore, we defined the resolution of RVR as
achieving sustained HR below 110 bpm for 4 h. Although there is no consensus for
the definition of RVR resolution, as long as the same definition is used for every
subject or sub-cohort, there is a ground for comparison. Our algorithm finds every
HR below 110 bpm after the previous identified Afib RVR (episodes of rapid HR
that lasted for at least 15 min and were treated by at least one rate control agent) and
tested if the ensuing HR data in the following 4 h was below 110 bpm for at least
90 % of the time. The time lapse between the onset and the resolution can then be
calculated.

Covariates, including demographics, vital signs, basic metabolic panels, past
medical conditions, disease severity scores, types of admission, and types of ICU,
were extracted using SQL. We also looked into the patient’s home medication and
past medical history of Afib. These pieces of information have to be extracted from
the “home meds” and “past medical history” sections in the discharge summaries by
using natural language processing techniques to text-search in a particular section of
a discharge summary. Figure 23.2 is an example that our group used for discussing
the analytic model.

Although we identified 1876 patients who were treated for Afib with RVR, only
320 of them received diltiazem as the first rate control agent. Using conventional
regression analysis would result in over-fitting because of the small cohort size, and
leaving out covariates would likely introduce biases. Propensity score analysis was
used to reduce dimensionality. The first step is to estimate the propensity score
(probability of being assigned to one treatment group given the pre-treatment
covariates). As mentioned earlier, there are several different ways to estimate
propensity scores including parametric methods such as multinomial logistic
regression, and non-parametric methods such as prediction trees. Machine learning
techniques can be implemented to train the propensity score model for optimized
prediction. After the propensity score has been estimated, it can be used either as a
variable in regression model to match subjects in different treatment groups with
similar propensity scores, or to calculate inverse probability weights. When esti-
mating propensity scores, besides optimizing the model to best predict the possible
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treatment assignment given the pre-treatment variables, a newer concept is to
estimate propensity scores to balance out pre-treatment covariates after matching or
weighting. When using propensity score weighting, one can choose to use either
straight weights or stabilized weights. Straight weighting is more susceptible to
outliers with very distinct combination of pre-treatment covariates, and will double
the cohort size when there are two treatment groups or triple the cohort size when
there are three treatment groups. On the other hand, stabilized weighting is less
susceptible to outliers, and does not increase the cohort size regardless of the
number of treatment groups.

For this study we chose a machine learning algorithm (a generalized boosted
model) to build a regression tree for the estimation of propensity scores (a
non-parametric method). The reason for not choosing a parametric method is the
same as that for not using a conventional regression analysis, as mentioned above.
The model iteratively combines many simple regression trees until the
pre-determined metrics for assessing between group pre-treatment covariate
imbalance (standardized bias or Kolmogorov-Smirnov statistics) reach a minimum.

Extreme weights were eliminated using stabilized weights. Stabilized weights
were then implemented in the final weighted regression for hypothesis testing.
Depending on the nature of the outcome variable, weighted logistic regression is
used for a binary outcome, and weighted liner regression is used for a continuous
outcome. Several covariates with higher predictive power (of treatment assignment)
were included in the final weighted regression model.

Fig. 23.2 Group discussions of the analytical model. The green arrows represent the final model,
and the red arrows represent the model that was used as sensitivity analysis
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23.6 Study Analysis

In general, propensity score analysis has been used to compare two treatment
groups, i.e. treatment versus control group. It is also commonly used for stratifi-
cation (using propensity score as a covariate in a regression model) and propensity
score matching (creating treatment and control groups of similar pre-treatment
attribute and thus mimicking randomized trials). However, stratification can only
establish association and propensity score matching mainly serves as a way of
dimension reduction. Propensity score matching does carry the intention for causal
inference, but matching propensity scores of three or more treatment groups
requires calculating two or more dimensional distances for each matched group of
subjects, which can be mathematically challenging and lacks supporting theory.
Therefore, we chose machine-generated regression trees for our propensity score,
and used a propensity score weighted regression model for outcome effect. The
non-parametric approach avoided the limitations and biases introduced by model
specification when using parametric methods. After the propensity score weight
was generated, weighted regression was performed. This allows for exploration of
interaction terms and adjustment for variables that have heavier effects on the
outcomes that could not be fully eliminated by using propensity scores alone.

To validate our model, a series of sensitivity analyses using pair-wise propensity
score matching were performed and similar effects of different treatment groups
have on the outcomes were observed.

23.7 Study Results

In this single center retrospective cohort study, intravenous metoprolol was the most
commonly used rate control agent for the control of Afib with RVR amongst patients
in the intensive care unit. Using a novel propensity matching based approach, the
effectiveness of metoprolol was compared to two other commonly used pharma-
cologic agents used for the control of Afib with RVR: diltiazem and amiodarone.
With regards to the primary outcome of medication failure (defined as a switch to or
addition of a second rate control agent), metoprolol had the lowest overall failure
rate. Those patients who received diltiazem (odds ratio OR 1.55, confidence interval
CI 1.05–2.3, p = 0.027) or amiodarone (OR 1.50, CI 1.1–2.0, p = 0.006) as their
initial pharmacologic agent were more likely to receive an additional agent prior to
the end of the RVR episode. In a secondary analysis of patients who received only
one drug during their RVR episode, those who received diltiazem had significantly
longer times to resolution of the RVR episode. Similarly, patients who received only
diltiazem were also less likely to be controlled at 4 h than those who only received
metoprolol (OR 0.59, CI 0.40–0.86, p = 0.007).

These results suggest that critically ill patients with Afib with RVR are less
likely to require a second pharmacologic agent and more likely to be controlled at
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4 h if they receive metoprolol as their initial rate control agent then either diltiazem
or amiodarone. This effect seems to be most pronounced when comparing meto-
prolol to diltiazem.

23.8 Conclusions

While it is widely accepted that Afib with RVR in the ICU is associated with worse
outcomes overall, there is no clear consensus with regards to optimal pharmaco-
logic management and practice varies amongst clinicians. Through the use of a
three-way propensity matching model, we have compared the most commonly used
pharmacologic agents for this phenomenon and found evidence that starting with
metoprolol may lead to fewer treatment failures and a more rapid resolution of the
RVR episode.

Propensity score theory is more commonly implemented on two-treatment group
studies. Estimating propensity score in multiple-treatment group studies and
implementing that in causal inference can be statistically and mathematically
challenging. In this chapter, we provided an example of multiple-treatment group
propensity score analysis using machine-learning algorithm. The concepts explored
in this chapter can be easily implemented in any two-treatment group studies. We
also provided an example of two treatment group propensity score analysis in the
sensitivity analyses of our study by performing pair-wise comparison between
different treatment groups. Propensity score analysis can be a powerful way to
achieve causal inference and dimension reduction in studies utilizing EHRs.

23.9 Next Steps

The data analysis strategy employed in this project may be particularly helpful in
answering a range of research questions in the ICU setting. Critical care clinicians
frequently have to select from a range of interventions or pharmacologic agents. As
opposed to traditional propensity matching approaches where only two groups are
compared, this model allows for the simultaneous comparison of three independent
groups. Examples where this analysis approach could be useful include comparing
the effectiveness of different vasopressors in the treatment of shock or different
sedative agents for intubated patients with ARDS.

Given the degree of clinical equipoise with regards to the treatment of Afib with
RVR in the ICU, the above results are powerful in providing some direction to
clinicians faced with this complex clinical problem. Still, many questions remain. It
is not clear, for instance, whether higher doses of diltiazem may have been more
effective and thereby avoided relatively increased rates of treatment failure. We did
not look at doses provided in this study. We also did not explore the oral versus
intravenous versus combined routes of administration. Atrial fibrillation during
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critical illness is a common phenomenon whose management requires further
investigation.

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

Code Appendix

The code used in this case study is available from the GitHub repository accom-
panying this book: https://github.com/MIT-LCP/critical-data-book. Further infor-
mation on the code is available from this website. The following key scripts were
used:

• database_query.sql: used to extract data from the MIMIC II database.
• data_extraction.m: used to extract variables for analysis.
• propensity_score_analysis.r: used for propensity score analysis.
• propensity_score_matching.r: used for propensity score matching.
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Chapter 24
Markov Models and Cost Effectiveness
Analysis: Applications in Medical
Research

Matthieu Komorowski and Jesse Raffa

Learning Objectives
Understand how Markov models can be used to analyze medical decisions and
perform cost-effectiveness analysis.

This case study introduces concepts that should improve understanding of the
following:

1. Markov models and their use in medical research.
2. Basics of health economics.
3. Replicating the results of a large prospective randomized controlled trial using a

Markov Chain and Monte Carlo simulations, and
4. Relating quality-adjusted life years (QALYs) and cost of interventions to each

state of a Markov Chain, in order to conduct a simple cost-effectiveness
analysis.

24.1 Introduction

Markov models were initially theroreticized at the beginning of the 20th century by
Russian mathematician Andrey Markov [1]. They are stochastic processes that
undergo transitions from one state to another. Over the years, they have found
countless applications, especially for modeling processes and informing decision
making, in the fields of physics, queuing theory, finance, social sciences, statistics
and of course medicine. Markov models are useful to model environments and
problems involving sequential, stochastic decisions over time. Representing such
environments with decision trees would be confusing or intractable, if at all pos-
sible, and would require major simplifying assumptions [2]. Markov models can be
examined by an array of tools including linear algebra (brute force), cohort simu-
lations, Monte Carlo simulations and, for Markov Decision Processes, dynamic
programming and reinforcement learning [3, 4].
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A fundamental property of all Markov models is their memorylessness. They
satisfy a first-order Markov property if the probability to move a new state to st+1
only depends on the current state st, and not on any previous state, where t is the
current time. Said otherwise, given the present state, the future and past states are
independent. Formally, a stochastic process has the first order Markov property if
the conditional probability distribution of future states of the process (conditional on
both past and present values) depends only upon the present state:

P stþ 1js1; s2; . . .; stð Þ ¼ P stþ 1jstð Þ

This chapter will provide a brief introduction to the most common Markov
models, and outline some potential applications in medical research and health
economics. The last section will discuss a practical example inspired from the
medical literature, in which a Markov chain will be used to conduct the
cost-effectiveness analysis of a particular medical intervention. In general, the crude
results of a study are unable to provide the necessary information to fully imple-
ment cost-effectiveness analysis, thus demonstrating the value of expressing the
problem as a Markov Chain.

24.2 Formalization of Common Markov Models

The four most common Markov models are shown in Table 24.1. They can be
classified into two categories depending or not whether the entire sequential state is
observable [5]. Additionally, in Markov Decision Processes, the transitions between
states are under the command of a control system called the agent, which selects
actions that may lead to a particular subsequent state. By contrast, in Markov chains
and hidden Markov models, the transition between states is autonomous. All
Markov models can be finite (discrete) or continuous, depending on the definition
of their state space.

24.2.1 The Markov Chain

The discrete time Markov chain, defined by the tuple fS; Tg is the simplest Markov
model, where S is a finite set of states and T is a state transition probability matrix,

Table 24.1 Classification of Markov models

Fully observable
system

Partially observable systems

Autonomous system Markov chain (MC) Hidden Markov model (HMM)

System containing a
control process

Markov decision
process (MDP)

Partially observable Markov decision
process (POMDP)
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T s0; sð Þ ¼ P stþ 1 ¼ s0jst ¼ sð Þ. A Markov chain can be ergodic, if it is possible to
go from any state to every other state in finitely many moves. Figure 24.1 shows a
simple example of a Markov Chain.

In the transition matrix, the entries in each column are between 0 and 1 (in-
clusive) and their sum is 1. Such vectors are called probability vectors. The
Table 24.2 shows the transition matrix corresponding to Fig. 24.1. A state is said to
be absorbing if it is impossible to leave it (e.g. death).

24.2.2 Exploring Markov Chains with Monte Carlo
Simulations

Monte Carlo (MC) simulations are a useful technique to explore and understand
phenomena and systems modeled under a Markov model. MC simulation generates
pseudorandom variables on a computer in order to approximate difficult to estimate
quantities. It has wide use in numerous fields and applications [6]. Our focus is on
the MC simulation of a Markov chain, and it is straightforward once a transition
probability matrix, T s0; sð Þ, and final time t* have been defined. We will assume at
the index time (t = 0), the state is known, and call it s0. At t = 1, we simulate a
categorical random variable using the s0th row of the transition probability matrix
T s0; sð Þ. We repeat this t ¼ 1; 2; . . .; t� � 1; t� to simulate one simulated instance of
the Markov chain we are studying. One simulated instance only tells us about one
possible sequence of transitions out of very many for this Markov chain, and we
need to repeat this many (N) times, recording the sequence of states for each of the
simulated instances. Repeating this process many times, allows us to estimate
quantities such as: the probability at t = 5, that the chain is in state 1; the average

Fig. 24.1 Example of a Markov chain, defined by a set S of finite states {Healthy, Ill} and a
transition matrix, containing the probabilities to move from current state s to next state s′ at each
iteration

Table 24.2 Example of a
transition matrix
corresponding to Fig. 24.1

Next state s Total

Healthy Ill

Initial state s Healthy 0.9 0.1 1

Ill 0.5 0.5 1
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proportion of time spent in state 1 over the first 10 time points; or the average length
of the longest consecutive streak in state 1 in the first t* time points.

Using the example shown in Fig. 24.1, we will estimate the probability for
someone to be healthy or ill in 5 days, knowing that he is healthy today. MC
methods will simulate a large number of samples (say 10,000), starting in
s0 = Healthy and following the transition matrix T s0; sð Þ for 5 steps, sequentially
picking transitions to s′ according to their probability. The output variable (the
value of the final state) is recorded for each sample, and we conclude by analyzing
the characteristics of the distribution of this output variable (Table 24.3).

The distribution of the final state at day + 5 for 10,000 simulated instances is
represented on Fig. 24.2.

Table 24.4 reports some sample characteristics for “healthy” state on day 5 for
100 and 10,000 simulated instances, which illustrates why it is important to sim-
ulate a very large number of samples.

Table 24.3 Example of
health forecasting using
Monte Carlo simulation

Instance
1

Instance
2

… Instance
10,000

Today Healthy Healthy … Healthy

Day + 1 Healthy Healthy Healthy

Day + 2 Healthy Ill Healthy

Day + 3 Healthy Ill Ill

Day + 4 Healthy Ill Healthy

Day + 5 Healthy Ill … Healthy

Fig. 24.2 Distribution of the health on day 5, for 10,000 instances
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By increasing the number of simulated instances, we drastically increase our
confidence that the true sample mean falls within a very narrow window (0.83–0.84
in this example). The true mean calculated analytically is 0.838, which is very close
to the estimate generated from MC simulation.

24.2.3 Markov Decision Process and Hidden Markov
Models

Markov Decision Processes (MDPs) provide a framework for running reinforce-
ment learning methods. MDPs are an extension of Markov chains, which include a
control process. MDPs are a powerful and appropriate technique for modeling
medical decision [3]. MDPs are most useful in classes of problems involving
complex, stochastic and dynamic decisions like medical treatment decisions, for
which they can find optimal solutions [3]. Physicians will always need to make
subjective judgments about treatment strategies, but mathematical decision models
can provide insight into the nature of optimal choices and guide treatment
decisions.

In Hidden Markov models (HMMs), the state space is only partially observable
[7]. It is formed by two dependent stochastic processes (Fig. 24.3). The first is a
classical Markov chain, whose states are not directly observable externally, therefore
“hidden.” The second stochastic process generates observable emissions, condi-
tional on the hidden process. Methodology has been developed to decode the hidden
states from the observed data and has applications in a multitude of areas [7].

