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Abstract

Neural networks have been used successfully in many important applications. Speech
recognition, optical character recognition and image processing are examples of areas
where neural networks have become one of the standard solutions to difficult problems
in automatic pattern recognition. This success has generated interest in the scientific
community among researchers looking for more powerful tools than the standard
parametric statistical models for the analysis of complex datasets. Progress in this area
has been more problematic. The behavior of neural networks can be notoriously
difficult to understand or interpret. Although their asymptotic properties have been
well understood for a long time, model validation has required large training,
validation and test data sets, which is seldom feasible in the context of scientific
research. In recent years this has started to change. Progress is being made towards
understanding the statistical bases of neural network training and performance from a
number of different perspectives (Bishop, 1995). One important line of research in
this area is the application of Bayesian techniques to network learning (Neal, 1996).

This thesis describes the application of these Bayesian techniques to the analysis of a
large database of physiological time series data collected during the management of
patients following traumatic brain injury at the Western General Hospital in
Edinburgh. The study can be divided into three main sections:

• Model validation using simulated data: Techniques are developed that show that
under certain conditions the distribution of network outputs generated by these
Bayesian neural networks correctly models the desired conditional probability
density functions for a wide range of simple problems for which exact solutions can
be derived. This provides the basis for using these models in a scientific context.

• Model validation using real data. Statistical prognostic modelling for head injured
patients is well advanced using simple demographic and clinical features. The
Bayesian techniques developed in the previous section are applied to this problem,
and the results are compared to those obtained using standard statistical techniques.

• Application of these models to physiological data. The models are now applied to
the full database and used to interpret the data and provide new insight into the risk
factors for head injured patients in intensive care.
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Chapter 1

Introduction

1.1 Neural networks and scientific research

Neural Networks have been used successfully in many important applications.

Speech recognition, optical character recognition and image processing are

examples of areas in which neural networks have become one of the standard

solutions to difficult problems in automatic pattern recognition. This success

has generated interest in the scientific community among researchers looking

for more powerful tools than the standard parametric statistical models for the

analysis of complex datasets. Progress in this area has been more problematic.

The behavior of neural networks can be notoriously difficult to understand or

interpret. Although their asymptotic properties have been well understood for a

long time, model validation has required large training, validation and test data

sets. It is seldom feasible for the scientific researcher to collect such large

quantities of data.

In recent years this has started to change. Progress is being made

towards understanding the statistical bases of neural network training and

performance from a number of different perspectives (Bishop, 1995). One

important line of research in this area is the application of Bayesian techniques

to network learning (Neal, 1996). This work has demonstrated principles by

which model complexity can be automatically adapted on the basis of the

available data and confidence regions can be assigned, taking into account

model uncertainty. Unlike the parametric techniques typically employed in
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medical research, these techniques make minimal assumptions about the nature

of the training data.

The work described in this thesis applies Bayesian neural networks to a

significant "real world" problem. This has required a thorough exploration of

the practical and theoretical issues encountered when using these models in a

scientific context. This is not a comparative study. I decided early on that

because of the inherent importance of the subject matter, I would do an in depth

study rather than several simple studies based on alternative technical

approaches. I therefore can't claim that the use of Bayesian neural networks is

the best approach possible, but I hope that I have shown that it is a good

approach and that this study has advanced the state of knowledge in the

application area.

1.2 Plan of the thesis

This thesis describes the application of these Bayesian techniques to the

analysis of a large database of physiological time series data collected during

the management of patients following traumatic brain injury at the Western

General Hospital in Edinburgh. The study can be divided into three main

sections:

• Model validation using simulated data: Techniques are developed that

show that under certain conditions, the distribution of network outputs

generated by these Bayesian neural networks correctly models the desired

conditional probability density functions for a wide range of simple
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problems for which exact solutions can be derived. This provides the basis

for using these models in a scientific context. (Chapter 2)

• Model validation using real data: Statistical prognostic modeling for head

injured patients is well advanced using simple demographic and clinical

features. The Bayesian techniques developed in the previous section are

applied to this problem, and the results are compared to those obtained

using standard statistical techniques (Chapter 3).

• Application of these models to physiological data: The neural network

models are now applied to the full database, and used to interpret the data

and provide new insight into the risk factors for head injured patients in

intensive care (Chapters 4 - 7).

The remainder of this chapter will discuss the medical application that is

the subject of this thesis, and the methodology employed in analyzing this data.

Section 1.3 will describe the medical problem being studied. Section 1.4 will

describe the Edinburgh headinjury database. Section 1.5 concerns the

implementation and interpretation of Bayesian neural networks. Alternative

technical approaches will be described in section 1.6. Background on existing

work in the field will be provided in section 1.7, and alternative applications of

artificial intelligence in intensive care will be discussed in section 1.8.



1.3 The medical application: Understanding the
mechanisms of traumatic brain injury

An issue that has stimulated research in the field of head injury treatment is the time

course of the pathological processes that follow brain trauma. Researchers have long

remarked on patients who "talk and die". Following brain injury a patient will

sometimes recover his faculties to a very large extent and appear to be doing well

only to then deteriorate and ultimately die as a result of the injury. This indicates

that the damage sustained by the brain is not an immediate effect of the primary

injury, but rather develops over a period of several days. This observation has been

confirmed by several studies of neuronal and structural brain damage (see Miller

1992, for a review). The use of therapeutic agents to intervene in this process and

protect the brain has been much investigated, but with limited success. The hope

remains that our increasing understanding of cerebral hemodynamics and the

"biochemical cascade" that occurs following brain trauma will ultimately lead to the

development of techniques that will allow us to protect the brain during this critical

period.

Due to the complexity of the cerebrospinal system and the demands of the

neurosurgical environment there has been much interest in the development of new

monitoring technology which may detect the causes of morbidity and brain damage

in patients in neurointensive care. Transcranial Doppler devices have been used to

measure cerebral blood flow velocity (Chan et al., 1992). The use of jugular bulb

oxygenation measurements to estimate brain oxygen extraction has been investigated

(Gopinath et al, 1994). EEG can be used to detect subclinical seizures (Vespa, et al.,

1997). Intracerebral microdialysis is used to measure changes in brain metabolism
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(Persson and Hillered, 1992). A device for continuous measurement of the

compliance of the cerebrospinal system is now available (Piper et al. 1999).

This increasing interest in multimodality monitoring has in turn underlined

the need for computers in neurointensive care for data acquisition, integration and

analysis. This has led to the development of several research software systems

dealing with various aspects of the problem. (Czosnika et al., 1994) describes a

system focused on the use of signal processing techniques for early detection of acute

episodes in the patients being monitored. A study of jugular bulb oxygen saturation

(Gopinath et al, 1994) was enabled by the use of computerised monitoring. The next

section will describe a system for multimodality computerised monitoring developed

at Edinburgh University to support research in the management of patients following

traumatic brain injury (Piper et al. 1991, Howells et al, 1995).

1.4 The Edinburgh Head Injury Database

The work described in this thesis was conducted in support of a study of

pathophysiological factors following head injury initiated by the late professor

Douglas Miller and funded by the Medical Research Council. This study

introduced computerised monitoring into the intensive care unit at the Western

General Hospital in Edinburgh. The computers are attached to patient monitors

via their serial communication ports, and collect trended samples of the

physiological data once per minute. The first patients included in this database

were admitted in December of 1991. The most recent that are included in the

study reported here were admitted in October 1998. Basic demographic and

clinical data are available for 719 patients. Of these 243 were subject to
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computerized monitoring. In general I have restricted myself to patients over

the age of 14 who were classified as having a severe head injury. This limits

the numbers to 286 patients altogether and 158 with computerized monitoring.

For any particular model, further restrictions may be introduced due to missing

data.

Earlier work on this database led to the development of the Edinburgh

University Secondary Insult Grades, which define a set of adverse physiological

events, such as episodes of hypotension and raised intracranial pressure which can be

extracted from this detailed record and analysed. One study of secondary insults

showed that computerised monitoring recorded physiological derangements that

were missed on the nurses' chart (Corrie et al., 1993). Another study showed that the

occurrence of "secondary insults" bore a statistical relationship to patient outcome

(Jones et al, 1994). My role on this project has been to revise and extend the

software so that it can be used as a clinical tool. The system developed is now being

used in seven intensive care units in Britain, Italy, Switzerland and Sweden. In

addition to head-injury, it has been used to support research in the management of

patients following cardiac surgery, and stroke. The pattern recognition techniques

described in this thesis are integrated into the software.

6



1.5 Methodology

1.5.1 Using neural networks to support medical research

This study is based on detailed physiological monitoring of patients in intensive

care. Readings for parameters such as arterial blood pressure, temperature and

intracranial pressure were automatically recorded on bedside computers once a

minute. The duration of computerized monitoring for each patient varied from

several hours to almost three weeks. I have applied Bayesian neural networks

as prognostic models taking as input demographic data, clinical indicators, and

features extracted from the physiological time series data. The networks are

trained to predict outcome probabilities, for example the probability of survival

given the input features for a patient. I have then used the behavior of these

models to gain insight into the database, and the risk factors facing patients

following brain trauma.

This methodology is contrary to conventional wisdom regarding the

"black box" nature of neural networks. Ripley (1996) has stated that "neural

networks have almost no explanatory power", while by contrast,

"Linear regression has traditionally been taught from the
viewpoint of explanation, which reflects its importance in that
role in scientific and medical research." (Ripley, 1998)

Similarly, Dybowski and Weller (1999) have argued,

"The complexity of neural networks does make it difficult to
grasp how their output relates to input. Hart and Wyatt (1990)
believe that this 'black box' aspect is a major obstacle to the
acceptance of neural nets as part of medical decision support
systems ... We think that a neural net (which can be regarded as a
complex regression model) can be accepted in medicine with or
without a detailed understanding of how it works - provided its
predictive capability has been rigorously evaluated."
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Contrary to the view that the value of neural networks is at best limited to

making accurate predictions to support decision making, the study reported here has

demonstrated that they can be used to gain insights into a complex medical data set,

and that these insights can be translated into straightforward medical guidelines that

can be supported by reference to the original data being modeled. These results

differ from those obtained using linear logistic regression, and demonstrate the

utility of these flexible, non-linear models in a scientific context. This work builds

on current research into the application of Bayesian inference to the development of

neural network models. In chapter two it will be shown that these techniques lead to

neural network systems that produce an output distribution that models the

distribution of the target values conditioned on the inputs. These distributions in

output space quantify firstly, the uncertainty in prediction due to incomplete

information in the input variables, and secondly, the uncertainty in that estimate due

to the amount of available training data. This clear mathematical interpretation of

results leads to systems that can be used quite naturally in scientific research, unlike

the "black box" neural network implementations.

1.5.2 Bayesian neural networks

The Bayesian approach to neural network learning begins with the simple

observation that a finite data set cannot tell us with probability one the exact values

that the network weights should assume. The maximum likelihood approach to

estimating the weights of a neural network ignores this inconvenient fact. If very

large amounts of training data are available, this may be an appropriate, or even



necessary, modeling choice. However, the application described here requires a

more principled approach. Using Bayes' theorem we can write down the

probability density function for network weights (w) conditioned on the training data

(D) as:

p(D\w)p(w)
p{w |D) - | p(D\w)p(w)dw

For a given weight vector, the two terms that have to be calculated on the

right hand side are:

• p(D\xv): The probability of the training data given a set of

weights

• £>(w) The prior probability of the weights

In our application, a classification task, the first quantity can be calculated using the

cross entropy, or multi-logistic error term, which has been shown to model this

conditional probability (e.g. see Bishop, 1995 pg. 230 ff.). The second term, the

prior probability for a weight vector, is generally chosen to be a circularly symmetric

Gaussian with zero mean. This reflects the fact that large weights lead to unstable

systems that do not generalize well to new data: hence the general preference for

smaller weights. The use of this prior has been demonstrated to be equivalent to the

use of weight decay with a sum squared term for the weight error (MacKay, 1992a),

a technique which has been used effectively to regularize neural networks for many

years. The choice of prior for the models used here will be discussed in detail in

chapter two.

This leaves us with the problem of integrating over the posterior in weight

space. One approach to this problem (MacKay, 1992a) is to find one or more local
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maxima of the distribution using a standard technique for optimizing network

weights, for example, conjugate gradients. Then the distributions around these peaks

can be approximated as Gaussians using the Hessian matrix of the error term with

respect to the weights computed at the local maxima. This technique has been used

effectively in many applications. However, there are concerns about the quality of

the Gaussian approximation, especially when the networks used have large numbers

of parameters and in the presence of sparse data (Bishop, 1995). Classification tasks

also pose a problem for this approach, since the nonlinear transformation into output

space results in distributions that are far from Gaussian. This then requires a

correction term on top of the other analytical approximations (MacKay, 1992c). All

of these concerns regarding Gaussian approximation of the weight posterior will be

prominent in this application.

A second approach to approximating the posterior on network weights is to

generate a series of weight vectors from the posterior to build up a discrete

approximation. A simple way to do this would be to use rejection sampling. That is,

to generate samples from the prior, which can then be accepted or rejected according

to their posterior probability as estimated using the error term. This would be

prohibitively expensive computationally because the posterior is typically so sharply

peaked around the local minima of the error that virtually all of the weight vectors

generated in this way would be from regions of weight space having negligible

probability, and would therefore be rejected. Improved sampling techniques can be

implemented using Monte Carlo Markov chain (MCMC) techniques. These

introduce dependencies between successive samples, so that weight space is

explored more systematically. From a random starting point the chain converges
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towards the posterior distribution. Once it is judged to have converged to the

posterior, the process continues and samples from the posterior are generated to form

the discrete approximation.

An example of a Monte Carlo Markov chain method is the Metropolis

algorithm, in which a series of samples is generated through a series of short,

random steps through weight space. From each point, candidate steps are generated

from a "proposal distribution", and accepted with probability min(l, P('Wcurrer"^ )
P\ W candidate )

The proposal distribution used to generate candidates must be symmetrical. That is,

p(Wi|wj) = ^(wjjwi). A reasonable choice would be a Gaussian centered on the

current point. The width of the Gaussian should be sufficiently narrow that once a

good region of weight space is entered, the rejection rate will be fairly low. The

Metropolis algorithm would be a reasonable way to generate samples from the

posterior distribution of weights for a neural network. However, recent work has

demonstrated that there are much more efficient methods, which will be discussed

below.

It's important to point out that the posterior on network weights is of little

interest itself. The contribution of the Bayesian approach is that the distribution in

weight space produces a distribution in output space. This allows us to study the

relationship between the input and target data in greater detail than has previously

been possible, especially in the presence of sparse and noisy data. Much of the work

in this thesis has involved visualization and analysis of the distribution of network

predictions in output space.
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1.5.3 The hybrid Monte Carlo algorithm

The application of MCMC techniques to neural network learning as described in

(Neal, 1996) is based on techniques borrowed from statistical physics for modeling

physical systems. These systems consist of particles described at any point in time

in terms of position, mass and momentum. A distribution over all possible states of

the system is defined in which states with higher energy are less probable than those

with lower energy. This is known as the canonical distribution. In many cases it is

possible to sample directly from the canonical distribution using the Metropolis

algorithm without going through a dynamical simulation of the physical system.

However, recent work has shown that the method of dynamical simulation offers

advantages as a sampling technique that sometimes make it more efficient than the

direct approach (see Neal, 1993 for a review). In the case of neural network

learning, it is advantageous to reformulate the problem in dynamical terms in order

to speed up the rate of convergence to the posterior. The analogy between the neural

network and a physical system is summarized in table 1.

Following Neal (1996, pg. 58 ff.) hybrid Monte Carlo can be described as an

elaboration of "stochastic dynamics", which is an extension of Hamiltonian

Table 1 Formulation of neural network training as a dynamical simulation

SYMBOL NEURAL NETWORK PHYSICAL ANALOG

w Weight Vector Position Vector

m Momentum Term Vector Momentum Vector

t Training Iteration Time

a Step Size Time Delta

E Training Error Potential Energy
K Sum square of momentum terms Kinetic Energy
H E + K Total Energy (E + K)

12



dynamics. In a dynamical simulation, network weights correspond to the vector

defining the position of particles, and a parallel vector of momentum terms is

introduced. Training error corresponds to potential energy. In order to use

dynamical simulation it is necessary to be able to take the partial derivatives of this

term with respect to the positions (weights). We can do this using error

backpropagation (Rumelhart et al., 1986).

Hamiltonian dynamics describes changes in position and momentum that

preserve the total (kinetic + potential) energy of the system. It is described by

differential equations that can be simulated using the discrete update rules outlined

below. The notation used is defined in table 1.

/ f X /X 8 &E /X1. m.i(t H—) = rrn(t) Wi(t)
2 2 Swi

£
2. Wi(t + e) = w,(t) + £(m.i(t + —))

£ £ 6E
3. m.i{t + e) = m.i{t +—)-—-—w,(t + £)

2 2 owi

These are called "leapfrog" updates because first the momentum is updated by a half

step, then the weights are updated by a full step, and finally the momentum is

updated by another half step. The effect of the momentum terms in the neural

network application is to suppress random walk behavior. This is important when

sampling from distributions in which there are strong correlations, as is usually the

case with neural network weights. In conventional optimization approaches to

neural network learning, this has led to the use of techniques like adding a

momentum term to backpropagation updates, or using conjugate gradients. In fact,

simply using leapfrog updates to simulate Hamiltonian dynamics without adding the

13



stochastic elements described below leads to a system that is similar to backprop

with momentum (Neal, 1996, pgs. Ill - 112). The momentum terms determine the

kinetic energy of the system, which is calculated as half of the sum square of the

terms.

This discrete approximation of Hamiltonian dynamics samples from the

canonical distribution for a fixed total energy, H . However, we need to sample

from the whole of the canonical distribution. The "stochastic dynamics" method

(Andersen, 1980) accomplishes this by alternately sampling from the canonical

distribution given a fixed total energy using Hamiltonian dynamics, and then

resampling total energy by applying Gibbs sampling on the space of momentum

vectors. In the Gibbs sampling phase, each of the momentum parameters is replaced

in turn, according to its probability conditioned on the other momentum parameters.

This can be calculated using the definitions of kinetic energy and its probability

distribution:

• K(m) = £—
i=i z

• p(K(m)) = exp(-K(m))

The discrete approximation to Hamiltonian dynamics is a source of

systematic error in the stochastic dynamics method. This can lead to changes to H ,

which would be unchanged if the simulation was exact. The error is eliminated in

the hybrid Monte Carlo method (Duane, et al., 1987) through the use of the

Metropolis algorithm. Still following (Neal, 1996, pg. 60 ff.), we can define this as a

modified version of stochastic dynamics in which sampling proceeds through a

series of "dynamical transitions". Each transition starts from the current state

14



(w,m) and proceeds through a series of leapfrog steps after which the momentum

terms are negated. This results in a new state (w*,m*) that is considered as a

candidate state and accepted with probability

min(l,exp(-(//(w*,m*) - H{w,m)))),

thus tending to reject moves to the extent that they modify the total energy. If the

candidate state is rejected, the current state is unchanged. The negation of the

momentum variables is required to satisfy the requirement for a symmetrical

proposal distribution for the Metropolis algorithm to be valid. This procedure

removes the error introduced through discrete simulation.

1.5.4 Discussion of hybrid Monte Carlo

The hybrid Monte Carlo algorithm provides a means of applying Bayesian inference

to the problem of neural network learning. The next chapter will be concerned with

validating this technique using simulated data. I will compare the output

distributions generated by the neural network system with exact solutions for a series

of simple problems. The remainder of this thesis will concern the application of this

technique to a real world problem in data analysis. This will allow us to test the

generalization of the system and to compare its performance with standard statistical

techniques.

One concern with using any MCMC technique is the problem of diagnosing

convergence. This is certainly a concern if you are working on a problem that is

highly nonlinear and requires lots of training data. In this case it can even be

difficult to know when to stop a conventional optimization of neural network

weights. In the application discussed here, diagnosing convergence has not been a
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problem. Typically, the system starts to overfit quickly (within a few minutes) and

then recovers. This is because in most cases I am working with sparse and noisy

data, so that the effective complexity of the model derived is not great. This means I

will not in this application be testing the full power of the neural network system as a

nonlinear model. This, however, has been amply demonstrated in much previous

work involving neural networks, for example on the two spiral problem (Lang and

Witbrock, 1988), at the Santa Fe Chaos Competitions (Weigend and Gershenfield,

1994), and at the Energy Prediction Competitions (MacKay, 1993). The focus of

this work will be on the adaptive stabilization procedures inherent in the Bayesian

approach, and the performance of this system given sparse data. These properties

will be crucial in the context of scientific research.

