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Abstract 

 

The Seismic Response to Fracture Clustering: A Finite Element 

 Wave Propagation Study 

 

Lauren Elizabeth Becker, M.S. Geo. Sci. 

The University of Texas at Austin, 2014 

 

Supervisor:  Kyle T. Spikes 

 

Characterizing natural and man-made fracture networks is fundamental to 

predicting the storage capacity and pathways for flow of both carbonate and shale 

reservoirs. The goal of this study is to determine the seismic response specifically to 

networks of fractures clustered closely together through the analysis of seismic wavefield 

scatter, directional phase velocities, and amplitude attenuation. To achieve this goal, finite 

element modeling techniques are implemented to allow for the meshing of discontinuous 

fracture interfaces and, therefore, provide the most accurate calculation of seismic events 

from these irregular surfaces.  

The work presented here focuses on the center layer of an isotropic model that is 

populated with two main phases of fracture network alteration: a single large-scale cluster 

and multiple smaller-scale clusters. Phase 1 first confirms that the seismic response of a 

single idealized vertically fractured cluster is distinct crosscutting energy within a 

seismogram. Further investigation shows that, as fracture spacing within the cluster 

decreases, the depth at which crosscutting energy appears exponentially increases, placing 
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it well below the true location of the cluster. This relationship holds until 28% of the 

fractures are moved from their uniformly spaced locations to random locations within the 

cluster. The vertical thickness of the cluster has little effect on the location or strength or 

the crosscutting signature.  

Phase 2 shows that, although clusters of more randomly spaced fractures mask 

crosscutting energy, a marked decrease in amplitude coinciding with a bend in the 

wavefront produces a heterogeneous anisotropic seismic response. This amplitude decay 

and heterogeneous anisotropy is visible until cluster spacing drops below one half of the 

wavelength or the ratio of fractured material to matrix material within a cluster drops below 

37%. Therefore, the location of an individual fracture cluster can be determined from the 

location of amplitude decay, heterogeneous anisotropy, and crosscutting energy. 

Furthermore, the density of the cluster can be determined from the degree of amplitude 

decay, the angle of heterogeneous anisotropy, and the depth of cross-cutting energy. These 

relationships, constrained by limits on their detectability, can aid fracture network 

interpretation of real seismic data. 
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Chapter 1:  Introduction 

 

MOTIVATION 

Characterizing natural and man-made fracture networks is essential for the 

optimization of current production and for the discovery of new oil and gas reserves.  

Unconventional resources are the first to come to mind when discussing fractures due to 

the explosion in popularity of hydraulic fracturing for enhanced hydrocarbon recovery. 

Hydraulic fracturing creates new fracture networks to increase permeability in shale 

reservoirs where hydrocarbons would otherwise be unable to flow. Although this 

production technology relies on newly created fractures, understanding in-situ fracture 

locations and orientations allows the production team to optimize their fracturing efforts. 

A stage can be planned so that it either avoids large faults that funnel fracturing fluids out 

of the desired area, minimizing the effects of the fracturing process, or targets hydraulic 

fracturing perpendicular to natural fracture clusters to increase the areal reach of the stage.  

Most recently, conventional reservoirs have begun to benefit from knowledge on 

natural fracture networks as well. In reservoirs, such as carbonate rocks, with a tight or 

highly variable rock matrix, natural fractures can fulfill the same purpose as in 

unconventional reservoirs and help drain hydrocarbons through areas with decreased 

permeability. Dense clusters of fractures, in particular, have been reported to locally 

increase permeability well above 10 Darcy in Middle Eastern carbonates (Singh et al., 

2008). Large swaths of natural fracture clusters formed during tectonic folding can also 

enhance porosity by increasing the porous volume for hydrocarbon accumulation in 

anticlinal structures. Therefore, characterizing natural fracture networks is fundamental in 
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predicting the storage capacity and pathways for flow in the reservoir types that are most 

promising to meet future energy demands. 

Many different observations provide pieces of information on subsurface fracture 

attributes. Borehole measurements, such as formation micro-imaging, flowmeter readings, 

or conductivity logging, can provide in-situ data on fracture orientation, connectivity, and 

openness (Figure 1.1, left). Unfortunately, this information is limited to the areal extent of 

the borehole or the depth of investigation of the logging tool, which makes these techniques 

less than ideal for 3D reservoir characterization. Seismic surveying, by contrast, allows for 

broad coverage over a large area, but it only provides relatively low resolution elastic 

properties, such as velocity anisotropy or excess matrix compliance, that are indirectly 

related to rock properties (Figure 1.1, right). Outcrops are an attractive intermediate-scale 

choice to formulate concepts of fracture networks because of their visible small-scale 

features, relatively large scale extents, and accessibility (Marrett et al., 2007). However, 

establishing clear relationships between uplifted and weathered outcrops and subsurface 

formations of production interest remains difficult (Figure 1.1, center). As a result of this 

variety of techniques for gathering data on fracture attributes, we are left with mismatched 

pieces of information that are problematic to join together in terms of scale and resolution.  
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Figure 1.1 (Modified from Xiao and Li, 2011 - left, and Strijker et al., 2012 - center) 
Current techniques for gaining information on subsurface fracture attributes. 
Formation Micro Imaging produces a pseudo-image of the borehole wall 
that allows for a visual determination of the orientation and openness of 
fractures intersecting the borehole only (left). Outcrops provide a laterally 
continuous surface for studying the interplay of small and large scale 
fracture parameters but it is difficult to separate the effects of uplift and 
weathering from original subsurface features (center). Seismic velocity data 
has broad coverage over a reservoir, but only provides an indirect 
assessment of fracture network orientation and compliance from 
measurements of velocity anisotropy (right).  

Numerical modeling is the key that connects all the observed levels and scales of 

information about fractures into a single interpretable package. Specifically, wave 

propagation modeling is most advantageous in that it is based on the elastic wave equation 

for heterogeneous media and, therefore, can simulate direct waves, primary and multiply 

reflected and transmitted waves, converted waves, diffracted waves and critically refracted 

waves (De Basabe, 2009).  By building a numerical model based on fracture characteristics 

taken from boreholes and related outcrops, it is possible to thoroughly study the seismic 

response of realistic fracture patterns in a reservoir of interest.  