Table 24.4 Sample characteristics for 100 and 10,000 simulated instances

100 simulated instances 10,000 simulated instances

Mean 0.81 0.83

Standard deviation 0.39 0.37

95 % confidence interval for the mean 0.73–0.89 0.83–0.84

Fig. 24.3 Example of a hidden Markov model (HMM)
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24.2.4 Medical Applications of Markov Models

MDPs have been praised by authors as being a powerful and appropriate approach
for modeling sequences of medical decisions [3]. Controlled Markov models can be
solved by algorithms such as dynamic programming or reinforcement learning,
which intends to identify or approximate the optimal policy (set of rules that
maximizes the expected sum of discounted rewards).

In the medical literature, Markov models have explored very diverse problems
such as timing of liver transplant [8], HIV therapy [9], breast cancer [10], Hepatitis C
[11], statin therapy [12] or hospital discharge management [5, 13]. Markov models
can be used to describe various health states in a population of interest, and to detect
the effects of various policies or therapeutic choices. For example, Scott et al. has
used a HMM to classify patients into 7 health states corresponding to side effects of 2
psychotropic drugs [14]. The transitions were analyzed to specify which drug was
associated with the least side-effects. Very recently, a Markov chain model was
proposed to model the progression of diabetic retinopathy, using 5 pre-defined
states, from mild retinopathy to blindness [15]. MDPs have also been exploited in
medical imaging applications. Alterovitz has used very large MDPs (800,000 states)
for motion planning in image-guided needle steering [16].

Besides those medical applications, Markov models are extensively used in
health economics research, which is the focus of the next section of this chapter.

24.3 Basics of Health Economics

24.3.1 The Goal of Health Economics: Maximizing
Cost-Effectiveness

This section provides the reader with a minimal background about health eco-
nomics, followed by a worked example. Health economics intends to maximize
“value for money” in healthcare, by optimizing not only clinical effectiveness, but
also cost-effectiveness of medical interventions. As explained by Morris:
“Achieving ‘value for money’ implies either a desire to achieve a predetermined
objective at least cost or a desire to maximise [sic] the benefit to the population of
patients served from a limited amount of resources” [17].

Two main approaches can be outlined in health economics: cost-minimization
and cost-effectiveness analysis (CEA). In both cases, the purpose is identical: to
identify which treatment option is the most cost-effective. Cost minimization deals
with the simple case where the several treatment options available have the same
effectiveness but different costs. Quite logically, cost-minimization will favor the
cheapest option. CEA represents a more likely scenario and is more widely used.
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In CEA, several options with different costs and different effectiveness are com-
pared. The analysis will compute the relative cost of an improvement in health, and
metrics to optimally inform decision makers.

24.3.2 Definitions

Measuring Outcome: Survival, Quality of Life (QoL), Quality-Adjusted
Life-Years (QALY)
Outcomes are assessed in terms of enhanced survival (“adding years to life”) and
enhanced quality of life (QoL) (“adding life to years”) [17]. Although sometimes
criticized, the concept of Quality-adjusted life-years (QALY) remains of central
importance in cost-utility analysis [18]. QALYs apply weights that reflect the QoL
being experienced by the patient. One QALY equates to one year in perfect health.
Perfect health is equivalent to 1 while death is equivalent to 0. QALYs are esti-
mated by various methods including scales and questionnaires filled by patients or
external examiners [19]. As an example, the EuroQoL EQ 5D questionnaire
assesses health in 5 dimensions: mobility, self-care, usual activities, pain/discomfort
and anxiety/depression.

Cost-Effectiveness Ratio (CER)
The cost-effectiveness ratio (CER) will inform the decision makers about the cost of
an intervention, relative to the health benefits this intervention generates. For
example, an intervention costing $20,000 per patient and providing 5 QALYs
(5 years of perfect health) has a CER of $20,000/5 = $4000 per QALY. This
measure allows a direct comparison of cost-effectiveness between interventions.

Incremental Cost-Effectiveness Ratio (ICER)
The incremental cost-effectiveness ratio (ICER) is a measure very commonly
reported in the health economics literature and allows comparing two different
interventions in terms of “cost of gained effectiveness.” It is computed by dividing
the difference in cost of 2 interventions by the difference of their effectiveness [20].

As an example, if treatment A costs $5000 per patient and provides 2 QALYs,
and treatment B costs $8000 while providing 3 QALYS, the ICER of treatment B
will be:

ð$8000� $5000Þ
3� 2

¼ $3000

Said otherwise, it will cost $3000 more to gain one more QALY with treatment
B, for this particular medical condition. ICER can inform decision makers about the
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need to adopt or fund a new medical intervention. Schematically, if the ICER of a
new medical intervention lies below a certain threshold, it means that health ben-
efits can be achieved with an acceptable level of spending.

The Cost Effectiveness Plane
The cost-effectiveness plane (CE plane) is an important tool used in CEA
(Fig. 24.4). It aims to clearly illustrate differences in costs and effects between
different strategies, whether they comprise medical interventions, treatments, or
even a combination of the two.

The CE plane consists of a four-quadrant diagram where the X-axis represents
the incremental level of effectiveness of an outcome and the Y-axis represents the
additional total cost of implementing this outcome. For example, the further right
you move on the X-axis, the more effective the outcome. In the upper-right
quadrant, a treatment may receive funding if its ICER lies below the maximum
acceptable ICER threshold.

Fig. 24.4 The cost-effectiveness plane, comparing treatment A with treatment B
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24.4 Case Study: Monte Carlo Simulations of a Markov
Chain for Daily Sedation Holds in Intensive Care,
with Cost-Effectiveness Analysis

This example is inspired by the publication by Girard et al. [21], and will allow us
to illustrate how to construct and examine a simple Markov Chain to represent a
medical intervention, how to relate QALYs and cost of interventions to each state of
the Markov Chain, in order to carry out a cost-effectiveness analysis. In this
prospective randomized controlled trial, the authors evaluated the impact of daily
sedation holds in intensive care on various outcomes such as the number of
ventilator-free days, delirium and 28-day mortality. In the ICU, patients frequently
undergo mechanical ventilation in the setting of severely impaired consciousness,
after heavy surgical procedures, and when suffering from severe respiratory failure.
Therapeutically, patients are sedated to maximize their comfort. A growing body of
literature, however, has identified the risks of continuous sedation in the ICU, as it
is associated with increased mortality, delirium, duration of mechanical ventilation
and length of ICU and hospital stay [22]. To strike the right balance between
maintaining sedation and mechanical ventilator support as long as the patient needs
it, but also moving to extubation as soon as possible, Girard and colleagues pro-
posed actively waking up the patients daily to assess their readiness to come off of
the ventilator. The main results are shown in Table 24.5.

In this case study example, we will attempt to approximate those results using a
very simple 3-state Markov Chain examined by MC simulation. As an exercise, we
will extend the study to CEA. This tutorial will provide the reader with all the tools
necessary to implement in other contexts Markov Chain MC simulation methods
and simple cost-effectiveness studies.

Most of the study results can be approximated using a very crude 3-state Markov
chain (Fig. 24.5), with the following state space: {Intubated, Extubated, Dead}.
In this simplistic model, only 7 transitions are possible, and the state ‘dead’ is
absorbing.

Table 24.5 Main results from the original study

Intervention group Control group

Ventilator-free days (mean) 14.7 11.6

Ventilator-free days (median) 20.0 8.1

Patients Successfully extubated at 28 days (%) ≈93 ≈88

28 day mortality (%) 29 35
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Two different transition matrices can be built by trial-and-error, corresponding to
the intervention and control arms of the study (Table 24.6). They correspond to the
daily probabilities of transitioning from one state to another. The initial values were
selected using a few simple assumptions: the state ‘death’ is absorbing, the prob-
ability to remain intubated or extubated is larger than the probability to change
state, the risk of dying while intubated is larger than when extubated, and the total
of each row in the transition matrix is one. Another assumption is that the inter-
vention (daily sedation hold) will change the probability of successful extubation
and mortality, hence the transition matrix. After each modification, the number of
patients in each state was computed for 28 days (results in Table 24.8), so as to try
to match the initial study’s results as closely as possible.

We can check to see if our code is running correctly by comparing important
aspects of the simulation to known theoretical properties of probability theory and
Markov Chains. For example, in our example all patients are assumed to be intu-
bated at t = 0. Under our Markov model, the waiting time until extubation or death
can be determined theoretically, but how to determine this is beyond the scope of
this chapter. This waiting time, W*, is a discrete random variable with a geometric
distribution. Geometric distributions have probability mass functions, for a given
waiting time, w of pðwÞ ¼ ð1� pÞpðw�1Þ, where p is the probability of remaining
intubated. In Fig. 24.6, we compare the number of times we observed different
values of w to what we would expect under the true theoretical distribution of W*,
by computing Np(w), where N is the number of simulated instances we computed.

Fig. 24.5 The 3-state
Markov chain used in this
example

Table 24.6 Transition
matrices used in the case
study

Intervention group Next state S′

I E D

Initial state S I 0.862 0.12 0.018

E 0.0088 0.982 0.0092

D 0 0 1

Control group Next state S′

I E D

Initial state S I 0.878 0.1 0.022

E 0.01 0.978 0.012

D 0 0 1
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We can see that our simulation follows very closely to what is theoretically known
to be true.

In order to perform CEA, each state must be assigned a value for QALYs and
cost. For the purpose of this example, let’s also assume the values for QALYs and
daily costs shown in Table 24.7.

Table 24.8 shows the results of the first iterations for the control group, when
starting with 100 patients intubated (function IED_transition.m). At each
time step, the number of patients still intubated corresponds to the patients who
stayed intubated, minus the patients who became extubated (daily probability of
10 %) and those who died (probability of 2.2 %), plus the extubated patients who
had to be re-intubated (probability 1 %). After 28 days, the cumulated mortality
reaches 35.6 %, and the ratio of patients extubated among the patients still alive is
88.8 %, hence matching quite closely the results of the initial study. At each time
step, the sum of the QALYs and costs for all the patients is computed, as well as
their cumulative values. The number of QALYs initially increases as more patients
become extubated, then decreases as a consequence the number of patients dying.

Fig. 24.6 Example of the life expectancy in state “I” in the control group, with fitted geometric
distribution. The bar chart represents the distribution of the time spent in the state “intubated” of
the Markov chain, before transitioning to another state, for 5000 samples

Table 24.7 Definition of
QALY and daily cost for each
state

State I E D

QALY 0.5 1 0

Daily cost ($) 2000 1000 0
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The following figure represents the ratio of number of patients extubated over
number of patients alive, over time and for both strategies (Fig. 24.7). It can be
compared to the original figure in the source article.

By simulating the distribution of the average number of ventilator-free days, and
its characteristics, can be computed for both strategies (function MCMC_solver.m).
The following Table 24.9 shows examples of patients’ states computed using the
transition matrix of the control group.

The distribution of ventilator-free days in our 10,000 samples is plotted shown in
Fig. 24.8.

The mean and median number of ventilator-free days for both groups is shown in
Table 24.10.

Table 24.8 Number of patients in each state, QALYs and cost analysis, during 28 iterations
(control group)

Day I E D Extubated/Alive QALYs Cumulative
QALYs

Daily
cost (K
$)

Cumulative
cost (K$)

0 100.00 0.00 0.00 0.00 50.00 50.00 200.00 200

1 87.80 10.00 2.20 0.10 53.90 103.90 185.60 386

2 77.19 18.56 4.25 0.19 57.15 161.05 172.94 559

3 67.96 25.87 6.17 0.28 59.85 220.90 161.78 720

4 59.92 32.10 7.98 0.35 62.06 282.96 151.95 872

5 52.94 37.38 9.68 0.41 63.85 346.81 143.25 1016

… … … … … … … … …

28 7.19 57.21 35.60 0.89 60.80 1863.84 71.59 3184

Fig. 24.7 Modelled primary
outcome of the study using a
Markov chain
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The cost-effectiveness ratio at 28 day of the both strategies can be computed by
dividing the final cumulative cost by the cumulative QALYs (Table 24.11).

The intervention is more expensive but is also associated with health benefits
(significantly more QALYs). It belongs to the upper-right quadrant of the CE plane,

Table 24.9 Computing the number of ventilator-free days by Monte Carlo (10,000 simulated
instances)

Day Instance 1 Instance 2 Instance 3 … Instance
10,000

0 I I I I

1 I I I I

2 I I I I

3 I I I I

4 I I I I

5 I I I I

6 I I I I

7 I I I E

8 E E I E

9 E E I E

10 I E I E

… … … … …

28 D D D E

Total ventilator-free days 7 3 0 … 22

Fig. 24.8 Ventilator-free
days for 10,000 samples, for
the intervention and control
group
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where the ICER is used to determine the cost-effectiveness of an intervention.
The ICER of this intervention is shown below:

ICER ¼ ð3; 213; 000� 3; 184; 000Þ
ð2029� 1864Þ ¼ 177:3

According to this crude analysis, Sedation holds appear to be a very
cost-effective strategy, costing only $177 more per additional QALY, relative to the
control strategy. Reducing the value (QALY) of the state E from 1 to 0.6 signifi-
cantly increases the ICER to $1918 per QALY gained, demonstrating the huge
impact that the definition of our health states has on the results of the CEA.
Likewise, increasing the daily cost of state E from $1000 to $1900 (now only
slightly cheaper than state I) leads to a much more expensive ICER of $2041 per
QALY gained. Some medical interventions may or may not be funded depending
on the assumptions of the model!

24.5 Model Validation and Sensitivity Analysis
for Cost-Effectiveness Analysis

An important component to any CEA is to assess whether the model is appropriate
for the phenomena being examined, which is the purpose of model validation and
sensitivity analyses. In the previous section, we model daily sedation hold as a
Markov chain with a known transition probability matrix and costs. Deviations
from this model can come in at least two types.

First, the use of a Markov Chain may be inappropriate to describe how subjects
transition from the intubation, extubation and death states. It was presumed that this
process follows a first-order Markov chain. Given enough real clinical data we can
test to see if this assumption is reasonable. For example, given the transition
probability matrices above, we can calculate quantities via MC simulation and

Table 24.10 Mean and median number of ventilator-free days for both groups

Number of ventilator-free days Intervention group Control group

Mean 17.1 15.9

Median 20 18

Table 24.11 Cost-effectiveness ratio in both groups

Intervention group Control group

Cumulative cost (K$) 3213 3184

Cumulative QALYs 2029 1864

Cost-effectiveness ratio ($ per QALY) 1583 1708
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compare them to values reported in the real data. For instance, the authors report a
28-day mortality rate of 29 and 35 % in the intervention and control groups,
respectively. From our simulation study, we estimate these quantities to be 27 and
35 %, which is reasonably close. One can perform formal goodness-of-fit testing as
well to better assess if any differences noted provide any evidence that the model
may be mis-specified. This process can also be repeated for other quantities, for
example, the mean number of ventilator-free days.

In addition to validating the Markov model used to simulate the states and
transitions for the system of interest, it is also important to perform a sensitivity
analysis on the assumptions and parameters used in the simulation. Performing this
step allows one to see how sensitive the results are to slight changes to parameter
values. Choosing which parameters values to use in sensitivity analyses can be
difficult, but some good practices are to find other parameters (e.g., transition
probability matrices) reported in other studies of a similar type. For cost estimates,
one may want to try costs reported in other countries, or incorporate important
economic parameters like inflation. If using these other scenarios drastically affects
the conclusions drawn from the simulation study, this does not necessarily mean
that the study was a failure, but rather that there are limits to the generalizability of
the simulation study’s results. If particular parameters cause great fluctuations this
may warrant further investigation into why this is the case. In addition to changing
the parameters, one may try to alter the model significantly, by for example, using a
higher order Markov model or semi-Markov model in place of a simple first order
assumption, but these are advanced topic beyond the scope of this chapter.