A second concern with this implementation is the likelihood of the

simulation becoming stuck in the neighborhood of a single local minimum of the

error surface. There is no provision in the implementation to attempt to avoid this,

for example through the use of simulated annealing although this was tried in an

earlier implementation (Neal, 1996, pg. 65). The existing implementation is in fact

likely to become "stuck". However, this is not a great concern provided that the

networks used have large numbers of hidden nodes. Experience in training neural

networks suggests that, although the quality of local minima can vary greatly for

networks with small numbers of hidden nodes, the local minima for large networks

tend to be similar to each other. The fact that the presence of many local minima in

these very high dimensional optimization spaces does not in practice harm the

performance of neural networks is borne out by the empirical success of the field in

general, and of this implementation in particular (Neal, 1996, chapter 4).

16



1.5.5 Adaptive regularization

As described above, regularization in these models is achieved by setting zero mean

Gaussian prior distributions on weight values. This is equivalent to the use of a sum

squared "weight decay" error term in conventional neural network training. In the

conventional approach, the training error would be augmented with this second term

for weight error defined as:

c5>,2
i

Here C is a scaling constant that determines the amount of smoothing due to the

weight decay term. Determining an appropriate value for C has generally been

done heuristically or empirically through the use of a validation data set.

The equivalents of the smoothing constant in the Bayesian framework are the

width parameters of the priors on weight values. These variances are given initial

values, which are adapted to the data during training. In alternating cycles, first the

weights are adapted to the data given the current widths of the prior distributions;

then the prior widths are adapted based on the effects of training. These effects are

reflected in the current weight values. If the data set is large and there are consistent

patterns relating inputs to outputs, the weights are likely to be pushed far from zero

towards relatively large values. Training sets that are small and noisy will allow the

priors to dominate, and the weights will remain small. In the second phase of the

training cycle, the weight priors are adjusted based on the effects of training. In this

implementation, this is accomplished by alternating hybrid Monte Carlo updates of

the weights with updates of the weight priors using Gibbs sampling.

It may seem odd that in the framework of Bayesian inference we are

updating the priors based on the data! This is accomplished through a hierarchical



model definition in which the variances of the weight priors are themselves given

prior distributions that can legitimately be updated after the data has been seen. It is

possible to assign different priors to different groups of weights: for example the

prior for the hidden to output weights should generally be different from the prior for

input to hidden weights. In the following, members of one such set of weights are

designated as w(.. In Neal's formulation (Neal, 1996, pg. 66 ff.), it's convenient to

work with "precision" terms, zv, defined ascr~1/2, where ou is the variance of the

weight prior for this group. Under the assumption of zero mean independent

Gaussian distributions, the prior on weights is defined as:

P{uv..uk | rv) = (l7irkllT\f expC-r^",212)
i

The hyperprior over zv is then given a gamma distribution with mean cov , and shape

parameter specified by av. From this Neal derives:

p(Jv I ) 06 tv(a"+k),1~] exp(~tv (av I cov + Yj u? )7 2) •
i

This PDF for the weight prior precisions conditioned on the current weight values

provides the basis for Gibbs sampling updates of the weight priors in which each

precision is replaced in turn based on its PDF with the other precisions fixed.
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1.5.6 Bayesian model selection

A key problem in applying neural networks is determining network architecture.

Even if we accept the usual choice of a single hidden layer fully connected to the

inputs and outputs, we have to decide on the number of hidden units. This is a

special case of determining model complexity. Conventional wisdom has long been

that model complexity must be chosen based partly on the amount and quality of the

available training data. Neural networks with many hidden nodes, like any model

containing large numbers of adjustable parameters, were considered inappropriate

choices if the data set was small; overfitting was considered to be inevitable. This

belief was reinforced by David MacKay's work on the application of Bayesian

inference to neural network training through the use of analytical approximations.

MacKay (1992a) advanced arguments for an "Occam's razor" principle favoring

simpler models in the model selection process. He also found empirically that model

performance declined when the number of hidden nodes grew too large (MacKay,

1992b). This is a familiar experience in the application of neural networks.

Radford Neal's work represents a radical departure in this respect. He has

pointed out that there is no basis in Bayesian theory for this approach to model

selection:

"From a Bayesian perspective, adjusting the complexity of the
model based on the amount of training data makes no sense. A
Bayesian defines a model, selects a prior; and then makes
predictions. There is no provision in the Bayesian framework for
changing the model or the prior depending on how much data was
collected. If the model and prior are correct for a thousand
observations, they are correct for ten observations as well (though
the impact of using an incorrect prior might be more serious with
fewer observations)." (Neal, 1996)
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An important feature of Neal's neural network system in this respect is an automatic

scaling of the prior distributions for the weights out of the hidden nodes based on the

number of hidden nodes. He has demonstrated (Neal, 1996, pg. 32) that the variance

of neural network output values scales as Hal, where H is the number of hidden

units, and ou is the standard deviation of the prior for the weights out of the hidden

units. Therefore by scaling ov as H~xn~, the variance of the outputs of the function

implied by the prior remains constant for any number of hidden nodes. Neal has

reported results for networks with 6, 8, 16 and 32 hidden nodes on the same problem

(Robot Arm) for which MacKay had reported overfitting by large networks. In these

tests there is no consistent pattern of overfitting by the larger networks, and there is a

clear pattern of underfitting by the smallest. The contrast with MacKay's results

may suggest that the overfitting that he reported was due to a breakdown in the

Gaussian approximation given networks with large numbers of parameters.

In this application I have found that Neal's scheme for scaling the prior

based on the number of hidden nodes works well. In fact, after some initial

experimentation I completely stopped worrying about the numbers of hidden nodes

beyond making sure that there were "plenty". For the two class problems described

later in this thesis I have used 8 hidden nodes. For the three class problems I have

used 12 hidden nodes. The extensive model validation reported in the next two

chapters has ensured that this has not led to overfitting. The significance of this

contribution of Neal's work should not be underrated. In the past I have either used

a validation set or cross validation to determine the number of hidden nodes. This is

a time consuming process, and even when cross validation is employed, some of the

information in the data is "used up" in determining the model. Particularly in a
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scientific study, this will raise doubts about the validity of results obtained using the

model. This was an important factor in my decision to use Bayesian neural networks

in this study.

1.5.7 The application of Bayesian neural networks in a scientific
context

One area where the merits of Bayesian neural networks have not been demonstrated

until now is scientific research. Even Radford Neal (1996, pg. 7) has questioned

their use in this context despite their undoubted effectiveness in "the messy contexts

typical of engineering applications". My decision to apply these models to the

analysis of physiological time series data contained in the Edinburgh head-injury

database was in part motivated by developments in head injury research. Clinical

researchers have developed numerous hypotheses regarding the physiological

sequelae of traumatic brain injury; e.g. see (Rosner, 1985). These have primarily

been based on single case studies and short series of patients. It had been hoped that

large scale data acquisition projects like the one in Edinburgh would lend support to

some of these, but results to this point had been disappointing. There are several

possible explanations for this including, of course, deficiencies in the hypotheses

themselves or of the data collection process: missing data, and failure to control for

confounding factors among other problems. Another possible explanation that has

been raised, however, is that the statistical analyses being employed may be too

simplistic and therefore miss significant features of the data. This seemed an ideal

application to test the claims being made for the Bayesian framework for neural

network modeling.
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The application of Bayesian neural networks in this new context has

required several technical innovations. As argued in chapter two, a key problem in

this application is the representation of probability densities in output space based on

the discrete Monte Carlo approximations. I have developed techniques for two and

three class problems based on kernel density estimation that accomplish this. I have

also when possible employed numerical techniques for the exact derivation of these

probability densities. This has enabled comparison of the neural network estimates

with the actual densities. This in turn allowed a detailed examination of the effects

of various choices for the prior distribution on the performance of the model for a

range of training set sizes. It is demonstrated that approximately uniform priors on

output functions are desirable for this task, and a procedure for finding such priors is

explained. The density estimation techniques employed also led to a natural way of

assigning confidence regions around predictions. Input standardization has also

proved to be important. It was necessary to center the range of interest for each

input precisely under the sigmoid transformation, and a new procedure is

demonstrated that avoids problems introduced by using the usual method of

subtracting the mean and dividing by the standard deviation.

1.6 Alternative technical approaches

1.6.1 Gaussian Processes

The previous section on Bayesian neural networks describes a scaling for the priors

of hidden to output weights of H~1'2 with H being the number of hidden units (Neal,

1996). This result led Radford Neal to investigate the nature of functions implied in

the limit of networks with infinite numbers of hidden units assuming this scaling and
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independent Gaussian priors on network parameters. He found that these functions

have the property that the joint distribution of output values produced for any finite

set of input vectors is multivariate Gaussian. This means they belong to a class of

functions known as Gaussian processes. This result has led to a renewal of interest

in Gaussian processes as techniques for regression and classification (see MacKay,

1998 for a review). The appeal of the Gaussian process approach to modeling is that

it dispenses with the weight parameters used by neural networks and directly models

a space of functions relating inputs and outputs. I briefly tried some experiments

with Gaussian processes, which are available as an option using Radford Neal's

software. I did not get good results, most likely because of my lack of experience

with this method. My decision not to pursue this line of research was purely

pragmatic. By this time I had already started getting promising results with

Bayesian neural networks. Since my project was a very applied one I decided to go

with what was working, rather than a theoretically appealing alternative that was

likely to produce similar results in practice. I do, however, think that Gaussian

processes will be an interesting area for future research.

1.6.2 Support Vector Machines

Support vector machines (SVM) (Cortes and Vapnik, 1995) provide an

alternative to neural networks for the problem of nonlinear classification.

Given a training set for a two class problem, the "maximal margin hyperplane"

is determined. This is defined as the linear surface that separates the classes

with a maximal distance from the "support vectors": those class instances that

lie closest to the decision surface. This approach can be generalized to
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nonlinear problems by projecting the data into a higher dimensional feature

space using nonlinear kernel functions in such a way as to make them linearly

separable in that space. One principle of the SVM framework is to produce

classifiers with minimal VC dimension, which will generalize well to new data

(Vapnik, 1998).

In principle, the SVM approach satisfies the criteria I have set for this

application. It is a nonlinear classification technique that adapts based on the

amount and quality of available training data. SVM have already been used with

great success in many applications. As with Gaussian processes, my decision not to

try this approach was partly pragmatic. Faced with a very applied project, I selected

a more familiar method. I would say that the interpretation of model outputs is more

straightforward using Bayesian neural networks. On the other hand interpretation in

terms of model complexity is probably more straightforward in the SVM framework.

Also, recent work has suggested an equivalence between SVM and the Bayesian

approach (Cristianini and Shawe-Taylor, 1999). I think that the application of SVM

to this intensive care data set would be an interesting area for future research.

1.6.3 Neural networks with bootstrap

As discussed above, the nature of this project didn't lend itself to conventional

neural network approaches because of sparse data and the need for a clear

mathematical interpretation of results. Besides the Bayesian framework, one other

method discussed in the literature seemed promising. This was work by Baxt and

White (1995) that assessed the prognostic value of clinical features using a neural

network and applied a bootstrap analysis to assign confidence intervals to their
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estimates regarding the relative importance of these variables as prognostic

indicators. The bootstrap varies a database by randomly sampling training cases

from it with replacement. This has the effect that for any given training run, some

training cases are represented more than once, and some are not selected at all. This

permits an analysis of how robust and generalizable results are given the amount of

available training data. It's a sort of analog to MCMC sampling on the space of

possible models that operates by varying the database rather than studying model

variations directly. I prefer the Bayesian approach because the methodology and the

interpretation of results are more straightforward. The recent advances in the

application of Bayesian inference to complex models which have been discussed

above, combined with the availability of ever increasing computer power have made

a full Bayesian analysis much more accessible than it was a few years ago. This has

led even some of those who have applied the bootstrap very effectively to refer to it

as a "poor man's Bayes" (L. Breiman, personal communication).

1.6.4 Optimization on choice of input features

One general approach to analyzing a complex database is to focus on the problem of

feature extraction. Previous work with head injury data has suggested that feature

selection may be more important than choice of modeling technique (Titterington et

al., 1981). By settling on a modeling technique that is not very computationally

demanding, the task reduces to an optimization problem in the choice of features.

This could be approached by applying standard techniques of variable selection

(forward selection or backwards elimination), or through more advanced techniques

such as simulated annealing and genetic algorithms. My reason for rejecting this
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approach was primarily that it had, to a very large extent, already had been done.

Variable selection had early on been used to evaluate simple prognostic features

following head injury (Braakman, et al., 1980). Most notably (from my standpoint),

it has been applied to a set of 187 candidate features automatically generated from

physiological data from head-injured patients (Marmarou et al., 1991). This study

evaluated various methods of feature extraction, and the clinical significance of the

features. Variable selection has also been used to evaluate a more limited set of

candidate physiological features extracted from the same Edinburgh head injury

database which will be the subject of this thesis (Signorini et al. 1999b). These

studies will be reviewed in detail in chapter four.

1.6.5 Decision Trees and Bagging

The automatic induction of decision trees explores the space of possible input

features and produces a classifier at the same time. Trees are produced by

recursively splitting a data set according to a series of binary features. Features are

generated from the variables available as inputs to the classifier. They are evaluated

according to their predictive value in relation to a set of target variables. In this

application the inputs are demographic and clinical indicators available for a set of

patients, and the targets are the eventual outcome for those patients: for example

survival or death. An example of such a feature might be whether or not the age of

the patient is over 40. Features are selected one at a time on information theoretic

grounds. The selection process varies, but a typical criterion would be that using the

feature to divide the training set into two classes maximizes within class entropy and

minimizes between class entropy. Once a feature is selected, the process continues



by dividing the subgroups in the same manner. Typically the tree is grown until the

leaf nodes all contain one single case. Then it is pruned back to produce a simpler

tree with more general applicability. The pruning can be done automatically or with

human help. Intervention in this way by a human expert can permit exploration of

the data and allow the introduction of expert knowledge. It is also possible to

construct a partial tree manually and complete it using the data driven methods.

The great advantage of this approach is that the output of the classifier has an

immediate clinical interpretation. Inspection of decision trees may confirm or

challenge expert opinion. A problem with decision trees is that given complex real

world problems, they do not often produce classifiers that are as reliable as the best

statistical systems, or neural networks. This is because of the way they combine

evidence. The algorithm described here is a "greedy" algorithm. That is it selects

features one at a time, choosing the locally optimal feature at each splitting point.

This is not likely to produce the globally optimal tree, even if a tree structured

classifier is appropriate. This reliance on a somewhat arbitrary series of decisions is

a particular problem when dealing with sparse and noisy data, as will be the case in

this application.

There is a way of improving the performance of decision tree techniques to

the point that they are competitive with the best classification systems. This is

through a technique called "bagging" for "bootstrap aggregation" (Breiman, 1996).

This involves generating a large number of trees and averaging over their

predictions. The training set for each tree is varied through bootstrap resampling.

That is, N cases are produced for each tree by selecting from the available training

data with replacement. This means that in each training set some cases will be
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selected more than once, and some won't be selected at all. By varying the data sets

in this way you get a variety of trees, and by averaging over their predictions you get

a classifier with much better generalization. However, the advantage of the decision

tree approach now becomes a liability. Since the data is being processed by a

multitude of trees, the classifier is only useful as a black box source of predictions.

It is not even straightforward to investigate the relationship between inputs and

outputs of the averaged model, since each tree utilizes its own choice of input

features.

1.6.6 General rule discovery and boosting

Decision trees are a special case of systems that discover rules in data. More

unconstrained systems utilize general graphical structures, or even construct

programs that can be used for classification (Holland, 1986). Often these are based

on heuristic principles or are designed by analogy to economic or ecological

systems, which makes it difficult to understand their operation or justify their

decisions to domain experts. It might seem that explanation should be easy given

systems that discover rules, but this is usually not the case. In fact the problem of

"credit assignment", i.e. determining which set of rules was responsible for the

success or failure of the system in any given instance, can be very difficult, and has

been the subject of much research. Still, some of these techniques have been shown

to be effective in problems involving optimization in high dimensional feature

spaces (e.g. see Feng and Michie, 1994, Sedbrook et ah, 1991). The use of these

systems will become more attractive in medical applications as larger databases

become available.
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Boosting (Schapire, 1999) is a relatively new technique for rule

combination that is being used very effectively in a variety of applications.

Boosting starts with the development of a "weak learning" algorithm. This is

an automatic procedure for generating "rules of thumb" given a training set.

These rules of thumb are simple ways of classifying instances. For example:

"the patient will die if blood pressure is less than 80 more than 30% of the

time". These can be "weak" rules in that their performance as classifiers

(individually) need be only slightly better than random guessing. As these rules

are generated they are combined with previously accepted rules using a

numerical weighting scheme. The training set is modified as rule selection

proceeds by dropping out cases that are confidently and correctly classified by

existing rules. Again, I suspect that in the application described in this thesis,

small sample size would be a problem, as would lack of explanatory power due

to the credit assignment problem. However, Boosting might be an interesting

area for future research.

1.7 Statistical prognostic modeling and head injury research

Head injury research has been an active area for many years for research involving

large scale data collection and analysis from a number of different perspectives.

Early work focused on quantifying basic clinical information such as depth of coma

and the quality of patient outcome. This work led to the definition of the Glasgow

Coma Scale, (Teasdale, G., Jennett, B., 1974), and the Glasgow Outcome Scale,

(Jennett and Bond, 1975): clinical tools that have become world-wide standards.

These are defined in tables 2 and 3. This led to the development of the "three
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country database" that combined clinical indicators of injury severity and quality of

recovery with demographic data for 1000 head- injured patients in Britain, the

Netherlands, and the Unites States (Jennett, et ah, 1977). This database was the

subject of a major study in applied statistics in which several different modelling

techniques were compared (Titterington et ah, 1981). This led to the development of

the Glasgow prediction program (Barlow et ah, 1984), which implemented a naive

Bayes model for predicting patient outcome following head injury. The work in

Glasgow continued with a series of studies comparing the performance of the

Table 2 The Glasgow Coma Scale (GCS) is used world-wide to quantify depth of
coma. It is calculated as the sum of the three component scores, giving a minimum
score of 3, and a maximum of 15.

GLASGOW COMA SCAL1 £

Eye Opening Motor Response Verbal Response
1 - None 1 - None 1 - none

2 - Responsive to pain 2 - Extension 2 - Sounds only
3 - Responsive to
command

3 - Abnormal Flexion 3 - Words only

4 - Spontaneous 4 - Normal Flexion 4 - Confused speech
5 - Localises Pain 5 - Orientated speech
6 - Obeys Commands

Table 3 The Glasgow Outcome Scale is a scale from 1 to 6 quantifying the quality
of patient outcome following brain injury. This is the standard used in head-injury
research.

GLASGOW OUTCOME SCALE
Score Definition

1 - Death
2 - Persistent Vegetative State Patient remains in coma

(PVS)
3 - Severe Disability Requiring help with at least one daily activity
4 - Moderate Disability Self-caring, but not back to previous level of

function
5 - Good Outcome Back to previous level of function
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prediction program with that of clinical practitioners in predicting outcome for

patients, and exploring the uses of this kind of program in clinical practice (Teasdale,

1981).

In the United States, a joint head injury study was launched which produced

the Traumatic Coma Data Bank (TCDB) (Foulkes., et ah, 1991). This database

included end hour recordings of physiological parameters such as arterial blood

pressure and intracranial pressure transcribed from the nurses chart. This enabled

researchers to study possible models of outcome following head injury that

incorporated data from the Intensive Care Unit (ICU) itself, as well as severity of

injury and outcome information (Marmarou et al, 1991).