This approach of calibrating a model to a specific reservoir is much preferred over 

the use of arbitrary or geometrically convenient fracture shapes and patterns. Given an 
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expected range of fracture apertures, lengths, and density distributions, numerical 

modeling can be used to study how variations in these parameters affect seismic energy 

attenuation (Hudson et al. 1996; Dasgupta and Clark, 1998; Chichinina et al., 2006) and 

wavefield scattering (Leary and Abercrombie, 1994; Pearce, 2003; Vlastos et al., 2003; 

Willis et al., 2004, 2006). The anticipated patterns of attenuation and scattering can then 

be used to better distinguish areas of interest in a reservoir containing favorable fracture 

densities and economic fills from areas comprised of less promising features.  

 

OBJECTIVES 

The objective of this study is to expand on previous investigations that analyzed 

the seismic response to fracture networks by modeling more realistic fracture parameters 

and by comparing the results in a more quantitative manner. Previous studies have used 

finite difference methods to model and thoroughly investigate wavefield patterns produced 

from simple fracture networks with evenly spaced, un-naturally wide, solely gas filled 

fractures (Vlastos et al., 2003; Xu, 2011; Hou et al., 2012). Their conclusions qualitatively 

state that little information can be gained when fractures are spaced below seismic 

resolution. Although it is a geophysical principle that seismic waves will experience 

interference if objects are spaced less than one fourth the seismic wavelength (Tatham and 

McCormack, 1991), this has not halted studies of thin bed thickness estimation and wedge 

model resolution (Marfurt and Kirlin, 2001; Nowak et al., 2008; Spikes, 2009).  

These previous studies on fractures are, instead, hampered by their chosen 

modeling methods.  Older modeling techniques, such as effective medium and finite 

difference methods, are greatly limited in their ability to discern fracture parameters due to 

their oversimplified representation of realistic fractured media. To achieve the first portion 
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of my objective, I implement better suited finite element modeling methods that allow for 

more accurate representation of fractured media. I have chosen to broaden this study further 

to include fracture networks with closely spaced fractures, smaller vertical-scale fractures, 

and non-uniformly spaced fractures to simulate fracture clustering. These additions are 

necessary steps to add complexities that we know exist in the subsurface from cores and 

borehole images.     

 Finite Difference studies have also obstructed pertinent conclusions by over 

simplistically comparing the results of models containing differing fracture network 

attributes. For example, it has been documented numerous times that the seismic response 

to fractures with uniform spacing ranging from the seismic wavelength to seismic 

resolution is the formation of a crosscutting pattern in seismograms (Pearce, 2003; Vlastos 

et al., 2003; Burns et al., 2007; Xu, 2011). None of these studies have tested the effects of 

fracture density, length, or non-uniform spacing on the formation of this pattern. Without 

this information, it is unclear if crosscutting energy could be observed in real data. To 

achieve the second portion of my objective, I vary parameters of the idealized networks 

and measure the locations, extent, and intensity of crosscutting energy until it is no longer 

discernible. By testing the sensitivity of fracture-related wavefield events to the fracture 

parameters that create them, I am able to discern the seismic detectability of fracture 

network attributes. Therefore, I am able to more reliably point interpreters in the right 

direction to look for hints of the presence of fractures in a seismic volume.  

 

THESIS ORGANIZATION 

This thesis is divided into six chapters. Chapter 1 provides a brief overview of the 

motivation behind this project, the objectives accomplished, and the software utilized to 
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complete this project. Chapter 2 covers the fundamentals of the phenomenon of fracture 

scattering attenuation, which builds a framework for the rest of the chapters in this study. 

Chapter 3 discusses the theory behind modeling fractured media and numerically 

propagating a seismic wave through that medium. Chapter 4 outlines the calculations and 

reasoning that go into choosing variable values within the SWP3D software and covers the 

methodology of modeling individual fracture attributes phase by phase. Chapter 5 details 

the results of fracture network attribute alteration phase by phase and subsections are used 

further analyze the detectability of relationships between seismic events and fracture 

network parameters. Lastly, chapter 6 covers discussions and conclusions from this work.  

 

SOFTWARE UTILIZED 

In this work, four main software were used:  

 Seismic Wave Propagation 3D (SWP3D) is an open source software 

managed by the EDGER Forum at the University of Texas at Austin. I use 

this program to create model meshes and to numerically propagate a wave 

through the model.  

 Seismic Unix (SU) is an open source software package used for seismic 

data processing managed by the Center for Wave Phenomena at Colorado 

School of Mines. I use this program primarily for data visualization and 

secondarily for minor data processing.  

 Matlab is a commercial software for mathematical calculations. I use this 

program to ease the creation of SWP3D input files and calculation of 

various parameters.  
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 Host2sgy is an open source software managed by the University of Texas 

Institute for Geophysics. I use this program to convert the binary files 

generated by SWP3D into SEGY files that are readable using other 

software.  
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Chapter 2:  Fundamentals of Fracture Scattering Attenuation 

 

SEISMIC RESPONSE TO AN ELASTIC INTERFACE 

The work presented here is fundamentally based on the theory of reflection, 

diffraction, and transmission. A seismic wave is, by definition, an elastic wave produced 

when particles in a certain region are set in motion by a mechanical perturbation (Sheriff 

and Geldart, 1995). The elastic wave is the resultant motion within the medium to restore 

the particles to their original position. Seismic waves will propagate directly through a 

medium until a change in acoustic impedance, defined as the product of a specific 

medium’s velocity and density, is reached. Therefore, the response of the seismic wave to 

an interface separating two mediums is given by:  

                                                             (2.1) 

                                                        (2.2) 

where ܴ is the seismic wave’s reflectivity response, ܶ is the transmitivity response, ܫܣଵ is 

the acoustic impedance of the upper layer, and  ܫܣଶ is the acoustic impedance of the lower 

layer (Mavko et al., 2009).  

The Components of a Seismic Wavefield 

Elastic seismic waves are separated into two categories based on the motion of 

particle restoration during wave propagation and during reflection and transmission off of 

an interface. Waves with particle motion parallel to the direction of wave propagation are 

called compressional, or P-waves, and particle motion is further confined to the vertical 

plane in which the source of the perturbation acts (Figure 2.1, left). Waves with particle 

motion perpendicular to the propagation direction are called shear, or S-waves, and are 
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divided into two categories: those with particle motion perpendicular to the vertical source 

plane, called shear horizontal or SH-waves (Figure 2.1, center), and those with particle 

motion parallel to the vertical source plane, called shear vertical or SV-waves (Figure 2.1, 

right).      