The theoretical concepts introduced in the first sections of this chapter were
applied to a concrete example coming from the medical literature. We demonstrated
how clinical states and transition probabilities could be defined ad hoc, and how the
stationary distribution of the chain could be estimated using Monte Carlo methods.
The methodology outlined in this chapter will allow the reader to expand the results
of other interventional studies to CEA, but countless other applications of Markov
models exist, in particular in the domain of decision support systems.

24.6 Conclusion

Markov models have been used extensively in the medical literature, and offer an
appealing framework for modeling medical decision making, with potential pow-
erful applications in decision support systems and health economics analysis. They
represent relatively simple mathematical models that are easy to grasp by non-data
scientists or non-statisticians. Very careful attention must be paid to the verification
of a fundamental assumption which is the Markov property, without which no
further analysis should be carried out.
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24.7 Next Steps

This tutorial hopefully provided basic tools to understand or develop CEA and
Markov chains to model the effect of medical interventions. For more information
on health economics, the reader is directed towards external references, such as the
work by Morris and colleagues [17]. Guidance regarding the use of more advanced
Markov models such as MDPs and HMMs is beyond the scope of this book, but
numerous sources are available, such as the excellent Sutton and Barto, freely
available online [4].

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

Code Appendix

The code used in this case study is available from the GitHub repository accom-
panying this book: https://github.com/MIT-LCP/critical-data-book. Further infor-
mation on the code is available from this website. The following functions are
provided:

• health_forecast.m: This function computes 100 Monte-Carlo simulations
of a 5-day health forecast and displays the results.

• IED_transition.m: This function computes and displays the proportion of
patients in each state (Intubated, Extubated, or Dead), following the transition
matrix in the intervention group.

• MCMC_solver.m: This function computes 10,000 Monte Carlo simulations
for both the control and intervention group, and computes the distribution of
ventilator-free days.
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Chapter 25
Blood Pressure and the Risk of Acute
Kidney Injury in the ICU: Case-Control
Versus Case-Crossover Designs

Li-wei H. Lehman, Mengling Feng, Yijun Yang and Roger G. Mark

Learning Objectives
Introduce two different approaches, a case-control and a case-crossover design, to
study the effect of transient exposure of hypotension on the risk of acute kidney
injury (AKI) development in intensive care unit (ICU) patients.

25.1 Introduction

Acute kidney injury (AKI) refers to a rapid decrease in kidney function, occurring
over a period of days. The presence of AKI can be detected using well-established
definitions based on serum creatinine rise or urine output reduction [1]. Acute
kidney injury has been reported in 36 % of all patients admitted to the intensive
care unit ICU [2, 3]. A prior study showed that hospital patients with even very
small increases in their serum creatinine (0.3–0.4 mg/dL) have 70 % greater risk of
death than patients without creatinine increase [4]. Although the relationship
between low blood pressure and kidney function is well documented in an
experimental setting based on animal data [5], the association between hypotension
and acute kidney injury in a critical care setting is not completely understood.

This chapter describes two different approaches for studying blood pressure and
the risk of AKI development in ICU patients using the MIMIC II database [6]. In
our first study, we adopted a traditional case-control approach and examined the
association between hypotension and AKI by comparing blood pressure measure-
ments of patients who had AKI (case) with patients without AKI (control) [7, 8].
Blood pressure measurements immediately prior to patients’ AKI onset were
compared with blood pressure measurements of the controls sampled from a similar
time window.

In the second study, we adopted a case-crossover design in which each patient
serves as his or her own control. Blood pressure measurements immediately prior to
each patient’s AKI onset were compared with the same patient’s blood pressure
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measurements sampled from an earlier time window while that patient’s kidney
functions were still stable. In the remainder of the chapter, we highlight the key
differences and the design rationale of these two approaches. We applied these
analysis techniques to study the relationship between hypotension and AKI
development using the MIMIC II database, and present our preliminary findings.

25.2 Methods

25.2.1 Data Pre-processing

Nurse-verified mean arterial blood pressure (MAP) samples, recorded on an hourly
basis were used for the analysis. Blood pressure measurements from both invasive
arterial line and automated, non-invasive oscillometric methods were included in
the study. Our choice of MAP (rather than systolic blood pressure) for blood
pressure measurement was motivated by prior work [8] which demonstrated that
MAP provided more consistent readings across different measurement modalities in
the ICU. Blood pressure measurements were filtered to remove values outside of
reasonable physiological bounds (MAP between 20 and 200 mmHg).

25.2.2 A Case-Control Study

In the case-control approach [7], we examined the effect of transient exposure to
hypotension (defined as blood pressure falling below specified thresholds) and the
risk of AKI development by comparing blood pressure measurements of patients
who experienced AKI (case) with patients who never developed AKI in the ICU
(control). AKI was defined as an acute increase in serum creatinine � 0.3 mg/dL,
or an increase of � 50 % in serum creatinine within 48 h, based on the Acute
Kidney Injury Network (AKIN) definition [1]. Blood pressure measurements (from
up to a 48 h window) prior to patients’ AKI onset were compared with blood
pressure measurements of the controls from a time window prior to the last crea-
tinine measurement time.

Patients were selected from among the adult ICU stays in the MIMIC II [8]
database. We examined adult ICU stays (patients � 15 years of age) with at least 2
serum creatinine values. Patients with fewer than 2 serum creatine values in their
ICU stay or evidence of end-stage renal disease (ESRD) were excluded.

Among the remaining 16,728 adult ICU stays that had at least 2 creatinine
measurements without evidence of end-stage renal disease, AKI occurred in 5207
(31 %). The remaining 11,521 cases were identified as the controls. The average
AKI onset time was 2.34 days after ICU admission. For the controls, the last
creatinine sample time was, on average, 2.76 days after ICU admission. Figure 25.1
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plots the population mean and standard error of median MAP up to 3 days prior to
the AKI onset for the AKI cohort, or prior to the last creatinine measurement time
for the controls. Note that mean arterial blood pressure of the AKI cohort diverged
from that of the controls prior to the AKI onset.

We studied the risk of AKI in ICU patients as a function of both the severity and
duration of hypotension. Blood pressure features extracted from the target 48-h
window were examined as primary predictors for AKI, including the minimum
MAP and maximum number of hours that MAP was continuously less than several
different thresholds (from 80 to 45 mmHg). Duration of hypotension below a
specific threshold was calculated based on linear interpolated blood pressure
samples. Hypotensive episodes were considered to begin and end when the inter-
polated blood pressure values intercepted the target threshold. Hypotensive epi-
sodes that were less than one hour apart were merged to form one continuous
episode.

Univariate and multivariable logistic regressions were performed to find corre-
lations between hypotension and AKI. Age, SAPS-I, admission creatinine, and the
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Fig. 25.1 The population mean (and standard error) of median MAP up to 3 days prior to the
AKI onset for the AKI cohort, or prior to the last creatinine measurement time for the controls.
Mean arterial blood pressure of the AKI cohort diverged from that of the controls during day two
prior to the AKI onset, and both cohorts exhibited prominent diurnal variation
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presence (based on ICD-9) of chronic renal failure (585.9), hypertension (401.9),
diabetes (250.00), coronary atherosclerosis (414.01), congestive heart failure
(428.0), and septic shock (785.52) or sepsis (038) were added as potential con-
founding factors [9].

Our results indicate that the odds of AKI were related to the severity of
hypotension with an odds ratio (OR) of 1.03, 95 % confidence interval (CI) 1.02–
1.04 (p < 0.0001) per 1 mmHg decrease in minimum MAP ≤ 80 mmHg.
Multivariable analysis on hypotension duration involved 3203 patients who had
SAPS-I scores and with at least 45 h of blood pressure samples in the target 48-h
window. Our results indicate that the duration of time that the patient’s MAP was
continuously less than or equal to 70, 65, 60, 55, and 50 mmHg were significant
risk factors in AKI development. Further, as the extent of hypotension worsened,
the incremental risk for AKI from each additional hour of continuous hypotension
increased for each 10 mmHg drop in MAP below 80 mmHg. For each additional
hour MAP was less than 70, 60, 50 mmHg, the odds of AKI increased by 2 % (OR
1.02, 95 % CI 1.00–1.03, p = 0.0034), 5 % (OR 1.05, 95 % CI 1.02–1.08,
p = 0.0028), and 22 % (OR 1.22, 95 % CI 1.04–1.43, p = 0.0122) respectively. As
the degree of hypotension worsened, the increased odds for AKI from each addi-
tional hour of continuous hypotension more than doubled for each 10 mmHg drop
in MAP below 80 mmHg. Our results also suggest that the severity of hypotension
significantly shortened the time to the onset of AKI.

25.2.3 A Case-Crossover Design

In the second study, we adopted a case-crossover cohort design to examine the
effect of transient exposure to hypotension and the risk of AKI. The case-crossover
design was devised to assess the relationship between transient exposures and acute
outcomes in situations where the control series of a case-control study is difficult to
achieve. In the case-crossover design, subjects serve as their own matched controls
defined by prior time periods in the same subject. Given a transient exposure with
stable prevalence over time, the case-crossover design uses the difference in
exposure rates just before an event (case) with those at other time points in the
subject’s history (controls) to estimate an odds ratio of the outcome associated with
exposure. The case-crossover design was first proposed by Maclure et al. to study
the effects of transient changes on the risk of acute events [10]. One advantage of a
case-crossover design is that it avoids control selection bias and eliminates
between-patient confounding factors [10, 11]. In this study design, the AKI defi-
nition is based on hourly urine output (instead of daily creatinine measurements) in
order to determine a more precise timing of the acute (oliguria) onset.

Adult patients with normal kidney function (i.e. urine output remaining at
0.5 ml/kg/h or above) during the first 12 h in the ICU, who subsequently developed
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AKI/oliguria (urine output remains below 0.5 ml/kg/h for at least 6 h) in the ICU
were included in the study. The same patients, prior to developing AKI/oliguria,
were used as controls. The AKI/oliguria onset was defined as the beginning of the
6-h period when urine output remained below 0.5 ml/kg/h.

The minimum MAP from the 3 h period prior to the AKI onset was used as
exposure for the cases. The minimum MAP from a 3-h control period during the
first 12 h in the ICU, when the same patient’s renal function was still normal, was
used as exposure for the controls. Since the blood pressure measurements during
the first 6 h patients were in the ICU can be sparse, we chose the control period to
be the 7th–9th hour from the beginning of the patients’ ICU stays. Blood pressure
measurements were filtered to remove outliers as before.

Case-crossover designs are typically analyzed using conditional logistic
regression, as it accounts for the matched nature of the data. It is analogous to a
matched case-control study, where one compares a ‘case’ person-moment with a
series of ‘control’ person-moments from different subjects, while in the
case-crossover design, the ‘control’ person-moments are from the same subject. We
implemented the latter approach for analyzing case-crossover study data. In addi-
tion, time-varying confounding factors (mechanical ventilator, vasopressors, tem-
perature, heart rate, white blood cell count, SpO2) were included in the
multivariable conditional logistic regression model.

The total cohort included 911 adult ICU stays (29.86 % MICU, 21.73 % SICU,
22.94 % CCU, 25.47 % CSRU) from the MIMIC II database. The median time to
AKI/oliguria onset was 45 h. The population median of the minimum MAP mea-
surements during the control and case periods were 73 mmHg with an inter-quartile
range of [65, 83] mmHg, and 70 [62, 79] mmHg respectively. A paired signed
T-test indicates that the minimum MAP during the case period is statistically sig-
nificantly lower than during the control period (p-value = 0.0001). Our results
indicate that the odds of AKI were related to the severity of hypotension with an
odds ratio (OR) of 1.035, 95 % confidence interval (CI) 1.024–1.045 (p < 0.0001)
per 1 mmHg decrease in minimum MAP in multivariable conditional logistic
regression after adjusting for temperature, heart rate, SpO2, white blood cell count,
and the use of mechanical ventilation and vasopressors. Furthermore, we performed
a similar analysis to understand if the risk of developing AKI increases associated
with the worsened hypotension treating the minimum MAP at the binary variable
using cutoff of 70, 65, 60, 55, and 50 mmHg. The adjusted odds ratios and 95 % CI
for the minimum MAP < 70, MAP < 65, MAP < 60, MAP < 55, and MAP < 50
(vs. when MAP was greater than or equal to the respective thresholds) were 1.854
(1.44–2.38), 1.945 (1.502–2.519), 2.096 (1.532–2.869), 2.002 (1.307–3.065), and
2.107 (1.115–3.982), respectively. These findings are consistent with the results
described in the previous section using a case-control study design.
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25.3 Discussion

In the study of the association of hypotension with AKI, the case-crossover design
is an efficient alternative to the case-control approach. The case-crossover design,
based exclusively on the case series, performs within-subject comparisons of blood
pressure measurements from the case and the control periods to estimate the rate
ratio of the AKI outcome associated with hypotension. This design inherently
removes the biasing effects of unmeasured, time-invariant confounding factors from
the estimated rate ratio.

Many factors, (including chronic kidney disease, hypertension, diabetes) could
potentially contribute to the development of AKI in an ICU setting. In a traditional
case-control design, these time-invariant between-patient confounders (as well as
the time-varying confounders) would have to be included to adjust for the baseline
risk of AKI development. In some cases, these confounding variables can be dif-
ficult to determine from a retrospective ICU database. In a case-crossover design,
each patient’s blood pressure during normal renal function is compared with the
same patient’s blood pressure immediately prior to AKI onset, so that
time-invariant patient characteristics and confounders are eliminated in the analysis.
A case-crossover design may be a more efficient approach in investigating the
transient effect of exposure (e.g. low blood pressure) on the risk of an acute out-
come (e.g. AKI development), when the heterogeneity in the baseline risk may be
difficult to account for in the conventional case-control design.

We acknowledge the following limitations in the current study. First, this was a
retrospective study, and as such, the incidence of hypotension prior to AKI does not
prove a causal mechanism. Second, we did not account for the presence of fluid and
several interventions (e.g. contrast agents, NSAIDs, aminoglycosides, ACEI, etc.)
that may impair renal function in our multivariable analysis. As part of future work,
additional time-varying confounders (such as, usage of Lasix within 6 h, IV fluid,
creatinine, time of AKI onset) could be included in the model.

25.4 Conclusions

We have presented two different approaches, a case-control and a case-crossover
design, to study the effect of transient exposure to hypotension on the risk of AKI
development in ICU patients. Results from multivariable analysis in both studies
indicate that hypotension is a statistically significant risk factor in the development
of AKI in the ICU. This study serves as an example to illustrate the utility of
case-crossover designs to study the association between a risk factor and the sub-
sequent disease development in an EHR-based retrospective clinical analysis.
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in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
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Code Appendix

The code used in this case study is available from the GitHub repository accom-
panying this book: https://github.com/MIT-LCP/critical-data-book. Further infor-
mation on the code is available from this website.
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Chapter 26
Waveform Analysis to Estimate
Respiratory Rate

Peter H. Charlton, Mauricio Villarroel and Francisco Salguiero

Learning Objectives
Use the MIMIC II database to compare the performance of multiple algorithms for
estimation of respiratory rate (RR) from physiological waveforms.

