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1. Introduction 

In order to reduce the vibrations in the revolving machines and the structures in general, the 

dynamic absorbers are often used in different mechanical and civil applications (Crankshaft, 

rotor of the wings of a helicopter, beams, etc). 

The absorber is a mechanical oscillator called auxiliary system and it’s added to the main 

vibrating structure, in order to carry out a transfer of energy from the main system to the 

auxiliary system. This latter can either be added on the main system, or directly envisaged 

in design.  

A linear model is often insufficient to describe correctly the dynamical behaviour of a 

system, and then it’s natural to introduce non linear structure models. To solve these non 

linear problems, iterative numerical algorithms are often used. 

In order to approach the non linear dynamic behaviour of mechanical systems, many 
methods were proposed in the literature. As for the mechanical systems assimilated to a 
single dof system, one can mentioned different works. Whiston [1] studied the linear 
response of a mechanical oscillator with a single dof preloaded and subjected to a harmonic 
excitation. Natsiavas [2] studied the response of a vibration absorber applied to a machine 
with a nonlinear cubic stiffness of the Duffing type.  In this chapter, numerical results are 
given with many parameter combinations. This leads to the improvement of the vibration 
absorber. The stability response, for periodic motion of harmonically excited single dof 
linear system with piecewise linear characteristics was studied by Natsiavas [3]. Chung et 
al.[4] carried out the extension of the method of incremental perturbation on a strongly 
nonlinear non-autonomous oscillator.  
Concerning the discrete systems with several dof, many works were interested in the 

nonlinearity. Vakakis and Paipetic [5] studied the effect of the absorber viscosity on a 

conservative system with several dof. Optimal values for the parameters describing the 

behaviour of the absorber are determined. Natsiavas [6] discussed the response of a strongly 
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nonlinear system with several dof where the absorber is modeled by a linear spring and a 

residual force.  Natsiavas and Tratskas [7] have studied a system with two nonlinear dof in 

translation and rotation motions by multi-scale method in time. Verros and Natsiavas [8] 

studied an oscillator with two dof with a cubic stiffness nonlinearity subjected to a harmonic 

charge.  For this purpose, they used the perturbation method in order to study the effect of 

the parameters on the stability of the periodic solution.  Zhu et al. [9] have studied a discrete 

two dof system with two cubic nonlinearities of stiffness and damping subjected to a 

harmonic excitation. They have used the method of the variation of the constant in order to 

obtain the periodic, quasi periodic and chaotic motions. Erkus [10] has accomplished a 

comparative study of the various numerical techniques of resolution for nonlinear 

structures, based on Newmark schema. Roy and Kumar [11] presented a method of multi-

stage transverse linearization applied to a nonlinear dynamic system.  El Bessiouny [12] 

studied effect of the quadratic and cubic nonlinearity of an elastomer shock absorber used in 

the torsion vibrations in an internal combustion engine. The stability of the solution is 

studied according to nonlinear terms. The multi-scale method was used in this work. 

The majority of the optimization problems are of multi-objective nature.  For their 
resolutions, there are several approaches of evolutionary algorithm. Schaffer [13] proposed 
an extension of a standard Genetic Algorithm to a modified one called Vector Evaluated 
Genetic Algorithm “VEGA”.  
Zitzler and Thiele [14] proposed a multi-objective optimization method which uses the 

concept of Pareto to compare the solutions.  Srivinas and Deb [15] proposed an evolutionary 

algorithm of NSGA type (Not dominated Sorting Genetic Algorithms) based on the concept 

of Pareto dominance. 

This chapter is based on the paper of Bouazizi et al.[16]. Firstly a two dof mechanical system 

composed of a one dof main system and a one dof absorber of vibration is proposed. The 

case of non integer power non linearity is considered also in this work in order to show the 

difference with integer cases. 

The global system comprises generalized nonlinear stiffness and shock absorbers (cubic non 

linearity   combined with a higher or lower power nonlinearities: 2,4 and 1.5) with a given 

proportioning. 

For the resolution the unconditionally stable Newmark iterative scheme is used.  

Here, one can seem for the non linear forces in the main system and in the absorber 

according to displacements and system trajectory in order to study the influence of some 

parameters and the type of non linearity. 

Finally, the errors curves are found witch make it possible to conclude about the speed of 
convergence of the model compared to the importance of results.   
A parametric study of the system as well as of the load and nonlinearities are carried out.  

Secondly, the presence of uncertainties on the design parameters of a system can influence the 
results of the used models. Thus, one can use a robust multi-objective optimization 
methodology with respect to uncertainties on the design parameters. This methodology will be 
applied to a mechanical system comprising an absorber of vibration and equipped with 
nonlinearities of stiffness and damping of cubic, quadratic and non entire.  This mixing of one 
of the two last nonlinearities with the cubic case constitutes our generalized non linearity.   
The step of multi-objective optimization consists in seeking the first Pareto front of several 

linear and nonlinear objective functions by using genetic algorithm "NSGA ".  Those make it 

possible to find the optimal nonlinear displacements.   
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The obtained solution guarantees the acceptable compromise of optimality/robustness. The 

robustness function is then introduced as supplementary objective function to each cost 

function Bouazizi et al. [16], Ghanmi et al. [17] and Ait Brik et al [18]. 