 

Figure 2.1: (Modified from Tatham and McCormack, 1991) Diagram of the different 
categories of seismic waves. Compressional seismic waves contain particle 
motion that is parallel to the direction in which the seismic wave propagates 
and that is confined to the vertical plane defined by the source of wave 
motion (left). Shear seismic waves contain particle motion that is 
perpendicular to the direction in which the seismic wave propagates. Shear 
Horizontal, or SH-waves, are further defined as having  particle motion that 
is confined to a plane perpendicular to the vertical source plane (center), 
while Shear Vertical, or SV-waves, are defined as having particle motion 
that is confined to the vertical source plane (right).  

Compressional Wave Mode Conversion 

Traditionally seismic sources that generate compressional waves are used in 

hydrocarbon exploration because P-waves can propagate in fluids and are easy to generate 

(Stewart et al., 2002).  Therefore, when a compressional seismic wave encounters an 

interface separating isotropic layers of differing acoustic impedance, equations 2.1 and 2.2 

indicate that the resulting wavefield should consist of a reflected P-wave and a transmitted 
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P-wave. However, two other wavefield components are generated: a reflected SV-wave 

and a transmitted SV-wave at non-normal angles of incidence. This phenomenon is known 

as mode conversion and is a result of the interaction of the wave with the interface. As 

stated earlier, P-waves have particle motion that is parallel to the direction of wave 

propagation, and that is confined to the vertical source plane. When a P-wave comes in 

contact with a surface at non-normal incidence, particle motion will be at an angle to the 

surface and will decompose into two perpendicular directions upon reflecting or 

transmitting, forming P-waves and SV-waves (Tatham and McCormack, 1991). SH-waves 

are not generated from mode conversion because particle motion begins and remains 

parallel to the vertical source plane. 

Seismic Wave Decomposition 

The partitioning of the four components within a seismic wavefield are governed 

by two fundamental equations: Snell’s Law and Zoeppritz Equations. Snell’s Law governs 

the geometric partitioning of the wave by using the P-wave incident angle ߠ௣ଵ, upper layer 

compressional velocity ܸ ௣ଵ and shear velocity ܸ ௦ଵ, and lower layer compressional  velocity 

௣ܸଶ and shear velocity ௦ܸଶ:  

                                     (2.3) 

where ߠ௣ଶ is the P-wave transmission angle, ߠ௦ଵ is the mode-converted S-wave reflection 

angle, and ߠ௦ଶ is the mode-converted S-wave transmission angle (Sheriff and Geldart, 

1995). Zoeppritz Equations govern the energy partitioning of the wave by building upon 

Snell’s Law. Using the angles ߠ௣ଶ, ߠ௦ଵ, and ߠ௦ଶ calculated in equation 2.3, the upper and 

lower layer velocities  ௣ܸଵ, ௦ܸଵ, ௣ܸଶ, and ௦ܸଶ, and the upper and lower layer densities, 

Zoeppritz Equations can be used to solve for the amplitudes of the reflected P-wave ܴ௣, 

reflected S-wave ܴ௦,  transmitted P-wave  ௣ܶ, and transmitted S-wave ௦ܶ:  
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(2.4) 

where ܼଵand ܼଶ are the upper and lower layer compressional impedance, respectively, and 

ଵܹ and ଵܹare the upper and lower layer shear impedance.  

To better illustrate the insights conveyed in equations 2.3 and 2.4, Figure 2.2 

visually represents incident compressional wave geometric partitioning in the left column 

and energy partitioning in the right column. The top row of Figure 2.2 focuses on the case 

of an impedance increase, whereby an interface separates a shallow, lower velocity and 

density layer from a deeper, higher velocity and density layer. This is the most common 

case found in the subsurface due to increased effects of compaction with increased depth. 

It is evident from the top left image that the P-reflected wave travels upward from the 

interface at the same angle from vertical as the incident P-wave because ௣ܸଵ throughout 

the upper layer is constant. The mode converted S-reflected wave travels upward at an 

angle less than that of the P-reflected wave because ௦ܸଵ ൏ 	 ௣ܸଵ.  

Given that ௣ܸଵ, ௦ܸଵ ൏ 	 ௣ܸଶ, ௦ܸଶ, the angle of transmission is greater than the angle 

of reflection, and the P-transmitted wave travels downward from the interface at a larger 

angle from vertical than the P-reflected wave. The S-transmitted wave travels downward 

at an angle greater than that of the S-reflected wave but smaller than that of the P-

transmitted wave. Although not clear from the top left image in Figure 2.2, as the angle of 

incidence increases, the angles from vertical at which the P-transmitted and S-transmitted 

waves propagate increases. This relationship holds until the critical angle, of 30 degrees in 

this case ( ௣ܸଵ ௣ܸଶ⁄ ൌ 0.5), is reached and refraction along the interface takes place. From 

the top right image in Figure 2.2, it is evident that the majority of seismic energy is 

partitioned into the P-transmitted wave until large angles of incidence are reached, at which 
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time the P-reflected wave begins to dominate. It is also clear that mode conversion does 

not take place at normal incidence and that S-wave components never contain a significant 

amount of seismic energy.  

The bottom row of Figure 2.2 focuses on the opposite case of an impedance 

decrease, whereby an interface separates a shallow, higher velocity and density layer from 

a deeper lower velocity layer. Though not a common scenario, anomalies such as an 

increase in the ratio of void to solid space in the deeper layer relative to the shallower layer 

can produce such an effect. From the bottom left image, it is evident that the P-reflected 

and S-reflected waves do not change their relative geometry because the upper layer’s 

properties have not changed. However, the angles from vertical at which the P-transmitted 

and S-transmitted waves travel downward from the interface are decreased due to the 

decrease in impedance of the lower layer and the angles decrease further as the angle of 

incidence increases.  