1. Extract electrocardiogram (ECG), photoplethysmogram (PPG) and thoracic
impedance pneumography (IP) waveforms from the MIMIC II database.

2. Identify periods of low quality waveform data.
3. Identify heart beats in the ECG and PPG signals.
4. Estimate RR from the signals.
5. Improve the accuracy of RR estimation using quality assessment and data

fusion.
6. Evaluate the performance of RR algorithms.

26.1 Introduction

Respiratory rate (RR) is an important physiological parameter which provides
valuable diagnostic and prognostic information. It has been found to be predictive of
lower respiratory tract infections [1], indicative of the severity of pneumonia [2], and
associated with mortality in paediatric intensive care unit (ICU) patients [3].
Respiratory rate is measured in breaths per minute (bpm). Current routine practice
for obtaining RR measurements outside of Critical Care involves manually counting
chest movements [4]. This practice is time-consuming, inaccurate [5], and poorly
carried out [6–8]. Therefore, there is an urgent need to develop an accurate, auto-
mated method for measuring RR in ambulatory patients. Furthermore, an automated
method of measuring RR could facilitate: (i) objective patient-led home-monitoring
of asthma; (ii) screening for obstructive sleep apnea; and (iii) screening for periods of
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dysregulated breathing during sleep, occasionally seen in advanced congestive heart
failure.

A potential solution is to estimate RR from a convenient non-invasive signal
which is modulated by respiration and is easily, and preferably routinely, measured.
Two such signals are the electrocardiogram (ECG) and the photoplethysmogram
(PPG). Both signals exhibit baseline wander (BW), amplitude modulation
(AM) and frequency modulation (FM) due to respiration, as shown in Fig. 26.1 (see
[9, 10] for further details). Furthermore, both signals can be acquired continuously
from ambulatory patients using novel wearable sensors. For example, the
SensiumVitals® system (Sensium Healthcare) provides continuous ECG monitoring
using a lightweight patch with a battery life of up to five days. The ViSi Mobile®

(Sotera Wireless) provides continuous ECG and PPG monitoring using a
wrist-worn monitor with additional ECG electrodes. In addition, non-contact
video-based technology is being developed for continuous monitoring of the PPG
without the need for any equipment to be attached to a patient [11].

Many algorithms have been developed for estimating RR from the ECG and
PPG [10, 12], but have not yet been widely adopted into clinical practice. In this
case study we demonstrated the application of exemplary techniques to the ECG
and PPG. The performance of these techniques was assessed on an example dataset.
The case study is accompanied by MATLAB® code, equipping the reader with
tools to develop and test their own RR algorithms for estimation of RR from
physiological waveforms.

26.2 Study Dataset

PhysioNet’s MIMIC II database (Version 3) was chosen for this study since it
contains simultaneous ECG, PPG and thoracic impedance pneumography
(IP) waveforms [13, 14]. IP signals, usually only measured in critical care, can be

No       
mod      

PPG

BW       

AM       

FM       

ECG

Fig. 26.1 Idealised respiratory modulations of the PPG (left hand side) and ECG (right hand
side). During three respiratory cycles, from top: no modulation, baseline wander (BW), amplitude
modulation (AM), and frequency modulation (FM). Adapted from [18, 27, 30]
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used to estimate reference RRs since individual breaths can be identified as the
thoracic impedance increases during inhalation and decreases during exhalation.
MIMICII_data_importer.m was used in conjunction with the freely available
WFDB Toolbox1 to download the data. One hundred Intensive Care Unit (ICU) stay
records, each containing data from a distinct ICU stay, were downloaded.

Records meeting the criteria in Table 26.1 were included in the analysis. The
required waveforms and numerics were extracted from the 51 % of records that met
these criteria. Each data channel was stored in two vectors of values and corre-
sponding timestamps. This ensured that any gaps in the data due to changes in
patient monitoring or data acquisition failures were preserved in the analysis.

Inspection of the dataset revealed a substantial difference in the distributions of
IP RR measurements acquired from neonatal and adult patients, as illustrated in
Fig. 26.2. This is in keeping with previous findings in [15], in which it was reported
that children’s RRs decrease from a median of 43 bpm when younger than

Table 26.1 Criteria for determining whether each of the 100 downloaded MIMIC II database
records were included in the analysis

Criterion Percent of records
meeting criterion

Contain all the required waveforms (ECG, PPG and thoracic
impedance)

76

Contain all the required numerics [heart rate (HR), pulse rate
(PR) and respiratory rate (RR)]

64

Required waveforms and numerics last at least 10 min 51

Impedance RR numeric [bpm]
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Fig. 26.2 Reference respiratory rate (RR) measurements acquired using thoracic impedance from
adults and neonates. The disparity between the distributions of RR measurements acquired from
adults (blue) and neonates (red) prompted a sub-group analysis of these two patient populations

1WFDB Toolbox is available from PhysioNet: http://physionet.org/physiotools/matlab/wfdb-app-
matlab/.
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3 months to a median of 16 bpm when aged 15–18 years. Therefore, we decided to
restrict the analysis to adult patients only.

26.3 Pre-processing

The extracted waveforms contained periods of high and low (reliable and unreli-
able) quality, as shown in Fig. 26.3. This is in keeping with the literature, where it
is well reported that physiologic signals can be expected to contain periods of
artifact in the Critical Care setting [16]. Each 10 s segment of ECG and PPG data
was categorised as either high or low quality using the signal quality indicator
(SQI) reported in [17]. This SQI determines the quality of the signal in two steps.
Firstly, heart beats are detected to quantify the detected heart rate. Any segments
containing physiologically implausible heart rates are deemed to be low quality.
Secondly, template matching is used to quantify the correlation between an aver-
aged beat’s morphology and that of each individual beat. If the average correlation
coefficient across a segment is below an empirical threshold, then the signal quality
is deemed to be low (as shown in Fig. 26.4). Low quality segments were eliminated
from the analysis.

The RR measurements provided by the clinical monitor were not used as a
reference against which to test the accuracy of RR algorithms since they are sus-
ceptible to inaccuracies during periods of signal artifact. Instead, reference RRs
were extracted from the IP signal, with periods in which reference RRs were
unreliable being excluded from the analysis. To do so, the signal was segmented
into non-overlapping 32 s windows. Two independent methods were used to
estimate RR from each window in line with the methodology presented in [18].
Firstly, Fourier analysis was used to compute the power spectral density of the
signal, as described in [19]. A first RR estimate was obtained as the frequency

0 1 2 3 4 5 6 7 8 9 10

High
Quality
PPG

Time [s]
0 1 2 3 4 5 6 7 8 9 10

Low
Quality
PPG

Fig. 26.3 Periods of high and low quality PPG waveform
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corresponding to the maximum power within the range of plausible respiratory
frequencies (4–60 bpm). Secondly, the “count-orig” method presented in [20] was
used to detect individual breaths. A second RR estimate was calculated from the
average duration of individual breaths. Count-orig involves normalising the signal,
identifying pairs of maxima exceeding a threshold value, and identifying reliable
breaths as periods of signal between the pairs of maxima which contain only one
minimum below zero. Finally, if the difference between the two RR estimates was
< 2 bpm, then the reference RR was calculated as the mean of the two estimates.
Otherwise, the window was excluded.

26.4 Methods

A plethora of algorithms have been proposed for estimation of RR from the ECG or
PPG. In this case study we implemented exemplary algorithms (using RRest.m)
which estimate RR by exploiting one of the three fundamental respiratory modu-
lations, modelled on the approach described in [19]. RR algorithms generally
consist of two compulsory components and two optional components. The com-
pulsory components are:

• extraction of a respiratory signal (a time series dominated by respiratory mod-
ulation) from the raw signal, and

• estimation of RR from the respiratory signal.

Time [s]

ECG

(a)

Time [s]

PPG

(b)

Fig. 26.4 Use of a template-matching signal quality index (SQI) to determine whether a segment
of signal is high or low quality. a the ECG beats (grey) all have a similar morphology to the
average beat template (red), and the ECG segment is deemed to be high quality. b the PPG beats
have a highly variable morphology, indicating low signal quality
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Two optional components, quality assessment and fusion, can be used to
improve the accuracy of estimated RRs.

Extraction of a respiratory signal is often performed using a feature-based
technique, which extracts a time series of beat-by-beat feature measurements.
Figure 26.5 shows the steps involved. The first two steps, the elimination of
sub-respiratory (<4 bpm) and very high frequencies (>100 Hz and >35 Hz for the

Respiratory Signal

ECG or PPG 

Respiratory Rate (RR)

Extrac on of Respiratory Signal(s)

1. Elimina on of sub-respiratory 
frequencies

2. Elimina on of very high 
frequencies

3. Beat detec on
4. Iden fica on of fiducial points
5. Extrac on of feature 

measurements
6. Re-sampling at a regular frequency
7. Elimina on of non-respiratory 

frequencies

Respiratory Rate (RR) Es ma on

Fourier Analysis
Or

Detect individual breathing cycles using 
“count-orig”

BW RR AM RR FM RR

Op onal: Quality Assessment and 
Fusion 

1. Do not output RR if the range of 
RRs is greater than 4.

2. Output mean RR

Mean Respiratory Rate (RR)

Fig. 26.5 The steps within a
respiratory rate
(RR) algorithm. Extraction of
respiratory signal(s) and RR
estimation are compulsory.
The third step consisting of
quality assessment and fusion
is optional
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ECG and PPG respectively), are usually not necessary when analysing EHR data
since they are often performed by patient monitors prior to signal output. Beat
detection was performed in the ECG using a QRS detector based upon the algo-
rithm of Pan, Hamilton and Tompkins [21, 22], and in the PPG using the
Incremental-Merge Segmentation (IMS) algorithm [23]. Fiducial points, such as
R-waves and pulse-peaks, and Q-waves and pulse troughs, were identified for each
beat. Three feature measurements were then extracted from these fiducial points on
both the ECG and PPG waveforms as illustrated in Fig. 26.6. The three
beat-by-beat time series of feature measurements are sampled irregularly since there
is one measurement per heart beat. Since frequency domain analysis requires
regularly sampled signals, these signals were resampled at a regular frequency of
5 Hz using linear interpolation. Finally, spurious non-respiratory frequencies
introduced in the extraction process were eliminated using band-pass filtering
within the range of plausible respiratory frequencies (4–60 bpm). Spurious high
frequencies arise due to linear interpolation and spurious low frequencies can be
caused by physiological changes.

Time [s]

ECG 

Time [s]

ECG 

Time [s]

ECG 

Time [s]

PPG 

Time [s]

PPG 

Time [s]

PPG 

BW(a)

AM(c)

FM(e)

BW(b)

AM(d)

FM(f)

Fig. 26.6 Feature measurement from fiducial points of the ECG and PPG signals. a and
b Measurement of baseline wander (BW), the mean of the amplitudes of a beat’s peak and trough;
c and d amplitude modulation (AM), the difference between the amplitudes of each beat’s peak and
trough; e and f frequency modulation (FM), the time interval between consecutive peaks
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RR estimation from the ECG and PPG was performed in both the frequency and
time domain using the Fourier analysis and breathing cycle detection techniques
used to estimate the reference RRs. An additional quality assessment and fusion
step, the “Smart Fusion” method [19], was optionally performed in an attempt to
increase the accuracy of RR estimates. The first step of “Smart Fusion” is to assess
the quality of the RR estimates derived from the three modulations. If the three
estimates are within 4 bpm of each other, then a final RR estimate is generated as
the mean of the estimates. Otherwise, no output is provided.

26.5 Results

Table 26.2 shows the mean absolute error (MAE) for all methods under analysis.
The most accurate algorithm prior to implementing quality assessment and fusion
steps had a MAE of 4.28 bpm. This algorithm extracted BW from the PPG and
estimated RR using breath detection. Algorithms using BW respiratory signals
outperformed those using AM, which in turn outperformed FM algorithms.
Furthermore, those using breath detection to estimate RR outperformed those using
Fourier analysis.

An improvement in accuracy was observed when the additional quality
assessment and fusion step was added to breath detection algorithms. The MAEs
for the ECG and PPG decreased from 4.87 to 3.92 bpm, and from 4.28 to 3.36 bpm
respectively. This was achieved at the expense of the number of windows from
which RRs were estimated. When using this additional step 44 % of ECG windows
and 63 % of PPG windows were discarded by the quality assessment. Interestingly,
no improvement in accuracy was observed when adding these steps to a
Fourier-based algorithm.

It should be noted that a substantial proportion of the data available for analysis
was discarded prior to analysis. A reference RR could only be obtained from 10 %
of windows. In addition, 44 % of ECG windows, and 30 % of PPG windows were

Table 26.2 The performances of the algorithms applied to the ECG and PPG, measured using the
mean absolute error (MAE, measured in breaths per minute, bpm)

Algorithm specification MAE (bpm)

Respiratory signal RR estimation ECG PPG

BW Breath detection 4.87 4.28

AM Breath detection 4.95 5.58

FM Breath detection 8.48 7.95

BW Fourier 7.51 8.18

AM Fourier 8.69 11.14

FM Fourier 13.16 12.11

BW, AM, FM Breath detection + quality assess + fusion 3.92 3.36

BW, AM, FM Fourier + quality assess + fusion 12.66 10.52
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discarded due to low signal quality, likely indicating the presence of movement
artifact or sensor disconnection. Consequently, only 6 % of the ECG data, and 7 %
of the PPG data were included in the analysis.

26.6 Discussion

RR is widely used in a range of clinical settings to aid diagnosis and prognosis.
Despite its clinical importance, it is the only vital sign which is not routinely
measured electronically outside of Critical Care. In this case study techniques have
been presented for the estimation of RR from two easily and routinely measured
physiological signals, the ECG and PPG. There were two important findings.
Firstly, the addition of a signal quality and fusion step to the breath-detection
algorithms increased accuracy. Secondly, time-domain breath-detection algorithms
outperformed the frequency-domain algorithms. This suggests that further research
is warranted into time-domain methods, which are far less reliant on the RR being
quasi-stationary. If a method is found to perform sufficiently well then it could be
used to measure RR during routine physiological assessments to provide early
warning of clinical deteriorations.

The dataset used in this case study is a useful resource for further testing of RR
algorithms. Its strength is that it contains waveform data from thousands of
critically-ill patients, with many datasets lasting hours or days. However, the
generalisability of the results is limited by the consisting solely of critically-ill
patients. This is particularly significant considering that RR algorithms would most
often be used with patients outside of Critical Care. Furthermore, the IP signal gave
a reliable reference RR for only 10 % of the time. This resulted in a low number of
signal windows being included in the analysis, a significant limitation.
Consequently, this case study should be treated as an example of the methodology
which could be used to perform a robust study, rather than as a robust study itself.
In addition, some uncertainty remained in the reference RRs since they are the mean
of two estimates which could differ by up to 2 bpm. When testing algorithms for
extraction of clinical parameters from physiological signals, the more accurate the
reference value, the better. In this study the measured MAEs are likely to be higher
than the true MAEs of the algorithms because of inaccuracies in the reference RR.