2. Basic equations 

2.1 Introduction 

One can consider a mechanical system called main system brought back to only one dof.  An 

absorber with only one dof is assembled on this system. The main system is characterized by 

a mass 1m , a linear spring of stiffness 1k , a linear shock absorber or damping 1c , two 

stiffness nonlinearities of respectively '
1k  with variable power  r and ''

1k  cubic and two other 

similar nonlinearities of damping with the two respective coefficients of nonlinearities '
1c   

and ''
1c . It is subjected to a harmonic load of variable amplitude and fixed pulsation ω  

corresponding approximatively to the natural pulsation of the main system. The mechanical 

characteristics of the absorber are similar to those of the main system with index 2 instead of 

1. The absorber parameters are then: 2m , 2k , 2c , '
2k , ''

2k , '
2c  and  ''

2c .  
 

 

Fig. 1. Basic model 

Figure 1 presents the global system of study. 1x   is defined as the absolute vertical 

displacement of the mass  1m   and 2x  is the vertical displacement of the mass  2m  relatively 

to the mass 1m . 

2.2 Analytical formulation 

From the Lagrange method, the equations of motion for the system can be rearranged as 
follows:  

 
( ) ( ) ( )

( ) ( )
1 2 1 2 2 1 1 1 1 0

2 1 2 2 2 2 2 2

cos

0

m m x m x f x R x P t

m x m x f x R x

ω+ + + + =

+ + + =

$$ $$
$$ $$

 (1) 
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where: 

( ) ' '' 3 ( 1, 2),,r
i i i i i i i i if x k x k x k x == + +  are the generalized stiffness nonlinear forces.  

( ) ' 1 '' 2 ( 1, 2),,r
i i i i i i i i i i iR x c c x c xx x x− == + +$ $ $  are the generalized damping nonlinear forces. 

Further, the nonlinear force on a mass im  is referred to as the addition of the two nonlinear 

forces mentioned previously.  

The positive real parameter r  is introduced in order to consider various situations of 

nonlinearities i.e.: 

• 1r =  or 3r =  : cubic nonlinearity.  

• 2r = : quadratic nonlinearity superposed to cubic nonlinearity. 

• 1.5r = : non integer nonlinearity superposed to cubic nonlinearity.  

These last three situations constitute what we call generalized nonlinearity. 

The equations of motion (1) can be written in a matrices form:  
 

 [ ]{ } [ ]{ } [ ]{ } { }nl nlM u C u K u F+ + =$$ $  (2) 

where: 

{ } 1

2

x
u

x

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

, { } 1

2

x
u

x

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

$
$

$
, { } 1

2

x
u

x

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

$$
$$

$$
 and { } 0 cos

0

P t
F

ω⎧ ⎫
= ⎨ ⎬
⎩ ⎭

 are respectively the displacement, 

velocity, acceleration and external force vector, and [ ] 1 2 2

2 2

m m m
M

m m

+⎡ ⎤
= ⎢ ⎥
⎣ ⎦

,  

[ ]
' 1 '' 2

1 1 1 1 1

' 1 '' 2
2 2 2 2 2

0
( )

0

r

nl r

c c x c x
C u

c c x c x

−

−

⎡ ⎤+ +
= ⎢ ⎥+ +⎣ ⎦

 and   

[ ]
' 1 '' 2

1 1 1 1 1

' 1 '' 2
2 2 2 2 2

0
( )

0

r

nl r

k k x k x
K u

k k x k x

−

−

⎡ ⎤+ +
= ⎢ ⎥+ +⎣ ⎦

  

are respectively the mass, nonlinear damping and nonlinear stiffness matrix. Further, 

adimensional writing is used by carrying out the following changes of variables:  
 

 

20 1 1
1 1

1 1

2 2 2
2 2 2

1 1

' ''
( 1)' '' 2

' ''
( 1)' '' 2

, , ,

, ; ,

, ,

, ( 1,2).

sta

sat

sat

ri i
i sta i sta

i i

ri i
i sta i sta

i i

P k x
x x

k m x

x m k
x m k

x m k

k k
k x k x

k k

c c
c x c x i

c c

ω

−

−

= = =

= = =

= =

= = =

 (3) 

 { } { } { } { }( ) ( )nl nlM u C u u K u u F⎡ ⎤⎡ ⎤ ⎡ ⎤+ + =⎣ ⎦ ⎣ ⎦⎣ ⎦
$$ $  (4) 
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After dividing with ( 1 stak x ), the equation of motion (2) becomes: 

where:  

{ } 1

2

x
u

x

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

,{ } 1

1 2

1 x
u

xω
⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

$
$

$ , { } 1

2
1 2

1 x
u

xω
⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

$$
$$

$$  and { } cos

0

t
F

ω⎧ ⎫
= ⎨ ⎬
⎩ ⎭

 are respectively the 

displacement, velocity, acceleration and external force adimensional vector.  