1.8 Applications of artificial intelligence in intensive care

Intensive care would appear to be an ideal field for the application of computer

technology in general and artificial intelligence in particular. The patient bedspace in

a modern ICU is surrounded by electronic monitoring devices displaying

measurements being updated, sometimes several times per second. In most units this

information is periodically recorded and collated manually onto a paper nursing

chart: a laborious and error prone process. It has been demonstrated that much

significant information regarding patient physiology is lost because this can only

realistically be done on an hourly or half hourly basis (Corrie, et ah, 1993). Recent

years have seen this situation begin to change with advances in data communication

standards and software systems for data acquisition in the intensive care

environment. Some intensive care units can now claim to be truly "paper-free". As

systems become more generally available and standardised, it will be possible to
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begin to address questions and problems that have persisted for decades regarding

the management of patients in intensive care. Some of these areas will be discussed

below.

1.8.1 Clinical audit of patient management

A fundamental application of computer technology in intensive care will be

quantifying differences in patient management between different centres, and the

effects of these differences in patient care. It is generally acknowledged that these

differences are significant, but it is not currently possible to say exactly what the

differences are. Detailed, standardised data collection recording patient physiology,

drug administrations and surgical interventions will enable quantitative studies and

ultimately help resolve long standing debates regarding the effects of these different

policies.

1.8.2 Intelligent multiparameter alarms

An obvious problem to anyone visiting an intensive care unit is the frequency with

which audible alarms are generated by the patient monitors. Each ICU has its own

policy regarding the thresholds used for each monitor, and how they are to be

handled. Nevertheless, when a unit is very busy it is sometimes evident to the most

casual observer that it is completely impossible for the staff to attend to all of the

alarms resonating in the background as they try to focus on the most critical

problems of the moment. The need for automatic systems that are based on the

overall state of the patient rather than thresholds on single parameters, and which

weigh some alarms more heavily than others is very great. This has been recognised
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for a long time (for a review see Fackler, 1998) but the absence of networked

computerised monitoring in most ICU's has impeded progress in this area. From an

Artificial Intelligence standpoint, this is a problem in data fusion, and it could be an

important area for research and applications.

1.8.3 Early warning systems

As databases of physiological time series data become available for study and

statistical analysis it will be possible to develop a new generation of predictive

models for use online in the ICU. These models could be used to generate warnings

regarding the onset of adverse events to allow early intervention. For example, it has

been shown that features extracted from EEG recording can be used to predict

vasospasm following subarachnoid haemorrhage (Vespa et al.1997). In some cases,

it has been demonstrated that there is no obvious way to detect certain adverse

clinical events even given the most intensive patient monitoring in intensive care

(Andrews et al., 1996). This may indicate that there is scope for sophisticated pattern

recognition techniques in this area.

1.8.4 Decision Support

The staff in the neuro ICU must be prepared to respond to crisis situations at any

time, day or night. It is important, both for patient safety and for the morale of the

staff, that all of these situations be handled efficiently and in a consistent manner. It

is not possible to maintain rigid guidelines in such a complex environment, but when

staff diverge from general guidelines, they should be aware that they are doing so,

and be able to justify their actions.
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Progressively more detailed patient histories are being entered into computers

in real time, recording patient treatment and response to therapy. This has enabled

the beginning of work on automatic systems to support clinical decision making in

the ICU (Ambroso, et ah, 1992). This in turn has led to a recognition of the

importance of the representation of expert knowledge and its efficient retrieval:

familiar territory for the researcher in artificial intelligence. There has been much

work on standardising medical knowledge representation systems, but this has been

hindered by the wide range of specialist environments and the rapidly changing

nature of these fields (Coiera, 1995). This would be an ideal application area for

work in expert systems and knowledge representation.

1.8.5 Pattern recognition and machine learning

The application areas discussed so far deal with knowledge representation and

management. Possibly the most important area for current research involving

computers and intensive care is extracting new understanding from the masses of

data being accumulated by automatic systems around the world. Interest in

automatic systems that assist in analysing these kinds of complex databases has

grown with the information explosion, and has become an important subspecialty of

artificial intelligence and statistics (Michie et al., 1994). One common approach to

this problem is to apply techniques for the automatic induction of decision trees.

This has the advantage of sometimes producing results that have a direct clinical

interpretation. A second approach is to develop complex nonlinear models, e.g.

neural networks, and analyse the behaviour of the models (e.g. Baxt and White,

1995). This is the approach adopted in this thesis.
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1.9 Summary

The information explosion in intensive care makes it a rich field for applications of

Artificial Intelligence. Currently one of the most pressing needs is for the

development of machine learning and pattern recognition techniques to help

understand the significance of the large and complex data sets that are rapidly being

accumulated around the world. The study of patient management following head

injury is well advanced in this respect. Several large projects have applied statistical

techniques to the analysis of databases consisting of demographic data, clinical

indicators, and outcome scores. Now databases are being collected that incorporate

in addition detailed physiological time series data collected during intensive care.

The Bayesian framework for neural network learning leads to systems that

generalise well beyond their training set. The network outputs have a clear

interpretation. Many problems with specifying and validating these complex

nonlinear models have natural solutions in this framework. These advances make

them an attractive alternative for the analysis of the complex data sets now being

collected by medical researchers. This thesis describes the use of Bayesian neural

networks to model data contained in one such database. It will present the results of

these experiments and their implications for the management of patients who have

suffered severe head trauma. This will require several technical innovations in the

implementation of Bayesian neural networks, and demonstrate that they have a role

to play in medical research.
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Chapter 2

Modeling Two Kinds of Uncertainty

This chapter will describe the characteristics desired in a modeling technique to

apply to the analysis of this complex medical data set. It will be shown that Bayesian

neural networks possess these. The problem of specifying a prior distribution on

network parameters will be addressed. Then Bayesian neural networks will be

applied to a series of simple problems using simulated data, and it will be shown that

they correctly model the probability distributions of the targets conditioned on the

training set. These distributions scale appropriately with the size and consistency of

the data set. A few simple problems requiring generalization are presented, although

this problem will be largely deferred until the next chapter. A new procedure for

normalizing input data is demonstrated that avoids problems introduced by the

standard procedure in the presence of sparse data.

2.1 A dilemma in data analysis

Medical data sets vary along two mutually constraining dimensions that define the

quality of the information they contain. Some medical studies are based on a few

simple clinical and demographic indicators that are relatively easy to collect. These

can include large numbers of patients without over-stretching their resources. Other

studies go into more depth, collecting large amounts of data per patient. These may

require expensive monitoring devices and special care on the part of the investigators

to ensure that the data are collected and validated. Inevitably these studies are on a

smaller scale in terms of numbers of patients. Often a study will produce a mixed



database in which there are varying amounts of information per patient. This poses a

dilemma for the data analyst. If you select a data set with a few simple predictors and

a large number of patients, you may be discarding your most significant data. On the

other hand, as you include more data per patient, your patient numbers get smaller.

Ultimately this dilemma seems artificial. Surely in these cases the aim should be to

develop a variety of models, each appropriately characterized in terms of uncertainty

due to the amount of available information per patient, and also the uncertainty due

to patient numbers. This would allow medical researchers to evaluate their current

database and better focus future data collection efforts.

Given large patient numbers, estimating uncertainty attributable to

information not captured by the input variables to a neural network is relatively

straightforward. It is well known that the use of the softmax activation function and

cross-entropy error term leads to networks that model conditional probabilities

(Bishop, 1995 pg. 230 ff.). This provides a measure of uncertainty due to limitations

on the amount of information for each patient. Measuring uncertainty due to small

patient numbers is more problematic. Baxt and White (1995) proposed an approach

based on results from sampling theory. Here I present an alternative approach based

on Bayesian inference. This framework has the advantage of producing systems of

networks whose outputs can be directly interpreted as the desired probability density

functions
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2.2 Bayesian inference and neural networks

Neural Networks are usually optimized to fit a training set, producing the familiar

error-reduction curve that asymptotically converges to a local minimum of the error.

This process can be described in the framework of Bayesian inference. Before the

data arrived our prior beliefs lead us to select the form of the model and set the initial

parameter values. Then the parameter values are modified in the light of the data,

giving rise to the optimized network. There is a glaring deficiency in this procedure.

No amount of data can tell us with a probability of one that our optimized neural

network is the true model to the exclusion of all others. Rather, the data support to a

greater or lesser extent an infinite number of possible models. It is especially

important to recognize this principle when dealing with a nonlinear model with large

numbers of adjustable parameters like a neural network. Rather than selecting the

single model best fitting our particular data set, the Bayesian approach is to

approximate the posterior distribution on the space of possible models given the data.

This framework produces models that generalize better to new data, and also allows

us to estimate model uncertainty due to limitations of the available data. If the data

set is large and consistent, then the posterior distribution on network outputs will be

tightly constrained. Small noisy data sets will give rise to broad posterior

distributions representing a high degree of uncertainty. David MacKay has given a

detailed exposition of the application of Bayesian inference to the development of

neural network models (MacKay, 1992a - c).

One approach to approximating this probability distribution is to generate a

series of networks in such a way that any particular network is produced with the
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Figure 1 Error trace for a neural network being trained using a conventional gradient
descent algorithm. The vertical axis is error, and the horizontal training iteration
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Figure 2 Error trace of neural network training using Radford Neal's Monte Carlo
simulator. Gradient information is used in conjunction with a stochastic process.
The vertical axis again represents the error term, although this is not directly
comparable to Figure 1, because the network was trained on a different problem.
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correct posterior probability. This amounts to a discrete approximation to the

posterior density function. This approach has been used in neural networks, notably

by Radford Neal (Neal, 1996). Neal uses techniques adapted from statistical physics

to generate Monte Carlo Markov chain (MCMC) simulations which are guaranteed to

converge to the correct equilibrium distribution. Figure 1 is a trace of a typical error

reduction curve for conventional neural network training, while figure 2 is a trace of

an MCMC simulation. This trace and the simulations presented in the remainder of
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this thesis were generated by a system based on Radford Neal's software. Unlike

conventional neural network training, the Monte Carlo system does not proceed

smoothly through error space towards a single parameter set, but rather explores the

posterior distribution in model space indefinitely, producing a progressively more

accurate approximation to the true posterior. Each dot in the graph in figure 2

represents a neural network saved out for use in making predictions. The output of

this system is then the distribution of outputs from these networks. We will see

detailed examples of how this works in practice later in this chapter.

2.3 Interpreting the outputs of individual networks

When a neural network is trained using the "softmax", or multilogistic, activation

function and cross-entropy error term, the outputs can be interpreted as conditional

probabilities in a classification task (Bishop, 1995). In the limit of an infinite amount

of data, the network outputs converge to the probabilities of the targets conditioned

on the input vector. These probabilities represent the uncertainty in our predictions

due to information about the targets not captured by the inputs. As we collect more

data, this uncertainty will not go away; that is, the probabilities will not go to one and

zero. However, our estimates of the conditional probabilities will get progressively

better.

To illustrate this idea, I trained a conventional neural network using the

softmax activation function and cross entropy error on the legendary XOR problem.

I added random noise by flipping 10% of the targets to the opposite category for each



Table 1 Approximations generated using the softmax error term

Inputs Prob. Target - 1 Estimated Prob.

0 0

0 1
1 0
1 1

0.1

0.9
0.9
0.1

0.098

0.902

0.902

0.098

of the four possible input vector types. The training set consisted of 120 examples.

The results are summarized in table 1. Thus, given a large amount of training data,

the conventional network converges to the correct probabilities for the outputs

conditioned on the input vectors. This quantifies the uncertainty in our predictions

due to information not captured by the input vector or due to random noise. It does

not, however, provide any information regarding uncertainty due to the amount of

available training data.

In this case and throughout I've used a network with 8 hidden units and two

output units. Of course, this is extravagant for XOR, but when I deal with real data,

I'll be interested in problems with more than two output categories, and it will be

necessary to specify a generous number of hidden units to ensure that the network is

capable of modeling the structure of the data. I've chosen to use one-of-C output

coding and a large number of hidden units to better simulate that situation.

2.4 Interpreting the MCMC output distribution

In the previous section we saw that neural network outputs can be interpreted as

conditional probabilities given their inputs. In terms of a medical database, this

provides a measure of the predictive power of the data selected for each patient. For
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example, we might train a network on selected data values such as age, admission

blood pressure, and so on. The output categories might be assessments of outcome:

good outcome, poor outcome, and death. If the trained network typically produces

outputs that are close to the arrival rates of the three output categories, we would

interpret this to mean that the input variables selected were not predictive of

outcome. On the other hand, if the output probabilities are typically close to 1 and 0,

we would believe that the input variables allowed us to predict outcome with

considerable certainty. The quality of these probability estimates, however, depends

crucially on the size of the available training set. It is this measure of uncertainty that

we can infer from the properties of the probability distribution estimated in the

framework of Bayesian inference using Monte Carlo Markov chain methods. In the

following sections I'll examine the performance of the MCMC approach in a variety

of simple contexts. This will serve to illustrate the estimation of uncertainty due to

sample size, and to verify the accuracy of this implementation.

In the following figures the distribution over network outputs is shown as a

rug on the x-axis. Each tic-mark represents the probability estimate of one particular

network. Above this line is a continuous plot which is a Parzen window density

estimate of the output distribution. See appendix A.l for details of the density

estimator.

2.5 Calibrating the prior distribution

In previous work on applying Bayesian inference to neural network development, the

prior distribution on network weights has typically been used to express a preference

for networks with smaller weights. This is essentially a form of function



regularization closely related to the use of weight decay (MacKay, 1992c). Figure 3

shows a sample of outputs from 200 networks drawn from a typical weight-decay

prior. The networks have two inputs that have both been set to one. This is the

output of the system in the absence of any training data. Under the interpretation I

am advocating here, this is wrong. The system is telling us that before it has seen

the data it has a fairly strong preference for uncertain networks; it is already fairly

certain that it is uncertain! I would prefer that uncertainty be expressed by spreading

predictions evenly on the range [0 1]. A uniform prior on network outputs would

express the belief that in the absence of any data, the predictive power of the input

variables is simply unknown.

At first I thought that this could be accomplished simply by specifying a very

broad prior. Unfortunately, the problem is not this easy. Figure 4 shows the result of

increasing the standard deviation of the previous prior by a factor of 100. The

original preference for uncertain networks has been replaced with a preference for

networks that make highly certain predictions, which is even worse. The reason for

this is that a large proportion of networks included in the high probability density

region of a very broad prior will be dominated by very large weights. This leads to

the prevalence of networks that predict with great certainty. As has been pointed out

elsewhere (Wolpert 1994, Neal 1996 chapter 2), a distribution over network

parameters is not the same as a distribution over network outputs.

There are probably better ways of designing an approximately uniform prior

over outputs for classification tasks, but for now I have simply proceeded by
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Figure 3 The outputs of 200 networks generated from a typical weight decay prior.
The tic marks on the lower line are the predictions made by the 200 networks. The
continuous distribution is calculated from the discrete distribution using kernel
density estimation. In this and the two following figures the networks have two
inputs both of which were set to one.
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Figure 4 The result of multiplying the standard deviation of the above prior by 100
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Figure 5 An approximately uniform prior on network outputs
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experimenting with various prior widths until I found one that distributes its

predictions fairly evenly. Since this is a means of expressing reasonable prior beliefs

without reference to the data, this should not be regarded as parameter tweaking.

Figure 5 represents a sample from the prior used in the following simulations.

Because of the effect of the logistic function on the network outputs, it is difficult to

completely avoid some bunching at the extremes of the distribution. However, since

this is such a weak prior, one would hope that even a small amount of data will

overcome its deficiencies.

2.6 Modeling Bernoulli trials

The previous section described the behavior of the system in the absence of any data.

Now, taking a cautious step forward, we will look at how the system behaves when

the inputs have fixed values, and are therefore irrelevant. The only data of interest is

the value of the target variable, which is binary, and takes the value 1 with some

fixed probability P. It is as if we had done some number of tests, and the only data

we had collected was the outcome of each test. Based on this data, we want to

estimate the probability of a positive outcome on future tests. For any given estimate

of this probability we can calculate the likelihood of our data. If we have performed

N tests and observed M positive results, the probability of this result for a given value

of P is:

r N\

\Mj
pTf(i_ M

We can form a numerical approximation of the probability density function for P

conditioned on the observed number of positive results and the number of trials by
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Bernoulli N = 5 P = 1.0

Neural Network Beta

Figure 6 "Bernoulli trial" inputs and outputs: N = 5, P = 1.0

Bernoulli N = 5 P = 0.2
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Neural Network Beta

Figure 7 "Bernoulli trial" inputs and outputs: N = 5, P = 0.2

computing the likelihood of the data on a grid on the range [0 1] and rescaling so that

the area under the curve equals one. This is a numerical approach to computing a

beta function. In figures 6 through 9 I use this as a means of generating reference

distributions to see how closely the MCMC output distribution approximates the true

probability density functions. The exact distributions (beta functions) are shown as
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dotted lines, while the Parzen window estimates of the MCMC output densities are

shown as solid lines. The settings we have used in defining the MCMC simulations

are defined in appendix A.3.

I have found that this system provides good approximations over a wide range

of sample sizes and probabilities. Distortions from the true distributions are largely

predictable from the distortion of the prior from a uniform distribution. The prior is

slightly bunched at the extremes, and here the predictions are slightly pushed towards

the extremes. A near perfect fit might be expected if a truly uniform prior could be

devised. Nevertheless, these approximations are entirely adequate for this

application. Figures 8, and 9 are examples from the larger sample sizes showing how

the confidence tightens up as more data is collected.

Bernoulli N = 30 P = 0.0

Neural Network Beta

Figure 8"Bernoulli trial" inputs and outputs: N = 30, P = 0
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Bernoulli N = 200 P = 0.2

Neural Network Beta

Figure 9 "Bernoulli trial" inputs and outputs: N = 200, P = 0.3

2.7 Interpreting the output distributions

These results demonstrate that the outputs generated by these MCMC simulations

can be interpreted as approximations to probability density functions that capture our

two kinds of uncertainty. The horizontal axis represents uncertainty due to the (lack

of) predictive power of the input variables. Values located near the center (0.5)

represent high uncertainty, and values near the extremes (0 or 1) represent near

certainty. The shape of this distribution represents uncertainty regarding that estimate

due to sample size. This simple example has allowed us to compare the estimates

produced by the neural network to the true PDF's. Of course, one would never use

such a complex, computer-intensive modeling technique to solve a problem like this.

It is reassuring, however, that the system is able to capture the very simple structure

of this problem across a broad range of sample sizes. The tendency of neural
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networks to slip into overfitted solutions in the presence of sparse data has in the past

limited their usefulness when large amounts of training data are not available.

2.8 The importance of tuning the prior

In section 2.5 1 said that the key to getting Bayesian neural networks to work

properly in the presence of sparse and noisy data is to tune the prior distribution so

that it approximates a uniform distribution in output space. To illustrate this

principle I have repeated the "Bernoulli trial" experiments of section 2.5 using first

the carefully tuned "uniform" prior and then a more "standard" prior that favors

uncertain network predictions. For the uniform prior I have used the prior definition

given in the appendix for two class problems (A.3.1). For the "standard" prior I used

the prior definition that came with the sample classification problem provided with

Radford Neal's software. These two prior definitions are summarized in table 2.

The results of these experiments are summarized in figures 10 through 14.

Although both systems work well for the largest sample size (N = 200), the results

for the "standard" prior degrade dramatically for the smaller sample sizes, while the

results for the "uniform" prior remain good throughout all sample sizes.

Table 2: The prior definitions used for the results shown in figures 10 - 14

"UNIFORM" "STANDARD"

Input To Hidden Hyperprior Width 2.0 0.2

Input To Hidden Hyperprior Alpha 5.0 0.5

Hidden Bias Hyperprior Width 0.5 0.05

Hidden Bias Hyperprior Alpha 5.0 0.5

Hidden To Output Hyperprior Width 0.25 0.05

Hidden To Output Hyperprior Alpha 2.5 0.5

Output Bias Hyperprior Width 0.25 0.05

Output Bias Hyperprior Alpha 2.5 0.5
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Uniform Prior Standard Prior

Neural Network Neural Network

Figure 10: The two priors used in the following experiments

N = 5 (Uniform) N = 5 (Standard)

Neural Network Neural Network

Beta Beta

Figure 11: Uniform vs. Standard prior - Bernoulli trial, Sample size of 5. These
results illustrate the importance of using a nearly uniform prior when dealing
with sparse and noisy data, if the output distribution is to be interpreted as an
approximation to a conditional probability distribution.
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N = 10 (Uniform) N = 10 (Standard)

Neural Network

Beta

Neural Network

Beta

Figure 12: Uniform vs. Standard prior - Bernoulli trial, Sample size of 10

N = 30 (Uniform) N = 30 (Standard)

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Neural Network Neural Network

Beta Beta

Figure 13: Uniform vs. Standard prior - Bernoulli trial, Sample size of 30
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N = 200 (Uniform) N = 200 (Standard)
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Figure 14: Uniform vs. Standard prior - Bernoulli trial, Sample Size = 200.
The problems introduced by a poor prior can be overcome by a large data set.