From the bottom right image in Figure 2.2, it is clear that the P-transmitted 

component of the wave contains the entirety of seismic energy until moderate angles of 

incidence are reached. As the incidence angle approaches 30 degrees, P-transmitted wave 

amplitude sharply decreases to zero. Mode conversion begins for both reflected and 

transmitted components and is marked by a pronounced spike in S-wave energy. Mode 

conversion tapers off as larger offsets are reached, and seismic energy is then preferentially 

partitioned into the P-reflected wave, whose amplitude increases significantly as the angle 

of incidence increases.  
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Figure 2.2: (Modified from Sheriff and Geldart, 1995) A visual representation of the 
equations governing the seismic response to an interface separating layers of 
differing acoustic impedances. When the interface is defined by an increase 
in impedance, Snell’s Law shows that the compressional and mode 
converted shear waves’ angles of transmission increase as the angle of 
incidence increases. The Zoeppritz Equations show that the majority of 
seismic energy is partitioned into the compressional transmitted wave until 
large offsets are reached.  When the interface is defined by a decrease in 
impedance, Snell’s Law shows that the compressional and mode converted 
shear waves’ angles of transmission decrease as the angle of incidence 
increases, and Zoeppritz Equations show that the compressional transmitted 
wave only contains the majority of seismic energy at small offsets and 
compressional reflected waves dominate thereafter.  

Layered and Irregular Interfaces 

The theory outlined above defines the seismic response to the textbook case of an 

interface separating two uniform layers. To restate the main points, at normal incidence 

and moderately increasing impedance across the interface, the majority of seismic energy 
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is transmitted directly through the layered interface, as determined by Zoeppritz equations. 

Only a small portion of the energy is reflected back toward the surface (Figure 2.3, left). 

This is a key concept behind seismic surveying. If all of the energy is reflected back to the 

surface at shallow depths, no energy would propagate downward and provide information 

on reservoir-depth intervals. As the angle of incidence increases, due either to relative 

positioning of the source and interface of interest or to the dip of the interface, the amount 

of relative energy partitioned into transmitted waves decreases and reflected energy 

becomes stronger.  

The seismic response of acoustic impedance contrasts at irregular interfaces, such 

as vertical fractures, is not as well understood (e.g., Schultz and Toksoz, 1996). Two factors 

strongly differentiate fractured interfaces from layered interfaces: (1) fractures are narrow, 

elongate features with large curvature changes at each end, and (2) fractures are normally 

associated with a strong decrease in impedance due to low density and velocity fluid infill. 

Therefore, at normal incidence, most of the seismic energy should be transmitted through 

the fracture due to the decrease in impedance (Figure 2.2, bottom). However, the vertical 

tip of the fracture acts as a point source, diffracting wave energy in all directions (Figure 

2.3, right).  

As the angle of incidence increases, the seismic wavefield can interact with the 

planar side of the fracture, but the sharp decrease in transmitted-wave energy as a function 

of incidence angle again prevents much of the seismic energy from passing through the 

fracture. Instead, the wavefield is continuously reflected back and forth at sharp angles off 

of the length of the faces of the fractures (Figure 2.3, right).  With each reverberation, mode 

conversion decreases the amplitude of the reflected waves until only faint scatter is left to 

exit the fractured interval (Schultz and Toksoz, 1996; Daley et al., 2002; Nakagawa et al., 

2003). These processes of wavefield energy loss and amplitude decay that occur during the 
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wave’s traverse of the fractured interval are called scattering attenuation (Aki and Chouet, 

1975). Because of this scattering attenuation, imaging fractured intervals and layers lying 

below these intervals is a difficult process. 

 

Figure 2.3: An illustration of reflection, diffraction, and transmission at different 
interfaces. As energy, represented by the shaded arrows, propagates from a 
seismic source, represented by the red star, encounters an impedance 
contrast, the waves are reflected off of this interface and transmitted through 
this interface. The normal incidence reflections and transmissions are 
marked with an ܴ௡ and  ௡ܶ, respectively, and the angle-dependent 
reflections and transmissions are marked with an  ܴ௔ and  ௔ܶ, respectively. 
When the interface separates layered media (left), the waves reflect and 
transmit in a common manner. When the interface is a fracture (right), 
normal incidence waves are scattered in all directions causing a diffraction 
instead of a reflection, and little energy is transmitted through the fracture. 
Waves encountering fractured interfaces at an angle are reflected between 
the fractures, and little energy is transmitted through the fracture. 

 

UTILITY OF FRACTURE WAVEFIELD EVENTS 

Scattering of seismic waves at fracture interfaces is typically viewed only as 

unfavorable noise in seismic data.  Scattering attenuation is lumped together with 
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backscattering, and appropriate processing steps are applied to mask or remove these 

effects. Contrary to this view point, scattering from fractures is not random noise because 

fractures themselves are not random features. Fractures most commonly occur in regular 

fracture sets that are restricted to brittle rock units and have ranges of fracture lengths, 

fracture spacings, and specific orientations (Ozkaya et al., 2003).  This regularity within a 

particular set and, therefore, the regularity of resulting wavefield features allows for the 

extraction of parameters pertinent to defining how each fracture relates to one another. The 

utility of fracture wavefield events for the detection and characterization of fracture 

networks is evident in two cases: velocity anisotropy and wavefield reverberation.  

Seismic Velocity Anisotropy 

Compressional wave velocity anisotropy is a well documented phenomenon in 

which aligned inclusions cause seismic wave velocity to slow preferentially in the direction 

perpendicular to inclusion alignment (Backus, 1962; Hudson, 1981; Thomsen, 1995). As 

the leading pulse of seismic energy, or wavefront, passes through each fracture, it is slowed 

by the lower velocity fluid filling the fracture (Figure 2.4, right). The time the wave takes 

to traverse subsurface distances increases, and, therefore, observed velocity decreases, as 

a harmonic average of the distance occupied by each low velocity fracture fill zone and the 

distance occupied by each matrix velocity zone: 

                                                                    (2.3)       

where ݐ௣௘௥௣ is the propagation time perpendicular to fracture strike,  ௙ܸ is the velocity of 

the fracture fill, ௠ܸ is the velocity of the matrix material, ܦ௙ is the width occupied by each 

fracture, and ܦ௠ is the width occupied by the matrix material. If inclusions are aligned 

vertically, the anisotropy is called horizontal transverse isotropy to describe the horizontal 
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axis of symmetry within the system. Fractures are most likely to produce this type of 

anisotropy due to the relative ease of opening a void space perpendicular to the downward 

direction of maximum stress in the subsurface.  