2 2

2 2

1 m m
M

m m

+⎡ ⎤
⎡ ⎤ = ⎢ ⎥⎣ ⎦

⎣ ⎦
, 

( 1)' '' 2
1 1 1 1 1

( 1)' '' 2
2 2 2 2 2 2 2

(1 ) 0
( ) 2

0 (1 )

r

nl r

c x c x
C u

k m c x c x

α

α

−

−

⎡ ⎤+ +
⎡ ⎤ ⎢ ⎥=⎣ ⎦ ⎢ ⎥+ +⎣ ⎦

  

and 
( 1)' '' 2

1 1 1 1

( 1)' '' 2
2 2 2 2 2

1 0
( )

0 (1 )

r

nl r

k x k x
K u

k k x k x

−

−

⎡ ⎤+ +
⎡ ⎤ = ⎢ ⎥⎣ ⎦ + +⎢ ⎥⎣ ⎦

are respectively the mass, the 

nonlinear damping and the nonlinear stiffness adimensional matrix. 

1 2andα α  are respectively the damping ratio of the main system and the absorber.  

For the numerical resolution, we need the nonlinear terms of the main system ' '' ' ''
1 1 1 1( , , , )k k c c , 

nonlinear terms of the auxiliary system (absorber) ' '' ' ''
2 2 2 2( , , , )k k c c  and basic terms 

2 1 1 2, , , ,stam x ω α α and 2k . 
The initial conditions are given by : 

{ } 10

20

(0)
x

u
x

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

, { } 10

1 20

1
(0) .

x
u

xω
⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

$
$

$  and { } 1
(0)

0
F

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

.  

The beginning of computation, we start by the computation of the initial acceleration:   

 { } ( ){ } ( ) ( ){ } ( ){ }{ }110

20

(0) (0) 0 0 0 0nl nl

x
u M C u K u F

x

−⎧ ⎫⎪ ⎪ ⎡ ⎤⎡ ⎤ ⎡ ⎤= = − − +⎨ ⎬ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎪ ⎪⎩ ⎭

$$
$$ $

$$  (5) 

The resolution of equation (4) can be obtained by a numerical integration with using the 
unconditionally stable Newmark scheme. 

At the step n where  .t n t= Δ  ( tΔ  is the time integration step), the equation (4) can be 

written:  

 { } { } ( ) { } { }( )n nl n n nl n n nM u C u u K u u F⎡ ⎤⎡ ⎤ ⎡ ⎤+ + =⎣ ⎦ ⎣ ⎦⎣ ⎦
$$ $  (6) 

where: the index n corresponds to the value in nth step. 
The Newmark scheme consists in approximating the adimensional displacement and 
velocity vectors as follows: 

 
{ } { } { } { } { }
{ } { } { } { }

2
2

1 1 1 1

1 1 1

. . [(1-2 ) 2 ]
2

.  [(1- ) ]

n n n n n

n n n n

t
u u t u u u

u u t u u

ω ω β β

ω γ γ

+ +

+ +

Δ
= + Δ + +

= + Δ +

$ $$ $$

$ $ $$ $$
 (7) 

The accuracy and the stability of this scheme depends on the values of the two parameters 

β  and γ . In our simulation, we used the habitual parameters (
1 1

,
2 4

γ β= = ) 

corresponding to the called average acceleration method (unconditionally stable scheme). 
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The process consists in defining the indicators { }1nu +#  and { }1nu +
$#  according to the terms 

known at the moment .t n t= Δ  while taking  { } { }1 0nu + =$$  : 

 

{ } { } { } { }

{ } { }

2
2

1 11

1 1

 [(1-2 ) ]
2

.
. [(1- ) ]

n n n n

n n n

t
u u t u u

u u t u

ω ω β

ω γ

+

+

Δ
= + Δ +

⎧ ⎫⎪ ⎪ = + Δ⎨ ⎬
⎪ ⎪⎩ ⎭

$ $$#

$ $$#
 (8) 

One can define the residual equation (Res) as a function of  { }1nu +  at the moment 

1 ( 1)nt n t+ = + Δ   as following: 

 { } { } { } ( ) { } { } { }1 1 1 1 1 1 1Res( ) ( ) 0n n n n n n nu M u C u u k u u F+ + + + + + +⎡ ⎤⎡ ⎤⎡ ⎤= + + − =⎣ ⎦ ⎣ ⎦ ⎣ ⎦
$$ $  (9) 

The nonlinear equation (9) can be solved in an iterative way by the method of Newton-

Raphson in the following way.   

Let{ }1
k
nu + , { }1

k
nu +

$  and { }1
k
nu +

$$ ) respectively the approximation of adimensional displacement, 

velocity and acceleration  vector obtained in the thk iteration   of the time step 1nt + . Those 

can be corrected, for the next iteration, respectively in the form: 

({ } { }1 1
k k
n nu u+ ++ Δ ,{ } { }1 1

k k
n nu u+ ++ Δ$ $ ,{ } { }1 1

k k
n nu u+ ++ Δ$$ $$ ). 

The end of the iteration cycle is carried out, when the residue of displacement falls below a 
certain precision level initially fixed.  
In the numerical simulation (section 3), several cases will be study.  

In the first time, two particular cases, the cubic nonlinear stiffness (Duffing type) and the 

cubic nonlinear damping (Van Der Pol type), are studied.  

In the second time, the mixed of the previous cubic nonlinear cases (damping and stiffness) 

is considered. 

Finally, the mixed generalized nonlinearity cases (power 2 “quadratic” and cubic, and 

power 1.5 and cubic) are studied. 