2.9 The noisy XOR problem

In the previous example, the system was able to ignore its inputs and simply model

the distribution of the target variable. Here I return to the noisy XOR problem

introduced in section 2.3. To recap, I have generated data sets of various sizes by

encoding the XOR problem, but for a fixed proportion of training cases for each of

the four unique input vectors the target variable has been flipped to the opposite

category. Thus we have finally come to a genuine categorization problem, albeit a

very simple one.

Figures 15 through 18 display the output of the neural network system given

exposures to this problem with varying training set sizes (N) and varying proportions

(P) of "flipped" target values. I have continued to use for reference beta distributions

computed for each unique input combination. That is, I compute these treating each

possible input vector as an independent case. Since this uses my special knowledge
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that the inputs are in fact independent, these should not now be viewed as the true

probability distributions conditioned on the data. However, they do provide a frame

of reference when inspecting the output distributions. Based on the results of a

simulation using a training set with 800 examples (e.g. see figure 15), it appears that,

given a large amount of data, the system is able to learn that the inputs are

independent, and converges to a close approximation of the beta distribution.

As we decrease the training set size the approximations diverge from the beta

distributions, especially for high noise levels. There is a consistent pattern. Relative

to the beta distributions, the output distributions for these cases tend to be pushed in

towards the center, and down towards a uniform distribution. This is due to the fact

that the networks can no longer be as confident that the inputs are independent, so

that the outputs for any particular input vector are to some extent influenced by the

Noisy XOR N=800 P=0.7 Input< 1 0 >

Neural Network Beta

Figure 15 Noisy XOR predictions for the input (1, 0).: Training set size = 800 with
the probability of the target value being set to 1 equal to 0.7
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targets for the other vectors.. This behavior is desirable, since this is what permits

generalization to inputs which have not been explicitly represented in the training set.

Noisy XOR N=120 P=0.8 Input< 1 0 >

Neural Network tieca

Figure 16 Noisy XOR Training set size = 120, P = 0.8, Input - (1, 0)

Noisy XOR N=20 P=0.2 lnput< 1 1 >

Beta
Neural Network

it/i i) N = 20 P = 0.2
Figure 17 Noisy XOR:Predictions for inpu
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Noisy XOR N=20 P=0.0 Input< 0 0 >

Neural Network Beta

Figure 18 Noisy XOR predictions N = 20 P = 0.0 Input = (0, 0)

2.10 Discussion of the simulation results

I consider these results to be very encouraging. Neural networks are known to work

very well as classifiers of complex nonlinear data when sufficient training data are

available. This has led to the wide use of neural nets for problems such as speech

recognition and optical character recognition. One criticism of the use of neural

networks is that their performance is not easily interpretable. Another is that they

may overfit given sparse data. Here I have applied a non-linear network with 41

adjustable parameters to a very simple problem, and the results are readily

interpretable as approximations to conditional probability density functions. These

accurately model the two kinds of uncertainty we are concerned with in a scientific

application: uncertainty due to incomplete information, and uncertainty due to small

sample size.
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2.11 Probability Distributions over Three Outputs

In the previous section we looked at output distributions for two category problems.

In our medical application, however, we may wish to model more than two possible

outcomes. For example, in head injury research, the outcome categories used are

often death, severe disability, and moderate disability to good outcome. A

probability distribution over three categories lies in three space, but since

probabilities sum to one, it is constrained to lie on the plane that passes through the

points (1 0 0) (0 1 0) and (0 0 1). Since individual probabilities are constrained to the

interval (0 1), these three points form a bounding triangle for the feasible region for

probabilities in 3-space. A point in this triangle approaching one of the vertices

represents near certainty for a particular outcome, while a point near the center

represents a high degree of uncertainty. This triangular representation has been used

extensively in modeling outcome following head-injury (Teasdale, 1981), and I will

use it in the following sections

Figure 19: Feasible region for probability vectors in 3-space

57



2.12 Validating the three output model

To validate the three-outcome model, I repeated the "Bernoulli trial" experiment, but

with three possible outcomes rather than two. I trained the network on a variety of

probability distributions, which I kept constant over training sets of various lengths.

Figure 20 shows the output of the system for Bernoulli trials of length 10, 40, and

120. Each of these are based on samples of 20% class 0, 50% class 1 and 30% class

2. Level contours are displayed for confidence regions of 90%, 70%, 50%, and 25%.

As with the two class example, the continuous density is computed from the

distribution of network outputs using kernel density estimation, and the true

likelihood function is computed numerically. In this case the true conditional

probability distribution is represented by a Dirichlet function rather than a beta

function. The details of the computation of the Dirichlet function are given in the

appendix (A.2.2).

2.13 Input Rescaling

Inputs to a neural network should be scaled so that they have similar mean values and

standard deviation (Bishop, 1995). I have scaled input values using all available data

for severely head-injured patients over the age of 14 in the Edinburgh database to

determine the mean and standard deviation. At first I followed the usual procedure

of rescaling the inputs so that they had zero mean, and unit standard deviation. In

other words, I subtracted the mean value for a variable and divided the result by its

standard deviation. I noticed problems with this procedure in applying networks to
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Estimated (10)
Class 1

Claf 1 Class 2

Estimated (20)
Class 1

Class 0 Class 2

Estimated (40)
Class 1

Class 0 Class 2

Estimated (120)
Class 1

Class 0 Class 2

Actual (10)
Class 1

Class 0 Class 2

Actual (20)
Class 1

Class 0 Class 2

Actual (40)
Class 1

Class 0 Class 2

Actual (120)
Class 1

Class 0 Class 2

Figure 20 Actual and estimated densities with increasing sample size
for the three output model. The "estimated" distributions are the

outputs of the neural network, and the actual are the exact Dirichlet
distributions computed numerically. The parenthesized numbers are
the sample sizes.

59



sparse data, especially in regards to categorical and ordinal variables representing a

small number of classes. Problems can arise when lopsided distributions over classes

or values result in the mean being close to one extreme of the distribution. This

causes the range of the variable on the other side of the mean to extend well beyond

the central region of the sigmoid. To avoid this problem, I have centered the variable

around the midpoint of its range, defined as the mean of the smallest and largest

values seen, excluding values beyond 3 standard deviations from the mean.

2.14 Selecting the Prior

As discussed above for the purposes of this thesis, the prior distribution should be as

neutral as possible. That is, in the absence of any data it should give rise to systems

of networks that distribute predictions evenly over the space of possible probability

vectors. I have found that it is important to calibrate the prior as precisely as

possible. However, it's not possible for the prior to be perfectly consistent since a

Dead/PVS Good/Moderate Dead/PVS Good/Moderate

AGE=48: GOS12 = Good

Severe

AGE=16: GOS12 = Moderate

Figure 21 Outputs for 200 networks generated from the prior used in the following
simulations given first a small magnitude input (left) and then a large magnitude
input (right). This distribution is tri-modal, with peaks near each of the three
vertices.
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network generated by the prior will respond differently to an input with a small

magnitude than to large magnitude inputs. I have found that the system performs

best when the priors used slightly favor "strong" predictions (near the vertices of the

triangle) when given large magnitude inputs, but slightly favor "weak" predictions

(near the centroid of the triangle) when given small magnitude inputs (figure 21).

2.15 Generalization

So far I have used examples in which the input vectors are independent. That is, each

input can be treated as a unique case with its own separate mapping to the

probabilities expressed in the output values. An important assumption in using a

model like a neural network is that this is not the case. Rather, we assume that the

relationship between input and output values varies more or less smoothly, so that if

you change the inputs only a little bit, then the outputs should change only a little bit.

Exploiting this property, new instances can be classified by interpolating between

cases in the training set.

A conveniently simple example is readily available in the Edinburgh head-

injury database. One of the most important prognostic factors following brain trauma

is pupil reaction. If both pupils react to light stimulation, then the patient will

probably have a good recovery. If neither reacts the patient will probably die. If just

one reacts, then the chances are about even. Figure 22 shows the results of an

experiment I did to test the interpolation properties of this system. The right hand
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Neither

Reacting

Omitting one reacting
cases from training

Severe

Dead/PVS Good/Moderate

Including one Outcome statistics
reacting (Dirichlet)

Severe Severe

Dead/PVS Good^Moder-ate Dead/PVS Good/Moderate

Figure 22 Left Column', outputs of networks trained on a dataset omitting all
patients with exactly one pupil reacting on admission. Middle column', networks
trained on the full dataset. Right column', the statistics of the database computed as
Dirichlet distributions for each the three cases independently (see Appendix A.2.2).
The input for the neural networks is coded as a single variable that can take on the
value 0 (neither pupil reacting), 1 ( one pupil reacting), or 2 (both pupils reacting).

column graphically displays the outcome distributions for each pupil reaction

condition as represented in the Edinburgh database. These are Dirichlet distributions

computed numerically as described in the appendix (A.2.2). The middle column
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shows the neural network outputs for a system of networks trained on the database.

The input in this training set consisted of a single variable that took on the value two

if both pupils were reacting, one if only one pupil was reacting, and zero if neither

pupil was reacting. The left-hand column shows the outputs for a system trained on

the database omitting cases in which exactly one pupil was reacting. This forced the

system to form its estimates for the case of one reacting pupil by interpolating

between the two extreme cases. The mode of the predictive distribution is midway

between the two other cases, which is where you would want an interpolating model

to put it. The very loose confidence regions reflect the fact there is no guarantee that

this guess is correct. The outcome categories are derived from the Glasgow Outcome

Score (see chapter 1, table 3), with the two worst categories collapsed and the two

best categories also collapsed, to form the three valued outcome set shown here.

As with the previous examples, the claim regarding the estimates formed by

the neural network system is that they represent the conditional probability density

functions for the output category probabilities conditioned on the data. Unlike most

of the previous examples, it is not possible to compute the desired densities for

comparison. However, the theoretical basis for this claim was summarized in the

previous chapter, and the previous simulations for simpler problems have verified the

accuracy of this implementation by comparison of the computed densities with the

actual PDFs computed numerically. It is also reassuring that in this case modeling

pupil reaction data the output densities for the full model correspond closely to the

densities calculated by considering the three categories independently. It is not

unreasonable to treat such a small number of ordinal categories as independent cases.
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As was the case for two class problem, the numbers of hidden nodes used in

the network did not appear to be a sensitive parameter in the model. The results in

figure 22 were obtained with 14 hidden nodes. I tried varying the number from 4 to

20, and obtained similar results in each case. As discussed in chapter one, this

property of the Bayesian neural network is of great significance. In other approaches

to neural network training, the problem of determining the number of hidden nodes is

critical, and usually requires the use of a special data set reserved just for this

purpose.

The next chapter will proceed through a series of more complex examples

using real data. This will allow us to further validate the Bayesian neural network

implementation by comparing our results with well established results based on

statistical prognostic modeling of patient outcome following head injury.

2.16 Summary

Historically, neural networks have proven to be successful engineering solutions to

problems which are poorly understood, but for which large quantities of training data

are available. Examples are the fields of speech recognition and optical character

recognition. In scientific contexts, however, the usefulness of neural networks has

been limited. This is partly due to lack of interpretability, and partly because the

amount of available data for analysis would not usually be considered sufficient to

justify the use of a highly complex model. Here I have applied networks with large

numbers of hidden nodes to very simple problems, and the results are readily

interpretable as approximations to conditional probability density functions. The
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PDF's scale appropriately with sample size, and noise levels. This supports the

argument that it is not necessary to avoid complex models in dealing with small

datasets when this Bayesian framework is employed (Neal, 1996).

The examples in this chapter validate the concept of using Bayesian neural

networks to support scientific research, and also verify the software implementation.

Two key issues concerning setting the networks up for this kind of work are input

normalization and specification of the prior on network parameters. Procedures for

handling these problems have been implemented and tested. Interpolation properties

of the system have been demonstrated on data from the Edinburgh head-injury

database. Further tests of generalization and issues such as under- and over-fitting

will be explored in the next chapters

The Edinburgh head-injury database consists of many overlapping datasets.

Some of these consist of large numbers of patients, each described by a small number

of variables. Others are composed of small numbers of patients, but each patient is

described in terms of a much richer parameter set. The challenge in analyzing this

database is to identify the most significant parameters being measured: those

parameters that have the most to tell us about the pathophysiological processes that

follow brain trauma. The two most important factors to consider are first, the

conditional probabilities of various possible outcomes for each patient given the

available data, and secondly, how secure those estimates are given the sample size for

the particular parameter set being used. The modeling techniques described here

provide principled descriptions of these two kinds of uncertainty.
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Chapter 3

Prognostic models based on demographic data and
simple clinical indicators

In the previous chapter I validated Bayesian neural networks on a series of very

simple problems for which exact solutions could be derived. Now I will continue the

model validation process on real data from the Edinburgh head-injury database.

Comparison of results with exact solutions will no longer be possible. However, I

will show that the use of Bayesian neural networks in modeling this data replicates

results that are well established in the field of head injury research. This provides

further validation of these new techniques. In the previous chapter I looked at a

model based simply on pupil reactivity. Next, I'll move on to two slightly more

complex variables. The first of these is the motor score component of the Glasgow

Coma Scale. This will let us look at interpolation in Bayesian neural networks in

slightly more complex contexts, moving from pupils, a three category ordinal

variable to motor score, a five category ordinal variable. Then we'll look at age as a

prognostic factor. This takes on values from 14 to over 90, so it approximates a

continuous variable. Finally I will compare the performance of a series of

multivariate models.

3.1 Baseline models using data available on admission

There is a long history of statistical modelling of outcome following head-injury

based on demographic data and basic clinical information (e.g. Titterington et al.,

1981). My intention here is not to compete with this work, or to compare the



performance of neural networks with other statistical techniques which have been

used. Rather, I want to develop baseline models based on established principles in

this field that I can build on in developing models that incorporate the detailed

physiological data that are the distinguishing factor of the Edinburgh database. These

baseline models will serve as controls for the more complex models. For example, a

certain physiological effect detected in the Intensive Care Unit may simply be

symptomatic of injury severity and not carry any new information. In this case, a

baseline model incorporating the appropriate injury severity score will perform as

well as the more complex model that also uses the physiological data. They will also

allow us to further validate the implementation of Bayesian neural networks by

comparison of our results with well established results in this field.

3.2 The motor score model

The motor score is a component of the Glasgow Coma Score (see chapter 1, table 1).

It is a graded scale from one to five that measures the integrity of the patient's motor

reactions as an indication of depth of coma. The scores used here are recorded after

the patient's state has been stabilised in neurosurgery (post-resuscitation). Figures 1

and 2 show the predictive distribution of the neural network system compared with

the statistics of the database computed as independent events.

As with the pupils score example, the model does not diverge a great deal

from the independent data model, which is reassuring. To the extent that it does, it

tends to linearize the model. This is reasonable. The overall trend of the model is
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Figure 1 Probability of good/moderate outcome vs. motor score computed as
independent categories for each motor score grade, with 90% confidence bands

n 1 1 1 i

1 2 3 4 5

GCS Motor Score

1 2 3 4 5

GCS Motor Score

Figure 2 The neural network output distribution with 90% confidence bands
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Database Statistics

(Dirichlet)
Neural Network

Estimates

Motor Score = 2

Motor Score = 3

Severe Severe

Dead/PVS Good/Moderate Dead/PVS Good/Moderate

Severe Severe

Dead/PVS Good/Moderate Dead/PVS Good/Moderate

Figure 3 The predictions for outcome given motor scores 1-3 based on the statistics
of the database considered independently (left) and on the outputs of the neural
network system (right).
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linear, so an interpolating model will tend to emphasize that trend due to effects of

smoothing. The probability of good to moderate outcome given grade 2 motor score

as estimated by the neural network is lower than the corresponding estimate using the

independent data model. This seems slightly odd, since it appears to have the effect

of making the relationship less linear. One should keep in mind however, that this

plot is of only one of three probabilities, so some information is lost. A closer look

shows why this has happened. Figure 3 shows how the full distributions change as

they move from grade 1 to grade 3. Here it can be seen that the grade 2 score was

much further outside the trend of the independent data model than was evident in the

plot, and that the neural network model has pulled it more into line with the trend.

3.3 Modeling the effect of Age

Age is known to be a factor in recovery from brain trauma, with recovery being more

problematic for older patients. The plot in figure 4 shows the probability of death

against age as derived by a system of neural networks with twelve hidden nodes

trained on age alone. In looking at the models trained on pupil score and motor score,

I compared the outputs of the model to the raw statistics of the database. In this case,

because the variable is much more fine-grained, such a comparison would be difficult

to contrive and interpret. However, I have plotted the distribution of ages for patients

who died, or were PVS at 12 months, as a rug of tic marks along the top of the graph.

The distribution of ages for other patients is plotted as a rug along the bottom. In

plotting the "rugs" I added a random fraction of a year onto the age to avoid an
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Figure 4 The effects of age on outcome following severe head-injury. This plots the
neural network predictions for probability of death given age. The "rug" of tic marks
along the top of the graph displays the distribution of ages for patients who died or
were PVS. The lower "rug" is the distribution of ages for patients who did not die.

excessive number of collisions. The behaviour of this model replicates recent results

working with the same database but using different techniques (Signorini, 1999a).

That is, the effects of age are very slight until sometime in the 40's. Then the rate of

increase of the probability of death is marked, and this trend continues in a roughly

linear fashion into old age.

3.4 Comparing models

The three univariate models discussed so far, involving pupil score, motor score and

age respectively, were discussed in terms of performance on their training sets.

These models are sufficiently constrained that the functions computed can be

inspected directly for smoothness and the effects of over and under-fitting. More
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complex models are more difficult to evaluate. I hoped that performance on the

training set might be an adequate basis for model comparison when Bayesian training

techniques are used. However, when I compared results for a few models using three

to five input variables first on the training set and then using 10-way cross validation,

I found that predictive accuracy improved about 5 - 10% when evaluated in sample. I

felt that this difference was too great to justify using the simpler approach, so on the

remaining examples 10-way cross validation is used unless otherwise noted.

Two common measures for comparing the performance of models are the

predictive accuracy measured as the percentage of correct test case predictions, or the

difference between the percent correct and the score that would be achieved simply

by guessing the most common class in all cases. These measures are very unstable

given the small sample sizes we will be looking at. Often a few lucky or unlucky

guesses near the decision boundaries make a model look much better or worse than it

really is. Another problem with this metric is that it does not take into account the

probabilities assigned by the model, but only the prediction itself. This is a particular

problem for this study, because my primary interest is not in prediction per se, but in

modelling the conditional probability structure of the data.

A more stable measure is the mean probability assigned to the correct class.

However, this metric is not always a good indication of the degree to which the

probability distributions have been correctly modelled. For example, say that the

target variable varies randomly (with respect to the input variables) between two

possible outcomes with a probability of 0.5. In this case a model that correctly

estimated the probability of either outcome as 0.5 for all cases would be judged to be
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no better than a model that alternated between the two outcomes, always assigning a

probability of 1.0.

To avoid this problem we can work with the negative log of the probabilities

rather than the probabilities themselves. This transformation produces a value that

goes to zero when the probability assigned to the correct class goes to one, and

diverges to infinity as the probability goes to zero. This value can be interpreted as

our degree of "surprise" at a particular outcome given the assigned probability. I will

favour the models that produce the least amount of "surprise" when the test data is

revealed. The logarithmic score reported is the mean negative log probability

assigned to the correct class. Again, I can correct for the effects of the arrival rates of

the outcome classes by reporting the difference between the score attained by always

guessing the probability distribution suggested by the arrival rates, and the score

attained by the model. We will see that this score corresponds well to the degree to

which the model is able to distinguish the outcome classes on the basis of the input

variables.

