661 research outputs found

    Bond relaxation, electronic and magnetic behavior of 2D metals structures Y on Li(110) surface

    Full text link
    We investigated the bond, electronic and magnetic behavior of adsorption Yttrium atoms on Lithium (110) surface using a combination of Bond-order-length-strength(BOLS) correlation and density-functional theory(DFT). We found that adsorption Y atoms on Li(110) surfaces form two-dimensional (2D) geometric structures of hexagon, nonagon, solid hexagonal, quadrangle and triangle. The consistent with the magnetic moment are 6.66{\mu}B, 5.54{\mu}B, 0.28{\mu}B, 1.04{\mu}B, 2.81{\mu}B, respectively. In addition, this work could pave the way for design new 2D metals electronic and magnetic properties

    New constructions of two slim dense near hexagons

    Get PDF
    We provide a geometrical construction of the slim dense near hexagon with parameters (s,t,t2)=(2,5,{1,2})(s,t,t_{2})=(2,5,\{1,2\}). Using this construction, we construct the rank 3 symplectic dual polar space DSp(6,2)DSp(6,2) which is the slim dense near hexagon with parameters (s,t,t2)=(2,6,2)(s,t,t_{2})=(2,6,2). Both the near hexagons are constructed from two copies of a generalized quadrangle with parameters (2,2)

    On hyperovals of polar spaces

    Get PDF
    We derive lower and upper bounds for the size of a hyperoval of a finite polar space of rank 3. We give a computer-free proof for the uniqueness, up to isomorphism, of the hyperoval of size 126 of H(5, 4) and prove that the near hexagon E-3 has up to isomorphism a unique full embedding into the dual polar space DH(5, 4)

    Characterizations of the Suzuki tower near polygons

    Get PDF
    In recent work, we constructed a new near octagon G\mathcal{G} from certain involutions of the finite simple group G2(4)G_2(4) and showed a correspondence between the Suzuki tower of finite simple groups, L3(2)<U3(3)<J2<G2(4)<SuzL_3(2) < U_3(3) < J_2 < G_2(4) < Suz, and the tower of near polygons, H(2,1)⊂H(2)D⊂HJ⊂G\mathrm{H}(2,1) \subset \mathrm{H}(2)^D \subset \mathsf{HJ} \subset \mathcal{G}. Here we characterize each of these near polygons (except for the first one) as the unique near polygon of the given order and diameter containing an isometrically embedded copy of the previous near polygon of the tower. In particular, our characterization of the Hall-Janko near octagon HJ\mathsf{HJ} is similar to an earlier characterization due to Cohen and Tits who proved that it is the unique regular near octagon with parameters (2,4;0,3)(2, 4; 0, 3), but instead of regularity we assume existence of an isometrically embedded dual split Cayley hexagon, H(2)D\mathrm{H}(2)^D. We also give a complete classification of near hexagons of order (2,2)(2, 2) and use it to prove the uniqueness result for H(2)D\mathrm{H}(2)^D.Comment: 20 pages; some revisions based on referee reports; added more references; added remarks 1.4 and 1.5; corrected typos; improved the overall expositio

    Unitary reflection groups for quantum fault tolerance

    Full text link
    This paper explores the representation of quantum computing in terms of unitary reflections (unitary transformations that leave invariant a hyperplane of a vector space). The symmetries of qubit systems are found to be supported by Euclidean real reflections (i.e., Coxeter groups) or by specific imprimitive reflection groups, introduced (but not named) in a recent paper [Planat M and Jorrand Ph 2008, {\it J Phys A: Math Theor} {\bf 41}, 182001]. The automorphisms of multiple qubit systems are found to relate to some Clifford operations once the corresponding group of reflections is identified. For a short list, one may point out the Coxeter systems of type B3B_3 and G2G_2 (for single qubits), D5D_5 and A4A_4 (for two qubits), E7E_7 and E6E_6 (for three qubits), the complex reflection groups G(2l,2,5)G(2^l,2,5) and groups No 9 and 31 in the Shephard-Todd list. The relevant fault tolerant subsets of the Clifford groups (the Bell groups) are generated by the Hadamard gate, the π/4\pi/4 phase gate and an entangling (braid) gate [Kauffman L H and Lomonaco S J 2004 {\it New J. of Phys.} {\bf 6}, 134]. Links to the topological view of quantum computing, the lattice approach and the geometry of smooth cubic surfaces are discussed.Comment: new version for the Journal of Computational and Theoretical Nanoscience, focused on "Technology Trends and Theory of Nanoscale Devices for Quantum Applications

    On the order of a non-abelian representation group of a slim dense near hexagon

    Full text link
    We show that, if the representation group RR of a slim dense near hexagon SS is non-abelian, then RR is of exponent 4 and ∣R∣=2β|R|=2^{\beta}, 1+NPdim(S)≤β≤1+dimV(S)1+NPdim(S)\leq \beta\leq 1+dimV(S), where NPdim(S)NPdim(S) is the near polygon embedding dimension of SS and dimV(S)dimV(S) is the dimension of the universal representation module V(S)V(S) of SS. Further, if β=1+NPdim(S)\beta =1+NPdim(S), then RR is an extraspecial 2-group (Theorem 1.6)
    • …
    corecore