3. Simulation results and discussion 

In this section, we are interested in first part to the vibratory behaviour of the global two dof 

system through the representation of the following curves:   

- 1( )X t  : Displacement of the main system (1) according to time, 

- 2( )X t  : Relative displacement between the absorber (2) and the main system  according 

to time, 

- 1 1( )V X  : Phase diagram of the main system 1, 

- 2 2( )V X  : Phase diagram of the absorber, 

- 1NL F−  : Nonlinear force 1 of the system (1) according to 1X , 

- 2NL F−  : Nonlinear force 2 of the absorber according to 2X ,  

- 2 1( )X X : System trajectory, 
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- ε : Relative error on displacement after convergence (limit fixed at 610− ) according to time. 

These curves are given for the four indicated nonlinearity cases mentioned above.   

In second part, one is interested in optimization of the absorber by seeking its linear and 

nonlinear optimal characteristics: ' ''
2 2 2 2, ,k k k et m  with minimization of the maximum 

nonlinear displacement 1( )X t . 

The non dimensional results are converted finally in physics results when the displacement 

and the velocity are multiplied by ( )stax in ( )m  also the velocity well be in m/s. 
The curves give only the non dimensional results and need to be converted are mentioned.   

In this section, we will take for computation convenience and practical considerations: 

2 0.01m = ,  0.05stax m= , 1 70 /rad sω = , 43.10t s−Δ = , 2 0.01k =   and  1 2 0.001α α= = . 
It is noted that the excitation pulsation is selected close to the natural pulsation of the main 
system witch is experimented in another submitted paper. The absorber is the used only in 
the resonance domain in this work. 
The time step is chosen to have a good convergence. 
With a less step time we find the same results. 
The initials conditions are equal to zero but when we modify them the results don’t change  

3.1 Cubic nonlinear stiffness (Duffing case) 

The nonlinear mechanical characteristics of the system are: ' '' ' ''

1 1 2 2
250k k k k= = = =    and  

' '' ' ''

1 1 2 2
0c c c c= = = = . It should be noted that the absolute physical characteristics in this 

case, have the value (
' '' ' ''

51 1 2 2

1 1 2 2

10
k k k k

k k k k
= = = = ) in international system (SI). 

Figure 2a illustrates the nonlinear responses in displacements of the main system (dof 1) and 
of the absorber (dof 2). It is noted that the main system vibrations are weaker than those of 
the absorber. 
 

 

Fig. 2a. Nonlinear temporal responses "Duffing case" 
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After a transitory period of time, one notes a more regular vibration for the absorber and a 
phenomenon of periodic vibration for the main system and the absorber but with different 
periods. The period of the main system is similar to that of the force excitation but that of 
the absorber is about three times lower then the precedent period.  
Figure 2b illustrates the two phase curves corresponding to the Duffing case where 
attractors are visible only for the main system but for the absorber we note a limit cycle orbit 
after the transitory period. 
 

 

Fig. 2b. Phase diagrams "Duffing case" 

The figure 3 a and b illustrate the nonlinear forces on each mass according to corresponding 
displacement. One notes a hysteretic cubic cycle, and an inflection point corresponding to 
the steady balance point.   
 

 

 

Fig. 3a. Nonlinear forces:  (X1, NL-F1) "Duffing case"  
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This hysteresis has a low width caused by the weak linear damping; it is more visible for the 
absorber. In the same way the cubic form of the nonlinear force is more visible for the 
absorber than for the main system. One notes also the appearance of a narrow level stretch 
around the stable point especially for the main system. 
 

 

Fig. 3b. Nonlinear forces: (X2, NL-F2) "Duffing case" 

Figure 4a illustrates the very complex trajectory of the global system in the plan ( 1 2,X X ) for 

these proportioning.  
 

 

Fig. 4a. System trajectory in the plan (X1, X2) "Duffing case" 
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Fig. 4b. Error curve "Duffing case" 

Figure 4b shows the relative error curve of displacement. It is noted that the errors are 

satisfactory compared to the selected limit ( 610− ) during the iterative process, which proves 

a good convergence for the selected model and parameters. 

3.2 Cubic nonlinear damping (Van Der Pol case) 

The nonlinear mechanical characteristics of the system are: ' '' ' ''

1 1 2 2
0k k k k= = = =  and 

' '' ' ''

1 1 2 2
250c c c c= = = = . It should be noted that the absolute physical characteristics in this 

case, have the value (
' '' ' ''

51 1 2 2

1 1 2 2

10
c c c c

c c c c
= = = = ) in international system (SI) and also these 

parameters are selected among several tests, guaranteeing useable results on the one hand 
and of good convergence on the other hand.  
 

 

Fig. 5a. Nonlinear temporal responses "Van Der Pol case" 
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Figure 5a illustrates the responses in displacements of the main system and of the absorber. 

It is noted that the responses of the two dof are practically harmonic and in phase 

opposition, in which the pulsation is close to that of excitation. The behaviour resembles for 

this case and after a transitory period to that of a linear system. The absorber causes a 

notably decrease for the vibrations of the main system.   

 

 

Fig. 5b. Phase diagrams "Van Der Pol case" 

Consequently, the phase diagram for each dof (figure 5b) indicates a cycle limit meaning 

stability, these two cycles are complementary. 

 

 

Fig. 6a. Nonlinear forces:  (X1, NL-F1) "Van Der Pol case" 
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Fig. 6b. (X2, NL-F2) "Van Der Pol case" 

The figure 6 a and b illustrate the nonlinear forces exerted on each mass according to 
corresponding displacement. One notes a broad opening hysteresis caused by strongly 
nonlinear damping for each dof. It is practically symmetrical compared to the steady 
balance position. It is also noted that the forces evolve in phase opposition for the two dof as 
well as the displacements. 
 