I have calculated the output of the system differently depending on whether it

is being evaluated according to percent error or logarithmic score. In the first case I

have chosen the mode of the predictive distribution as the output of the system. As

discussed in the previous chapter, this represents our best guess at the class of the test

case given the available data. When the model is to be evaluated using the

logarithmic score, I have integrated over the predictive distribution. This can be

accomplished simply by taking the mean of the predictions of all the networks

selected from the posterior distribution. This modifies the estimate of the

probabilities assigned to each class based on the available sample size, avoiding
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overconfident predictions when there is insufficient data to support them. This only

makes sense when you are interested in accurately modelling the conditional

probability structure of the data; there is no point in modifying predictions based on

sample size if you are only interested in whether or not the correct class is predicted.

3.5 Comparisons of some simple models

I trained a series of models using basic demographic data and clinical indicators. The

input variables used are described in table 1. The output is the Glasgow Outcome

Score assessed at 12 months (see table 2)

The choice of input variables was based on current clinical practice and on

previous work in modelling this kind of data. One of the most powerful predictors of

Table 1 Input Variables

Pupil Reaction Both, one, or neither pupil reacts to light stimulation
Motor Score Graded scale from 1 to 5 measuring motor response: a component

of the Glasgow Coma Scale
Age Coded as an integer continuous variable
Sex Binary Variable
ISS Injury Severity Score graded scale from 1 to 75
Focal Binary variable indicating whether the injury is focal or diffuse

based on the CT scan.

Table 2 12 month outcome categories used. Categories 1 and 2 were collapsed into a
single category, as were 4 and 5, to produce the three output model.

GLASGOW OUTCOME SCORE
1 Death
2 Persistent Vegetative State
3 Severe Disability
4 Moderate Disability
5 Good Outcome
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outcome is the Glasgow Coma Score (GCS), which is composed of three separate

scales for verbal, motor, and eye response. In the years since the GCS was devised,

evaluation of the eye and verbal responses has become problematic, because

seriously injured patients usually arrive at the neurosurgical unit already paralysed

and ventilated. This makes it impossible to assess the complete GCS score without

first allowing the effects of the drugs to partially wear off and removing the tube

down the throat of the patient (Marion and Carlier, 1994). Most units will not do this

unless it is clinically indicated. In the Edinburgh database, all of the severe head

injury cases are recorded as having the lowest possible eye score, and 75% have the

lowest possible verbal score, while the remainder have the next lowest score. Given

the problems in assessment I decided not to include either of these components as

inputs to my models, and to rely entirely on the motor score.

Besides the GCS motor score, I have included the pupil score which records

whether one pupil or both pupils fails to respond to light stimulation. This is well

known to be a strong indication of a poor outcome. I have also used the age and sex

of the patients as predictive variables. Beyond these, I have tried including two other

indicators. The first is the Injury Severity Score (ISS). This is an overall score

indicating the severity of injury suffered by the patient including but not limited to

the head injury. I included this because I thought it might be necessary to control for

injuries to the patient besides the head injury. The other indicator is a binary variable

indicating whether the injury was focal or diffuse.

The performance of the models tested is shown in table 3. As is to be

expected with sparse and noisy data, the assessment using percent error leads to some

anomalies: notably that the model including only pupil score and age outperforms all
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Table 3 Performance metrics for simple models. N is the number of patients in the
training set. The univariate Motor and Pupils models are evaluated in sample; the
remainder are evaluated using 10-way cross validation. The error deltas are the
improvements over always simply guessing the most common class.
INPUT VARIABLES N PERCENT PERCENT LOG LOG

ERROR ERROR
DELTA

ERROR ERROR
DELTA

Motor 257 0.470 +0.055 1.007 +0.029

Pupils 249 0.386 +0.133 0.919 +0.114

Pupils Motor 248 0.412 +0.088 0.890 +0.142

Pupils Age 248 0.351 +0.151 0.911 +0.122

Pupils Motor Age 242 0.364 +0.141 0.832 +0.200

Pupils Motor Age Sex 242 0.360 +0.145 0.836 +0.196

Pupils Motor Age 232 0.366 +0.150 0.843 +0.199
Focal

Pupils Motor Age ISS 235 0.370 +0.146 0.850 +0.189

Pupils Motor Age ISS 226 0.354 +0.173 0.858 +0.179
Focal

Pupils Motor Age Sex 226 0.373 +0.151 0.869 +0.190
ISS Focal

other models. The results using logarithmic score are more consistent with previous

work. As explained in the previous section, the logarithmic error is generally more

reliable than percent error in evaluation models. Here the optimal model is judged to

be the one using pupil score, motor score and age, while the pupils/age model falls

from first place to having the lowest score of any of the multivariate models.

The use of sex, Injury Severity Score, and the focal/diffuse variable do not seem to

help prediction on this data set, and perhaps leads to some slight overfitting, as

evidenced by the decline in accuracy of these models as compared to the

pupils/motor/age model. In the next two sections I will compare these results with

other modelling approaches used on earlier head-injury databases, and also on this

same database.
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3.6 Comparison with previous work on another database

One of the largest and best known previous studies is the comparative study of

discrimination techniques based on the "three country" head-injury database

discussed in the introduction (Titterington et al., 1981). A formal evaluation is not

possible because of the different data sets collected in different decades, among other

reasons. Even if it were possible, a full comparison with this work would be

difficult because the authors' evaluation utilises 4 different variable sets, 6 different

error terms, and 19 different modelling techniques. On the other hand, even a very

crude and informal comparison will be of some value in validating the models

employed here. If they do not perform at least roughly as well as established

statistical techniques, we will know that something is wrong. I'll limit myself to a

brief comparison of the neural network pupils/motor/age model with the results

reported for their variable set n, which is the closest match possible. Variable set II

includes four variables: age and the three components of the GCS score. For reasons

discussed above, I have only included the motor component of the GCS. However, I

have included the pupil score in training this model. Using error rate as a guide, the

neural network model fares poorly, tying for dead last among the 20 models. It does

better using the more reliable and interesting (from my point of view) logarithmic

error term. Evaluated in this way it comes in 12th. For details of the error rates for

all these models see table 4. For a discussion of the "percent error" and "log error"

error terms, see section 3.4 in this chapter.
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MODEL MODEL TYPE PERCENT LOG
ERROR ERROR

NORLIN2 Normal based discriminant 0.306 0.757
NORLIN1 Normal based discriminant 0.316 0.760

INDEP2 Independence (Unordered Categories) 0.340 0.762
LINLOG Logistic regression 0.314 0.764
INDEP3 Independence (Unordered Categories) 0.338 0.771

INDEP1 Independence (Unordered Categories) 0.338 0.775

LANC1 Lancaster 0.298 0.808

LANC2 Lancaster 0.298 0.809

LANC3 Lancaster 0.296 0.818

LATCL1 Latent Class (Mixture) 0.328 0.819

LATCL2 Latent Class (Mixture) 0.310 0.822

Bayesian Neural Network 0.364 0.832

KEREX3 Kernel (Ordered Categories) 0.340 0.852
KERORD2 Kernel (Ordered Categories) 0.332 0.856
KERUN2 Kernel (Unordered Categories) 0.328 0.872

NORQUAD Normal based discriminant 0.304 0.884

KEREX2 Kernel (Ordered Categories) 0.326 0.903

KERORD1 Kernel (Ordered Categories) 0.352 0.905

KERUN1 Kernel (Unordered Categories) 0.364 0.924

KEREX1 Discrete Kernel 0.334 0.953

Table 4 NB this is only intended to supplement the discussion in the text. This is not
a formal model comparison. This shows the results using Bayesian neural networks
(BNN) on the Edinburgh database together with those reported earlier by Titterington
et.al. using 19 different models on the "Three Country" database. The training set for
the results reported there contained 500 patients, and the models were evaluated on a
test set of equal size. The training set for the BNN contained 242 patients, and it was
evaluated using cross validation. The inputs for the models also differed (see text).

I would emphasise two points in arguing that these results are actually quite

encouraging:

• The training set size for the neural network model was less than half the

size for the other models

• For reasons described above, it is difficult now to fully evaluate the GCS,

so the current data for these kinds of models is not as informative as that

available to the previous study
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One further reason for a degree of optimism is that the previous study found

that the simplest models worked best (nai've Bayes followed by the normal based

linear discriminant). Despite having less than half the amount of training data, the

neural network actually outperformed, judging by logarithmic error, the models of

comparable power. It is not surprising that simple models would perform well on

this data set. The indicants used are clinical scales designed to be monotonic and

roughly linear. It is possible that the more complex models will compare more

favourably when the problem becomes more complex, i.e. when we start adding in

the physiological data.

3.7 Other work on the Edinburgh database

Two previous studies have developed predictive models based on the demographic

portion of the Edinburgh database. The first (Signorini et al., 1999b) developed a

logistic regression model with input variables age, pupil score, GCS score (the total

of the eye, motor and verbal scores), ISS score, and a binary variable indicating focal

or diffuse injury. This study reports an error rate of 15%. It's not possible to

compare this result with those reported here or in (Titterington et al., 1981), however,

for two reasons. First, this model does not attempt to predict severe disability as a

separate outcome, but only distinguishes between survival and death. The second

factor contributing to the lower error rate is that this study includes patients with

moderate as well as severe head injuries. This leads to an improved error rate

because moderates almost always have a good recovery by the criteria used here.

Signorini et al. did not report the percentage of survivors in their test set, but 75% of
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the patients in the training set survived. The proportion in the test set is probably

similar. Therefore an error rate of 25% would have been attained simply by always

guessing the most common outcome category (survival). By contrast, in the data set

used for the "pupils/age/motor" model I reported, limited to severely injured patients,

only 49.5% of the patients belonged to the most common outcome category (Good

Outcome or Moderate Disability). In sections 3.4 and 3.5 I discussed the use of

"delta" error scores, defined as the difference between the error rate achieved by the

model and that achieved by guessing the most common class. If we use this as our

criterion, the neural networks did better than the logistic regression model. The delta

error (i.e. the improvement in prediction over guessing) for the neural networks is

14%, while that for the regression model is 10%. Of course, since these were

evaluated on different data sets, this is not to be taken as a formal model comparison.

The modelling choices in the paper by Signorini et al. are reasonable given

the aims of that study, but these choices would be counterproductive to the work

described in this thesis. In looking at the effects of physiological derangements, the

distinction between severe disability and moderate disability to good outcome is of

particular interest. Modelling adverse physiological effects in cases of moderate

head injury would be of interest, but moderates are rarely subject to intensive

physiological monitoring.

The other previous study that developed prognostic models based on the

demographic data in the Edinburgh database investigated the automatic induction of

decision trees. This approach has the great advantage of producing models that may

have direct clinical interpretations. However, of the models produced based solely

on the demographic data and clinical indications discussed in this chapter, none have



performed better than simply guessing that the patient will have a moderate to good

outcome (Andrews, McQuatt, et ah, 1999).

3.8 Model performance with increased sample size and
increased information per sample

As described in the previous chapter, my main interest in developing these models is

to identify clinical features that allow us to discriminate between the patients who are

doing well, and those who are not. To display graphically how well a model is able

to distinguish the output classes on the basis of the inputs, we can average over the

test set the predictions for each output class and plot these "prototype" probability

vectors for each class in the prediction triangle as in figure 5. Figure 6 shows how

discrimination improves both with increased sample size and with additional input

PupibMotorAge (N=218) 0.200
Sev«re

Figure 5 The mean of predictions made by a simple prognostic model for cases
broken down by the three output classes: Death (circle), Severe Disability (square)
and Good outcome (triangle).
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Guess (N=264) 0.000
Severe

Dead/PVS Good/Moderate

Pupils (N=249) 0.114
Severe

Dead/PVS Good/Moderate

Motor (N=90) -0.021 Motor (N=257) 0.024
Severe Severe

Dead/PVS Good/Moderate Dead/PVS Good/Moderate

PupilsMotor (N=90) 0.019 PupilsMotor (N=218) 0.142
Severe Severe

Dead/PVS Good/Moderate Dead/PVS Good/Moderate

PupilsMotorAge (N=90) 0.048 PupilsMotorAge (N=218) 0.200
Severe Severe

Dead/PVS Good/Moderate Dead/PVS Good/Moderate

Figure 6 Increasing ability to separate classes with more input variables
and increased sample size. Sample size is given in parentheses, the
following number is the improvement in logarithmic score over guessing the
prior probabilities. See table 1 for description of input variables.
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variables for some of the models tested. The score shown for each model is the

difference between its logarithmic score and the score attained by simply guessing

the most common output class, i.e. good to moderate outcome. This appears to

correspond well with the distance separating the prototype vectors in output space. It

is important to note that this representation may appear to understate the clinical

significance of the input variables. This is because the logic of these diagrams is the

reverse of the usual course of clinical logic. For example, look at the motor score

diagrams in figure 6. The icons representing the various possible outcomes are not

well separated for the larger data set, and practically collapse for the smaller one.

The logarithmic score for the small data set is actually worse than that attained by

guessing. One might be tempted to conclude that that the motor score is not of great

clinical significance. If we look at the plot in figure 2, however, we see a very

different picture. Here we see the graph of the probability of a good outcome against

motor score, and it's clear that as the motor score goes up, the probability of a good

outcome goes up in a linear fashion. This plot depicts the normal relationship

between clinical indication and patient outcome, answering the question: "Given

certain indications, how likely is a particular outcome?" The plots I am using here on

the other hand work in reverse fashion, answering the question: "Given that the

patient had a particular outcome, how predictive of that outcome were the clinical

indications?" These questions correspond to the probability of the outcome given

the data and the probability of the data given the outcome. These two quantities are

related mathematically by Bayes' theorem, but as this example shows, the

relationship is not always obvious. This should be borne in mind when evaluating

these and the following results. Where possible, for example in the case of univariate



models, I will use a representation like the one in figure 2, that plots outcome

predictions against values on the input variable. Interpretation of multivariate

models will be more difficult.

3.9 Summary

In this chapter I continued the process of model validation begun in the previous

chapter. I first looked at a univariate model of the GCS motor score. This is a

clinical scale that assumes integer values between one and five, with higher values

being better. It was carefully designed to have a roughly linear relationship with

outcome. The fact that this is a coarse grained variable allowed us to compare the

neural network predictions with those obtained using the independent data model,

and the results are reassuring. Next I looked at another univariate model, this one

relating age to outcome. Since age is a much more fine grained variable, it was not

possible to validate the model in the same way. However, the results obtained using

Bayesian neural networks, replicate closely another analysis using this data and an

additive model (Signorini et ah, 1999b).

Finally I looked at a series of multivariate models relating standard clinical

indicators to patient outcome. This allowed a rough comparison of the results using

Bayesian neural networks with those reported in the literature using standard

statistical techniques. The necessarily very informal nature of this comparison does

not permit any conclusions regarding the relative merits of these different modelling

techniques. The point of this comparison was to confirm that the performance of

these neural networks on this part of the Edinburgh database was roughly similar to

that obtained using standard techniques, and would lead to similar conclusions



regarding the relative importance of the standard clinical indicators. Since these

results in the literature are very well established, any deviation would cast doubt on

the validity of these new modelling techniques. On the other hand, the fact that these

models produce results consistent with the previous work provides another measure

of model validation.

At this point I will consider the model validation process to be complete. In

the next three chapters I will apply Bayesian neural networks to the full Edinburgh

head-injury database. The emphasis will be on the interpretation of the detailed

physiological data, which is the distinguishing feature of this database.
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Chapter 4

Feature extraction from physiological time series data

So far the models presented here of the data in the Edinburgh head-injury

database have been based entirely on demographic data and simple clinical

indicators. As noted in the previous chapter, there is a long history of

prognostic modeling based on this kind of data. The work described to this

point contributes little that is new, although it does validate the modeling

techniques used, and it also provides some insights into this database. The

distinguishing factor of the Edinburgh study is its focus on the influence of

physiological derangements during intensive care on patient outcome, and on

detailed computerized recording of patient physiology. This chapter will be

concerned with methods for extracting features from this mass of data that can

be used for prediction and analysis.

4.1 The Edinburgh University Secondary Insult Grades

The minute by minute recordings of physiological parameters measured in the

intensive care unit have to be summarized before they can be presented to a

prognostic model like a feed-forward neural network. I have been guided in my

choice of features in part by the thresholds selected on clinical grounds for a

previous study involving this database (Jones et al., 1994). A series of

physiological insult severity thresholds were defined for each parameter being

collected. These insult thresholds have collectively become known as the
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Table 1 The Edinburgh University Secondary Insult Grades (EUSIG)

GRADE A GRADE 1 GRADE 2 GRADE 3

Raised Intracranial Pressure (mm Hg) >20 >30 >40

Arterial Hypotension (mm Hg) <70 <55 <40

Arterial Hypertension (mm Hg) >160 >190 >220

Cerebral Perfusion Pressure (mm Hg) <70 <60 <50 <40

Hypoxia (Sa02 %) <90 <85 <80

Cerebral Oligemia (Sv02 %) <54 <49 <45

Cerebral Hyperemia (Sv02 %) >75 >85 >95

Pyrexia (°C) >38 >39 >40

Tachycardia (bpm) >120 >135 >150

Bradycardia (bpm) <50 <40 <30

Edinburgh University Secondary Insult Grades (EUSIG) and are summarized in

table 1. In the previous study, the absolute durations of monitoring time over

or under these insult thresholds were considered as prognostic factors.

Hypotension, pyrexia, and hypoxia were found to be the most significant

secondary insults for prediction of patient outcome.

A second study involving the Edinburgh database (Signorini et al,

999b), again using the EUSIG categories, tested four summary measures:

• Presence of any secondary insult for each category (binary variables)

• Total absolute duration for all secondary insults of the lowest grade
or above in each category.

• Proportion of valid monitoring time spent at the lowest grade or
above in each category

• A measure which weighted higher grades of insult more heavily than
lower grades

For pragmatic reasons this study included all patients with computerized

monitoring, and assumed that when a channel was not monitored (for example,

due to the absence of an ICP probe), there were no insults of that type. This
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study looked at three time periods, considering secondary insults during the first

24 hours, 48 and 72 hours following injury. For this reason, the distinction

between absolute duration and proportion of good monitoring time is less

significant than it otherwise would have been. All of the insult summaries

performed equally well in terms of error rate. When evaluated using the Brier

score (a quadratic error term) and ROC curve area, the weighted insult summary

did best followed by proportion of good monitoring time. However, the results

for these two approaches were so similar that the simpler feature using

proportion of monitoring time not weighted by insult grade was selected for the

final model. The results for all four feature extraction methods were that only

ICP significantly improved prediction over a model based on simple

demographic and clinical indicators.

4.2 A study based on the Traumatic Coma Data Bank

An earlier study based on the Traumatic Coma Database (Marmarou et al, 1991)

systematically considered several different methods of feature extraction. For

example mean, minimum and maximum parameter values during specified time

periods were considered. In addition, absolute and proportional monitoring

time were calculated for a wide range of candidate threshold values. In all this

study entered 187 candidate descriptors into a stepwise forward variable

selection procedure using a logistic regression model. It was reported that

proportion of monitoring time with ICP over 20 mm Hg and proportion of

monitoring time with arterial blood pressure under 80 were the two most

prognostic factors of those considered. These values are close to the grade 1
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insult thresholds used in the Edinburgh study, which were ICP over 20 and

blood pressure under 70.

Due to the computational expense of the modeling techniques used in

the present study, it has not been feasible to perform a systematic search of

candidate features. I have relied on the previous work described above in

limiting myself to proportion of monitoring time outside thresholds. The

thresholds used have generally been the least severe grade insults defined in the

EUSIG categories. In a few cases it was necessary to modify these thresholds in

order to obtain a reasonable distribution over patients for a particular feature.

Using features based on threshold values has the advantage of

simplicity, and is also consistent with clinical practice. Clinicians are

accustomed to thinking in terms of trying to keep physiological parameters

within certain limits. Arguments can be made for using either the absolute or

proportional measures for insult duration. The results reported in (Signorini et

al, 1998) favor the proportional representation, and this is consistent with

results using a similar database collected at the Baylor College of Medicine (C.

Contant, personal communication).