The velocity of the seismic wavefield parallel to fracture alignment is unchanged 

by the presence of the slower velocity inclusions:    

                                                                   (2.4) 

Velocity in this direction has not been visibly modified because the portion of the 

wavefront recorded has traveled through the faster matrix material only. This phenomenon 

is evident when related back to the seismic response of an irregular fracture interface 

(Figure 2.3, right). A wave traveling parallel to fracture alignment is incident upon only 

the tip of the fracture. Therefore, the portion of the wavefield that is directly in line with 

individual fracture locations will be diffracted or slightly transmitted through the long axis 

of the fracture. The resulting low-energy transmitted wave will be drastically slowed due 

to the time spent traversing the interior of the fracture, making it unlikely that this portion 

of the wavefield will be recorded. Therefore, from measurements of the direction and 

degree of compressional velocity anisotropy, the orientation of a fracture network (Hudson, 

1981) and its relative fracture density (Grechka and Tsvankin, 1998; Thomsen, 2002) can 

be determined.  
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Figure 2.4:  The effects of aligned fractures on compressional seismic velocity. As a 
seismic wave propagates out from the center of the model, an isotropic 
medium does not alter the wavefield velocity in any particular direction, and 
the compressional wavefront is shaped like a circle (left). A medium with 
high fracture density slows compressional wavefield velocity in the 
direction perpendicular to fracture strike but has no effect on wavefield 
velocity parallel to fracture strike. This distortion of the wavefront is known 
as anisotropy and results in a wavefront that resembles an ellipse (right). 
Note that the shear seismic wavefronts in both figures are unaffected by the 
presence of the gas filled fractures and maintain a circular shape.  

Seismic Diffraction Coda  

Wavefield reverberations are a less well-understood topic of study for fracture 

detection and characterization. A seismic wavefield traveling through a vertically fractured 

medium consists primarily of reflected waves that reverberate between the fractures 

(Figure 2.3, right). If fracture length is comparable to the seismic wavelength, these 

reverberations, or seismic coda (Aki and Chouet, 1975), will be coherent diffractions from 

individual fractures (Figure 2.5, left). The spacing of the seismic coda is proportional to 

fracture spacing (Figure 2.5, center) and decreases as the fracture spacing decreases 

(Schultz and Toksoz, 1996; Daley et al., 2002; Nakagawa et al., 2003; Chichinina et al. 

2006). This relationship holds until the spacing between the fractures becomes less than 
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the seismic resolution, or one fourth of the wavelength, and interference between the 

different coda signals causes cancellation and blurring of their shapes (Figure 2.5, right). 

Because the coda have reflected off of the fracture interface, they carry information about 

the impedance contrast at this boundary (Willis et al., 2004).  

 

Figure 2.5: The effects of aligned fractures on compressional seismic wavefields in 2D. 
As a seismic wave propagates out from the center of a model, a medium 
with large fracture spacing, as in the left image containing two fractures, 
produces coherent diffractions, or seismic coda off the source-facing side of 
the fracture. A medium with fracture spacing that is larger than seismic 
resolution, or 1/4 of the wavelength as seen in the center image, will contain 
one distinct compressional and shear seismic coda for each fracture present 
in the medium. The spacing of the coda is proportional to fracture spacing 
and the strength of the coda is proportional to the velocity of the individual 
fracture’s infill. When fractures are closely spaced, seismic coda undergo 
interference and cancellation, as seen in the right image.  

As with compressional velocity anisotropy, seismic coda signatures are 

directionally dependent. The phenomena depicted in Figure 2.5 occur only in the direction 

perpendicular to fracture network strike (Schultz and Toksoz, 1996). In the same way that 

aligned inclusions slow seismic velocity in the direction perpendicular to inclusion 

alignment, the chaotic coda signature within the wavefield only occurs as a result of the 
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wavefield interacting with and propagating through each fracture (Figure 2.6, left). The 

wavefield propagating parallel to fracture strike consists, instead, of parallel reflections 

from the elongated side of each fracture (Burns et al., 2007), and appear to represent a 

medium containing thin isotropic layers (Figure 2.6, right). However, wavefield variations 

parallel and perpendicular to fractures can only be documented when different azimuths 

are compared in 3D models. Therefore, seismic coda can provide information about 

fracture spacing within a network in 2D models, the direction of fracture strike in 3D 

models, and information about individual fracture infill if enough information is known 

about the surrounding matrix material. 

 

Figure 2.6: (Modified from Burns et al., 2007) The effects of aligned fractures on 
compressional seismic wavefields in 3D.  Burns et al., (2007) modeled the 
seismic response to evenly spaced, parallel, 10 meter-wide, vertical, gas-
filled fractures in 3D and compared the results to seismic data from the 
Emilio Field, a fractured carbonate. The images from left to right are as 
follows: Burns et al.’s modeled seismogram perpendicular to fracture strike, 
Emilio Field seismogram perpendicular to fracture strike, Burns et al.’s 
modeled seismogram parallel to fracture strike, and Emilio Field 
seismogram parallel to fracture strike.  
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SUMMARY 

This chapter provides a background summary of pertinent phenomena 

encompassed in the topics of reflection, diffraction, and transmission that are required to 

understand the seismic response of an individual subsurface fracture. The irregular 

interface of a fracture differs from the textbook example of a layered interface in two 

significant ways: (1) fractures are narrow, elongate features with large curvature changes 

at each end and (2) fractures are normally associated with a strong decrease in impedance 

due to low density and velocity fluid infill. Snell’s Law illustrates the complex wavefield 

geometry resulting from aligned vertical fractures and Zoeppritz Equations illustrate the 

difficulty of reflecting and transmitting seismic energy through aligned fractures. 

