336 research outputs found

    Isotopic envelope identification by analysis of the spatial distribution of components in MALDI-MSI data

    Full text link
    One of the significant steps in the process leading to the identification of proteins is mass spectrometry, which allows for obtaining information about the structure of proteins. Removing isotope peaks from the mass spectrum is vital and it is done in a process called deisotoping. There are different algorithms for deisotoping, but they have their limitations, they are dedicated to different methods of mass spectrometry. Data from experiments performed with the MALDI-ToF technique are characterized by high dimensionality. This paper presents a method for identifying isotope envelopes in MALDI-ToF molecular imaging data based on the Mamdani-Assilan fuzzy system and spatial maps of the molecular distribution of peaks included in the isotopic envelope. Several image texture measures were used to evaluate spatial molecular distribution maps. The algorithm was tested on eight datasets obtained from the MALDI-ToF experiment on samples from the National Institute of Oncology in Gliwice from patients with cancer of the head and neck region. The data were subjected to pre-processing and feature extraction. The results were collected and compared with three existing deisotoping algorithms. The analysis of the obtained results showed that the method for identifying isotopic envelopes proposed in this paper enables the detection of overlapping envelopes by using the approach oriented to study peak pairs. Moreover, the proposed algorithm enables the analysis of large data sets

    Texture analysis in gel electrophoresis images using an integrative kernel-based approach

    Get PDF
    [Abstract] Texture information could be used in proteomics to improve the quality of the image analysis of proteins separated on a gel. In order to evaluate the best technique to identify relevant textures, we use several different kernel-based machine learning techniques to classify proteins in 2-DE images into spot and noise. We evaluate the classification accuracy of each of these techniques with proteins extracted from ten 2-DE images of different types of tissues and different experimental conditions. We found that the best classification model was FSMKL, a data integration method using multiple kernel learning, which achieved AUROC values above 95% while using a reduced number of features. This technique allows us to increment the interpretability of the complex combinations of textures and to weight the importance of each particular feature in the final model. In particular the Inverse Difference Moment exhibited the highest discriminating power. A higher value can be associated with an homogeneous structure as this feature describes the homogeneity; the larger the value, the more symmetric. The final model is performed by the combination of different groups of textural features. Here we demonstrated the feasibility of combining different groups of textures in 2-DE image analysis for spot detection.Instituto de Salud Carlos III; PI13/00280United Kingdom. Medical Research Council; G10000427, MC_UU_12013/8Galicia. ConsellerĂ­a de EconomĂ­a e Industria; 10SIN105004P

    Statistical decision methods in the presence of linear nuisance parameters and despite imaging system heteroscedastic noise: Application to wheel surface inspection

    Get PDF
    International audienceThis paper proposes a novel method for fully automatic anomaly detection on objects inspected using an imaging system. In order to address the inspection of a wide range of objects and to allow the detection of any anomaly, an original adaptive linear parametric model is proposed; The great flexibility of this adaptive model offers highest accuracy for a wide range of complex surfaces while preserving detection of small defects. In addition, because the proposed original model remains linear it allows the application of the hypothesis testing theory to design a test whose statistical performances are analytically known. Another important novelty of this paper is that it takes into account the specific heteroscedastic noise of imaging systems. Indeed, in such systems, the noise level depends on the pixels’ intensity which should be carefully taken into account for providing the proposed test with statistical properties. The proposed detection method is then applied for wheels surface inspection using an imaging system. Due to the nature of the wheels, the different elements are analyzed separately. Numerical results on a large set of real images show both the accuracy of the proposed adaptive model and the sharpness of the ensuing statistical test

    Nuclei/Cell Detection in Microscopic Skeletal Muscle Fiber Images and Histopathological Brain Tumor Images Using Sparse Optimizations

    Get PDF
    Nuclei/Cell detection is usually a prerequisite procedure in many computer-aided biomedical image analysis tasks. In this thesis we propose two automatic nuclei/cell detection frameworks. One is for nuclei detection in skeletal muscle fiber images and the other is for brain tumor histopathological images. For skeletal muscle fiber images, the major challenges include: i) shape and size variations of the nuclei, ii) overlapping nuclear clumps, and iii) a series of z-stack images with out-of-focus regions. We propose a novel automatic detection algorithm consisting of the following components: 1) The original z-stack images are first converted into one all-in-focus image. 2) A sufficient number of hypothetical ellipses are then generated for each nuclei contour. 3) Next, a set of representative training samples and discriminative features are selected by a two-stage sparse model. 4) A classifier is trained using the refined training data. 5) Final nuclei detection is obtained by mean-shift clustering based on inner distance. The proposed method was tested on a set of images containing over 1500 nuclei. The results outperform the current state-of-the-art approaches. For brain tumor histopathological images, the major challenges are to handle significant variations in cell appearance and to split touching cells. The proposed novel automatic cell detection consists of: 1) Sparse reconstruction for splitting touching cells. 2) Adaptive dictionary learning for handling cell appearance variations. The proposed method was extensively tested on a data set with over 2000 cells. The result outperforms other state-of-the-art algorithms with F1 score = 0.96

    Classification of HEp-2 staining patterns in ImmunoFluorescence images. Comparison of Support Vector Machines and Subclass Discriminant Analysis strategies

    Get PDF
    nti-nuclear antibodies test is based on the visual evaluation of the intensity and staining pattern in HEp-2 cell slides by means of indirect immunofluorescence (IIF) imaging, revealing the presence of autoantibodies responsible for important immune pathologies. In particular, the categorization of the staining pattern is crucial for differential diagnosis, because it provides information about autoantibodies type. Their manual classification is very time-consuming and not very reliable, since it depends on the subjectivity and on the experience of the specialist. This motivates the growing demand for computer-aided solutions able to perform staining pattern classification in a fully automated way. In this work we compare two classification techniques, based respectively on Support Vector Machines and Subclass Discriminant Analysis. A set of textural features characterizing the available samples are first extracted. Then, a feature selection scheme is applied in order to produce different datasets, containing a limited number of image attributes that are best suited to the classification purpose. Experiments on IIF images showed that our computer-aided method is able to identify staining patterns with an average accuracy of about 91% and demonstrate, in this specific problem, a better performance of Subclass Discriminant Analysis with respect to Support Vector Machine
    • …
    corecore