5,607 research outputs found

    Perception based heterogeneous subsurface scattering for film

    Get PDF
    Many real world materials exhibit complex subsurface scattering of light. This internal light interaction creates the perception of translucency for the human visual system. Translucent materials and simulation of the subsurface scattering of light has become an expected necessity for generating warmth and realism in computer generated imagery. The light transport within heterogenous materials, such as marble, has proved challenging to model and render. The current material models available to digital artists have been limited to homogeneous subsurface scattering despite a few publications documenting success at simulating heterogeneous light transport. While the publications successfully simulate this complex phenomenon, the material descriptions have been highly specialized and far from intuitive. By combining the measurable properties of heterogeneous translucent materials with the defining properties of translucency, as perceived by the human visual system, a description of heterogeneous translucent materials that is suitable for artist use in a film production pipeline can be achieved. Development of the material description focuses on integration with the film pipeline, ease of use, and reasonable approximation of heterogeneous translucency based on perception. Methods of material manipulation are explored to determine which properties should be modifiable by artists while maintaining the perception of heterogenous translucency

    AirCode: Unobtrusive Physical Tags for Digital Fabrication

    Full text link
    We present AirCode, a technique that allows the user to tag physically fabricated objects with given information. An AirCode tag consists of a group of carefully designed air pockets placed beneath the object surface. These air pockets are easily produced during the fabrication process of the object, without any additional material or postprocessing. Meanwhile, the air pockets affect only the scattering light transport under the surface, and thus are hard to notice to our naked eyes. But, by using a computational imaging method, the tags become detectable. We present a tool that automates the design of air pockets for the user to encode information. AirCode system also allows the user to retrieve the information from captured images via a robust decoding algorithm. We demonstrate our tagging technique with applications for metadata embedding, robotic grasping, as well as conveying object affordances.Comment: ACM UIST 2017 Technical Paper

    Flux-Limited Diffusion for Multiple Scattering in Participating Media

    Full text link
    For the rendering of multiple scattering effects in participating media, methods based on the diffusion approximation are an extremely efficient alternative to Monte Carlo path tracing. However, in sufficiently transparent regions, classical diffusion approximation suffers from non-physical radiative fluxes which leads to a poor match to correct light transport. In particular, this prevents the application of classical diffusion approximation to heterogeneous media, where opaque material is embedded within transparent regions. To address this limitation, we introduce flux-limited diffusion, a technique from the astrophysics domain. This method provides a better approximation to light transport than classical diffusion approximation, particularly when applied to heterogeneous media, and hence broadens the applicability of diffusion-based techniques. We provide an algorithm for flux-limited diffusion, which is validated using the transport theory for a point light source in an infinite homogeneous medium. We further demonstrate that our implementation of flux-limited diffusion produces more accurate renderings of multiple scattering in various heterogeneous datasets than classical diffusion approximation, by comparing both methods to ground truth renderings obtained via volumetric path tracing.Comment: Accepted in Computer Graphics Foru

    An evaluation of the performance of multi-static handheld ground penetrating radar using full wave inversion for landmine detection

    Get PDF
    This thesis presents an empirical study comparing the ability of multi-static and bi-static, handheld, ground penetrating radar (GPR) systems, using full wave inversion (FWI), to determine the properties of buried anti-personnel (AP) landmines. A major problem associated with humanitarian demining is the occurrence of many false positives during clearance operations. Therefore, a reduction of the false alarm rate (FAR) and/or increasing the probability of detection (POD) is a key research and technical objective. Sensor fusion has emerged as a technique that promises to significantly enhance landmine detection. This study considers a handheld, combined metal detector (MD) and GPR device, and quantifies the advantages of the use of antenna arrays. During demining operations with such systems, possible targets are detected using the MD and further categorised using the GPR, possibly excluding false positives. A system using FWI imaging techniques to estimate the subsurface parameters is considered in this work.A previous study of multi-static GPR FWI used simplistic, 2D far-field propagation models, despite the targets being 3D and within the near field. This novel study uses full 3D electromagnetic (EM) wave simulation of the antenna arrays and propagation through the air and ground. Full EM simulation allows the sensitivity of radio measurements to landmine characteristics to be determined. The number and configuration of antenna elements are very important and must be optimised, contrary to the 2D sensitivity studies in (Watson, Lionheart 2014, Watson 2016) which conclude that the degree (number of elements) of the multi-static system is not critical. A novel sensitivity analysis for tilted handheld GPR antennas is used to demonstrate the positive impact of tilted antenna orientation on detection performance. A time domain GPR and A-scan data, consistent with a commercial handheld system, the MINEHOUND, is used throughout the simulated experiments which are based on synthetic GPR measurements.Finally, this thesis introduces a novel method of optimising the FWI solution through feature extraction or estimation of the internal air void typically present in pressure activated mines, to distinguish mines from non-mine targets and reduce the incidence of false positives