Scattering attenuation is defined as the cumulative result of both the phenomena described 

in Snell’s Law and Zoeppritz Equations. Through the study of seismic velocity anisotropy 

and seismic coda properties, scattering attenuation can be used to estimate the orientation, 

geometry, and infill of fracture networks.  
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Chapter 3:  Fundamentals of Discrete Fracture Modeling 

 

REPRESENTATION OF A FRACTURE 

When a seismic wave propagates through an anisotropic subsurface formation, the 

medium imparts a directional dependence on the propagation. This directional dependence 

can be caused by a variety of factors including alignment of platy mineralogy, variations 

in porosity, or the presence of fractures.  Over the last thirty years, various equivalent 

medium theories have been developed that allow for the characterization of the mechanism 

causing formation anisotropy using seismic data. The findings of theories focused on 

fracture-related anisotropy are detailed in Chapter 2, which discussed directional variations 

in compressional velocity and seismic coda properties. Understanding the detailed 

relationship between a seismic wavefield and a fracture network is of little help to our 

interpretation if the theory used to model these interactions cannot realistically represent 

true fracture attributes. With this point in mind, finite element discrete fracture modeling 

techniques were chosen for this work to represent a fractured medium and to numerically 

propagate a seismic wave through that medium. This chapter demonstrates how discrete 

fracture finite element methods offer better control on modeling accuracy and more 

geometrical flexibility than other methods traditionally used.  

Seismic Velocity in Fractured Rock 

Before delving into the theories for numerically representing fractured media, the 

basic mathematics of how the presence of fractures affects seismic wave propagation must 

be discussed. Wave propagation is governed by the equation of motion:  

                    (3.1) 
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where ݀ is the number of dimensions, ߩ is the medium density, ߪ௜௝ is the stress tensor, ݉௜௝ 

is the moment tensor of the source, ௜݂ is the source force vector, ݑ௜ is the displacement 

vector, and therefore ߲ ଶݑ௜ ⁄ଶݐ߲  is the propagation acceleration (Sheriff and Geldart, 1995). 

Disregarding the source terms, it is apparent that the velocity at which a wave propagates 

through a medium is governed by the density of the medium and its ability to handle stress 

variations.  

In an elastic medium, Hooke’s Law shows that the stress tensor is linearly 

proportional to strain by implementation of the elastic stiffness tensor, ܥ௜௝௞௟: 

                                             (3.2) 

with                                         (3.3) 

where ߝ௞௟ is the strain tensor. The stiffness of a rock is defined as the extent to which it 

resists deformation (Mavko et al., 2009). Factors that decrease the stiffness of a rock are 

an increase in the open space between grains or a decrease in the stiffness of the grains 

themselves, both of which allow the rock to compress when a force is applied. The 

relationship between the stiffness tensor and these tangible rock properties is revealed upon 

expanding equation 3.2 and using Voight notation to reduce ܥ௜௝௞௟ to a 6 by 6 matrix: 

                  (3.4) 

Symmetry reduces ܥ௜௝ to only two independent constants in an isotropic medium: 
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      (3.5) 

This simplification to Hooke’s Law allows the stiffness components to be defined in terms 

of Lame’s Parameters:  

                                 (3.6) 

where ߤ is called the rigidity, or shear modulus and ߣ is called the fluid incompressibility 

modulus. 

It can be shown further that velocity is directly related to Lame’s Parameters: 

                                     (3.7) 

where ߩ is rock density and  ௣ܸ and ௦ܸ are compressional and shear velocity, respectively 

(Mavko et al., 2009). It is clear from equation 3.7 that the propagation velocity of seismic 

waves is directly proportional to the rigidity of a rock and the incompressibility of the fluid 

contained within the rock. More compliant regions slow velocity simply because the 

compressional movement of the material dampens wave propagation. Therefore, within a 

uniform rock matrix, the presence of open or fluid-filled fractures act to decrease the total 

stiffness by closing or giving way slightly as a seismic wave propagates past them.  

Discrete Fracture Models versus Effective Medium Models  

Of the many types of equivalent medium theories that exist, the two most 

commonly applied in seismic-based fracture research are effective medium models and 

discrete fracture models. Effective medium models describe the macroscopic elastic 

properties of a composite material by averaging the elastic properties of the constituent 
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materials (Figure 3.1, left). To quantify the increase in matrix compliance caused by fluid-

filled fractures, effective medium models simply subtract stiffness from the composite 

layer and, therefore, decrease velocity within the layer. The new effective elastic stiffness 

tensor is a function of three terms:  

                                                  (3.8) 

with                                                      ( 

The first term represents an isotropic background, defined by Lame’s Parameters in 

equation 3.6, and the second two corrections represent stiffness subtracted from the system 

due to the presence of a single fracture set. The correction terms are defined by estimations 

of average values of Lame’s Parameters (ߤ ,ߣ), bulk modulus (ߢ), fracture density (ߝ) and 

fracture aspect ratio (α) for the fractured layer (Hudson 1980, 1981; Cheng, 1993; Mavko 

et al., 2009). 

Discrete fracture models differ from effective medium models in that the former 

retains individual fracture attributes in space instead of averaging these attributes into one 

set of stiffness parameters for each fractured layer present in the system (e.g. Schoenberg, 

1980, 1988; Coates and Schoenberg, 1995; Zhang, 2005; Vlastos, 2005; Willis et al. 2004, 

2006; Grandi-Karam, 2008). In discrete fracture finite element models, a gridded mesh 

represents the fracture attributes in space, and each grid cell can either represent a location 

of isotropic background or fracture interior with associated fill (Figure 3.1, right). The 

interface between background matrix cells and fracture cells is modeled as a linear slip 

surface, which defines a linear relationship between the traction along the fracture surface, 

௝߬, and the jump in displacement, ሾݑ௜ሿ,  across the fracture within the matrix material 

(Sayers and Kachanov, 1991): 

                                                         (3.9) 
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with                                                        jj 

Because each fracture remains as an individual physical entity rather than as part of the 

stiffness tensor, wavefield scattering and attenuation patterns resulting from fracture 

interfaces can be studied in a more practical manner. Therefore, discrete fracture finite 

element modeling methods were chosen for this study to best accomplish the objective of 

understanding the seismic response to realistic subsurface fracture.  

 

Figure 3.1: (Modified from Oliver et al., 2012) Different representations of fractured 
media. An effective medium model averages the attributes of a fracture set 
within a specific layer to compute the effective stiffness tensor Cij that 
defines the wave propagation velocity through the medium (left). The 
discrete fracture finite element model discretizes the medium into grids that 
allow each individual fracture to be defined at a specific location within the 
medium (right). In this image, lighter grids represent an isotropic 
background, and darker grids represent fracture interior. Normal and 
tangential compliance are computed along the fracture-matrix interface to 
define wave propagation velocity through the medium.  