 

Fig. 7a. System trajectory in the plan (X1, X2) "Van Der Pol case" 

Figure 7a illustrates a quasi periodic and elliptic stable trajectory of the global system in the 

plan ( 1 2,X X ). Figure 7b shows the relative error curve. It is noted that the errors are close to 
610−  during the iterative process, which proves a difficult convergence compared to the 

Duffing case for the selected model and parameters. If one continues to increase the 

damping proportioning, convergence becomes difficult. 
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Fig. 7b. Error curve "Van Der Pol case" 

3.3 Cubic nonlinear damping and stiffness: 3r =  

In this subsection and for all that will follow, we consider mixed (damping and stiffness) 
non linearity cases. The nonlinear mechanical characteristics of the system 

are: ' '' ' ''
1 1 2 2 250k k k k= = = =  and ' '' ' ''

1 1 2 2 250c c c c= = = = . This choice respects the same nonlinear 

damping and stiffness proportioning previously used in (3.1) and (3.2) subsections.  
 

 

Fig. 8a. Nonlinear response (X1(t)) "Cubic damping and stiffness case" 

The figure 8 a and b illustrate the response in time (a) and phase diagram (b) of the main 
system. One observes the strongly nonlinear behaviour in the temporal curve. We note also 
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the presence of two attractors more visibly that for the Duffing case and synonymous with a 
predominance of the stiffness non linearity. For the absorber, there is no notable 
modification compared to the Duffing case, in spite of the non validity of the superposition 
principle. 

 
 

Fig. 8b. Phase diagram (X1,V1) "Cubic damping and stiffness case" 
 

 
 

Fig. 9a. Nonlinear forces  (X1, NL-F1)  "Cubic damping and stiffness case" 
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Fig. 9b. Nonlinear forces (X2, NL-F2) "Cubic damping and stiffness case" 

The figure 9 a and b illustrate the nonlinear forces applied on each mass according to 

corresponding displacement. A low width cubic hysteretic cycle is observed for the main 

system but it's broader for the absorber, this may be caused by nonlinear damping. This 

width cycle form is dissymmetric between the two sides.  
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Fig. 10a. System trajectory in the plan (X1, X2) "Cubic damping and stiffness case" 
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Fig. 10b. Error curve "Cubic damping and stiffness case" 

It’s also noted than the nonlinear forces are more affected   by stiffness than by damping in 

form and amplitude. The narrow level stretch around the stable point disappears in this 

case. In the same way the nonlinear force of the main system is dominant. Figure 10a 

illustrates the complex trajectory of the global system in the plan (X1, X2), synonymous of 

instability but less than the Duffing case.  

Fig. 10b shows the relative error curve.  It is noted that the errors are dispersed between 
910−   and  610−  during the iterative process, which doesn’t prove a fast convergence for 

such high amounts. 

We can conclude in this subsection that in the cubic damping and stiffness case, there are 

two attractors which appear clearly only when the amplitude of the excitation force 

increases.  The strongly non linear damping may be the cause of this phenomenon.  

The nonlinear hysteresis force curve is much more significant when the amplitude of the 

exciting force increases.  

This hysteresis is not symmetric around the inflection point corresponding to the steady 

balance position. 

Noticeable level stretch in the vicinity of this position, especially, for high loads is observed. 

3.4 Nonlinear generalized damping and stiffness case: 2r =  

In this section, the nonlinear generalized case (quadratic and cubic) in stiffness and damping 

is studied. The nonlinear mechanical system characteristics are: ' ' ' '
1 2 1 2 5k k c c= = = =  

and '' '' '' ''
1 2 1 2 0.25k k c c= = = = . It should be noted that the absolute physical characteristics in 

this case, have the same value (
' '' ' ''

21 1 1 1

1 1 1 1

10
k k c c

k k c c
= = = = ) in SI and also these parameters are 

selected among several tests, guaranteeing useable results on the one hand and of good 
convergence on the other hand. 
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Fig. 11. Temporal nonlinear responses: (X1(t) and X2(t)) "Generalized case:  quadratic and 
cubic for week damping" 

Figure 11 shows the evolution of displacements of both dof according to time. It is noted 
that the absorber strangles completely the vibration in this proportioning configuration. If 
we increase the proportioning non linearity practically all the vibrations of the main system 
disappear. Moreover, as the global movement is very much diminished from t=0.6s. This is 
one of the effects of this generalized nonlinearity case. The displacement of the main system 
oscillates while remaining of negative sign, before converging quickly towards a constant 
value, the vibration is almost eliminated. However, absorber oscillates between the two 
signs before converging towards the same limit as that of the main system.  
 

 

Fig. 12a. Phase diagram (X1,V1) "Generalized case: quadratic and cubic" 
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Fig. 12b. Zoom on the attractors "Generalized case: quadratic and cubic" 

Figure 12a illustrates the phase diagram of the main system and shows the existence of two 
very close attractors, clarified by zoom (figure 12b). The latter indicates an elliptic orbit 
whose focuses coincide with the attractors.     
Figure 13a illustrates the phase diagram of the absorber and also shows the existence of two 
very close attractors, clarified by zoom (figure 13b). Furthermore, an elliptic orbit is 
observed whose focuses coincide with the attractors. 
 