Finally, there is the question of how to deal with missing data. Signorini

and colleagues (1999b) made the assumption that the absence of monitoring

data for a particular parameter implied the absence of secondary insult. This

allowed them to develop a prognostic model that can be used for any patient in

intensive care, regardless of what monitoring data is or is not available. Since

the focus of this study is on gaining a better understanding of the Edinburgh

database rather than on prognostic modeling per se, I have adopted a different
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approach. For any set of parameters I enter into a model, I require that each has

at least 6 hours of valid monitoring time within 48 hours of the injury. This

requirement limits the value of these models for actual prognosis in the ICU

because they can't cope with missing data. On the other hand it removes a

potential source of error in analyzing the existing body of data.

4.3 Summary

This study will build on previous work on feature extraction from physiological

time series data collected from patients following a head injury. This work has

consistently found that the percentage of monitoring time during which

physiological parameters are below or above predetermined thresholds is a

useful prognostic feature. It is also one that is easily understood from a clinical

perspective. This is the approach I will adopt in this thesis, and my choice of

thresholds will also be guided by this previous work.

91



 



Chapter 5

Raised intracranial pressure and related factors

Chapter two laid the groundwork for applying Bayesian neural networks in a

scientific context. Chapters three and four surveyed previous work on prognostic

modeling for head-injured patients, and further validated the neural network models

by using them to replicate previous results in this field. In this chapter I will apply

these models to the physiological time series data contained in the Edinburgh head-

injury database. It is hoped that the use of flexible, nonlinear systems to model these

detailed records of patient physiology will lead to new insights regarding the risk

factors for head-injured patients in intensive care. In this chapter we will look at

intracranial pressure, cerebral perfusion pressure, arterial blood pressure, and body

temperature. It will be shown that for the patients studied here, the effects of all of

these parameters on patient outcome are best understood in relation to a feedback

loop between raised intracranial pressure and reduced cerebral perfusion pressure.

This analysis will also provide insight into the critical threshold on cerebral

perfusion pressure, and the evolution of these problems over time following the

primary injury.

5.1 Intracranial pressure and cerebral perfusion pressure

Raised intracranial pressure (ICP) is probably the most studied of any of the

physiological parameters discussed here. Because the brain is tightly enclosed in the

skull, swelling due to contusions and inflammatory processes can rapidly lead to

various forms of neuronal and structural brain damage, and in extreme cases, to



death. One problem associated with high ICP is a reduction in cerebral perfusion

pressure (CPP), defined as the arterial pressure gradient between the cranium and the

rest of the body. Increases in ICP can produce reductions in CPP, affecting the

delivery of oxygen and nutrients to the brain. CPP cannot be measured directly, but
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Figure 1 Left: the sampling distribution of ICP over the Edinburgh database.
Vertical axis is percentage of monitoring time: horizontal axis is ICP in
mm HG. The regions corresponding to the EUSIG grades are highlighted.

Right: the distribution over patients of the feature for proportion of
monitoring time with ICP over 20 mmHg. Vertical axis is number of
patients: horizontal is proportion of monitoring time spent with ICP above
20.
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Figure 2 Left: sampling distribution for CPP readings over the Edinburgh database.
Vertical axis is proportion of monitoring time: horizontal axis is level of
cerebral perfusion pressure in mm Hg

Right: Distribution for proportion of monitoring time spent with CPP under
70 mmHg. Vertical axis is number of patients
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it can be estimated as the difference between ICP and arterial blood pressure. Some

research has suggested that the primary aim of therapy should be to maintain CPP

rather than to reduce ICP (Rosner 1985, Miller et al., 1993). Figure 1 shows the

distribution of ICP values recorded in the Edinburgh database. The most striking

feature of this distribution is the persistent tail covering very high ICP levels. The

histogram to the right shows the numbers of patients having ICP over 20 for the

given proportions of monitoring time. Again there is a long tail into the high ranges,

suggesting that there is a distinct group of patients with severe ICP problems. The

distributions for CPP readings, and for proportion of monitoring time spent with

CPP under 70 (figure 2), show a similar pattern.

Figures 3 and 4 show the predictions of neural network systems trained on

these ICP and CPP features. The ICP system has proportion of monitoring time with

ICP over 20 as its only input, and the CPP system uses proportion of monitoring time

with CPP under 70. These plots tend to confirm the existence of two distinct patient

groups in respect to these features. There is no discernible effect from either CPP or

ICP insult until the proportion of monitoring time in insult range reaches about 40%.

This threshold corresponds with the beginning of the long tails on the distributions

for these parameters that we see in figures 1 and 2. Once the effect of ICP begins to

be evident, it increases in roughly linear fashion with the amount of insult. CPP on

the other hand, looks more like a step function. Risk of death increases dramatically

beyond the 40% threshold, rapidly reaching that associated with the highest levels of

ICP insult, and then plateaus at this level.
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Figure 4 Neural network predictions of probability of death given proportion of
monitoring time with CPP under 70.

I want to emphasise that the quality of the data does not justify viewing the

40% figure as an exact clinical threshold. The various patient histories and the

amounts of missing data per patient make this figure difficult to interpret. Rather, it

appears that we have two very distinct groups of patients. One group has relatively
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small amounts of ICP/CPP insults, and the effects of these are relatively benign.

Patients in the second group experience chronic problems, and these have severe

consequences.

Of the 114 patients with ICP monitoring, there were 34 with ICP over 20 mm

Hg at least 40% of the time, and 21 with CPP under 70 for at least 40% of the time.

Figure 5 shows the distributions of CPP related insults for these groups and for the

patients under the 40% thresholds. The bar plots are coded according to the grade of

insult, with the most serious grades (CPP < 40 mm Hg and ICP > 40 mm Hg) being

the darkest. Four kinds of CPP insults are broken down into those associated with

ICP insults, those associated with arterial hypotension, those associated with

simultaneous ICP and hypotensive insults, and those associated with neither of these.

The most striking aspect of these plots is the difference between the under and over

40% groups in the most severe insult ranges. Almost the entire distribution of grade

3 insults is concentrated in the high risk groups. The overall insult duration is also

much higher, with the exception of arterial hypertension. This is a special case since

for most of these patients raised blood pressure represents an adaptive response that

helps maintain acceptable levels of CPP. The dramatic increase of CPP insult in the

high risk CPP group is due almost entirely to CPP associated with high ICP levels.

Paradoxically, the most striking difference between the high risk CPP and the high

risk ICP group is that the CPP group has a higher proportion of very severe ICP

insults than the ICP group. This is because the CPP group excludes an intermediate

range of patients who experience significant amounts of mild to moderate ICP insult,

but who compensate with raised arterial blood pressure levels to maintain CPP.
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ICPm >= 20 for Under 40% of Monitored Time

-

CPP/Both CPP/BP CPP/ICP CPP/Neither Hypertension Hypotension Raised ICP

CPP <= 70 for Under 40% of Monitored Time

CPP/Both CPP/BP CPP/ICP CPP/Neither Hypertension Hypotension Raised ICP

CPP <= 70 for Over 40% of Monitored Time

• Figure 5 The occurrence of CPP and related secondary insults as percentage of
monitoring time in insult range. The thresholds used are the EUSIG grades. The
darker shading indicates the more severe insult grades. The four graphs
correspond to four patient groups defined in terms of the amount of CPP and ICP
insult they experienced. The CPP insult is divided into four categories: CPP
insult associated with raised ICP (CPP/ICP), CPP associated with arterial
hypotension (CPP/BP), CPP associated with both of those other factors
(CPP/Both), and CPP associated with neither of the other factors (CPP/Neither).
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These patients are included in the "high risk" ICP group but in the "low risk" CPP

group. The addition of these patients does not greatly affect the outcome statistics of

the low risk group, which suggests that this is where they belong. However, their

removal from the high risk group leaves it dominated by those patients with severe,

unmanageable ICP and impaired CPP autoregulation: Hence the step function effect

in the CPP predictions.

The three patient groups whose outcome distributions combine to create this

effect are:

• Patients with ICP over 20 mm Hg less than 40% of the time. (Low risk
ICP group, or Low ICP group)

• Patients with ICP over 20 mm HG more than 40% of the time but with
CPP falling below 70 mm Hg less than 40% of the time. (High risk
ICP/Low risk CPP group, or ICP Only group)

• Patients with ICP over 20 mm Hg more than 40% of the time and with
CPP below 70 mm Hg more than 40% of the time. (High risk ICP/High
risk CPP group, or ICP/CPP group)

The outcome distributions for these three groups are plotted in figures 6

through 8. These highlight the difference between the high ICP group with CPP

maintained and the group in which CPP regulation has failed. It is clear from these

distributions that raised ICP with CPP maintained is far less significant than raised

ICP leading to a reduction in CPP. These results provide support to the view that

CPP is a critical factor in ICP management. On the other hand, the strong association

between high levels of CPP insult and intractable ICP raises the concern that the

patient group identified as having significant amounts of CPP insult may simply be

unbeatable. One consideration in evaluating these results is that these patients were
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Severe Severe

Figure 6 Outcome plot for the 80 Figure 7 Outcome for the 17
patients in the low risk ICP group. patients in the high risk ICP but low
This and the following two plots are risk CPP group.
actual outcome distributions from the
database = not neural network

predictions distributions.
Severe

Figure 8 Outcome for the 17 patients
in the high risk groups for both CPP
and ICP

treated according to a protocol based on CPP maintenance. A comparison with

results from centres using other protocols would be of interest. A look at the

distributions of secondary insults for the high risk ICP/low risk CPP, and the high
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Figure 9 The associated secondary insults for patients in the high risk ICP/high risk
CPP group.
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Figure 10 The associated secondary insults for the high risk ICP/low risk CPP
group.

risk ICP/high risk CPP groups (figures 9 and 10) emphasises the difficulty in

distinguishing between ICP and CPP problems in these patients because of the strong

association between significant amounts of CPP insult, and very severely elevated

ICP.

There is one group of patients that has not been discussed. These are the

patients who have over 40% monitoring time with CPP under 70, but under 40%

monitoring time with ICP over 20: i.e. the high risk CPP/low risk ICP group. This is

a rare combination in the Edinburgh database; only four patients fall into this

category. Two of these had a good outcome, one died, and one suffered severe

disability. The data for these patients is summarised in table 1. Rather than treat

these patients separately I have included them in the "low risk ICP" group. Because

there are only four patients in this group, it is difficult to say very much about the
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Table 1 Descriptive data for the four patients with significant amounts of CPP insult
not strongly associated with raised ICP. The last column indicates whether the CPP
was associated with ICP insults, hypotension insults, or neither of those. The last
patient experienced reduced CPP along with some periods of mild ICP and
hypotension.

AGE SEX CAUSE REACTING
PUPILS

MOTOR
SCORE

OUTCOME CPP
PROBLEMS

17 Male Pedestrian Both 3 Good Hypotension
33 Male Assault Both 5 Good Hypotension
17 Female Car Accident Both 3 Severe Neither
54 Male Assault Neither 1 Death All Types

significance of reduced CPP when this is not accompanied with high ICP. However,

it should be noted that while the combination of CPP and ICP problems has been

shown to be a very strong predictor of death (88% mortality), of these four patients

only one died and two had a good recovery. Therefore it is unlikely that reductions in

CPP that are not accompanied by high ICP are nearly as dangerous as the two

conditions combined.

5.2 Controlling for admission factors

In the previous section I distinguished three groups on the basis of ICP and CPP

insult. The group with high amounts of both ICP and CPP insult has much higher

mortality than the other two groups, which are similar to each other in terms of

outcome distribution (figures 6, 7, 8). It is important to consider the possibility that

this might have been predicted on the basis of their admission data alone. It has been
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Figure 11 The distributions for age, GCS motor score, and pupils score for (from
top to bottom) the high risk ICP/high risk CPP group, the high risk ICP/low risk CPP
group, and the low risk ICP group as defined above.

Table 2 Summary of the key admission variables for these three patient groups. Age
is summarised by the group mean. Motor and pupil scores are summarised by the
group mean conditional probability of death or persistent vegetative state given that
score. The calculation of these probabilities is described in the text below this table.

GROUP CONDITIONAL P(DEATH/PVS) ACTUAL
MEAN (GROUP MEAN) MORTALITY

Given Motor Scores Given Pupil Scores
Age P(death) Std.Err. P(death) Std.Err. Mortality Std.Err.

ICP/CPP 35 0.31 0.07 0.42 0.04 0.88 0.08

ICP Only 35 0.27 0.06 0.42 0.05 0.24 0.10

Low ICP 37 0.27 0.06 0.30 0.04 0.15 0.04

previously shown that recovery following head injury can in part be explained on the

basis of a few simple clinical variables that are available on admission, and on the

age of the patient. It may be that the patients who suffered from a combination of
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ICP and CPP insults were simply the ones who were in the worst condition when

admitted to the intensive care unit.

Figure 11 shows the distributions for the key prognostic variables available

on admission for the three risk groups. Table 2 summarises the significance of these

variables in respect to the three patient groups. By inspection of the distributions and

the group means there does not seem to be much difference between the three groups

in terms of age. It is possible to summarise the coarse grained variables, motor score

and pupil score, in terms of the group mean probability of death or PVS given the

score. These probabilities are based on the proportions of deaths or PVS outcomes

for the different values of these variables in the Edinburgh database, as summarised

in tables 3 and 4, and on the distributions of these scores in the three patient groups

(tables 5 and 6). Referring to the first two rows of table 2, except for the mortality

rates, there is very little difference between the high risk group (ICP/CPP) and the

group with significant amounts of ICP but not CPP insult (ICP Only). An

assessment based only on this admission data significantly understates the risk of

death for the high risk group, and overstates the risk for the other two groups. This

Table 3 The probability of death given that the patient has zero, one, or two fixed
pupils based on the statistics of the Edinburgh database.

FIXED TOTAL DEATH/PVS ESTIMATED STANDARD
PUPILS CASES CASES P(DEATH/PVS) ERROR

2 81 51 0.630 0.054

1 24 9 0.375 0.099

0 146 23 0.158 0.030

Table 4 The probability of death given Glasgow motor score based on the statistics
of the Edinburgh database.

104



MOTOR TOTAL DEATH/PVS ESTIMATED STANDARD
SCORE CASES CASES P(DEATH/PVS) ERROR

1 69 23 0.333 0.057

2 39 12 0.308 0.074

3 41 14 0.341 0.074

4 50 13 0.260 0.062

5 58 7 0.121 0.043

Table 5 The distribution of Glasgow motors scores for the high risk ICP/high risk
CPP group, the high risk ICP/low risk CPP group, and the low risk ICP group.

M otor Score
1 2 3 4 5 Unknown

ICP/CPP 6 5 2 3 0 1

ICP Onlj^ 2 6 3 1 4 1

Low ICP 16 8 19 18 18 1

Table 6 The distribution of numbers of fixed pupils for the high risk ICP/high risk
CPP group, the high risk ICP/low risk CPP group, and the low risk ICP group.

FIXE!D PUPILS
0 1 2 Unknown

ICP/CPP 7 0 9 1

ICP Only 6 3 8 0

Low ICP 48 8 19 5

provides support to the view that continuous ICP and CPP monitoring plays a critical

role in the management of these patients.

5.3 The time course of ICP and CPP insults

Figure 12 shows the development over time of ICP and CPP insults for the

three patient groups I defined above. The top row displays data for a subset of 43

patients selected from the "low risk ICP" group because they had at least one hour of
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valid monitoring time in each of the first five 24 hour periods starting with time of

injury. The middle row represents 14 patients in the "high risk ICP/low risk CPP"

group selected in the same way. The bottom row represents 10 patients from the

"high risk ICP/high risk CPP" group who had at least one hour of valid monitoring

time in each of the first four 24 hour periods following time of injury. I stopped

analysis at this point because adding in the fifth day would have further reduced this

group to only eight patients. The first column shows the progress of ICP insults

calculated as proportion of monitoring time over 20, 30 and 40 mm Hg. All three

groups show an increase in ICP insults throughout this period. The second column in

figure 12 displays CPP insult, plotting proportion of monitoring time spent with CPP

in insult range using the thresholds of 70, 60, 50 and 40 mm Hg. More severe insults

are more darkly shaded. The two groups that show little or no effect from reduced

CPP have substantial amounts of insult. Over 80% of this is in the lowest range,

between 60 and 70 mm Hg. Another anomaly involving this lowest insult range

concerns the progress of the third patient group: the group that is at risk from CPP

insult. We know from the fact that 8 of these 10 patients died that their conditions

were generally deteriorating very seriously. However, the amount of the lowest grade

insult suffered by these patients steadily declines. Between days 3 and 4 the decline

in the amount of the lowest grade insult actually leads to a decline in the total amount

of CPP insult reported for these patients.

These observations seem inconsistent with the idea that CPP between 60 and

70 mm Hg is harmful. Setting the CPP threshold this high leads to reporting

significant amounts of insult for patients who do not seem to be being harmed, and to

reporting relative reductions in the amount of insult being suffered by patients who
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Figurel3 The probability of death given proportion of monitoring time with CPP
under 60 mm Hg.

are surely being harmed, and whose conditions are deteriorating. A more accurate

picture of the effects of reduced CPP is seen in the third column of figure 12. Here

we can clearly see the absence of CPP insult in the first two patient groups, and also

the severity of the deterioration being suffered by the third group. We can retrain the

neural network system using percentage of monitoring time with CPP less than 60 as

the input feature rather than basing it on the higher threshold. The result is shown in

figure 13. If we compare this with figure 4, there are two striking differences. First,

we now see an immediate response to any amount of insult. Secondly, the response

is now more graded. In figure 4 almost all of the change in probability of death

occurs as proportion of monitoring time in insult range goes from 0.4 to 0.6. Using

the 60 mm Hg threshold, the increase in probability of death is spread over the range

of 0.0 to 0.4. Hence the clinically significant range over which we see a relationship

between this feature and outcome is about twice as wide as that for the feature based

on the higher threshold. Also the range on the Y axis (probability of death) has been
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increased, indicating a greater degree of influence on outcome, and a better

separation of classes. The range using the 70 mm Hg threshold is from 0.16 to 0.85,

while for the 60 mm Hg threshold, the range is from 0.17 to 0.93. These results show

that, at least for these patients, the 60 mm Hg threshold is more relevant clinically

and produces a more robust prognostic feature than the threshold of 70 mm Hg.

5.4 Arterial Hypotension

Since CPP is determined as the difference between ICP and arterial blood

pressure, we can treat arterial hypotension both as an independent predictor of patient

outcome and as a component of reduced CPP, following an analysis similar to the

treatment of ICP in the previous section.. I have used proportion of monitoring time

with arterial pressure under 80 mm Hg as the feature representing hypotension. The

80 mm Hg threshold is the one selected as the most significant in respect to patient

outcome in the study by Marmarou and colleagues (1991). Figure 14 shows the

distribution of this parameter over the patients in the Edinburgh database. This is

based on 118 patients who had at least 6 hours of valid monitoring time within 48

hours of the time of injury. Figure 15 plots the neural network predictions for the

three outcome categories as proportion of monitoring time under threshold goes from

0 to 1. There is a step up in probability of death at about 30% of monitoring time

under threshold. We can divide these patients into a high risk group (more than 30%

of monitoring time with blood pressure under 80 mm Hg) and a low risk group (less

than 30% of monitoring time under 80 mm Hg). Figures 16 and 17 show the



associated secondary insults for these two groups. The patients in the group with

large amounts of hypotensive insult also experience large amounts of very severe

CPP and ICP insult while those in the low risk group are almost completely free from

these problems. This suggests that we should subdivide the high risk group into

those patients at high risk from ICP and CPP insult and those at risk from

hypotension alone. In the previous section I defined a group of patients at high risk

from both ICP and CPP as those having over 40% of monitoring time with ICP over

20 and over 40% of monitoring time with CPP under 70 mm Hg. There are four

patients in the high risk hypotension group who are also in the high risk ICP/CPP

group. There are then 12 remaining patients in the high risk hypotension group, and

100 in the low risk hypotension group. Two patients are excluded because ICP data

was not collected. The four patients at high risk for ICP, CPP and hypotension were

all very severely injured; all had bilateral fixed pupils post-resuscitation. All four of
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Figure 14 the distribution of the feature representing proportion of monitoring time
with arterial blood pressure under 80 mm Hg. The vertical axis is numbers of
patients, and the horizontal proportion of monitoring time.
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Figure 17 The associated secondary insults for the patient group with arterial blood
pressure below 80 mm Hg less than 30% of valid monitoring time (100 patients).

these patients died. If we look at outcome distributions for the three patient groups

(figures 18 - 20) we can see that the significance of hypotension as a predictor of

outcome in this data set is entirely attributable to these four patients. Since these four

were very severely injured and also had large amounts of ICP and CPP insult, there is

no evidence here that arterial hypotension makes a contribution to poor patient

outcome independent of its contribution to a reduction of CPP.
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Figure 18 100 patients with
blood pressure below 80 less
than 30% of the time

Figure 19 12 patients with blood pressure
below 80 more than 30% of the time but at

not at high risk from both ICP and CPP

Dead/PVS Good/Moderate
Dead/PVS Good/Moderate

Severe

Dead/PVS Good/Moderate

Figure 20 four patients with
blood pressure below 80 more
than 30% of the time and at

high risk from both ICP and
CPP.
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5.5 Pyrexia

Pyrexia has been shown to be related to survival following head injury (Jones et al,

1994, Signorini, 1999b). Unexpectedly, high levels of pyrexia have consistently been

found to be predictive of survival rather than of death. The neural network estimates

shown in figure 21 provide some insight into this anomaly. As the proportion of

monitoring time spent with core temperature elevated above 38 degrees is moved

from zero to one, the probability of good to moderate outcome remains almost

constant. However, the probability of death exhibits the step function behaviour we

saw with CPP. The step down in probability of death is accompanied by a step up in

probability of severe disability. Compared with the probability estimates we have

seen previously, these all look rather "jumpy" and indecisive. Still, consistent with

previous work, there does appear to be an association of pyrexia with survival, albeit

survival with severe disability.