Fractures as Linear Slip Surfaces 

Discrete fracture models represent fractures as linear slip surfaces within a modeled 

mesh by utilizing the elastic compliance tensor, ௜ܵ௝ in equation 3.9, instead of its inverse, 

stiffness. In this scheme, compliance from the presence of open or fluid-filled fractures is 

added to the system by summing the displacement discontinuities along every plane of 
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weakness, or slip surface, at the fracture-matrix interface (Sayers and Kachanov, 1991; 

Zhang et al., 2009):  

                                               (3.10) 

with                                                   ( 

The first term again represents an isotropic background, as in effective media theory, but 

the second correction term systematically sums the effect of each fracture, ݎ, from the 

first to the ܰth. The compliance of each fracture, ௜ܵ௝௞௟
௥ , is defined by the displacement 

discontinuity normal to the fracture face (ߚே
௥ ), the displacement discontinuity tangential 

to the fracture face (்ߚ
௥), ݅th component of the normal to the ݎth face (݊௜

௥), and the area of 

the fracture plane (ܣ௥).  

Furthermore, the displacement discontinuities normal and tangential to the 

fracture face, called normal and tangential compliance, respectively, are defined as 

follows:  

                         (3.11) 

                           (3.12) 

where ߚ ,ߙ, and ߤ are the P-wave velocity, S-wave velocity, and rigidity of the rock, and 

 ௪ is the proportion of the fracture surface area that consists of welded contact, ܽ is theݎ

mean radius of the contact areas, ߤ’ and ߢ’ are the rigidity and bulk modulus of the fracture 

fill, and Δ is the mean aperture of the fracture (Hudson et al., 1997; Worthington and 

Lubbe, 2007). These two variables, normal and tangential compliance, act as input 

parameters for fracture modeling using SWP3D, and the values used to compute them will 

be discussed in Chapter 4. Each modeled fracture can be defined individually in this way. 
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For this study, all fractures within a specific model are defined using a single normal and 

tangential compliance for the set. Importantly, discrete fracture models, with all their 

unknowns, are only as realistic as their input parameters. Without a good understanding of 

what discrete fracture parameters should be, the simplification, homogenization, and 

predictive capability of effective medium models gives the latter the advantage. 

 

NUMERICAL ELASTIC WAVE PROPAGATION 

To simulate wave propagation through a gridded mesh, either the acoustic wave 

equation, which only models compressional waves, or the elastic wave equation, which 

models both compressional and shear waves, must be computed at a discrete number of 

points along the propagation path. The ability to model both types of seismic waves 

generated in the subsurface allows the elastic wave equation to more realistically and more 

accurately represent the seismic response to subsurface features. Therefore, the elastic 

wave equation was chosen for this study. For a quick derivation of the elastic wave 

equation, the strain equation (3.3) and isotropic stiffness parameters (3.6) can be substituted 

into the generalized version of Hooke’s Law in equation 3.2 to define stress in terms of the 

Lame’s Parameters and strain: 

                                         (3.13) 

where again ߪ௜௝ is the stress tensor, ߝ௜௝ is the strain tensor, ߣ and ߤ are Lame’s Parameters, 

and ߜ௜௝ is the Kronecker Delta. Substituting this isotropic version of Hooke’s Law into the 

equation of motion (3.1) yields the elastic wave equation (Sheriff and Geldart, 1995): 

                 (3.14) 
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By choosing the elastic rather than the acoustic case, the mathematics of wave propagation 

becomes complicated by the need to solve the partial differential equation in (3.14). The 

analytic solution to a partial differential equation is difficult or impossible to obtain when 

it is computed on an irregular or unsmooth mesh, as is the case with media containing 

discontinuous fracture interfaces (Johnson, 1990).  

The Finite Element Method for Wave Propagation 

To circumvent the issues of modeling the elastic wave partial differential equation, 

elements of the surrounding model mesh are used to help smooth the solution at a 

discontinuous location (Figure 3.2). Common techniques, such as the finite difference 

method, approximate the partial derivatives of the wave equation using simple Taylor 

series expansion (Marfurt, 1984). The finite element method, by contrast, utilizes a 

manipulated form of the wave equation to weaken its differentiability requirements 

allowing for discontinuities in the medium. The elastic wave equation (3.14) is rewritten 

using Einstein’s summation notation for ease of view: 

                   (3.15) 

where Ω ⊂ ܴௗ is the physical domain, d is the number of dimensions, and the shorthand 

notation ߲௟߲ݑ௞ ൌ ௞ݑ߲	 ⁄௟ݔ߲  is used. Multiplying this so-called strong formulation of the 

elastic wave equation by a vector test function gives: 

             (3.16) 

where ݒ௜ is the test function assumed to be smooth in the domain (De Basabe and Sen, 

2009). As a final step, integration by parts with the Gauss divergence theorem is performed 

on the second and third terms on the left side of equation 3.15, which results in the weak 

formulation of the elastic wave equation:  
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               (3.16) 

                 (3.17) 

where Γ is the boundary of Ω and ݊௜ is a vector outward normal to Γ (De Basabe and Sen, 

2009).  

The above equation is called weak because the solution only contains first-order 

spatial derivatives (De Basabe, 2009; Oliver, 2012). This method for solving the partial 

differential equation is preferred over other methods, such as the finite difference method, 

because the solution can be represented as a system of linear equations instead of simply 

replacing the derivatives with approximations (Suli and Mayers, 2006). This method is also 

preferred for modeling fractures, whose interiors represent a discontinuity in space. The 

finite element method does, however, require at least nine adjacent nodes within the mesh 

to accurately calculate the two dimensional wavefield at a single location (Marfurt, 1984). 

Each of the nine nodes must also have both horizontal and vertical degrees of freedom in 

order to model the elastic vector quantities in the wave equation, which is more 

computationally intensive than other methods (Figure 3.2, right).   
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Figure 3.2: Diagram of the finite element method for numerical wave propagation 
through a discontinuous medium. A seismic source, represented by the red 
star in the top left corner of each frame, produces a wavefront whose 
propagation is represented by the black arcs (left). As the wavefront 
advances, the wavefield must be recalculated at each grid node it 
encounters, indicated in yellow. At discontinuous points where the exact 
solution does not exist, finite element methods utilize neighboring nodes 
surrounding the problem node to smooth the solution at this particular 
location (right). In 2D elastic wave propagation, a minimum of nine adjacent 
nodes are required to maintain a smooth solution throughout the medium 
and each of the nine nodes must have both horizontal degrees of freedom, 
represented by the blue dots, and vertical degrees of freedom, represented by 
the green boxes. To better illustrate this point, the finite difference method is 
shown in the center, which only requires four surrounding nodes to have 
vertical or horizontal degrees of freedom.  

