69 research outputs found

    Hidden attractors in fundamental problems and engineering models

    Full text link
    Recently a concept of self-excited and hidden attractors was suggested: an attractor is called a self-excited attractor if its basin of attraction overlaps with neighborhood of an equilibrium, otherwise it is called a hidden attractor. For example, hidden attractors are attractors in systems with no equilibria or with only one stable equilibrium (a special case of multistability and coexistence of attractors). While coexisting self-excited attractors can be found using the standard computational procedure, there is no standard way of predicting the existence or coexistence of hidden attractors in a system. In this plenary survey lecture the concept of self-excited and hidden attractors is discussed, and various corresponding examples of self-excited and hidden attractors are considered

    Attractor selection in nonlinear oscillators by temporary dual-frequency driving

    Get PDF
    This paper presents a control technique capable of driving a harmonically driven nonlinear system between two distinct periodic orbits. A vital component of the method is a temporary dual-frequency driving with tunable driving amplitudes. Theoretical considerations revealed two necessary conditions: one for the frequency ratio of the dual-frequency driving and another one for torsion numbers of the two orbits connected by bifurcation curves in the extended dual-frequency driving parameter space. Although the initial and the final states of the control strategy are single-frequency driven systems with distinct parameter sets (frequencies and driving amplitudes), control of multistability is also possible via additional parameter tuning. The technique is demonstrated on the symmetric Duffing oscillator and the asymmetric Toda oscillator

    Theory of differential inclusions and its application in mechanics

    Full text link
    The following chapter deals with systems of differential equations with discontinuous right-hand sides. The key question is how to define the solutions of such systems. The most adequate approach is to treat discontinuous systems as systems with multivalued right-hand sides (differential inclusions). In this work three well-known definitions of solution of discontinuous system are considered. We will demonstrate the difference between these definitions and their application to different mechanical problems. Mathematical models of drilling systems with discontinuous friction torque characteristics are considered. Here, opposite to classical Coulomb symmetric friction law, the friction torque characteristic is asymmetrical. Problem of sudden load change is studied. Analytical methods of investigation of systems with such asymmetrical friction based on the use of Lyapunov functions are demonstrated. The Watt governor and Chua system are considered to show different aspects of computer modeling of discontinuous systems

    Hopf bifurcation, antimonotonicity and amplitude controls in the chaotic Toda jerk oscillator: analysis, circuit realization and combination synchronization in its fractional-order form

    Get PDF
    In this paper, an autonomous Toda jerk oscillator is proposed and analysed. The autonomous Toda jerk oscillator is obtained by converting an autonomous two-dimensional Toda oscillator with an exponential nonlinear term to a jerk oscillator. The existence of Hopf bifurcation is established during the stability analysis of the unique equilibrium point. For a suitable choice of the parameters, the proposed autonomous Toda jerk oscillator can generate antimonotonicity, periodic oscillations, chaotic oscillations and bubbles. By introducing two additional parameters in the proposed autonomous Toda jerk oscillator, it is possible to control partially or totally the amplitude of its signals. In addition, electronic circuit realization of the proposed Toda jerk oscillator is carried out to confirm results found during numerical simulations. The commensurate fractional-order version of the proposed autonomous chaotic Toda jerk oscillator is studied using the stability theorem of fractional-order oscillators and numerical simulations. It is found that periodic oscillations and chaos exist in the fractional-order form of the proposed Toda jerk oscillator with order less than three. Finally, combination synchronization of two fractional-order proposed autonomous chaotic Toda jerk oscillators with another fractional-order proposed autonomous chaotic Toda jerk oscillator is analysed using the nonlinear feedback control method

    Applications of dynamical systems with symmetry

    Get PDF
    This thesis examines the application of symmetric dynamical systems theory to two areas in applied mathematics: weakly coupled oscillators with symmetry, and bifurcations in flame front equations. After a general introduction in the first chapter, chapter 2 develops a theoretical framework for the study of identical oscillators with arbitrary symmetry group under an assumption of weak coupling. It focusses on networks with 'all to all' Sn coupling. The structure imposed by the symmetry on the phase space for weakly coupled oscillators with Sn, Zn or Dn symmetries is discussed, and the interaction of internal symmetries and network symmetries is shown to cause decoupling under certain conditions. Chapter 3 discusses what this implies for generic dynamical behaviour of coupled oscillator systems, and concentrates on application to small numbers of oscillators (three or four). We find strong restrictions on bifurcations, and structurally stable heteroclinic cycles. Following this, chapter 4 reports on experimental results from electronic oscillator systems and relates it to results in chapter 3. In a forced oscillator system, breakdown of regular motion is observed to occur through break up of tori followed by a symmetric bifurcation of chaotic attractors to fully symmetric chaos. Chapter 5 discusses reduction of a system of identical coupled oscillators to phase equations in a weakly coupled limit, considering them as weakly dissipative Hamiltonian oscillators with very weakly coupling. This provides a derivation of example phase equations discussed in chapter 2. Applications are shown for two van der Pol-Duffing oscillators in the case of a twin-well potential. Finally, we turn our attention to the Kuramoto-Sivashinsky equation. Chapter 6 starts by discussing flame front equations in general, and non-linear models in particular. The Kuramoto-Sivashinsky equation on a rectangular domain with simple boundary conditions is found to be an example of a large class of systems whose linear behaviour gives rise to arbitrarily high order mode interactions. Chapter 7 presents computation of some of these mode interactions using competerised Liapunov-Schmidt reduction onto the kernel of the linearisation, and investigates the bifurcation diagrams in two parameters

    Some contributions to the analysis of piecewise linear systems.

    Get PDF
    This thesis consists of two parts, with contributions to the analysis of dynamical systems in continuous time and in discrete time, respectively. In the first part, we study several models of memristor oscillators of dimension three and four, providing for the first time rigorous mathematical results regarding the rich dynamics of such memristor oscillators, both in the case of piecewise linear models and polynomial models. Thus, for some families of discontinuous 3D piecewise linear memristor oscillators, we show the existence of an infinite family of invariant manifolds and that the dynamics on such manifolds can be modeled without resorting to discontinuous models. Our approach provides topologically equivalent continuous models with one dimension less but with one extra parameter associated to the initial conditions. It is possible so to justify the periodic behavior exhibited by such three dimensional memristor oscillators, by taking advantage of known results for planar continuous piecewise linear systems. By using the first-order Melnikov theory, we derive the bifurcation set for a three-parametric family of Bogdanov-Takens systems with symmetry and deformation. As an applications of these results, we study a family of 3D memristor oscillators where the characteristic function of the memristor is a cubic polynomial. In this family we also show the existence of an infinity number of invariant manifolds. Also, we clarify some misconceptions that arise from the numerical simulations of these systems, emphasizing the important role of invariant manifolds in these models. In a similar way than for the 3D case, we study some discontinuous 4D piecewise linear memristor oscillators, and we show that the dynamics in each stratum is topologically equivalent to a continuous 3D piecewise linear dynamical system. Some previous results on bifurcations in such reduced systems, allow us to detect rigorously for the first time a multiple focus-center-cycle bifurcation in a three-parameter space, leading to the appearance of a topological sphere in the original model, completely foliated by stable periodic orbits. In the second part of this thesis, we show that the two-dimensional stroboscopic map defined by a second order system with a relay based control and a linear switching surface is topologically equivalent to a canonical form for discontinuous piecewise linear systems. Studying the main properties of the stroboscopic map defined by such a canonical form, the orbits of period two are completely characterized. At last, we give a conjecture about the occurrence of the big bang bifurcation in the previous map
    corecore