Referring to figure 21, we can see that the point at which the association of

pyrexia and survival starts to be in evidence is when temperature is elevated above 38

degrees for about 30% of monitoring time. Breaking our patient groups down using

this threshold we find 55 patients in the high temperature group and 48 in the low

temperature group. The rates of pyrexic and associated secondary insults for these

two groups are plotted in figures 22 and 23. Again, the insults are coded according to

insult severity with the more severe being darker. The most salient difference

between these two groups is the prevalence of very severe ICP and CPP insults

associated with low temperature. In the previous section we saw that the grade 3

114



20 40 60 80

% Monitoring Time WithTl >=38.0

100

t-
<D

o
U

CM

1 . 0

u-t 0.6

o.o--,

III 1 1 in 11 i in

/ %
/

j
j

i

nun in i in i mi 11" i ii i II i II i ii

20 40 60 80

% Monitoring Time With T1 >= 38.0

100

<D

"Ss
U 1.0-
"D

"O
o

0.8-

o 0.6-
o

O
U-4
o

0 . 4-

fc
0.2-

X

X
O 0.0-

Ph

III llll I

11 I 11 I II

20 40 60 80

% Monitoring Time "With T1 >=38.0

100

Figure 21 The output estimates of the neural network system given proportion of
monitoring time with core temperature over 38 degrees.
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Figure 22 Associated secondary insults for the 55 patients with over 30% of
monitoring time with core temperature over 38 degrees.
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Figure 23 Associated secondary insults for the 48 patients with less than 30% of
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Figure 24 The insult distributions for the high risk ICP/high risk CPP patients who
had core temperature over 38 for more than 39% of monitoring time (8 patients)
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Figure 25 Insult distributions for the high risk ICP/high risk CPP patients who had
core temperature over 38 for less than 39% of monitoring time (6 patients)
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insults for ICP and CPP are almost entirely concentrated in a group of 17 patients

identified as those with ICP over 20 and CPP under 70 more than 40% of the time. If

we look at the association of pyrexia with other insult categories confined to this

group (figures 24 and 25), the strong association of low amounts of pyrexia and high

amounts and severity of other insults is even more obvious.

Pyrexia (or its absence) appears to be much more significant for its

association with other syndromes than it is in itself. In patients at high risk from

raised ICP and lowered CPP, the absence of pyrexia is strongly associated with the

most extreme cases and with impending death. There is little evidence here for an

independent contribution to outcome, adverse or otherwise.

5.6 Summary

The analysis applied in this chapter begins with the use of the neural network system

as a flexible nonlinear model that relates the duration of secondary insults to patient

outcome. This allows us to identify groups of patients who are at risk or are not at

risk from particular insults. For example, when we look at the ICP model (figure 3),

we see that ICP is not affecting outcome until percentage of monitoring time with

ICP over 20 reaches about 40%. We see a similar effect with the occurrence of CPP

insults based on CPP falling below a threshold of 70 mm Hg (figure 4). This allows

us to define four different patient groups: those with both ICP and CPP problems,

those with neither problem, and those with one or the other

In comparing the outcome distributions for these four groups (figure 26) we

see that, for the patients studied here, whle ICP in conjunction with a reduction in



ICP >= 20 ICP >= 20
Less than 40% of the time Over 40% of the time

Severe Severe

CPP <= 70
Under 40% of the time

Dead/PVS Good/ModerateDead/PVS GooATvIoderate

Figure 26 The whole is greater than the sum of its parts. Outcome statistics
for four patient groups:

• Upper left: 76 patients at low risk from both ICP and CPP
• Upper right: 17 patients at high risk from ICP but not CPP
• Lower left: 4 patients at high risk from CPP but not ICP
• Lower right: 17 patients at high risk from both ICP and CPP
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CPP is highly significant, neither factor without the other has a great effect on

outcome. In the high risk group (CPP <= 70 more than 40% of the time and ICP >=

20 more than 40% of the time), 15 of the 17 patients (88%) died.

Despite being managed according to a strict CPP maintenance protocol, these

patients manifested both long durations and extreme severity of CPP, ICP and other

insults (figures 9 and 10). This raises the concern that they are untreatable.

However, based on their admission data, these patients were not much, if at all,

worse off than the other groups (table 2).

Looking at the time course of the occurrence of secondary insults (figure 12),

we see that for all patient groups there is an increase in ICP insult over the first four

to five days following injury. However, it is only the high risk group which suffers

increased amounts of CPP insult. In the first day following injury, these patients are

distinguished primarily by a relatively high rate of very severe ICP and CPP insult,

and the gap in this respect between the high risk patients and the other groups widens

rapidly in the early days following injury. On the other hand, the lowest grade of

insult considered here for CPP (CPP <= 70 and > 60 mm Hg) appears to have no

effect at all on outcome, and its inclusion can even obscure the very real effects of the

higher insult grades.

If we look at the third column of figure 12, we see that problems with CPP

are either rapidly eliminated or they run out of control. Keeping in mind that this

only happens if the patient also is experiencing problems with raised ICP, this

suggests the operation of a feedback loop involving ICP and CPP. Rosner (1985) has

described exactly such a process underlying the loss of CPP autoregulation, which he

calls "the vasodialatory cascade":



"As CPP is reduced, vasodilation occurs, which is accompanied
by an increase in cerebral blood volume. This then leads to an
increase in ICP which further reduces the CPP. Unless CPP is

restored in some manner, the cycle continues until vasodilation is
maximal."

It seems likely that the "high risk ICP/high risk CPP" patient group described in this

study were the victims of some kind of self perpetuating process like the one

described by Rosner. The extremely high mortality in this group underlines the

necessity of halting the cycle at an early stage.

I have included arterial hypotension and pyrexia in this section, because this

analysis shows that they are only significant in this database for their association with

severity of injury and the most extreme grades of ICP and CPP insult. The absence

of pyrexia is associated with the occurrence of grade three ICP and CPP insult

(figures 22 and 23). There is no apparent contribution of hypotension to outcome

beyond its association with four patients who were very severely injured and who

also had very severe ICP and CPP insults (figures 18 through 20).

Based on this data, it appears that in managing patients with traumatic brain

injury, ICP, arterial hypotension, and pyrexia are best considered in relation to

reduced CPP rather than as independent syndromes. The most important clinical

factor to monitor is a reduction of CPP below 60 mm Hg in conjunction with raised

ICP. It is particularly important to monitor for this condition in the first few days

following injury. In the patients studied here, this condition was either virtually

completely eliminated by the second day following injury, or it spiralled out of

control. Mortality in the latter patient group was 88%.
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Chapter 6

Clinical factors relating to cerebral oxygenation

This chapter will continue the analysis of the Edinburgh head-injury database using

Bayesian neural networks. The previous chapter concentrated on cerebral

hemodynamics, and the significance of cerebral perfusion pressure. This chapter

will look at brain oxygen supply and metabolism. This can be approached indirectly

by measuring arterial and venous blood oxygen saturation levels.

6.1 Hypoxia

Arterial blood oxygen saturation (Sa02) levels can be measured non-invasively

through the use of infrared sensors clipped on a finger or an ear lobe. This technique

is widely used in intensive care to help ensure that the patient is adequately

oxygenated. The Edinburgh

Sa02 Reading

Figure 1 Sa02 Sampling distribution for the Edinburgh database. The
horizontal axis is percent Sa02 saturation, and the vertical axis percentage of
monitoring time
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University Secondary Insult Grades define the grade one insult threshold for Sa02 as

90% or less oxygen saturation. This leads to a problem for analysis of this parameter

because there is very little data in this range. Figure 1 is a histogram of the Sa02

sampling distribution for the entire Edinburgh database. The horizontal axis is Sa02

level, and the vertical percentage of monitoring time. This shows how little data is

recorded below the 90% threshold. Figure 2 demonstrates how this translates into a

distribution for this feature over the patients in the database. This figure is a

histogram of the numbers of patients that fall into binned ranges on percentage of

monitoring time for this parameter. Almost all of the patients are concentrated on or

near the zero percent level with a few scattered elsewhere. This means that using this

threshold produces a feature that simply flags a few patients as being special rather

than registering gradations of severity smoothly over the patient population. It is

difficult to assess the reliability of a feature like this, because it depends so heavily

on such a small number of patients. Changing the database just slightly might

a

Oh
<4-1
O

u
aj

-o

80-

60-

40-1

20-1

0 5 10 15 20 25 30 35 40 45 50 55

% Monitoring Time with Sa02 <=90

Figure 2 Histogram of the distribution of percentage of monitoring durations for
arterial oxygen saturation levels under 90%. The horizontal axis is percentage
duration broken into bins representing 2.5% increments. The vertical axis is numbers
of patients per bin. Almost all of the patients are in the range 0% to 5% of monitored
duration for this parameter
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produce completely different statistics. In this instance, there were three cases in

which the percentage of monitoring time was greater than 5%, and all of these

patients died.

Figure 3 shows the predictions for a neural network system trained with this

feature as its only input. The system was given inputs ranging from 0% to 100% of
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Figure 3 A poor choice of threshold for determining a feature: Outcome
probabilities conditioned on the proportion of monitoring time with less than 90%
oxygen saturation
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monitoring time with Sa02 below 90% (horizontal axis), and the predicted outcome

probabilities are graphed against the vertical axis. The neural network system

accurately captures the structure of the data, jumping from predicting approximately

the prior probabilities to a strong prediction of death. It also puts appropriately broad

confidence intervals on these latter predictions which are entirely based on only three

patients. Looking back at figure 1, a more appropriate choice of threshold might have

been the 96% saturation level. This incorporates enough of the tail of the distribution

that we are likely to see a more reasonable distribution over patients than was the

case with the 90% threshold. The histogram for the new parameter is shown in figure

4. This has a better spread over the population of patients, and promises to be a more

interesting parameter to use for analysis. The predictions for the neural network

system are shown in figure 5. Again, the system is making a series of predictions

given as input percentage of monitoring time during which oxygen saturation is

under threshold. Now we can see more detail in the relationship between reduced

oxygen saturation levels and outcome. There is a clear linear trend for increasing
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Figure 4 Histogram of the distribution of percentage monitoring durations for
arterial oxygen saturation levels under 96%.
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risk of mortality and decreasing probability of good to moderate outcome that is

evident even when the recorded periods of desaturation are brief. This trend

continues in a consistent manner well into the range of prolonged periods of insult.

Although the error bars are still wide in the region of long duration insults, most of

this uncertainty is between whether the patient will die or suffer severe disability.

The feature selection of the 96% saturation threshold was purely based on the

distribution of this feature in our data set. However, its utility as a prognostic feature

may have implications for clinical practice.

6.2 Cerebral Hyperemia

Venous oxygen saturation of blood leaving the brain (Sv02) can be measured by

inserting a catheter into the jugular bulb. This can give some insights into the brain's

oxygen metabolism. For example, it has been hypothesised that unusually high Sv02

30 40 50 60 70 80 90 100

Sv02 Percent

Figure 6 The sampling distribution for jugular bulb oxygen saturation levels. The
vertical axis is percentage of monitoring time, and the horizontal percentage Sv02.

2-
o
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levels indicate that the brain's oxygen metabolism is impaired due to neuronal

damage. On the other hand, unusually low Sv02 levels have also been linked to

brain damage. A high rate of oxygen consumption in the brain may be associated

with trauma and attempts to repair nerve damage. Figure 6 shows the sampling

distribution for Sv02 levels in the Edinburgh database. We will be looking at levels

below 54% and above 75%, which are the EUSIG grade one insult thresholds.

Unfortunately, using the criteria used for the other parameters we have looked

at for inclusion, i.e. at least 6 hours of valid monitoring time within the first 48 hours

following injury, we only get 42 patients to study for this parameter. This is mainly

due to technical problems with the sensors that often made it impossible to ensure

that the data was valid. It is difficult to place the sensor correctly in the jugular bulb,

and to validate that it is correctly placed. The sensor positioning is also sensitive to

any movement of the patient. Much of the data we collected had to be discarded for

this reason.

% Monitoring Time with Sv02 >=75

Figure 7 The distribution of the parameter representing percentage of monitoring
time that Sv02 is over 75%. The vertical axis is numbers of patients and the
horizontal percentage of monitoring time binned in increments of 5%.
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outcome, despite the small sample size.
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The feature used here to represent the occurrence of high Sv02 levels, or

cerebral hyperemia, is percentage of monitoring time for which Sv02 is over 75%.

The distribution of this parameter over the patients in the Edinburgh database is

shown in figure 7. Figure 8 shows the output of the neural network system trained on

this feature. The error bars are very broad due to sparse data. However, there does

seem to be a clear trend of increased risk for severe disability or death with

increasing duration of periods of hyperemia. As was the case with arterial oxygen

desaturation, this trend appears to be roughly linear, and is evident even for relatively

short insult durations

6.3 Cerebral Oligemia
Abnormally low jugular bulb levels are believed to indicate that the brain is

extracting high levels of oxygen in an attempt to recover from trauma. This

condition has previously been shown to be associated with poor outcome following

head injury (Gopinath, et al., 1994). However, I did not find any interesting models

relating cerebral oligemia to outcome, possibly because of the small sample size

available (42 patients).

6.4 The time course of Sv02 insults

When the occurrence of periods of high and low levels of jugular bulb oxygen

saturation are plotted on a daily basis, a clear pattern is evident. The duration of

oligemic insults steadily decreases in the days following injury, while the duration of

hyperemic episodes increases (figure 9). These results are for 27 patients who each

had at least one hour of valid SvQ2 monitoring for each of the first 24 hour periods
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following injury. These results are consistent with the theory that in the first stages

following brain trauma, the brain's oxygen metabolism rate is unusually high due to

attempts at self repair. Then it becomes unusually low due to cell death. Similar

results reported are in (Cormio et al, 1999)1. This study found that high Sv02 levels

can have diverse causes. However, the dominant cause was a decrease in the brain's

oxygen metabolism. This study also found an association between elevated Sv02

levels and poor outcome, as did another study by Macmillan and colleagues (1998).

Cerebral Oligaemia
100-.

80-

60-

40-

Figure 9 The time course of oligemic insults. Vertical axis is percent of monitoring
time. Horizontal axis is day following injury. The insult thresholds used are 54%,
49%, and 45% oxygen saturation (Sv02).

Cerebral Hyperaemia
100-1

80-

60-

40

20

Figure 10 The time course of hyperemic insults. Vertical axis is percent of
monitoring time, horizontal axis is day following injury. The insult thresholds used
are 75%, 85%, and 95% oxygen saturation (Sv02).

1 Thanks to Giuseppe Citerio for pointing this work out to me and suggesting the
time oriented analysis.
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6.5 Summary

In this chapter we looked at two parameters relating to the supply and metabolism of

oxygen in the brain. Arterial oxygen saturation (Sa02) is of particular interest

clinically because it is a very easy parameter to monitor, understand, and control.

The initial experiment based on Sa02 values under 90%, however, was primarily of

interest as a test of the neural network. The distribution of this parameter over

patients was very peculiar and posed a challenge to the modelling technique that was

passed with flying colours. The threshold of 90% had been selected because of its

use in defining the lowest category of hypoxic insult in the Edinburgh University

Secondary Insult Grades. To obtain a better distribution over patients, a second

model was trained using a threshold of 96%. This threshold would generally be

considered quite high from a clinical point of view. However, the model shows a

clear linear decrease in probability of good outcome as the duration of monitoring

time under threshold increases. This is evident even for short time periods under

threshold.

In this chapter we also looked at jugular bulb oxygen saturation (Sv02),

which tells us how much oxygen remains in the blood as it leaves the brain. This

parameter is difficult to monitor, and problems with one of the types of monitors we

used lead to the loss of much of the data we collected. Despite a small sample size it

was possible to demonstrate an association of high Sv02 levels with poor outcome,

which is consistent with other recent work. The time course of Sv02 insult is

interesting, with very low levels dominating at first, which then over a period of

about five days give way to very high levels.



 



Chapter 7

Multivariate models combining physiological monitoring data
and admission data

In chapter three I compared a number of multivariate Bayesian neural network

models. All of these were based on demographic data and simple clinical indicators

available when the patients were admitted to neurosurgery. The models discussed in

chapters five and six were based on the physiological monitoring data, but these were

univariate. In this chapter we will look at the performance of multivariate models

that incorporate physiological data together with the prognostic factors that proved to

be most important in chapter three. This will allow us to examine the performance of

these models with higher dimensional input spaces and sparser data. It will also lend

support to some of the hypotheses developed in the previous two chapters to the

extent that the physiological factors identified as being important lead to models that

perform better than models based on admission data alone, or on other physiological

factors.

7.1 Model Comparison

The thresholds used to determine the physiological parameters in the models I tried

are shown in table 1. The models tried are listed in table 2. I have only included

patients over the age of 14 who are classified as having severe head injuries. All of

the models include age, pupil score, and motor score, which were found in chapter

three, as in much previous work, to be the most important indicators available on

admission. I have included patients in the training set for a model if all of these are



Table 1 The thresholds used for calculating proportion monitoring time over or
under threshold for the physiological channels used in these models

PHYSIOLOGICAL CHANNEL CONDITION

ICP Intracranial Pressure >= 20 mm Hg
BP Arterial Blood Pressure <= 80 mm Hg
CPP Cerebral Perfusion

Pressure

<= 60 mm Hg

Sa02 Arterial Oxygen Saturation <= 96%

Table 2 The multivariate models tried, listed in order by logarithmic error, from best
to worst. All models included age, motor score, and pupils score. The thresholds
used on the physiological channels are given in table 1. N is training set size. The
delta errors are the improvements over guessing the most common class achieved by
the model. All errors are based on 10-way cross validation. The errors are based on
the different training sets available, and are therefore not directly comparable.

MODEL N PERCENT PERCENT LOGARITHMIC LOGARITHMIC
ERROR ERROR DELTA ERROR ERROR DELTA

ICP CPP 103 0.431 +0.025 0.904 +0.106

CPP 103 0.422 +0.035 0.910 +0.099
ICP BP 103 0.437 +0.025 0.912 +0.100

ICP 103 0.398 +0.064 0.915 +0.098

Big Demographic 242 0.402 +0.100 0.965 +0.047

CPP Sa02 87 0.425 +0.036 0.969 +0.036

Small Demographic 103 0.341 +0.069 0.978 +0.031

available, and the patient had at least 6 hours of valid monitoring time within the first

48 hours following injury on each of the physiological channels included in the

model. The input features for each physiological channel were calculated as the

proportion of monitoring time with that channel above or below a given threshold.