A key challenge of waveform analysis is the handling of low quality data. One
approach is to detect and exclude low quality data, as performed using the quality
assessment and fusion step in this study. A simple template-matching SQI was used
here. More complex techniques which fuse the results of multiple SQIs to determine
signal quality may improve the performance of RR algorithms in clinical practice
[24, 25]. An alternative approach is to refine analysis techniques to ensure they
remain accurate even when using low quality data. For instance, in [26] an algo-
rithm is presented for estimation of RR from the ECG during exercise, when the
signal is likely to be of low quality.
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26.7 Conclusions

This case study demonstrates the potential utility of the ECG and PPG for mea-
surement of RR in the clinical setting. The necessary tools required to design and
test RR algorithms are presented, allowing the interested reader to extend this work.
The results suggest two particular areas for further algorithmic development.
Firstly, the use of signal quality and fusion to improve the accuracy of RR algo-
rithms should be explored further. In the literature much focus has been given to the
extraction of respiratory signals and estimation of RR, whereas relatively little
research has been conducted into quality assessment and fusion. Secondly, further
research should be conducted into the use of time-domain techniques to identify
individual breathing cycles. It is notable that in this study the time-domain tech-
nique outperformed the frequency-domain technique, whilst in the literature
reported time-domain techniques are rarely more sophisticated than peak detection.
However, the low data inclusion rate in this study suggests that further investigation
is required to ensure that conclusions are robust.

26.8 Further Work

There are two pressing research questions concerning estimation of RR from
physiological signals. Firstly, it is not clear which RR algorithm is the most
accurate. Until recently validation studies had compared only a few of the many
existing algorithms. Comparison between studies is difficult since studies are
usually performed on different datasets collected from different populations, using
different statistical measures. A recent study evaluated many algorithms on data
acquired from young, healthy subjects. Secondly, it is not clear whether the most
accurate algorithm performs well enough for clinical use.

Further studies are required to answer such questions. We propose that algo-
rithms should be tested firstly in a healthy population, in ideal operating conditions.
This would facilitate assessment of the best possible performance of the algorithms.
If any algorithms perform sufficiently well for clinical use, then they could be tested
in patient populations in clinical settings. Conversely, if no algorithms perform
adequately, then further algorithmic development should be carried out to attempt
to improve the performance. The MIMIC II database provides opportunity to test
algorithms in a wide range of physiological conditions, such as hyper- and
hypotension, and normal and reduced ejection fraction. This may provide insight
into the limitations of the algorithms, ensuring that they are only used when in
conditions in which they can be expected to perform well.
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26.9 Non-contact Vital Sign Estimation

As presented in this chapter, current monitoring systems available to track changes
in the vital signs of patients in the clinic or at home require contact with the subject.
Most patients requiring regular monitoring find the probes difficult to attach and use
properly [28]. The process of recording vital signs, even if it only takes a few
minutes, becomes burdensome as it usually has to be performed on a daily basis.
The low compliance of patients with wearing sensors is also an obstacle to suc-
cessful monitoring.

The ideal technology to estimate vital signs would involve sensors with no direct
contact with the patient, providing several advantages over traditional methods
because no subject participation is required to set the equipment up, it requires no
skin preparation, causes no skin irritation, decreases the risk of infection, and has
the potential to be seamlessly integrated into the patient’s lifestyle.

Several technologies have been proposed for non-contact monitoring of vital
signs from Radar-based systems to non-contact ECG using capacitive coupling
electrodes. During the last decade, with the cost of digital video cameras continuing
to decrease as the technology becomes more ubiquitous, research in non-contact
vital sign monitoring has expanded through the use of off-the-shelf video cameras.
Video cameras can be found in laptops, mobile phones, set-top boxes and television
sets in patients’ living room, opening up new possibilities for the monitoring of
vital signs.

Video-based vital sign monitoring extends the concepts of traditional photo-
plethysmography using the multiple photosites present in an imaging sensor to
record the blood volume changes associated with the cardiac cycle. These physi-
ological changes result in a waveform known as photoplethysmographic imaging
(PPGi), from which vital signals such as heart rate, respiratory rate, oxygen satu-
ration (SpO2) and other can be estimated [11, 29]. Figure 26.7 shows a 15-s sample
of PPGi alongside PPG and IP signals measured using conventional monitoring
equipment. The patient was undergoing haemodialysis treatment at the Churchill
Hospital in Oxford. During this period the patient had a heart rate of 60 beats/min
and a respiratory rate of 15 bpm, both of which can be computed from both the
conventional monitoring equipment and the camera using the methods explained in
this chapter.

Decades of extensive research from the computer vision community have helped
to develop imaging systems that are capable of complex computations (such as face
detection, identity access control or other object tracking), are interactive (such as
motion/gesture and body tracking in games) and can perform complex 3D recon-
struction operations. Therefore, video-based vital sign monitoring has the potential
to expand the role vital sign monitoring beyond that which can be met by traditional
pulse oximetry.
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Code Appendix

The code used in this case study is available from the GitHub repository accom-
panying this book: https://github.com/MIT-LCP/critical-data-book. Further infor-
mation on the code is available from this website. The following key scripts were
used:

Fig. 26.7 A 15-s sample of data from a patient undergoing haemodialysis treatment at the
Churchill Hospital in Oxford. a Reference PPG waveform from a Nonin pulse oximeter,
b extracted photoplethysmographic imaging (PPGi) waveform from a video camera, c reference
impedance pneumography (IP) respiratory signal, d respiratory signal extracted from the PPGi
waveform. During the period the patient had a heart rate of 60 beats/min and a respiratory rate of
15 breaths per minute (bpm)
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• MIMICII_data_importer.m: used to extract data from the MIMIC II
database.

• RRest.m: used to run RR algorithms and assess their performances.
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Chapter 27
Signal Processing: False Alarm Reduction

Qiao Li and Gari D. Clifford

Learning Objectives
Use a data fusion and machine learning approach to suppress false arrhythmia
alarms.

This case study introduces concepts that should improve understanding of the
following:

1. Extract relevant features from clinical waveforms.
2. Assess signal quality of clinical data, and
3. Develop a machine learning model, train and validate it using a clinical

database.

27.1 Introduction

Modern patient monitoring systems in intensive care produce frequent false alarms
which lead to a disruption of care, impacting both the patient and the clinical staff
through noise disturbances, desensitization to warnings and slowing of response
times [1, 2]. This leads to decreased quality of care [3, 4], sleep deprivation [1, 5, 6],
disrupted sleep structure [7, 8], stress for both patients and staff [9–12] and depressed
immune systems [13]. Intensive care unit (ICU) false alarm rates as high as 90 %
have been reported [14], while only 8 % of alarms were determined to be true alarms
with clinical significance [15] and over 94 % of alarms may not be clinically
important [16]. There are two main reasons for the high false alarm rate. One is that
physiological data can be severely corrupted by artifacts (e.g. from movement),
noise (e.g. from electrical interference) and missing data (e.g. from transducer ‘pop’
leading to impedance or pressure changes and a resultant signal saturation).
Figure 27.1 illustrates the bedside monitor ‘waveforms’ (or high resolution data)
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recorded around a false ventricular tachycardia alarm (the vertical line indicates the
moment at which the monitor triggered the alarm). The alarm is caused by significant
noise affecting the electrocardiogram (ECG) leads. However, the regular pulsatile
beats present in the arterial blood pressure (ABP) lead clearly indicate this is a false
alarm (since the poor pump function during this arrhythmia should cause a signif-
icant drop in pulse amplitude and an increase in rate). The other reason for the high
rate of false alarms is that univariate alarm algorithms and simple numeric thresholds
are predominantly used in current clinical bedside monitors. The reason for this is an
historical artifact, in that manufacturers have developed different embedded systems
with bespoke hardware and single mode transducers. Univariate alarm-detection
algorithms therefore consider a single monitored waveform at a time. The alarm is
generally triggered when a variable (e.g. heart rate) derived from the waveform (e.g.
ECG) is above or below a preset (or adjustable) threshold for a given length of time,
regardless of whether the change is caused by a change in physiological state, by an
artifact or by medical interventions, such as moving or positioning the patient,
drawing blood and flushing the arterial line, or disconnecting the patient from the
ventilator for endotracheal suctioning. Moreover, alarm thresholds are often adjusted
in an ad hoc manner, based on how annoying the alarm is perceived to be by the
clinical team in attendance. There is little evidence that alarm thresholds are opti-
mized for any population or individual, particularly in a multivariate sense.

Various noise cancellation algorithms such as median filtering [17] or Kalman
filtering [18] have been used to suppress false alarms. While transient noise can be
removed by median filtering it is brutally non-adaptive. Kalman filtering, on the
other hand, is an optimal state estimation method, which has been used to improve
heart rate (HR) and blood pressure (BP) estimation during noisy periods and

Fig. 27.1 False ventricular tachycardia alarm, ‘called’ at the point where the vertical line is placed
in a 30 s snapshot of two leads of ECG (ECGII an ECGIII) and an arterial blood pressure signal
(ABP). The alarm is triggered by the strong noise manifesting as high amplitude (±2 mV)
oscillations on the ECG at approximately 5 Hz beginning a little over halfway through the
snapshot (and a little under 10 s from the vertical VT marker). Note that the ABP continues as
normal, with no significant change in rhythm or morphology
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arrhythmias [18]. However, alarm detection has changed little in decades, with the
univariate alarm algorithm paradigm persisting. A promising solution to the false
alarm issue comes from multiple variable data fusion, such as HR estimation by
fusing the information from synchronous ECG, ABP and photoplethysmogram
(PPG) from which oxygen saturation is derived [18]. Otero et al. [19] proposed a
multivariable fuzzy temporal profile model which described a set of monitoring
criteria of temporal evolution of the patient’s physiological variables of HR, oxygen
saturation (SpO2) and BP. Aboukhalil et al. [14] and Deshmane [20] used syn-
chronous ABP and PPG signals to suppress false ECG alarms. Zong et al. [21]
reduced false ABP alarms using the relationships between ECG and ABP. Besides
calculated physiological parameters, signal quality indices (SQI), which assess the
waveform’s usefulness or the noise levels of the waveforms, can be extracted from
the raw data and used as weighting factors to allow for varying trust levels in the
derived parameters. Behar et al. [22] and Li and Clifford [23] suppressed false ECG
alarms by assessing the signal quality of ECG, ABP and PPG. Monasterio et al.
[24] used a support vector machine to fuse data from respiratory signals, heart rate
and oxygen saturation derived from the ECG, PPG, and impedance pneumogram,
as well as several SQIs, to reduce false apnoea-related desaturations.

27.2 Study Dataset

A dataset drawn from PhysioNet’s MIMIC II database [25, 26] was used in this
study, containing simultaneous ECG, ABP, and PPG recordings with 4107 multiple
expert-annotated life-threatening arrhythmia alarms [asystole (AS), extreme
bradycardia (EB), extreme tachycardia (ET) and ventricular tachycardia (VT)] on
182 ICU admissions. A total of 2301 alarms were found by selecting the alarms
when the ECG, ABP and PPG were all available. The false alarm rates were 91.2 %
for AS, 26.6 % for EB, 14.4 % for ET, and 44.4 % for VT respectively, and 45.0 %
overall. The ICU admissions were divided into two separate sets for training and
testing, ensuring that the frequency of alarms in each category was roughly equal
through frequency ranking and separating odd and evenly numbered signals.
Table 27.1 details the relative frequency of each alarm category and their associated
true and false alarm rates. The waveform data from 30 s before to 10 s after the
alarm were extracted for each alarm to aid expert verification (since the Association
for the Advancement of Medical Instrumentation (AAMI) guidelines require an
alarm to respond within 10 s of the initiation of any alarm event [27]). A consensus
of three experts was required to label each alarm as true or false. Only data from
10 s before the alarm to the alarm onset were used for automated feature extraction
and model classification.

Since the VT alarm was considered the most difficult type of false alarm to
suppress, with an associated low false alarm reduction rate and high true alarm
suppression rate in literature [14, 20–23, 28], we therefore focus on reducing this
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false alarm for the rest of the chapter. Interested readers are directed to Li and
Clifford [23] for methods to reduce false alarms on the other types of alarms.

27.3 Study Pre-processing

In total 147 features and SQI metrics were extracted from ECG, ABP, PPG, and
SpO2 signals within the 10 s analysis window. These features were generally
chosen based upon previous research by the authors and others [14, 20–24, 28–32].
The typical features included HR (extracted from ECG, ABP, and PPG), blood
pressure (systolic, diastolic, mean), oxygen saturation (SpO2), and the amplitude of
PPG. Each feature had five sub-features calculated over the 10 s window: including
the minimum, maximum, median, variance, and gradient (derived from a robust
least squares fit over the entire window). Besides the typical features, the area
difference of beats (ADB), the area ratio of beats (ARB) in the ECG, ABP and PPG
and thirteen ventricular fibrillation metrics (taken from [29]) were also extracted.
The area of each beat was defined to be the area between the waveform and the
x-axis, from the start of the ECG beat to 0.6 times of mean beat-by-beat interval
(BBi). Note the start of the ECG beat was taken as the position of R peak—
0.2 * BBi. The ADB was calculated by comparing each beat to the median of the
beats in the window, as shown in Fig. 27.2. The ADB used four sub-features; the
mean ADB of five beats with the shortest beat-to-beat intervals, the maximum of
mean ADB of five consecutive beats, the variance and gradient of ADB. The ARB
used five sub-features; the ratio between the mean area of five smallest beats and
five largest beats of the ECG (ARBECG), ABP (ARBABP), and PPG (ARBPPG), the
ratio between ARBECG and ARBABP, and the ratio between ARBECG and ARBPPG.
The description of the thirteen ventricular fibrillation metrics can be found in Li
et al. [29], and included spectral and time domain features shown to allow highly
accurate classification of VF. The ECG SQI metrics included thirteen metrics [30],
based on standard moments, frequency domain statistics and the agreement between
event detectors with different noise sensitivities. The ABP SQI metrics included a
signal abnormality index with its nine sub-metrics [31] and a dynamic time warping

Table 27.1 Distribution of alarms in the dataset and training and test set

Alarm
type

Total Training set Test set

False True Total FA
rate
(%)

False True Total FA
rate
(%)

False True Total FA
rate
(%)

AS 260 25 285 91.2 166 14 180 92.2 94 11 105 89.5

EB 62 171 233 26.6 58 108 166 34.9 4 63 67 6.0

ET 37 220 257 14.4 19 116 135 14.1 18 104 122 14.8

VT 677 849 1526 44.4 306 478 784 39.0 371 371 742 50.0

All 1036 1265 2301 45.0 549 716 1265 43.4 487 549 1036 47.0
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(DTW) based SQI approach with its four sub-metrics [32]. The DTW based SQI
resampled each beat to match a running beat template by derived using the DTW.
The SQI was then given by the correlation coefficient between the template and
each beat. The PPG SQI metrics included the DTW-based SQIs [32] and the first
two Hjorth parameters [20] which estimated the dominant frequency and
half-bandwidth of the spectral distribution of PPG. While these do not necessarily
represent an exhaustive list of features, they do represent the vast majority of
features identified as useful in previous studies.

27.4 Study Methods

A modified random forests (RF) classifier, previously described by Johnson et al.
[33], was used. The RF [34] is an ensemble learning method for classification that
constructs a number of decision trees at training time and outputs the class that is
the mode of the classes of the individual trees. The basic principle is that a group of
“weak learners” can come together to form a “strong learner.” RFs correct for
decision trees’ defects of overfitting and adding bias to their training set. Each tree
selects a subset of observations via two regression splits. These observations are

Fig. 27.2 Example of area difference of beats calculation. a ECG in a 10 s window. b The median
beat of the beats in the window (gray area shows the area between the waveform and the x-axis).
c ADB of a normal beat (the first beat, gray area shows the ADB). d ADB of an abnormal beat (the
last beat)
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then given a contribution equal to a random constant times the observation’s value
for a chosen feature plus a random intercept. The contributions across all trees are
summed to provide the contribution for a single “forest,” where a “forest” refers to a
group of trees plus an intercept term. The predicted likelihood function output
(L) by the forest is the inverse logit of the sum of each tree’s contribution plus the
intercept term (27.1). The intercept term is set to the logit of the mean observed
outcome.

