51 research outputs found

    SIROH: A Cost Metric for Scene-Interior Ray Origins

    Get PDF
    Abstract The highest ray tracing speeds are currently achieved by using acceleration structures built according to the Surface Area Heuristic. We present a heuristic based on more realistic assumptions that yields even better acceleration in many scenes

    A parallel algorithm for construction of uniform grids

    Full text link

    Integrating Occlusion Culling and Hardware Instancing for Efficient Real-Time Rendering of Building Information Models

    Get PDF
    This paper presents an efficient approach for integrating occlusion culling and hardware instancing. The work is primarily targeted at Building Information Models (BIM), which typically share characteristics addressed by these two acceleration techniques separately – high level of occlusion and frequent reuse of building components. Together, these two acceleration techniques complement each other and allows large and complex BIMs to be rendered in real-time. Specifically, the proposed method takes advantage of temporal coherence and uses a lightweight data transfer strategy to provide an efficient hardware instancing implementation. Compared to only using occlusion culling, additional speedups of 1.25x-1.7x is achieved for rendering large BIMs received from real-world projects. These speedups are measured in viewpoints that represents the worst case scenarios in terms of rendering performance when only occlusion culling is utilized

    Terrain guided multi-level instancing of highly complex plant populations

    Get PDF

    An Octree-based proxy for collision detection in large-scale particle systems

    Get PDF
    International audienceParticle systems are important building block for simulating vivid and detail-rich effects in virtual world. One of the most difficult aspects of particle systems has been detecting collisions between particlesand mesh surface. Due to the huge computation, a variety of proxy-based approaches have been proposed recently to perform visually correct simulation. However, all either limit the complexity of the scene, fail toguarantee non-penetration, or are too slow for real-time use with many particles. In this paper, we propose anew octree-based proxy for colliding particles with meshes on the GPU. Our approach works by subdividingthe scene mesh with an octree in which each leaf node associates with a representative normal correspondingto the normals of the triangles that intersect the node. We present a view-visible method, which is suitable forboth closed and non-closed models, to label the empty leaf nodes adjacent to nonempty ones with appropriateback/front property, allowing particles to collide with both sides of the scene mesh. We show how collisionscan be performed robustly on this proxy structure in place of the original mesh, and describe an extension thatallows for fast traversal of the octree structure on the GPU. The experiments show that the proposed methodis fast enough for real-time performance with millions of particles interacting with complex scenes

    Object partitioning considered harmful : space subdivision for BVHs

    Get PDF
    A major factor for the efficiency of ray tracing is the use of good acceleration structures. Recently, bounding volume hierarchies (BVHs) have become the preferred acceleration structures, due to their competitive performance and greater flexibility compared to KD trees. In this paper, we present a study on algorithms for the construction of optimal BVHs. Due to the exponential nature of the problem, constructing optimal BVHs for ray tracing remains an open topic. By exploiting the linearity of the surface area heuristic (SAH), we develop an algorithm that can find optimal partitions in polynomial time. We further generalize this algorithm and show that every SAH-based KD tree or BVH construction algorithm is a special case of the generic algorithm. Based on a number of experiments with the generic algorithm, we conclude that the assumption of non-terminating rays in the surface area cost model becomes a major obstacle for using the full potential of BVHs. We also observe that enforcing space subdivision helps to improve BVH performance. Finally, we develop a simple space partitioning algorithm for building efficient BVHs
    • …
    corecore