6 research outputs found

    Rigging and Fabricating Creative Characters

    Get PDF
    创造力支持的造型技术常用于辅助普通用户的开放式造型过程.针对现有的大多数创造力支持的造型技术针对静止物体造型而设计,无法造型动态模型的问题,提出; 一种造型动态模型的技术,其造型结果是已蒙皮并可直接三维打印的模型.该技术分为模型进化与应用2个阶段.在模型进化阶段,用户从数据库内选择一组绑定的; 模型,迭代地产生一代代新模型,作为建议提示给用户,以激发灵感;在应用阶段,用户选择感兴趣的模型用于动画编辑与三维打印.实验结果表明,文中技术将造; 型、动画编辑与面向三维打印的模型分析集成至统一的框架,极大地帮助了用户的创意建模过程.Creative modeling techniques are commonly used to assist novice users in; open-ended 3D content creation. Most existing creative modeling methods; are mainly designed to model static objects only, not appropriate to; model dynamic models. We present a method for modeling dynamic creative; models which are rigged and fabricatable. There are two stages: models; evolution and application. During the models evolution stage, the users; select a small set of skinned watertight objects, our technique; iteratively synthesizes new creative characters for users to explore.; During the application stage, the users can choose those of interest for; animation or fabrication directly. Experiments demonstrate that the; proposed technique unifies modeling, animation and fabrication together,; facilitating the creative design process.国家自然科学基金; 国家科技支撑计划课

    Non-rigid registration of 2-D/3-D dynamic data with feature alignment

    Get PDF
    In this work, we are computing the matching between 2D manifolds and 3D manifolds with temporal constraints, that is we are computing the matching among a time sequence of 2D/3D manifolds. It is solved by mapping all the manifolds to a common domain, then build their matching by composing the forward mapping and the inverse mapping. At first, we solve the matching problem between 2D manifolds with temporal constraints by using mesh-based registration method. We propose a surface parameterization method to compute the mapping between the 2D manifold and the common 2D planar domain. We can compute the matching among the time sequence of deforming geometry data through this common domain. Compared with previous work, our method is independent of the quality of mesh elements and more efficient for the time sequence data. Then we develop a global intensity-based registration method to solve the matching problem between 3D manifolds with temporal constraints. Our method is based on a 4D(3D+T) free-from B-spline deformation model which has both spatial and temporal smoothness. Compared with previous 4D image registration techniques, our method avoids some local minimum. Thus it can be solved faster and achieve better accuracy of landmark point predication. We demonstrate the efficiency of these works on the real applications. The first one is applied to the dynamic face registering and texture mapping. The second one is applied to lung tumor motion tracking in the medical image analysis. In our future work, we are developing more efficient mesh-based 4D registration method. It can be applied to tumor motion estimation and tracking, which can be used to calculate the read dose delivered to the lung and surrounding tissues. Thus this can support the online treatment of lung cancer radiotherapy

    Surface parameterization over regular domains

    Get PDF
    Surface parameterization has been widely studied and it has been playing a critical role in many geometric processing tasks in graphics, computer-aided design, visualization, vision, physical simulation and etc. Regular domains, such as polycubes, are favored due to their structural regularity and geometric simplicity. This thesis focuses on studying the surface parameterization over regular domains, i.e. polycubes, and develops effective computation algorithms. Firstly, the motivation for surface parameterization and polycube mapping is introduced. Secondly, we briefly review existing surface parameterization techniques, especially for extensively studied parameterization algorithms for topological disk surfaces and parameterizations over regular domains for closed surfaces. Then we propose a polycube parameterization algorithm for closed surfaces with general topology. We develop an efficient optimization framework to minimize the angle and area distortion of the mapping. Its applications on surface meshing, inter-shape morphing and volumetric polycube mapping are also discussed

    Heterogeneous volumetric data mapping and its medical applications

    Get PDF
    With the advance of data acquisition techniques, massive solid geometries are being collected routinely in scientific tasks, these complex and unstructured data need to be effectively correlated for various processing and analysis. Volumetric mapping solves bijective low-distortion correspondence between/among 3D geometric data, and can serve as an important preprocessing step in many tasks in compute-aided design and analysis, industrial manufacturing, medical image analysis, to name a few. This dissertation studied two important volumetric mapping problems: the mapping of heterogeneous volumes (with nonuniform inner structures/layers) and the mapping of sequential dynamic volumes. To effectively handle heterogeneous volumes, first, we studied the feature-aligned harmonic volumetric mapping. Compared to previous harmonic mapping, it supports the point, curve, and iso-surface alignment, which are important low-dimensional structures in heterogeneous volumetric data. Second, we proposed a biharmonic model for volumetric mapping. Unlike the conventional harmonic volumetric mapping that only supports positional continuity on the boundary, this new model allows us to have higher order continuity C1C^1 along the boundary surface. This suggests a potential model to solve the volumetric mapping of complex and big geometries through divide-and-conquer. We also studied the medical applications of our volumetric mapping in lung tumor respiratory motion modeling. We were building an effective digital platform for lung tumor radiotherapy based on effective volumetric CT/MRI image matching and analysis. We developed and integrated in this platform a set of geometric/image processing techniques including advanced image segmentation, finite element meshing, volumetric registration and interpolation. The lung organ/tumor and surrounding tissues are treated as a heterogeneous region and a dynamic 4D registration framework is developed for lung tumor motion modeling and tracking. Compared to the previous 3D pairwise registration, our new 4D parameterization model leads to a significantly improved registration accuracy. The constructed deforming model can hence approximate the deformation of the tissues and tumor
    corecore