L ¼
XN
i¼1

�tið Þ � log logit�1 sið Þ� �� 1� tið Þ � log 1� logit�1 sið Þ� �� � ð27:1Þ

where ti is the target of the training set, si is the sum of tree’s contribution, i = 1…
N is the number of observations in the training set.

The core of the new RF model we used is the custom Markov chain Monte Carlo
(MCMC) sampler that iteratively optimizes the forest. This sampling process
constructs the Markov chain by a memoryless iteration process which selects
randomly two trees from the current forests and updates their structure. The MCMC
randomly samples the observation space by a large user-defined number of boot-
strap iterations. After standardizing the training data to a standard normal distri-
bution, the forest is initialized to a null model, with no contributions assigned for
any observations.

At each iteration, the algorithm randomly selects two trees in the forest and
randomizes their structure. That is, it randomly re-selects first two features which
the tree uses for splitting, the value at which the tree splits those features, the third
feature used for contribution calculation, and the multiplicative and additive con-
stants applied to the third feature. The total forest contribution is then recalculated
and a Metropolis-Hastings acceptance step is used to determine if the update is
accepted. The predicted likelihood of the previous forest (Li) and the likelihood of
the forest with the two updated trees (Li+1) were calculated. If eðLi�Liþ 1Þ is greater
than a uniformly distributed random real number within unit interval, the update is
accepted. If the update is accepted, the two trees are kept in the forest, otherwise
they are discarded and the forest remains unchanged. After a set fraction of the total
number of iterations to allow the forest to learn the target distribution (generally
20 %), the algorithm begins storing forests at a fixed interval, i.e. once every set
number of iterations. Once the number of user-defined iterations is reached, the
forest is re-initialized as before, and the iterative process restarts. Again, after the set
burn-in period, the forests begin to be saved at a fixed interval. The final result of
this algorithm is a set of forests, each of which will contribute to the final model
classification. The flowchart of the RF algorithm is shown in Fig. 27.3.
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27.5 Study Analysis

The RF model was optimized on the training set and evaluated for out-of-sample
accuracy on the test set. During the training phase, a model of 320 forests with 500
trees in each forest was established. The output of the model provides a probability
between 0 and 1, which is an estimated value equivalent to a false or true alarm
respectively. The receiver operating characteristic (ROC) curve was extracted by
raising the threshold on the probability where we switch from false to true from 0 to
1—i.e. the probability greater than the threshold indicates a true alarm and below
(or equal) indicates a false alarm. The optimal operating point was selected at the
ROC curve when sensitivity equals 1 (no true alarm suppression) with the largest
specificity. However, a sub-optimal operating point was also selected with
acceptable sensitivity to balance specificity, e.g. sensitivity equals 99 %. (The
reason for this is that anecdotally, clinical experts have indicated a 1 % true alarm
suppression rate (or increase in true alarm suppression rate) would be acceptable—
see discussion in study conclusions.) The model was then evaluated on the test set
with the selected operating points.

Fig. 27.3 The flowchart of
the random forests algorithm
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In the algorithm validation phase, the classification performance of the algorithm
was evaluated using 10-fold cross validation. The process sorted the study dataset
into ten folds randomly stratified by ICU admissions rather than by the alarms.
Then, nine folds were used for training the model and the last fold was used for
validation. This process was repeated ten times as one integral procedure, with each
of the folds used exactly once as the validation data. The average performance was
used for evaluation. We note however, that this may be suboptimal and a voting of
all folds may produce a better performance.

27.6 Study Visualizations

The ROC curve on the training set is shown in Fig. 27.4. The optimal operating
point (marked by a circle) shows sensitivity 100.0 % and specificity 24.5 %,
indicating we suppress 24.5 % of the false alarms without true alarm suppression.
The sub-optimal operating point (marked by a star) shows a sensitivity 99.2 % and
specificity 53.3 %, indicating a false alarm reduction of 53.3 % with only a 0.8 %
true alarm suppression rate. When the model was used on the test set by the optimal

Fig. 27.4 ROC curve for the
training set. Circle indicates
optimal operating point (in
terms of clinical acceptability)
and star a sub-optimal
operating point which may in
fact be preferable

Table 27.2 Result of 10-fold cross validation of the classification model with different operating
points

Operating point (by
sensitivity) (%)

Training (on 9 folds) Validation (on 1 held out fold)

Sensitivity
(%)

Specificity
(%)

Sensitivity
(%)

Specificity (%)

99.00 99.06 ± 0.04 56.41 ± 5.60 95.82 ± 5.62 51.68 ± 16.88

99.50 99.56 ± 0.04 49.08 ± 5.37 96.50 ± 5.39 45.19 ± 17.94

99.60 99.66 ± 0.04 43.49 ± 6.45 98.72 ± 2.06 38.14 ± 17.25

99.70 99.75 ± 0.03 39.50 ± 7.39 98.75 ± 2.08 32.07 ± 16.19

99.80 99.87 ± 0.02 34.57 ± 9.02 98.87 ± 2.11 28.16 ± 15.80

100.0 100.0 ± 0.00 27.85 ± 6.17 99.04 ± 2.02 18.10 ± 9.87
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operating point, a sensitivity of 99.7 % and a specificity of 17.0 % were achieved,
with a sensitivity of 99.5 % and a specificity of 44.2 % for the sub-optimal oper-
ating point. The result of 10-fold cross validation with different options of operating
points is shown in Table 27.2.

27.7 Study Conclusions

We show here that a promising approach to suppression of false alarms appears to
be through the use of multivariate algorithms, which fuse synchronous data sources
and estimates of underlying quality to make a decision. False VT alarms are the
most difficult to suppress without causing any true alarm suppression since the ABP
and PPG waveforms may have morphology changes indicating the hemodynamics
changes during VT. We also show that a random forests-based model can be
implemented with high confidence that few true alarms would be suppressed
(although it’s impossible to say ‘never’). A practical operating point can be selected
by changing the threshold of the model in order to balance the sensitivity and
specificity. We note that the best previously reported results on VT alarms were by
Aboukhalil et al. [14] and Sayadi and Shamsollahi [28] who achieved false VT
alarm suppression rates of 33.0 and 66.7 % respectively. However, the TA sup-
pression rates they achieved (9.4 and 3.8 % respectively) are clearly too high to
make their algorithms acceptable for this category of alarm. Compared with our
previous studies using some common machine learning algorithms such as support
vector machine [22] and relevance vector machine [23], the random forests algo-
rithm, which fused the features extracted from synchronous data sources like ECG,
ABP and PPG, provided lower TA suppression rates and higher FA suppression
rates. Moreover, a systematic validation procedure, such as k-fold cross validation,
is necessary to evaluate the algorithm and we note that earlier works did not follow
such a protocol. Without such validation, it is hard to believe that the algorithm will
work well on unseen data because of overfitting. This is extremely important to
note, that even a 0 % true alarm suppression is unlikely to always hold, and so a
small true alarm suppression is likely to be acceptable. In private discussions with
our clinical advisors, a figure of 1 % has often been suggested. In the work pre-
sented here, we show that with just half a percent of true alarms being suppressed,
almost half of the false alarms can be suppressed. This true alarm suppression rate is
likely to be negligible compared to the actual number of noise-induced missed
alarms from the bedside monitor itself. (No monitor is perfect, and false negative
rates of between 0.5 and 5 % have been reported [35].) We also note that the
algorithm proposed here used 10 s of data before the alarm only, which meets the
10 s requirement of AAMI standard [27]. In recent work from the
PhysioNet/Computing in Cardiology Challenge 2015, it was shown that extending
this window slightly can lead to significant improvements in false alarm suppres-
sion [36]. Although the regulatory bodies would need to approve such changes, and
that is often seen as unlikely, we do note that the 10 s rule is somewhat arbitrary
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and such work may indeed influence the changes in regulatory acceptance. We note
several limitations to our study. First, the number of alarms is still relatively low,
and they come from a single database/manufacturer. Second, medical history,
demographics, and other medical data were not available and therefore used to
adjust thresholds. Finally, information concerning repeated alarms was not used to
adjust false alarm suppression dynamically based on earlier alarm frequency during
the same ICU stay. This latter point is particularly tricky, since using earlier alarm
data as prior information can be entirely misleading when false alarm rates are
non-negligible.

27.8 Next Steps/Potential Follow-Up Studies

The issue of false alarms has disturbed the clinical patient monitoring and monitor
manufacturers for many years, but the alarm handling has not seen the same pro-
gress as the rest of medical monitoring technology. One important reason is that in
the current legal and regulatory environment, it may be argued that manufacturers
have external pressures to provide the most sensitive alarm algorithms, such that no
critical event goes undetected [4]. Equally, one could argue that clinicians also have
an imperative to ensure that no critical alarm goes undetected, and are willing to
accept large numbers of false alarms to avoid a single missed event. A large number
of algorithms and methods have emerged in this area [4, 14, 17–24, 28, 37, 38].
However, most of these approaches are still in an experimental stage and there is
still a long way to go before the algorithms are ready for clinical application.

The 2015 PhysioNet/Computing in Cardiology Challenge aimed to encourage
the development of algorithms to reduce the incidence of false alarms in ICU [36].
Bedside monitor data leading up to a total of 1250 life-threatening arrhythmia
alarms recorded from three of the most prevalent intensive care monitor manu-
facturers’ bedside units were used in this challenge. Such challenges are likely to
stimulate renewed interest by the monitoring industry in the false alarm problem.
Moreover, the engagement of the scientific community will draw out other subtle
issues. Perhaps the three key issues remaining to be addressed are: (1) Just how
many alarms should be annotated and by how many experts? (see Zhu et al. [39] for
a detailed discussion of this point); (2) How should we deal with repeated alarms,
passing information forward from one alarm to the next?; and (3) What additional
data should be supplied to the bedside monitor as prior information on the alarm?
This could include a history of tachycardia, hypertension, drug dosing, interven-
tions and other related information including acuity scores. Finally, we note that life
threatening alarms are far less frequent than other less critical alarms, and by far the
largest contributor to the alarm pollution in critical care comes from these more
pedestrian alarms. A systematic approach to these less urgent alarms is also needed,
borrowing from the framework presented here. More promisingly, the tolerance of
true alarm suppression is likely to be much higher for less important alarms, and so
we expect to see very large false alarm suppression rates. This is particularly
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important, since the techniques described here are general and could apply to most
non-critical false alarms, which constitute the majority of such events in the ICU.
Although the competition does not directly address these four points (and in fact the
data needed to do so remains to become available in large numbers), the compe-
tition will provide a stimulus for such discussions and the tools (data and code) will
help continue the evolution of the field.
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Chapter 28
Improving Patient Cohort Identification
Using Natural Language Processing

Raymond Francis Sarmiento and Franck Dernoncourt

Learning Objectives
To compare and evaluate the performance of the structured data extraction method
and the natural language processing (NLP) method when identifying patient cohorts
using the Medical Information Mart for Intensive Care (MIMIC-III) database.

1. To identify a specific patient cohort from the MIMIC-III database by searching
the structured data tables using ICD-9 diagnosis and procedure codes.

2. To identify a specific patient cohort from the MIMIC-III database by searching
the unstructured, free text data contained in the clinical notes using a clinical
NLP tool that leverages negation detection and the Unified Medical Language
System (UMLS) to find synonymous medical terms.

3. To evaluate the performance of the structured data extraction method and the
NLP method when used for patient cohort identification.

28.1 Introduction

An active area of research in the biomedical informatics community involves
developing techniques to identify patient cohorts for clinical trials and research
studies that involve the secondary use of data from electronic health records
(EHR) systems. The widening scale of EHR databases, that contain both structured
and unstructured information, has been beneficial to clinical researchers in this
regard. It has helped investigators identify individuals who may be eligible for
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clinical trials as well as conduct retrospective studies to potentially validate the
results of prospective clinical studies at a fraction of the cost and time [1]. It has
also helped clinicians to identify patients at a higher risk of developing chronic
disease, especially those who could benefit from early treatment [2].

Several studies have investigated the accuracy of structured administrative data
such as the World Health Organization’s (WHO) International Classification of
Diseases, Ninth Revision (ICD-9) billing codes when identifying patient cohorts
[3–11]. Extracting structured information using ICD-9 codes has been shown to
have good recall, precision, and specificity [3, 4] when identifying distinct patient
populations. However, for large clinical databases, information extraction can be
time-consuming, costly, and impractical when conducted across several data
sources [12] and applied to large cohorts [13].

Using structured queries to extract information from an EHR database allows
one to retrieve data easily and in a more time-efficient manner. Structured EHR data
is generally useful, but may also contain incomplete and/or inaccurate information
especially when each data element is viewed in isolation. For example [14], to
justify ordering a particular laboratory or radiology test, clinicians often assign a
patient with a diagnosis code for a condition that the patient is suspected to have.
But even when the test results point to the patient not having the suspected con-
dition, the diagnosis code often remains in the patient’s medical record. When the
diagnosis code is then viewed without context (i.e., without the benefit of under-
standing the nuances of the case as provided in the patient’s clinical narrative), this
becomes problematic because it prohibits the ability of investigators to accurately
identify patient cohorts and to utilize the full statistical potential of the available
populations. Compared to narratives from clinical notes, relying solely on struc-
tured data such as diagnostic codes can be unreliable because they may not be able
to provide information on the overall clinical context. However, automated
examination of a large volume of clinical notes requires the use of natural language
processing (NLP). The domain of study for the automated analysis of unstructured
text data is referred to as NLP, and it has already been used with some success in
the domain of medicine. In this chapter, we will be focusing on how NLP can be
used to extract information from unstructured data for cohort identification.

NLP is a field of computer science and linguistics that aims to understand human
(natural) languages and facilitate more effective interactions between humans and
machines [13, 15]. In the clinical domain, NLP has been utilized to extract relevant
information such as laboratory results, medications, and diagnoses from
de-identified medical patient record narratives in order to identify patient cohorts
that fit eligibility criteria for clinical research studies [16]. When compared to
human chart review of medical records, NLP yields faster results [17–20]. NLP
techniques have also been used to identify possible lung cancer patients based on
their radiology reports [21] and extract disease characteristics for prostate cancer
patients [22].
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We considered chronic conditions where both a disease diagnosis and an
intervention diagnosis were likely to be found together in an attempt to better
highlight the differences between structured and unstructured retrieval techniques,
especially given the limited number of studies that have looked at interventions or
treatment procedures, rather than illness or disease, as outcomes [14]. The diabetic
population was of particular interest for this NLP task because the numerous car-
diovascular, ophthalmological, and renal complications associated with diabetes
mellitus eventually require treatment interventions or procedures, such as
hemodialysis in this case. Moreover, clinical notes frequently contain medical
abbreviations and acronyms, and the use of NLP techniques can help in capturing
and viewing these information correctly in medical records. Therefore, in this case
study, we attempted to determine whether the use of NLP on the unstructured
clinical notes of this population would help improve structured data extraction. We
identified a cohort of critically ill diabetic patients suffering from end-stage renal
failure who underwent hemodialysis using the Medical Information Mart for
Intensive Care (MIMIC-III) database [23].