The thresholds used are listed in table 1. These are based on previous work as

discussed in chapter four, together with the modifications suggested in chapters five

and six. In addition to the models incorporating physiological data, I have tested two

models that only use age, motor score, and pupil score. One of these, "Big

Demographic", is the one described in chapter three, which was trained on the full
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Table 3 Performance of the pupils/motor/age model trained on the full data set
(N=242) evaluated on the full data set (first row), and the data set with ICP and CPP
data available (N=103, second row). Apparently the patients being intensively
monitored are less predictable.

TEST SET N PERCENT
ERROR

LOGARITHMIC
ERROR

Admission Data Only 242 0.364 0.832

With Physiological Data 103 0.402 0.965

data set (242 patients) available with this data. The second, "Small Demographic",

was trained on the 103 patients available for most of the other models. These

patients all had sufficient ICP, CPP and BP data to be included in the training sets for

models using those parameters. Only one model had fewer patients. This was the

model based on CPP and Sa02, for which only 87 patients qualified

One interesting result is that the performance of the "Big Demographic"

model is worse on the subset of patients with physiological data than on the full data

set, as summarised in table 3. Apparently the subset of patients being intensively

monitored are the most unpredictable. This is as it should be. ICP monitoring is

invasive, and carries the risk of infection. Apparently it is being used appropriately

to monitor the patients who are most unstable, and therefore most likely to benefit

from intensive monitoring. This result is consistent with the findings of a previous

statistical analysis of this database (D. Signorini, personal communication).

The sample sizes available for training these models are much smaller than

those used to train the simpler models in chapter three. Even given the larger data

sets available for the simpler models, it was evident that percent error was an

unreliable metric due to the numbers of predictions near decision boundaries. In this

case, I would not put any weight on the percent error, although I have reported it in
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table 2. Based on the more reliable logarithmic score, I might claim some degree of

confirmation of the results reported in chapter five. There my analysis indicated that

the combination of ICP and CPP insult is the most critical factor for these patients.

Here we find that the logarithmic score for the model incorporating ICP and CPP is

the best of all models considered, including the "Big Demographic" model, which

had a training set more than twice the size of the one available to the models utilising

physiological data. In fact all of the models that incorporate physiological data

outperform "Big Demographic" with the sole exception of the CPP/Sa02 model.

This model had the smallest training set of all (87 patients).

However, it is by no means clear that the differences in logarithmic score

between any of these models are significant given the very small sample sizes. In

fact, a closer look indicates that like percent error, the logarithmic scores may be

misleading in this case. A possible explanation for the poor performance of "Big

Demographic" is evident from an inspection of model predictions on a case by case

basis. This model predicts more confidently than the models trained on smaller data

sets. Given this relatively unpredictable group of patients, there are cases in which it

predicts the wrong class with high certainty. Logarithmic error diverges to infinity

when the probability assigned to the correct class goes to zero. Therefore a few

overconfident predictions can disproportionately damage a model's score.

A graphical display for inspecting the separation of outcome classes achieved

by models was introduced in chapter three. This plots the mean prediction made by

the model for patients in each of the three outcome classes. The plots for the seven

models discussed here can be seen in figure 1. Judged in this way the "Big

Demographic" model appears to be the best.
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Demographic (N=217) 0.047 CppSao2 (N=78) 0.036
Severe Severe

Dead/PVS Good/Moderate Dead'PVS Good/Moderate

Demographic (N=92) 0.031
Severe

Dead/PVS Good/Moderate

Icp (N=93) 0.098
Severe

Dead/P^S Good/Moderate

IcpBp (N=93) 0.100 IcpCpp (14=92) 0.106
Severe Severe

Dead/PVS Good/Moderate Dead/PVS Good/Moderate

Cpp (N=92) 0.099
Severe

Figure 1 Model separation of outcome classes for the seven models. These plot the
mean vectors predicted for the three outcome groups: Death/PVS (circle), Severe
Disability (square), and Good Outcome/Moderate Disability (triangle). The "N"
values here are the sizes of the cross validation training sets - not the full sample size.
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Probability Assigned to Correct Outcome
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Figure 2 The predictions of "Big Demographic" compared with those of the
ICP/CPP model. Big Demographic does better on a cluster of eight patients who
died (upper left).

To compare model predictions in more detail we can make a scatter plot of

the probability assigned to the correct class by two different models over the test

cases. Figure 2 plots this for the ICP CPP model and "Big Demographic". The

general trend of the predictions favours ICP CPP with the very notable exception of a

cluster of eight patients who died (they're in the upper left of the plot). These cases

were much better classified by Big Demographic. These patients were very severely

injured. Six had bilaterally fixed pupils, and the remaining two had one fixed pupil.

However, all of these patients had relatively low amounts of ICP and CPP insult,

which apparently caused the ICP/CPP model to misclassify them. This would seem
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to indicate that the model is not learning important exceptions to general rules. This

suggests that either there is simply insufficient data in the training sample, or that the

model is over-regularised.

7.2 Summary

The results reported in table 2 could be argued to support the results of the previous

two chapters, which were based on univariate models. However, the improvements

in model performance with the addition of the physiological data over the

performance of a simpler model trained on a larger data set are modest and possibly

not significant. This is due to two factors that come into play as more inputs are

added. First of all, training sets shrink as patients have to be dropped out due to

missing data. Secondly, the curse of dimensionality caused by the larger input space

will impede learning.

This does not mean that the thesis articulated in chapter two, that Bayesian

neural networks can be used effectively in scientific research, was wrong. In chapters

five and six Bayesian neural networks were applied effectively in an analysis of this

data set through the use of univariate models. It is also encouraging that given this

very sparse and complex data set, the multivariate models perform as well as or

better than a simpler model trained on a much larger data set. If nothing else, this

should persuade us that we are on the right track and inspire us to collect more data.

Two things (at least) can be done to improve the performance of the more

complex models. First of all, we must get more data! Ultimately there is no

substitute for this. Fortunately this is already happening. As described in the



introduction, this study was based on a large scale data acquisition project within a

single intensive care unit. The data acquisition software that was developed to

support this project is now being used in ten intensive care units across Europe.

Soon this will allow the assembly of much larger databases incorporating detailed

physiological monitoring and treatment information.

Secondly, I suspect that we have to look carefully at the priors for these

networks. This proved to be critical in the development of simpler models that

perform correctly given sparse data. It may be that the priors I have used over-

regularise when applied to these more complex models, causing them to miss

significant features of the data. An aspect of the prior that I have not investigated

carefully is its effects on the modelling of interactions between the input variables.

This may be an important area for future research.
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Chapter 8

Conclusions and Future Work

8.1 Validating the use of Bayesian Neural networks in
scientific research

In the introduction I discussed the application of Bayesian neural networks in

support of scientific research. In recent years many claims have been made

about Bayesian neural nets which, if true, would make them a powerful data

analysis tool in this context. For example:

• They accurately model the probability of the target data conditioned on
the input data.

• Model complexity is automatically adapted based on the properties of the
training data.

• Confidence intervals are assigned that take into account model uncertainty
and sample size.

• The form of the model, i.e. the number of layers of hidden nodes and the
number of nodes in each layer, can be selected based entirely on prior
knowledge without reference to the data. There is no need for a validation
set to determine the numbers of hidden nodes; model complexity is
adapted to the training set through the use of hyperparameters that control
the values of the smoothing parameters.

For the past several years I have been involved in a project analysing a large,

complex data set of physiological time series data collected during intensive care of

head-injured patients. The application of Bayesian neural networks to this task has

required a painstaking process of model validation, starting with the simplest

possible models and building up to realistic models that have provided new insights

into the risk factors for these patients.

The implementation of Bayesian neural networks used in this thesis is based

on Radford Neal's software (Neal, 1996). This system samples from the posterior
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distribution for the neural network weight vector conditioned on the training data

using Monte Carlo Markov chain (MCMC) techniques. The results reported in

chapter two and three using this implementation have provided detailed confirmation

of the claims put forward regarding Bayesian neural networks. Model validation is

based on a series of experiments using first simulated and then real data. The

simulated problems were kept very simple so that exact solutions for the full

posterior distributions in output space could be derived for comparison with the

neural network estimates. Kernel density techniques were developed to obtain

continuous probability density functions from the discrete densities generated by

MCMC sampling, enabling a direct comparison of the desired PDF's. The quality of

the approximations produced by the neural network was more than adequate for this

application. It was demonstrated that these results relied on the use of an

approximately uniform prior on the output function, and a procedure for finding such

a prior was discussed.

A second series of experiments validated the smoothing and generalisation

properties of the system by modelling the relationship between a few simple clinical

variables recorded in the Edinburgh head-injury database and patient outcome.

Conveniently, these injury severity scales are designed to be monotonic and roughly

linear. Because these variables are coarse grained (three to five categories), it was

possible to compare the estimates of conditional probabilities generated by the neural

network with those obtained simply by treating each possible value that the input can

assume separately as a predictor of outcome based on the statistics of the Edinburgh

database. By inspection, the behaviour of the neural network system appears to be

correct, although even for these still very simple problems, it is no longer possible to
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derive exact solutions for comparison. Finally, a series of multivariate models were

tested by training them on standard demographic and clinical indicators that have

been the subject of statistical prognostic modelling for many years. These

experiments replicated well established results in the field, providing another

measure of model validation for this implementation of Bayesian neural networks,

this time on realistic problems.

The final "proof' that Bayesian neural networks can be used effectively

in a scientific project lies in their actual application to the analysis of the

Edinburgh head-injury database. Significant clinical results are reported in

chapters five and six that were a direct result of the use of these models as tools

for exploratory data analysis. These are new observations based on the detailed

behaviour of these flexible, non-linear models.

Based on my experience with this implementation over the past few

years as reported in this thesis, the claims for Bayesian neural networks listed at

the beginning of this section are correct. The rigorous theoretical foundations

of this approach together with practical experience will allow it to take its place

as a legitimate tool of scientific research and data analysis.

8.2 Clinical conclusions

The specific clinical conclusions of this study can be found in the summaries for

chapters five and six. A few cautions should be noted regarding methodology.

This is an observational study. This means that there was no serious attempt to

rigorously frame this as an experiment to test hypotheses. Rather, I have treated

this an exercise in exploratory data analysis. This approach is a useful way of



generating new hypotheses, or providing support for existing hypotheses given a

large and poorly understood database. The evidence produced in this way is not

as convincing as might be produced if an appropriate randomised controlled

trial (RCT) could be designed to evaluate specific hypotheses. However, this is

not always appropriate, or even possible or in the context of clinical care

(Black, 1999). I hope that the large scale data acquisition and data analysis

methodologies demonstrated in this thesis will play a role in providing sound

evidence for clinical practice in cases where the experimental paradigm is not a

practical alternative.

8.3 Unresolved issues and a criticism

Two important technical issues regarding the application of Bayesian neural

networks in the context of a scientific project remain unresolved. The first is

the problem of diagnosing convergence of the Monte Carlo Markov chain to the

posterior weight distribution. As described in the introduction, I am convinced

that in practice this has not been a problem with the work described here.

Several times during course of this study I wondered if the system had actually

converged. In some cases I experimented with the parameters of the simulation,

and in others I let simulations run for a few days to see if they would find a

better solution. In no case did lack of rapid convergence to the posterior prove

to be a problem in my experience with this data set. Nevertheless, I would be

happier if I could have provided better evidence of convergence. Unfortunately,

a brief survey of the literature suggests that I might not have succeeded in this

even if it had been one of the major aims of this thesis!



A second problem area is discussed in the summary of chapter seven.

This has to do with the evaluation of the priors used for the most complex

multivariate models tested on this data set. There is some evidence that these

priors may result in the models being over-regularised, and that this may cause

them to miss important patterns in the data. This would be an interesting area

for future research.

This also leads to a criticism of the practical results obtained in chapter

five and six. The role of Bayesian neural networks in producing these results

was entirely restricted to the use of univariate models. Although the non-linear

properties of these models were critical in producing these results, in hindsight

any number of less computationally demanding techniques could have been

used. This observation could lead (and has led) to the observation that I have

used a sledgehammer to kill a fly. My first response to this would be that at

least this is a testimony to the exceptionally high quality of the sledgehammer

being used. In the introduction I have discussed the fact that in this thesis I

have not been interested in demonstrating the full power of neural networks as

non-linear classifiers, which has been amply demonstrated many times over.

Rather I am interested in the mathematical properties of Bayesian neural

networks, and their performance given sparse data. Secondly, I would note that

the fact that the simple models would be the most informative was only obvious

in hindsight. I fully expected that the most interesting experiments would be

those involving multivariate models, and in fact the only reason I initially

experimented with univariate models of the physiological data was to calibrate

the thresholds and the normalisation procedures being used. It was only when I
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was confronted with certain "strange" features of these models that interesting

results started to emerge. In a real life application you can never be sure in

advance exactly what the relevant model is or how it should be applied.

Bayesian neural networks will find simple models of simple data and complex

models of complex data. They will accurately characterise the uncertainties in

these models. You can't ask for more than that.

8.4 Future Work

This work was based in part on software for automatic data acquisition in the

intensive care unit. A few years ago the first version of this system was

installed in Edinburgh. Now the system is being actively used in ten intensive

care units across Europe. I hope that in the next few years this will lead to the

formation of much larger databases than the one available to me in this study. I

hope that I will be able to make this data available for research in automatic

pattern recognition from several different practical and technical perspectives.

It would be hard to imagine a more useful or rewarding application for these

technologies.
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Appendix

A.1 Parzen Density Estimation

The Monte Carlo approach to Neural Network learning described in section 1.4

produces a discrete sample of networks from the posterior, which in turn can be used

to generate a sample of outputs for some given input. In this thesis I have frequently

wanted to compute a continuous density based on this discrete sample of outputs (e.g.

see figure 6, chapter 2). I had to solve this for two class and also for three class

problems. In both cases I have done this using Parzen density functions. The density

at any given point is computed as the sum of circularly symmetrical Gaussians

centred on each point in the sample. The key to making this work is determining an

appropriate scaling factor (a) that controls the width of the Gaussians. If a is too

large, the Gaussians will be very wide, resulting in a function that is too smooth. If a

is too small, the Gaussians will be very narrow, and the function computed will be

too rough. For both the two output and three output cases, I have used heuristic

formulas for computing o. I can make absolutely no claims for these formulas

beyond the fact that they served my purposes well.

A. 1.1 Two Output Case

I have computed the smoothing constant (o) as:

<7 = 1.35T)4n
Where D is the mean distance between neighboring points in the sample
and N is the number of points in the sample.
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Then the Parzen density function for a point x is defined as :

_ ^exp(-((jy-o,.)2/2o-2))
i=l <7 ~Jl7I

Where N is the number of neural networks generated

by the Monte Carlo simulation, o, is the output of the i1)1
network, and a is the smoothing constant.

Then I define a grid that subdivides the interval (0, 1) into 200 equal segments and

P(x) is computed at each point on the grid. The height of the curve is then scaled so

that the area under the curve is equal to one.

A. 1.2 Three Output Case

As explained in section 2.11, probability distributions over three outputs are confined

to lie on the triangle defined in 3-space by the points (1 0 0) (0 1 0) and (0 0 1). For

each point in this triangle I have computed the assigned probability using a Parzen

density function. First the smoothing constant (<r) is computed as:

a = 0.35D

Where D is the mean distance between all pairs of points in the sample
(not just neighboring points as in the two output case). In this case, D
is defined as the euclidean distance between points on the surface of the
triangle.

Then the Parzen density function for a point x is defined as :

t~v , ^ exp(-((x-o,.)2/2cr2))F(X)=S ^
Where N is the number of neural networks generated

by the Monte Carlo simulation, o, is the output of the i111
network, and a is the smoothing constant.

Then I define a grid inside the triangular surface. This is formed by three sets of N

equally spaced lines at regular intervals parallel to each side of the triangle. This tiles

the space with (N + I)2 subtriangles where N is the number of grid lines per side.
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Figure 1: Triangular grid with N = 2

Throughout this thesis I have used N = 79. Then I use F(jc) to calculate the height at

each grid vertex. The height of the surface is scaled so that the volume equals one.

In order to display the surface graphically (e.g. see figure 20, chapter 2), I have drawn

the level contours for a series of confidence regions. The confidence levels I have

chosen are 90%, 70%, 50%, and 25%. To draw these, I sort the subtriangles in the

grid by volume. Then starting with the biggest volume, I count out subtriangles

accumulating their volume until I reach the desired percentage. Then I draw a

boundary (or set of boundaries if the distribution has multiple modes) around the

selected subtriangles. Thus, within the limits of the discrete approximation, the

contour for the N% confidence region is the level contour that contains N% of the

probability.

A.2 Beta and Dirichlet Functions

In order to validate the density estimates described above, I have compared them in

simple cases to Beta and Dirichlet functions (sections 2.6 and 2.12), which can be



computed to arbitrary precision. To do this I have used the same approach based on

discrete grids as described above for density estimation, but I have replaced the

Parzen function with an exact calculation of probability. The idea is that we run a

series of trials with two or three possible outcomes (outputs). The observed (input)

values are fixed for the duration of the trial. Therefore we can replace the Parzen

window function with a function that calculates the relative likelihood of various

estimates of the true probability distribution over outcomes based on the finite series.

A.2.1 Two Output Case (Beta Function)
If we have N trials with M positive results, then we can estimate the likelihood based
on the series that the true probability of a positive result is P as

F(P) =
M

P^ (1 — P)^ ^

Again, the likelihood is computed on a discrete grid, and the curve is scaled so that

the area under the curve equals one.

A.2.2 Three Output Case (Dirichlet Function)

Say the outcome of a trial can have three values: ot ,o2 and o3

If we have N trials resulting in Mj observations for each of the three o;, then we can

compute the likelihood based on the series that the true probability distribution we

should assign to our output classes o is P as

F(P) =
N YN-M,

M,
A

M_
p Mj p M2 p Mrl 2 3

Again, the likelihood is computed on a discrete triangular grid (see A. 1.2 above), and

the surface is scaled so that the volume under the surface equals one.
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A.3 Parameters for the simulations

A.3.1 Neural Network Model Specifications

Hyperprior Widths are the width parameters for the gamma distribution, and the
Hyperprior Alphas are the shape parameters

Two Class Problems

Input Nodes: 2
Hidden Nodes: 8

Output Nodes 2

Activation Function Softmax
Automatic Relevance Detection No

Input To Hidden Hyperprior Width 2.0

Input To Hidden Hyperprior Alpha 5.0
Hidden Bias Hyperprior Width 0.5
Hidden Bias Hyperprior Alpha 5.0
Hidden To Output Hyperprior Width 0.25
Hidden To Output Hyperprior Alpha 2.5

Output Bias Hyperprior Width 0.25

Output Bias Hyperprior Alpha 2.5

Three Class Problems

Input Nodes varied
Hidden Nodes: 12

Output Nodes 3
Activation Function Softmax
Automatic Relevance Detection No

Input To Hidden Hyperprior Width 4.0

Input To Hidden Hyperprior Alpha 10.0
Hidden Bias Hyperprior Width 1.0
Hidden Bias Hyperprior Alpha 10.0
Hidden To Output Hyperprior Width 0.5
Hidden To Output Hyperprior Alpha 5.0

Output Bias Hyperprior Width 0.5

Output Bias Hyperprior Alpha 5.0
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A.3.2 Monte Carlo Markov chain Specifications

These are the same for all simulations:

Initial Phase

The commands to Radford Neal's software would be:

mc-spec <file name> repeat 10 heatbath hybrid 100:10 0.2
net-mc < file name > 1

My wrapper runs off a command file that would contain these commands:

mcmc-iterate <file name> 1

repeat 10
heatbath

hybrid 100:10 0.2
end

end

This means that we have an inner loop that runs 10 times alternating Gibbs
Sampling (heatbath) updates that replace the momentum terms with hybrid Monte
Carlo with 100 leapfrog steps using a window of 10 and a stepsize adjustment factor
Of 0.2. The inner loop is contained in an outer loop that runs once. The specified file
contains the specification for the neural network.

Sampling Phase

The commands to Radford Neal's software would be:

mc-spec <file name> repeat 10 heatbath 0.95 hybrid 100:10 0.3
net-mc < file name > 120

My wrapper runs off a command file that would contain these commands:

mcmc-iterate <file name> 120

repeat 10
heatbath 0.95

hybrid 100:10 0.3
negate

end
end

The semantics are the same as for the initial phase.
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