 

 
 

Fig. 13a. Phase diagram (X2,V2)  "Generalized case:  quadratic and cubic for week damping" 
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Fig. 13b. Zoom on the attractors "Generalized case:  quadratic and cubic for week damping" 

 

 
 

Fig. 14a. Nonlinear forces  (X1, NL-F1) "Generalized case:  quadratic and cubic for week 
damping" 

The figure 14 a and b illustrate the applied nonlinear forces on each mass according to 
corresponding displacement. It’s noted for the main system has a dominant parabolic form 
corresponding to a half hysteresis cycle at critical point with null force.  
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Fig. 14b. Nonlinear forces (X2, NL-F2) "Generalized case:  quadratic and cubic for week 
damping" 

This is more visible in figure 14a. But, a cubic hysteresis cycle with average width appears 

for the absorber, caused by nonlinear damping. 

In the same way the amplitude of the nonlinear force of the main system is dominant. Also, 

the hysteresis opening is more significant for the absorber.      

 

 
 

Fig. 15a. System trajectory in the plan (X1, X2)  "Generalized case:  quadratic and cubic for 
week damping" 
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Fig. 15b. Error curve "Generalized case:  quadratic and cubic for week damping" 

Figure 15a illustrates the global system complex trajectory in the plan (X1, X2). It is quickly 
convergent to a critical point which differs notably from the steady balance position.  
Figure 15b shows the curve of relative error. It is noted that the errors are dispersed, with a 
difficult convergence at the beginning but it becomes very fast after a certain time close to  
t=0.6s. 

• Effect of the proportioning coefficients in this generalized case ( 2r = ) 

The nonlinear mechanical characteristics of the system are: ' ' '' ''
1 2 1 25; 0.25k k k k= = = =  and 

' ' '' ''
1 2 1 2500; 25c c c c= = = = . In this case, it should be announced that we multiplied all the 

physical damping coefficients by 100 whereas we maintained those of stiffness. 

 

Fig. 16a. Nonlinear temporal responses (X1(t) and X2(t))  "Generalized case:  quadratic and 
cubic for strongly damping" 
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Fig. 16b. Phase diagrams "Generalized case:  quadratic and cubic for strongly damping" 

Figure 16a shows the displacements variation of both dof according to time. It is noted that 
the absorber is not the best adapted for this proportioning. The movement of the main 
system is similar then for linear behaviour, whereas that of the absorber takes a strongly 
nonlinear form.   
Figure 16b illustrates the phase curves for the two dof. It is noted that when the damping 
proportioning of the absorber increases the main system has an elliptic limit cycle, whereas 
the absorber attractors persist converging with two limits cycle.  
 
 

 
 

Fig. 17a. Nonlinear forces:  (X1, NL-F1) "Generalized case:  quadratic and cubic for strongly 
damping" 
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The figure 17 a and b show the variations of the nonlinear forces according to respective 
displacement.   
 

 
 

Fig. 17b. Nonlinear forces (X2, NL-F2) "Generalized case:  quadratic and cubic for strongly 
damping" 

It is noted that the increase in the damping proportioning creates a third hysteretic cycle of 
parabolic form for small displacements at the two critical points. One of these two points 
corresponds to the steady balance and the other corresponds to the extreme position of the 
absorber.  
 

 
 

Fig. 18a. System trajectory in the plan (X1, X2)  "Generalized case:  quadratic and cubic for 
strongly damping" 
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Fig. 18b. Error curve "Generalized case:  quadratic and cubic for strongly damping" 

Figure 18a illustrates the complex trajectory of the global system in the plan (X1, X2) but a 
stability is apparent with two complicate limit cycle orbits.  

Figure 18b shows the curve of relative error. It is noted that the errors are dispersed between 
1210− and 610−  during the iterative process, the convergence is better than previously and it 

does not change in time. Damping acts in the direction of vibration stabilization. 
For this subsection, we can conclude that for this generalized case of non linearity the 
behaviour of the system is clearly different of the previously cases (subsections: 3.1, 3.2 and 
3.3). 
- The vibration of the main and the auxiliary system disappear relatively fast;  
- The attractors   are visible only with zooming; 
- The hysteretic cycle of forces is original with a parabolic tendency and the apparition of 

one, two and three spindles. 
These effects are strongly influenced by the proportioning of nonlinear parameters. 

3.5 Nonlinear generalized damping and stiffness case: 1.5r =  

In this section, the nonlinear generalized case (power 1.5 and cubic) in stiffness and 
damping is studied.  The nonlinear mechanical system characteristics are: 

' ' ' '
1 2 1 2 22.36k k c c= = = =  and '' '' '' ''

1 2 1 2 0.25k k c c= = = = . It should be noted that the absolute 

physical characteristics in this case, have the same value (
' '' ' ''

21 1 1 1

1 1 1 1

10
k k c c

k k c c
= = = = ) in SI. These 

proportioning are decreased to make more quick the convergence and more significant 
physical results. 
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Fig. 19. Temporal nonlinear responses: (X1(t) and X(t)) "Generalized case: power 1.5 and 
cubic for week damping" 

Figure 19 shows the displacements evolution for the two dof according to time. It is noted 
that the auxiliary system completely absorbs the vibration in this proportioning 
configuration. It is as to note as the movement is relatively irregular similar of specified non 
linearity. That may be one of the effects of the generalized non linearity for the non integer 
power less then 2. 
 
