4,323 research outputs found

    Constraints, Lazy Constraints, or Propagators in ASP Solving: An Empirical Analysis

    Full text link
    Answer Set Programming (ASP) is a well-established declarative paradigm. One of the successes of ASP is the availability of efficient systems. State-of-the-art systems are based on the ground+solve approach. In some applications this approach is infeasible because the grounding of one or few constraints is expensive. In this paper, we systematically compare alternative strategies to avoid the instantiation of problematic constraints, that are based on custom extensions of the solver. Results on real and synthetic benchmarks highlight some strengths and weaknesses of the different strategies. (Under consideration for acceptance in TPLP, ICLP 2017 Special Issue.)Comment: Paper presented at the 33nd International Conference on Logic Programming (ICLP 2017), Melbourne, Australia, August 28 to September 1, 2017. 16 page

    A Multi-Engine Approach to Answer Set Programming

    Full text link
    Answer Set Programming (ASP) is a truly-declarative programming paradigm proposed in the area of non-monotonic reasoning and logic programming, that has been recently employed in many applications. The development of efficient ASP systems is, thus, crucial. Having in mind the task of improving the solving methods for ASP, there are two usual ways to reach this goal: (i)(i) extending state-of-the-art techniques and ASP solvers, or (ii)(ii) designing a new ASP solver from scratch. An alternative to these trends is to build on top of state-of-the-art solvers, and to apply machine learning techniques for choosing automatically the "best" available solver on a per-instance basis. In this paper we pursue this latter direction. We first define a set of cheap-to-compute syntactic features that characterize several aspects of ASP programs. Then, we apply classification methods that, given the features of the instances in a {\sl training} set and the solvers' performance on these instances, inductively learn algorithm selection strategies to be applied to a {\sl test} set. We report the results of a number of experiments considering solvers and different training and test sets of instances taken from the ones submitted to the "System Track" of the 3rd ASP Competition. Our analysis shows that, by applying machine learning techniques to ASP solving, it is possible to obtain very robust performance: our approach can solve more instances compared with any solver that entered the 3rd ASP Competition. (To appear in Theory and Practice of Logic Programming (TPLP).)Comment: 26 pages, 8 figure

    Lazy Model Expansion: Interleaving Grounding with Search

    Full text link
    Finding satisfying assignments for the variables involved in a set of constraints can be cast as a (bounded) model generation problem: search for (bounded) models of a theory in some logic. The state-of-the-art approach for bounded model generation for rich knowledge representation languages, like ASP, FO(.) and Zinc, is ground-and-solve: reduce the theory to a ground or propositional one and apply a search algorithm to the resulting theory. An important bottleneck is the blowup of the size of the theory caused by the reduction phase. Lazily grounding the theory during search is a way to overcome this bottleneck. We present a theoretical framework and an implementation in the context of the FO(.) knowledge representation language. Instead of grounding all parts of a theory, justifications are derived for some parts of it. Given a partial assignment for the grounded part of the theory and valid justifications for the formulas of the non-grounded part, the justifications provide a recipe to construct a complete assignment that satisfies the non-grounded part. When a justification for a particular formula becomes invalid during search, a new one is derived; if that fails, the formula is split in a part to be grounded and a part that can be justified. The theoretical framework captures existing approaches for tackling the grounding bottleneck such as lazy clause generation and grounding-on-the-fly, and presents a generalization of the 2-watched literal scheme. We present an algorithm for lazy model expansion and integrate it in a model generator for FO(ID), a language extending first-order logic with inductive definitions. The algorithm is implemented as part of the state-of-the-art FO(ID) Knowledge-Base System IDP. Experimental results illustrate the power and generality of the approach

    The Multi-engine ASP Solver ME-ASP: Progress Report

    Full text link
    MEASP is a multi-engine solver for ground ASP programs. It exploits algorithm selection techniques based on classification to select one among a set of out-of-the-box heterogeneous ASP solvers used as black-box engines. In this paper we report on (i) a new optimized implementation of MEASP; and (ii) an attempt of applying algorithm selection to non-ground programs. An experimental analysis reported in the paper shows that (i) the new implementation of \measp is substantially faster than the previous version; and (ii) the multi-engine recipe can be applied to the evaluation of non-ground programs with some benefits
    corecore