28.2 Methods

28.2.1 Study Dataset and Pre-processing

All data from this study were extracted from the publicly available MIMIC-III
database. MIMIC-III contains de-identified [24] data, per Health Insurance
Portability and Accountability Act (HIPAA) privacy rules [25], on over 58,000
hospital admissions in the intensive care units (ICU) at Beth Israel Deaconess
Medical Center from June 2001 to October 2012 [26]. Aside from being publicly
accessible, we chose MIMIC-III because it contains detailed EHR data on critically
ill patients who are likely to have multiple chronic conditions, including those with
complications from chronic diseases that would require life-saving treatment
interventions.

We excluded all patients in the database who were under the age of 18; diag-
nosed with diabetes insipidus only and not diabetes mellitus; underwent peritoneal
dialysis only and not hemodialysis; or those diagnosed with transient conditions
such as gestational diabetes or steroid-induced diabetes without any medical history
of diabetes mellitus. We also excluded patients who had received hemodialysis
prior to their hospital admission but did not receive it during admission. From the
remaining subjects, we included those who were diagnosed with diabetes mellitus
and those who had undergone hemodialysis during their ICU admission. We
extracted data from two primary sources: the structured MIMIC-III tables (dis-
charge diagnoses and procedures) and unstructured clinical notes.
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28.2.2 Structured Data Extraction from MIMIC-III Tables

Using the ICD-9 diagnosis codes from the discharge diagnoses table and ICD-9
procedure codes from the procedures table, we searched a publicly available ICD-9
[27] database to find illness diagnosis and procedure codes related to diabetes and
hemodialysis as shown in Table 28.1. We used structured query language (SQL) to
find patients in each of the structured data tables based on specific ICD-9 codes.

Table 28.1 ICD-9 codes and descriptions indicating a patient was diagnosed with diabetes
mellitus and who potentially underwent hemodialysis from structured data tables in MIMIC-III

Structured data
table

ICD-9 code and description

Diabetes mellitus

Discharge
diagnosis codes

249 secondary diabetes mellitus (includes the following codes: 249,
249.0, 249.00, 249.01, 249.1, 249.10, 249.11, 249.2, 249.20, 249.21,
249.3, 249.30, 249.31, 249.4, 249.40, 249.41, 249.5, 249.50, 249.51,
249.6, 249.60, 249.61, 249.7, 249.70, 249.71, 249.8, 249.80, 249.81,
249.9, 249.90, 249.91)

250 diabetes mellitus
(includes the following codes: 250, 250.0, 250.00, 250.01, 250.02,
250.03, 250.1, 250.10, 250.11, 250.12, 250.13, 250.2, 250.20, 250.21,
250.22, 250.23, 250.3, 250.30, 250.31, 250.32, 250.33, 250.4, 250.40,
250.41, 250.42, 250.43, 250.5, 250.50, 250.51, 250.52, 250.53, 250.6,
250.60, 250.61, 250.62, 250.63, 250.7, 250.70, 250.71, 250.72, 250.73,
250.8, 250.80, 250.81, 250.82, 250.83, 250.9, 250.90, 250.91, 250.92,
250.93)

Hemodialysis

Discharge
diagnosis codes

585.6 end stage renal disease (requiring chronic dialysis)

996.1 mechanical complication of other vascular device, implant, and
graft

996.73 other complications due to renal dialysis device, implant, and
graft

E879.1 kidney dialysis as the cause of abnormal reaction of patient, or
of later complication, without mention of misadventure at time of
procedure

V45.1 postsurgical renal dialysis status

V56.0 encounter for extracorporeal dialysis

V56.1 fitting and adjustment of extracorporeal dialysis catheter

Procedure codes 38.95 venous catheterization for renal dialysis

39.27 arteriovenostomy for renal dialysis

39.42 revision of arteriovenous shunt for renal dialysis

39.43 removal of arteriovenous shunt for renal dialysis

39.95 hemodialysis
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28.2.3 Unstructured Data Extraction from Clinical Notes

The unstructured clinical notes include discharge summaries (n = 52,746), nursing
progress notes (n = 812,128), physician notes (n = 430,629), electrocardiogram
(ECG) reports (n = 209,058), echocardiogram reports (n = 45,794), and radiology
reports (n = 896,478). We excluded clinical notes that were related to any imaging
results (ECG_Report, Echo_Report, and Radiology_Report). We extracted notes
from MIMIC-III with the following data elements: patient identification number
(SUBJECT_ID), hospital admission identification number (HADM_IDs), intensive
care unit stay identification number (ICUSTAY_ID), note type, note date/time, and
note text.

We used an SQL query to extract pertinent information from all patients’ notes
that will be helpful in identifying a patient as someone belonging to the cohort, then
wrote a Python script to filter the notes by looking for keywords and implementing
heuristics in order to refine our search results. As part of our search strategy, we
removed the family history sections when searching the clinical notes and ensured
that the search for clinical acronyms did not retrieve those that were part of another
word. For example, our filters did not retrieve those where “DM” appeared as part of
another words such as in ‘admission’ or ‘admit’. Finally, we used cTAKES [28, 29]
version 3.2 with access to Unified Medical Language System (UMLS) [30] concepts
to use the negation detection annotator when searching the note text. The negation
detection feature in cTAKES works by trying to detect which entities in the text are
negated. Examples of negation words that may be found in the clinical notes include
‘not’, ‘no’, ‘never’, ‘hold’, ‘refuse’, ‘declined’. For example, in this case study, if
“DM” or “HD” is consistently negated when searching the clinical notes, then the
patient should not be considered part of the cohort.

The Metathesaurus [31] in UMLS contains health and biomedical vocabularies,
ontologies, and standard terminologies, including ICD. Each term is assigned to one
or more concepts in UMLS. Different terms from different vocabularies or
ontologies that have similar meanings and assigned with the same concept unique
identifier (CUI) are considered UMLS synonyms [32]. In order to identify diabetes
mellitus patients who underwent hemodialysis during their ICU stay, we scanned
the clinical notes containing the terms “diabetes mellitus” and “hemodialysis”. We
used the UMLS Metathesaurus to obtain synonyms for these terms because using
only these two terms will restrict our search results.

cTAKES is an open-source natural language processing system that extracts
information from clinical free-text stored in electronic medical records. It accepts
either plain text or clinical document architecture (CDA)-compliant extensible
markup language (XML) documents and consists of several annotators such as
attributes extractor (assertion annotator), clinical document pipeline, chunker,
constituency parser, context dependent tokenizer, dependency parser and semantic
role labeler, negation detection, document preprocessor, relation extractor, and
dictionary lookup, among others [33]. When performing named entity recognition
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or concept identification, each named entity is mapped to a specific terminology
concept through the cTAKES dictionary lookup component [28], which uses the
UMLS as a dictionary.

We refined our query parameters iteratively and searched the clinical notes
containing our final query parameters based on UMLS synonyms to diabetes and
hemodialysis. These were as follows: (A) include documents that contained any of
the following terms: diabetes, diabetes mellitus, DM; (B) include documents that
contained any of the following terms: hemodialysis, haemodialysis, kidney dialysis,
renal dialysis, extracorporeal dialysis, on HD, HD today, tunneled HD, continue
HD, cont HD; (C) finalize the set of documents to be run in cTAKES by only
including documents that contained at least one of the terms from group A and at
least one of the terms from group B; and (D) exclude documents by using the
negation detection annotator in cTAKES to detect negations such as avoid, refuse,
never, declined, etc. that appear near any of the terms listed in groups A and B.

28.2.4 Analysis

We manually reviewed all the notes for all patients identified by the structured data
extraction method and/or the clinical NLP method as those potentially to have a
diagnosis of diabetes mellitus and who had undergone hemodialysis during their
ICU stay in order to create a validation database that contains the positively
identified patients in the population of MIMIC-III patients. We used this validation
database in evaluating the precision and recall of both the structured data extraction
method and the clinical NLP method. We compared the results from both methods
to the validation database in order to determine the true positives, false positives,
recall, and precision. We defined these parameters using the following equation:
recall = TP/(TP + FN), where TP = true positives and FN = false negatives; and
precision = TP/(TP + FP), where FP = false positives. In this case study, we
defined recall as the proportion of diabetic patients who have undergone
hemodialysis in the validation database who were identified as such. We defined
precision as the proportion of patients identified as diabetic and having undergone
hemodialysis whose diagnoses were both confirmed by the validation database.

28.3 Results

In the structured data extraction method using SQL as illustrated in Fig. 28.1, we
found 10,494 patients diagnosed with diabetes mellitus using ICD-9 codes; 1216
patients who underwent hemodialysis using ICD-9 diagnosis and procedure codes;
and 1691 patients who underwent hemodialysis when searching the structured data
tables using the string ‘%hemodial%’. Figure 28.2 shows the number of patients
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identified using the clinical NLP method: 13,816 patients diagnosed with diabetes
mellitus and 3735 patients identified as having undergone hemodialysis during their
ICU stay.

There were 1879 patients in the validation database consisting of 1847 (98.3 %)
confirmed diabetic patients who had undergone hemodialysis. We identified 1032
(54.9 % of 1879) patients when using SQL only and 1679 (89.4 % of 1879) when
using cTAKES. Of these, 832 (44.3 % of 1879) were found by both approaches as
illustrated in Fig. 28.3.

Table 28.2 shows the results of the two methods used to identify patient cohorts
compared to the validation database. The clinical NLP method had better precision
compared to the structured data extraction method. The clinical NLP method also

Fig. 28.1 Patients identified by structured data extraction, clockwise from left diagnosed with
diabetes mellitus using ICD-9 diagnosis codes, underwent hemodialysis using ICD-9 discharge
diagnosis and procedure codes, and underwent hemodialysis using the string ‘%hemodial%’

Fig. 28.2 Patients identified
by clinical NLP method, from
left diagnosed with diabetes,
diagnosed with diabetes and
who underwent hemodialysis,
and who underwent
hemodialysis
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identified fewer FP (0.8 % of 1679) compared to the structured data extraction
method (1.8 % of 1032).

In this case study, the recall value could not be computed. But because recall is
calculated by dividing TP by the sum of TP and FN, and the denominator for both
methods is the same, we can use the TP count as a proxy to determine which
method showed a higher recall. Based on the results, we found that more TPs were
identified using NLP compared to the structured data approach. Hence, the clinical
NLP method yielded a higher recall than the structured data extraction method.

We also analyzed the clinical notes for the 19 patients identified as FP using the
structured data extraction method. We found that 14 patients were incorrectly
identified as diabetic patients, 3 patients were incorrectly identified as having
undergone hemodialysis, and 2 patients were not diabetic nor did they undergo
hemodialysis during their ICU stay. In the 13 patients identified as FP when using
the clinical NLP method, we also analyzed the clinical notes and found that 5 did
not undergo hemodialysis during their ICU stay, 2 had initially undergone
hemodialysis but was stopped due to complications, and 6 did not have diabetes (3
did not have any history of diabetes, 1 had initially been presumed to have diabetes
according to the patient’s family but was not the case, 1 had gestational diabetes
without prior history of diabetes mellitus, and 1 was given insulin several times
during the patient’s ICU stay but was not previously diagnosed with diabetes nor
was a diagnosis of new-onset diabetes indicated in any of the notes).

Fig. 28.3 Patients identified by structured data extraction and clinical NLP methods: I—diabetes
patients found using SQL; II—patients who underwent hemodialysis found using SQL; III—
diabetic patients found using cTAKES and; IV—patients who underwent hemodialysis found
using cTAKES

Table 28.2 Precision of identifying patient cohorts using structured data extraction and clinical
NLP compared to the validation database

Validation database
(n = 1879)

Structured data extraction method,
positive (n = 1032)

Clinical NLP method,
positive (n = 1679)

Positive TP = 1013 TP = 1666

Negative FP = 19 FP = 13

Precision 98.2 % 99.2 %
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28.4 Discussion

Both the structured data extraction method and the clinical NLP method achieved
high precision in identifying diabetic patients who underwent hemodialysis during
their ICU stay. However, the clinical NLP method exhibited better precision and
higher recall in a more time-saving and efficient way compared to the structured
data extraction technique.

We identified several variables that may have resulted in a lower precision when
using SQL only in identifying patient cohorts such as the kind of illness and the
kind of intervention, the presence of other conditions similar to diabetes (i.e.,
diabetes insipidus, gestational diabetes), and the presence of other interventions
similar to hemodialysis (i.e., peritoneal dialysis, continuous renal replacement
therapy). The temporal feature of the intervention also added to the complexity of
the cohort identification process.

Extracting and using the UMLS synonyms for “diabetes mellitus” and “he-
modialysis” in performing NLP on the clinical notes helped increase the number of
patients included in the final cohort. Knowing that clinicians often use acronyms,
such as “DM” to refer to diabetes mellitus and “HD” for hemodialysis, and
abbreviations, such as “cont” for the word ‘continue’ when taking down notes
helped us refine our final query parameters.

There are several limitations to this case study. Specificity could not be calcu-
lated because in order to determine the TN and FN, the entire MIMIC-III database
would need to be manually validated. Though it can be argued that the ones in the
validation database that were missed by either method could be considered as FN,
this may not be the true FN count in MIMIC-III because those that could be found
outside of the validation database have not been included. Moreover, since the
validation database used was not independent of the two methods, the TP and FP
counts as well as the precision and recall may have been overestimated.

Another limitation is the lack of a gold standard database for the specific patient
cohort we investigated. Without it, we were not able to fully evaluate the cohort
identification methods we implemented. The creation of a gold standard database,
one that is validated by clinicians and includes patients in the MIMIC-III database
that have been correctly identified as TN and FN, for this particular patient cohort
will help to better evaluate the performance of the methods used in this case study.
Having a gold standard database will also help calculate the specificity for both
methods.

Another limitation is that we focused on discharge diagnosis and procedure
events especially in the structured data extraction method. Other data sources in
MIMIC-III such as laboratory results and medications may help support the find-
ings or even increase the number of patients identified when using SQL.

Furthermore, although we used a large database, our data originated from a
single data source. Comparing our results found using MIMIC-III to other publicly
available databases containing EHR data may help to assess the generalizability of
our results.
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28.5 Conclusions

NLP is an efficient method for identifying patient cohorts in large clinical databases
and produces better results when compared to structured data extraction.
Combining the use of UMLS synonyms and a negation detection annotator in a
clinical NLP tool can help clinical researchers to better perform cohort identification
tasks using data from multiple sources within a large clinical database.

Future Work
Investigating how clinical researchers could take advantage of NLP when mining
clinical notes would be beneficial for the scientific research community. In this case
study, we found that using NLP yields better results for patient cohort identification
tasks compared to structured data extraction.

Using NLP may potentially be useful for other time-consuming clinical research
tasks involving EHR data collected in the outpatient departments, inpatient wards,
emergency departments, laboratories, and various sources of medical data. The
automatic detection of abnormal findings mentioned in the results of diagnostic
tests such as X-rays or electrocardiograms could be systematically used to enhance
the quality of large clinical databases. Time-series analyses could also be improved
if NLP is used to extract more information from the free-text clinical notes.

Notes

1. cTAKES is available from the cTAKES Apache website: http://ctakes.apache.
org/downloads.cgi. A description of the components of cTAKES 3.2 can be
found on the cTAKES wiki page: https://cwiki.apache.org/confluence/display/
CTAKES/cTAKES+3.2+Component+Use+Guide [28].