 

 
 

Fig. 20a. Phase diagrams (X1, V1)  "Generalized case: power 1.5 and cubic for week 
damping" 
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The figure 20 a and b illustrate the phase curves of the main system and the absorber. They 
show the existence of two attractors very brought closer with an oval cycle orbit. 

 

 
 
 

Fig. 20b. Phase diagrams (X2, V2)  "Generalized case: power 1.5 and cubic for week 
damping" 

 

 
 
 

Fig. 21a. Nonlinear forces  (X1, NL-F1)  "Generalized case: power 1.5 and cubic for week 
damping" 
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Fig. 21b. Nonlinear forces (X2, NL-F2) "Generalized case: power 1.5 and cubic for week 
damping" 

The figure 21 a and b illustrate the nonlinear applied forces on each mass according to 
corresponding displacement. It is noted that for the two dof one has a dominant parabolic form 
with a fast convergence towards the steady balance with null forces. If one compares these 
results with the generalized quadratic case one notices a significant difference mainly for the 
absorber, which shows the originality of this case with a non integer power between 1 and 2. 
 

 

Fig. 22a. The trajectory of the system in the plan (X1, X2) "Generalized case: power 1.5 and 
cubic for week damping" 

Figure 22a illustrates the global system complex trajectory in the plan (X1, X2). One notes a less 

regular trajectory with very difficult convergence as well as for the main system as for the 
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absorber. Figure 22b shows the curve of relative error.  It is noted that the errors are dispersed 

between 910− and 610− during the iterative process, what proves an acceptable convergence. 
 

 

Fig. 22b. Error curve "Generalized case: power 1.5 and cubic for week damping" 

• Effect of the proportioning coefficients in this generalized case ( 1.5r = ) 

The nonlinear mechanical system characteristics are: ' ' '' ''
1 2 1 222.36; 0.25;k k k k= = = =  and 

' ' '' ''
1 2 1 22236 ; 25c c c c= = = = . In this case, we keep the stiffness constant and we multiplied 

those of damping by 100. 
Figure 23 shows the variation of displacements of the two dof according to time.It is noted 
that the absorber is not the best adapted for this proportioning.  
 

 

Fig. 23. Temporal nonlinear responses: (X1(t) and X2(t)) "Generalized case: power 1.5 and 
cubic for strongly damping" 
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It is also notable that the main system movement is similar to that of the absorber in 
amplitude but with a great dephasing.  The form of these curves is strongly nonlinear but, 
after the transitory phase, the movement is periodic and it is stabilized by damping. The 
period of these motions is similar to that of excitation but with a high non linearity.  
The figure 24 a and b illustrate the phase curves of the main system and the absorber.  They 
especially show the existence of two limits cycle for the absorber.  For the main system we 
observe only one limit cycle. 

 

 

Fig. 24a. Phase diagrams (X1, V1) "Generalized case: power 1.5 and cubic for strongly 
damping" 

 

 

Fig. 24b. Phase diagrams (X2, V2)   "Generalized case: power 1.5 and cubic for strongly 
damping" 
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The figure 25 a and b illustrate the nonlinear forces on each mass according to 
corresponding displacement. It is noted that for the two dof we observe more opened 
hysteretic form than the previous case with week damping. 
Figure 26-a illustrates the complex trajectory of the global system in the plan (X1, X2). One 
notes a less regular trajectory with difficult convergence notably for the absorber.  

 

 
 

Fig. 25a. Nonlinear forces (X1, NL-F1) "Generalized case: power 1.5 and cubic for strongly 
damping" 

 
 

Fig. 25b. Nonlinear forces (X2, NL-F2) "Generalized case: power 1.5 and cubic for strongly 
damping" 
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Figure 26b shows the curve of relative error. The errors are dispersed between  810−   and 
610−  during the iterative process, which proves difficulty of the convergence of this model 

compared to the case with a weak nonlinear damping. We can conclude: 
- Increase the proportioning of the non linear damping of the system stabilizes the 

system vibration; 
- The attractors become less visible with damping and the hysteretic cycle well be more 

symmetric around the steady balance position; 
- The convergence is more difficult when the non linear damping increases.   
 

 

Fig. 26a. The trajectory of the system in the plan (X1, X2) "Generalized case: power 1.5 and 
cubic for strongly damping" 

 

 

Fig. 26b. Error curve "Generalized case: power 1.5 and cubic for strongly damping" 
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General comments: 

To recapitulate one can include commenting the two first cases treated, witches are often 

mentioned in the literature. 

Concerning the cubic damping and stiffness case ( r=3), we note that for this model the non 

linearity of stiffness is rather dominant in spite of the strong amounts chosen for damping.  

When one goes up in nonlinearity power beyond the power three, few changes appear on 

the nonlinear behaviour of the system for a week damping and a cycle with three spindles 

when the damping increases. For the last case the trajectory becomes more complicated. 

When one interferes a non integer power nonlinearity (here power r=1.5) with cubic non 

linearity the convergence of computations becomes more difficult and it becomes even 

impossible for a rational between 2 and 3.   

Indeed the attractors become closer to each other and only a zoom can separate them.   