    Effects of Topography on Seismic-Wave Propagation: An Example from Northern Taiwan

    Get PDF
    Topography influences ground motion and, in general, increases the amplitude of shaking at mountain tops and ridges, whereas valleys have reduced ground motions, as is observed from data recorded during and after real earthquakes and from numerical simulations. However, recent publications have focused mainly on the implications for ground motion in the mountainous regions themselves, whereas the impact on surrounding low-lying areas has received less attention. Here, we develop a new spectral-element mesh implementation to accommodate realistic topography as well as the complex shape of the Taipei sedimentary basin, which is located close to the Central Mountain Range in northern Taiwan. Spectral-element numerical simulations indicate that high-resolution topography can change peak ground velocity (PGV) values in mountainous areas by ±50% compared to a half-space response. We further demonstrate that large-scale topography can affect the propagation of seismic waves in nearby areas. For example, if a shallow earthquake occurs in the I-Lan region of Taiwan, the Central Mountain Range will significantly scatter the surface waves and will in turn reduce the amplitude of ground motion in the Taipei basin. However, as the hypocenter moves deeper, topography scatters body waves, which subsequently propagate as surface waves into the basin. These waves continue to interact with the basin and the surrounding mountains, finally resulting in complex amplification patterns in Taipei City, with an overall PGV increase of more than 50%. For realistic subduction zone earthquake scenarios off the northeast coast of Taiwan, the effects of topography on ground motion in both the mountains and the Taipei basin vary and depend on the rupture process. The complex interactions that can occur between mountains and surrounding areas, especially sedimentary basins, illustrate the fact that topography should be taken into account when assessing seismic hazard

    Imaging of buried objects from experimental backscattering time dependent measurements using a globally convergent inverse algorithm

    Get PDF
    We consider the problem of imaging of objects buried under the ground using backscattering experimental time dependent measurements generated by a single point source or one incident plane wave. In particular, we estimate dielectric constants of those objects using the globally convergent inverse algorithm of Beilina and Klibanov. Our algorithm is tested on experimental data collected using a microwave scattering facility at the University of North Carolina at Charlotte. There are two main challenges working with this type of experimental data: (i) there is a huge misfit between these data and computationally simulated data, and (ii) the signals scattered from the targets may overlap with and be dominated by the reflection from the ground's surface. To overcome these two challenges, we propose new data preprocessing steps to make the experimental data to be approximately the same as the simulated ones, as well as to remove the reflection from the ground's surface. Results of total 25 data sets of both non blind and blind targets indicate a good accuracy.Comment: 34 page

    Simulating Shear Wave Propagation in Two-Dimensional Fractured Heterogeneous Media by Coupling Boundary Element and Finite Difference Methods

    Get PDF
    A hybrid method to model the shear wave (SH) scattering from 2D fractures embedded in a heterogeneous medium is developed by coupling Boundary Element Method (BEM) and Finite Different Method (FDM) in the frequency domain. FDM is used to propagate an SH wave from a source through heterogeneities to localized homogeneous domains where fractures are embedded within artificial boundaries. According to Huygens’ Principle, the boundary points can be regarded as “secondary” point sources and their values are determined by FDM. Given the incident fields from these point sources, BEM is applied to model scatterings from fractures and propagate them back to the artificial boundaries. FDM then takes the boundaries as secondary sources and continues propagating the scattered field into the heterogeneous medium. The hybrid method utilizes both the advantage of BEM and FDM. A numerical iterative scheme is also presented to account for the multiple scattering between different sets of fractures. The results calculated from this hybrid method with pure BEM method are first compared to show the accuracy of the hybrid approach and the iterative scheme. This method is then applied to calculate the wave scattered from fractures embedded in complex media
    • …
    corecore