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

Code Appendix

All the SQL queries to count the number of patients per cohorts as well as the
cTAKES XML configuration file used to analyze the notes are available from the
GitHub repository accompanying this book: https://github.com/MIT-LCP/critical-
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data-book. Further information on the code is available from this website. The
following key scripts were used:

• cohort_diabetic_hemodialysis_icd9_based_count.sql: Total
number of diabetic patients who underwent hemodialysis based on diagnosis
codes.

• cohort_diabetic_hemodialysis_notes_based_count.sql: List
of diabetic patients who underwent hemodialysis based on unstructured clinical
notes.

• cohort_diabetic_hemodialysis_proc_and_notes_based_-
count.sql: Total number of diabetic patients who underwent hemodialysis
based on unstructured clinical notes and procedure codes.

• cohort_diabetic_hemodialysis_proc_based_count.sql: Total
number of diabetic patients who underwent hemodialysis based on procedure
codes.

• cohort_diabetic_icd9_based_count_a.sql: List of diabetic
patients based on the ICD-9 codes.

• cohort_hemodialysis_icd9_based_count_b.sql: List of patients
who underwent hemodialysis based on the ICD-9 codes.

• cohort_hemodialysis_proc_based_count_c.sql: Lists number of
patients who underwent hemodialysis based on the procedure label.

• CPE_physician_notes.xml: cTAKES XML configuration file to process
patients’ notes. Some paths need to be adapted to the developer’s configuration.
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Chapter 29
Hyperparameter Selection

Franck Dernoncourt, Shamim Nemati, Elias Baedorf Kassis
and Mohammad Mahdi Ghassemi

Learning Objectives

High Level:
Learn how to choose optimal hyperparameters in a machine learning pipeline for

medical prediction.

Low Level:

1. Learn the intuition behind Bayesian optimization.
2. Understand the genetic algorithm and the multistart scatter search algorithm.
3. Learn the multiscale entropy feature.

29.1 Introduction

Using algorithms and features to analyze medical data to predict a condition or an
outcome commonly involves choosing hyperparameters. A hyperparameter can be
loosely defined as a parameter that is not tuned during the learning phase that
optimizes the main objective function on the training set. While a simple grid search
would yield the optimal hyperparameters by trying all possible combinations of
hyper parameters, it does not scale as the number of hyperparameters and the data
set size increase. As a result, investigators typically choose hyperparameters arbi-
trarily, after a series of manual trials, which can sometimes cast doubts on the
results as investigators might have been tempted to tune the parameters specifically
for the test set. In this chapter, we present three mathematically grounded tech-
niques to automatically optimize hyperparameters: Bayesian optimization, genetic
algorithms, and multistart scatter search.

To demonstrate the use of these hyperparameter selection methods, we focus on
the prediction of hospital mortality for patients in the ICU with severe sepsis. The

The original version of this chapter was revised: A chapter author’s name Shamim Nemati was
added. The erratum to this chapter is available at 10.1007/978-3-319-43742-2_30
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outcome we consider is binary: either the patient died in hospital, or survived. Sepsis
patients are at high risk for mortality (roughly 30 % [1]), and the ability to predict
outcomes is of great clinical interest. The APACHE score [2] is often used for
mortality prediction, but has significant limitations in terms of clinical use as it often
fails to accurately predict individual patient outcomes, and does not take into account
dynamic physiological measurements. To remediate this issue, we investigate the use
of multiscale entropy (MSE) [3, 4] applied to heart rate (HR) signals as an outcome
predictor: MSE measures the complexity of finite length time series. To compute
MSE, one needs to specify a set of parameters, namely the maximum scale factor, the
difference between consecutive scale factors, the length of sequences to be compared
and a similarity threshold. We show that using hyperparameter selection methods,
the MSE can predict the patient outcome more accurately than the APACHE score.

29.2 Study Dataset

We used the Medical Information Mart for Intensive Care II (MIMIC II) database,
which is available online for free and was introduced by [5, 6]. MIMIC II is divided
into two different data sets:

• the Clinical Database, which is a relational database that contains structured
information such as patient demographics, hospital admissions and discharge
dates, room tracking, death dates, medications, lab tests, and notes by the
medical personnel.

• the Waveform Database, which is a set of flat files containing up to 22 different
kinds of signals for each patient, including the ECG signals.

We selected patients who suffered from severe sepsis, defined as patients with an
identified infection with evidence of organ dysfunction and hypotension requiring
vasopressors and/or fluid resuscitation [7]. We further refined the patient cohort by
choosing patients who had complete ECG waveforms for their first 24 h in the ICU.
For each patient, we extracted the binary outcome (i.e. whether they died in hos-
pital) from the clinical database. The HR signals were extracted from the ECG
signals, and patients with low quality HR were removed.

29.3 Study Methods

We compared the predictive power of the following three sets of features to predict
patient outcomes: basic descriptive statistics on the time series (mean and standard
deviation), APACHE IV score and MSE. Since these features are computed on time
series, for each feature set we obtained a vector of time series features. Once these
features were computed, we clustered patients based on these vectors using spectral
clustering. The number of clusters was determined using the silhouette values [8].
This allowed us to address the high heterogeneity of the data resulting from the fact
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that MIMIC patients came from different care units. Lastly, for each cluster, we
trained a support vector machine (SVM) classifier. To classify a new patient, we
computed the distance from each cluster center, and computed the output of each
SVM classifier: to make the final decision on the predicted outcome, we computed a
weighted average of the output of each SVM classifier, where the weights were the
distance from each cluster center. This method of combining clustering with SVM
is called transductive SVM. We used the area under the receiver operating char-
acteristic (ROC) curve (AUROC, often named more simply and ambiguously
AUC) as the performance metric for the classification. Figure 29.1 illustrates the
functioning of transductive SVMs.

MSE may be understood as the set of sample entropy values for a signal which is
averaged over various increasing segment lengths. The MSE, y, was computed as
follows:

ysj ¼
1
s

Xjs

i¼ðj�1Þsþ 1

xi

where:

• xi is the signal value at sample I,
• j is the index of the window to be computed,
• s is the scale factor,
• Y is the length of sequences to be compared,
• Z is the similarity threshold.

Additionally, we have the following parameters:

• the maximum scale factor,
• the scale increase, which is the difference between consecutive scale factors,
• the similarity criterion or threshold, denoted r.

Fig. 29.1 Transductive
SVM: clustering is performed
first, then a convex
combination of the SVM
outputs is used to obtain the
final prediction probability
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Figure 29.2 shows how y is computed for different scales.
To select the best hyperparameters for the MSE, we compared three hyperpa-

rameter optimization techniques: Bayesian optimization, genetic algorithms, and
multistart scatter search.

Bayesian optimization builds the distribution P(ytest|ytrain, xtrain, xtest), where xtrain
is the set of MSE parameters that were used to obtain the ytrain AUROCs, xtest is a
new set of MSE parameters, and ytest is the AUROC that would be obtained using
the new MSE parameters. To put it otherwise, based on the previous observations
on MSE parameters and achieved AUROCs, the Bayesian optimization predicts
what AUROC a new set of MSE parameters will yield. Each time a new AUROC is
computed, the set of MSE parameters as well as the AUROC is added to xtest and
ytest. At each iteration, we can either explore, i.e. compute ytest for which the
distribution P has a high variance, or exploit, i.e. compute ytest for which the
distribution P has a low variance and high expectation. An implementation can be
found in [9].

A genetic algorithm is an optimization algorithm based on the principle of
Darwinian natural selection. A population is comprised of sets of MSE parameters.
Each set of MSE parameters is evaluated based on the AUROC it achieved. The
sets of MSE parameters with low AUROCs are eliminated. The surviving sets of
MSE parameters are mutated, i.e. each parameter is slightly modified, to create new
sets of MSE parameters, which form a new population. By iterating through this
process, the new sets of MSE parameters yield increasingly high AUROCs. We set
the population size of 100, and ran the optimization for 30 min. The first population
was drawn randomly.

The multistart scatter search is similar to the genetic algorithm, the only dif-
ference residing in the use of a deterministic process to identify the individuals of
the next population such as gradient descent.

Figure 29.3 summarizes the machine learning pipeline presented in this section.

y1 y2 y3 yj

y1 y2 yj

...

...

...

...

x1 x2 x3 x4 x5 x6 xi xi

x1 x2 x3 x4 x5 x6 xi xixi-1

Scale 2

Scale 3

yj = (xi + xi+1)/2

yj = (xi-1 + xi + xi+1)/3

Fig. 29.2 Illustration of various scales from Costa et al. Only scales 2 and 3 are displayed. xi is
the signal value at sample i
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The data set was split into testing (20 %), validation (20 %) and training (60 %)
sets. In order to ensure robustness of the result, we used 10-fold cross-validation,
and the average AUROC over the 10 folds. To make the comparison fair, each
hyperparameter optimization technique was run the same amount of time, viz.
30 min.

29.4 Study Analysis

Table 29.1 contains the results for all three sets of features we considered. For the
MSE features, Table 29.1 presents the results achieved by keeping the default
hyperparameters, or by optimizing them using one of the three hyperparameter
optimization techniques we presented in the previous section.

The first set of features, namely the basic descriptive statistics (mean and stan-
dard deviation), yields an AUROC of 0.54 on the testing set, which is very low
since a random classifier yields an AUROC of 0.50. The second set of features,
APACHE IV, achieves a much higher AUROC, 0.68, which is not surprising as the
APACHE IV was designed to be a hospital mortality assessment for critically ill
patients. The third set of features based on MSE performs surprisingly well with the
default values (AUROC of 0.66), and even better when optimized with any of the
three hyperparameter optimization techniques. The Bayesian optimization yields
the highest AUROC, 0.72.

Fig. 29.3 The entire machine learning pipeline. The MSE features are computed from the input
x using the parameters r, m, max scale and scale increase. 10 folds are created
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29.5 Study Visualizations

Figure 29.4 provides an insight into the MSE parameters selected by the three
hyperparameter selection techniques over the 10-fold cross-validation. Each point
represents a parameter value optimized by a given hyperparameter selection tech-
nique for a unique data fold. For all 4 MSE parameters, we observe a great variance:
this indicates that there is no clear global optimum, but instead there exist many
MSE parameter sets that yield a high AUROC.

Interestingly, in this experiment the Bayesian optimization is more robust to the
parameter variance, as shown by the confidence intervals around the AUROCs:
most AUROCs reached by Bayesian optimization are high, unlike genetic algo-
rithms and multistart scatter search. The two latter techniques are susceptible to
premature convergence, while Bayesian optimization has a better
exploration-exploitation tradeoff.

We also notice that the max scale and the r values reached by Bayesian opti-
mization have a lower variance than genetic algorithms and multistart scatter
search. One might hypothesize that heterogeneity across patients might be reflected
more in the scale increase and m MSE parameters than in the max scale and
r parameters.

Table 29.1 Comparison of APACHE feature, time-series mean and standard deviation features,
and MSE feature with default parameters or optimized with Bayesian optimization, genetic
algorithms, and multistart scatter search, for the prediction of patient outcome

Max
scale

Scale
increase

r m AUROC
(training)

AUROC
(testing)

Time series: mean and
standard deviation

0.56
(0.52–0.56)

0.54
(0.45–0.60)

APACHE IV 0.77
(0.75–0.79)

0.68
(0.55–0.77)

MSE (defaults) 20 1 0.15 2 0.77
(0.73–0.78)

0.66
(0.60–0.72)

MSE (Bayesian) 17.62
(8.68)

2.59
(0.93)

0.11
(0.07)

2.58
(0.85)

0.77
(0.69–0.79)

0.72
(0.63–0.78)

MSE (genetic) 23.54
(14.34)

2.56
(1.12)

0.18
(0.15)

2.07
(0.70)

0.77
(0.67–0.84)

0.67
(0.44–0.78)

MSE (multi-start) 19.03
(12.57)

2.35
(0.87)

0.18
(0.128)

2.53
(0.87)

0.73
(0.69–0.76)

0.69
(0.53–0.72)

For each MSE parameter we report their cross-fold mean and standard deviation (with standard
deviation in parenthesis). For the reported AUROC, we report the 50th percentile in the top half of
the cell and the 25th and 75th percentiles in the lower half of the cell
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29.6 Study Conclusions

The results of this case study demonstrate two main points. First, from a medical
standpoint, they underline the possible benefit of utilizing dynamic physiologic
measurements in outcome prediction for ICU patients with severe sepsis: the data
from this study indeed suggest that utilizing these physiological dynamics through
MSE with optimized hyperparameters yields improved mortality prediction com-
pared with the APACHE IV score. Physiological signals sampled at high-frequency
are required for the MSE features to be meaningful, highlighting the need for
high-resolution data collection, as opposed to some existing methods of data col-
lection where signal samples are aggregated at the second or minute level, if not
more, before being recorded.

Second, from a methodological standpoint, the results make a strong case for the
use of hyperparameter selection techniques. Unsurprisingly, the results obtained
with the MSE features are highly dependent on the MSE hyperparameters. Had we
not used a hyperparameter selection technique and instead kept the default value,
we would have concluded that APACHE IV provides a better predictive insight
than MSE, and therefore missed the importance of physiological dynamics for
prediction of patient outcome. Bayesian optimization seems to yield better results
than genetic algorithms and multistart scatter search.

29.7 Discussion

There is still much room for further investigation. We focused on ICU patients with
severe sepsis, but many other critically ill patient cohorts would be worth inves-
tigating as well. Although we restricted our study to the use of MSE and HR alone,
it would be interesting to integrate and combine other disease characteristics and
physiological signals. For example, [10] used Bayesian optimization to find the

Fig. 29.4 The impact of the
MSE parameters on the
outcome prediction AUROC
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most optimal wavelet parameters to predict acute hypotensive episodes. Perhaps
combining dynamic blood pressure wavelets with HR MSE, and even other
dynamic data as well such as pulse pressure variation, would further optimize and
tune the mortality prediction model. In addition there exist other scores to predict
group mortality such as SOFA and SAPS II, which would provide useful baselines
in addition to APACHE [11].

The scale of our experiments was satisfying for the case study’s goals, but some
other investigations might require a data set that is an order of magnitude larger.
This might lead one to adopt a distributed design to deploy the hyperparameter
selection techniques. For example, [12] used a distributed approach to hyperpa-
rameter optimization on 5000 patients and over one billion blood pressure beats.
[13, 14] present another large-scale system to use genetic algorithms for blood
pressure prediction.

Lastly, a more thorough comparison between hyperparameter selection tech-
niques would help comprehend why a given hyperparameter selection technique
performs better than others for a particular prediction problem. Especially, the
hyperparameter selection techniques also have parameters, and a better under-
standing of the impact of these parameters on the results warrant further
investigation.

29.8 Conclusions

In this chapter, we have presented three principled hyperparameter selection
methods. We applied them to MSE, which we computed on physiological signals to
illustrate their use. More generally, these methods can be used for any algorithm
and feature where hyperparameters need to be tuned.

ICU data provide a unique opportunity for this type of research with routinely
collected continuously measured variables including ECG waveforms, blood
pressure waveforms from arterial lines, pulse pressure variation, pulse oximetry as
well as extensive ventilator data. These dynamic physiologic measurements could
potentially help unlock better outcome metrics and improve management decisions
in patients with acute respiratory distress syndrome (ARDS), septic shock, liver
failure or cardiac arrest, and other extremely ill ICU patients. Outside of the ICU,
dynamic physiological data is routinely collected during surgery by the anesthesia
team, in cardiac units with continuous telemetry and on Neurological care units
with routine EEG measurements for patients with or at risk for seizures. As such the
potential applications of MSE with hyperparameter optimization are extensive.

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.
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