The appearance of half hysteretic cycle of nonlinear force at critical point is typical of this 

model.  

Table 1 recapitulates these results. 

4. Robust multi-objective optimization 

The problems of optimization in the field of the machinery of the structures are often multi-

objective; the latter can be in conflict.   For that, it is necessary to choose a strategy of multi-

objective optimization able to propose the best alternatives among several. A multi-objective 

optimization requires two steps witch is:  

• Determination of the objective functions to be optimized  
Obtaining these objective (or cost) functions are carried out directly during optimization by 
sampling.  

• Choice of the technique of search for the optimal solutions  
To search the optimal solutions, the genetic algorithm of NSGA type is used.  Indeed, this 

algorithm makes it possible to better explore the design space and to exploit the whole of 

the Pareto front. 

Generally, a problem of multi objective optimization is expressed by the equation below:  

( ) ;min ( )= ( ), ( ), , ( )1 2

T
F x f x f x f x x Sn ∈……  

where:  ( ), ( ), , ( )1 2f x f x f xn……  are the cost functions and ( ), , ,1 2

T
x x x xn= ……  is the vector of 

n parameters of optimization, nS R∈  represents the whole of the realizable solutions and 

( )F x  is the vector of the functions to be optimized.   

The whole of the optimal solutions is that formed by the solutions which are not dominated 

by others. The physical parameters used to describe a structure are often random.  These 

parameters are generally identified like random variables and are introduced into an 

approach of resolution of the problems such as optimization.  In the field of the optimization 

of the structures, the taking into account of the robustness of the solutions is essential in the 

research of the optimal design. In fact it is well-known that a theoretically excellent solution 

can prove to be catastrophic in practice if the errors made during manufacture for example 

do not make it possible to obtain the values of the variables of design with a sufficient 
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precision.  A sub-optimal but stable solution with respect to the tolerances of manufacture 

can prove much more interesting for the originator.   

Generally the construction of a robustness function is based on the mean value and the 

standard deviation.  Indeed, many authors proposed to define the robustness function rf  of 

an original objective function f as being the relationship between the mean value and the 

standard deviation: ( ) 1
r

f f fσ μ
−

= . 

The ratio 
f f

σ μ  indicates dispersion (or the vulnerability function ( )vf x ) of   f, where  
f

μ  

and 
f

σ  are respectively the mean value and the standard deviation calculated on the whole 

of the samples  ( )
1i i N

f
≤ ≤

 of a function ( )f x . N is the number of simulations of Monte Carlo.  

The robust multi-objective optimization problem is thus built by simultaneously optimizing 

the original cost functions and their robustness: 

( )1
in ( )= ( ), ( ),..., ( ), ( )1

r Tr
M F x f x f x f x f xm m

avec x S∈

⎧⎪
⎨
⎪⎩

( )r
if x  is the robustness of the objective function 

( )if x  1,...,i m= .  

The robust solutions with respect to uncertainties are those which simultaneously make it 

possible to minimize the original cost functions. ( ) ( ) ( )( )1 2, ,...,f x f x f xm  and to maximize 

their robustness ( ) ( ) ( )( )
1 2, ,...,

m

T
r r rf x f x f x   

In this case we can study the cubic nonlinear stiffness. 
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Fig. 27. r=3:  Cubic nonlinear damping and stiffness – periodic motions: Overall  solutions in 
space (X1, X2, Vulnerability (○) and robust solutions (*);. 
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Figure 27 illustrates the whole of the solutions obtained by simulation under the constraints 
given and in the band of sampling. Among these solutions one finds those which are robust 
(blue).  
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Fig. 28. Overall solutions in the plan (X1, X2) and robust solutions 

Figure 28 presents the nonlinear displacement of the absorber according to the principal 
structure vulnerability.  It is noted, that the designer has a flexibility to choose the absorber 
which is better appropriate with guarantee of robustness (minimal dispersion).   
Figure 29 carries only the whole of the robust solutions in the plan X1 and X2. Figure 30 
shows that the robust solution “A” which favours the minimal displacement of the absorber. 
The absorber maximum vibration is reduced to approximately 200%. This proves the 
importance of the proposed robust multi-objective optimization strategy in the periodic 
motions.  

5. Conclusion 

In this chapter, we proposed a mechanical system modeled by only one dof relating to its 
first mode and equipped with a dynamic absorber with only one dof too.  
Thus the system obtained comprises a cubic and quadratic generalized nonlinearity 
combined stiffness and of damping.  We used the numerical diagram of Newmark with 
linear acceleration in order to find the temporal response of the principal system with 
absorber subjected to a harmonic load.   
Determinist calculations made it possible to highlight the contribution of this type of 
nonlinearity on the absorption of the vibrations and the behavior of the nonlinear system 
through the curves of phases (attractive, ovalization, etc).  
The bifurcation diagram of the absorber in the cubic case for the chosen parameters 
illustrates three kinds of motions in several frequency bands: periodic, quasiperiod and 
chaotic motions.  
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In the optimization part, one determined the optimal characteristics of the damper located 
on the first face of Pareto with the compromise optimality-robustness. These solutions 
contribute to the robust design of the nonlinear system. 
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Fig. 29. Robust  solutions in the plan (X1, X2) 
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Fig. 30. Non-linear displacements before and after optimisation: Case of solution  A 
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