Interior-Penalty Discontinuous Galerkin Method 

Although the finite element weak formulation of the elastic wave equation is 

advanced in its ability to obtain smooth solutions on irregular or fractured meshes, it was 

rarely implemented until the last 10 years.  The reason lies in its reliance on linear systems 
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that have the costly drawback of requiring inversions of large matrices to arrive at a 

solution (Johnson, 1990). The slowness of this inversion process and the computational 

power needed to perform such calculations greatly limited the use of finite element 

methods until recent advancements in computer power and wave propagation theory were 

made. In this study, the Interior-Penalty Discontinuous Galerkin method (IP-DGM) is used 

to avoid the inversion process by weakening the wave equation further.  To do so, the 

domain Ω is divided into nonoverlapping elements, ܧ௜, that cover the entire domain such 

that ߗ௛ ൌ ሼܧ௜; 		݅ ൌ 1,… ,ܰሽ (De Basabe and Sen, 2009). The wavefield is allowed to be 

discontinuous at the edges of these elements, so instead of attempting to integrate by parts 

over the entire domain, integration is performed within the interior of the elements and then 

added together (De Basabe, 2009): 

            (3.16) 

The above equation has been weakened further to only contain first-order space and 

time derivatives and, therefore, allows for discontinuities in both the medium and the 

wavefield (Grote et al., 2006). Therefore, IP-DGM speeds computation and better 

accommodates discontinuities in the wavefield created by fluid-solid and free-surface 

boundary conditions present at fracture interfaces (De Basabe, 2009; De Basabe et al., 

2011). From the literature outlined above, clearly finite element methods are the best option 

for accurately modeling the seismic response of fractures. The same qualities that make 

FEM so attractive are also the reasons why it has been rarely used for geophysical 

applications in the past. The construction of such a robust numerical wave propagation 

model requires a very skilled programmer and a substantial amount of time. Fortunately, 

in this study, I implement an open source development code outlined in De Basabe (2009) 

to circumvent this drawback. 



 33

SUMMARY 

This chapter provides a background summary of the theory behind modeling 

discrete fractures within a host matrix material and numerically propagating a seismic wave 

through that material. The velocity at which a seismic wave propagates through a medium 

is directly proportional to the elastic stiffness of that medium. The presence of open or 

fluid-filled inclusions within that medium act to decrease the total stiffness by partially 

closing as the seismic wave propagates past them. The discrete fracture finite element 

modeling method used in this study adds compliance to each fractured region by relating 

the fracture-host material interface, or discontinuity, to the traction along that interface. 

The Interior-Penalty Discontinuous Galerkin Finite Element numerical wave propagation 

method also specifically focuses on the discontinuity present at the fracture interface when 

solving the elastic wave partial differential equation. The wave equation is weakened, in 

short, by dividing the modeled domain into smaller elements that are bounded by the 

discontinuities. By calculating the wavefield in each element and summing the results, 

computationally prohibitive mathematics are avoided, and the medium and wavefield are 

allowed to contain discontinuous voids or jumps that are naturally present when fractures 

are present.    
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Chapter 4:  Methodology of Modeling Individual Fracture Attributes 

 

INTRODUCTION 

In order for a synthetic seismic study to have useful results, it must realistically 

model the feature of interest and accurately calculate the seismic response to that feature. 

Although this study uses the most realistic discrete representation of a fracture and the most 

accurate element by element calculation of a discontinuous wavefield, Chapter 3 showed 

the vast number of variables that make up all of the associated equations. Therefore, the 

principal component to obtaining useful results from synthetic seismic studies is to 

thoughtfully choose or understand the implications of using default values for each variable 

implemented. Seismic Wave Propagation 3D (SWP3D) is an open source software to create 

model meshes and to numerically propagate a wave through the model. De Basabe (2009) 

developed and thoroughly tested the code and comprehensively discussed recommended 

parameters for best modeling results. To run this program, an input file is used that is 

divided into three main categories: wave propagation parameters, model background 

parameters, and a special section for fracture parameters. The following sections discuss 

the values chosen for the pertinent variables defined in a general input file used in this 

study.  

 

MODEL CONSTRUCTION WITH SWP3D 

Defining Wave Propagation Parameters 

As mentioned in the previous chapters, this study models the elastic wave equation 

in two dimensions, X and Z. In order to model fractures, however, physical model type 

must be chosen as “FRAC”, which is also elastic. Though two other numerical modeling 
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methods are available in SWP3D, I have chosen to use the Finite Element Discontinuous 

Galerkin method because it is the most robust technique for modeling fractured media, as 

argued in chapter 3. Per the recommendations for best results with this technique outlined 

in De Basabe (2009), Finite Element order was chosen to be 5th, Discontinuous Galerkin 

type was chosen to be Symmetric Interior Penalty Galerkin (SIPG) with a penalty of 4 and 

a mass lumping of 1, basis shape function type was chosen to be Nodal Gauss-Lobatto-

Legendre (Nodal-GLL), and no penalty is placed on propagation velocity. The time 

stepping method is simple 2nd order Finite Difference (FD), and the stability condition for 

time stepping (CFL) was chosen to be 0.02 from personal correspondence with Dr. De 

Basabe.  

Defining Background Parameters 

Source Parameters 

To best mimic conventional seismic surveying techniques, the seismic source is 

centered at the top of the model along with 298 receivers spaced 10 meters apart that span 

the total modeled horizontal distance (Figure 4.1, top-left). The source was chosen to be a 

point source that produces a 23 Hz pulse downward in the positive z-direction. In an 

isotropic model, only the P-wave and S-wave should be generated and propagate into the 

model. When checked, however, a linear feature was noticed propagating off of the apex 

of the S-wave out toward the tail of the P-wave (Figure 4.1, top-right). Though this feature 

appeared to be a head wave, an isotropic model contains no interface for the S-wave to 

interact with to form a head wave.  
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Figure 4.1: Comparison of the two components of wave motion to determine the origin 
of the linear features connecting the P-wave and S-wave. The first row 
shows a conventional scenario for seismic surveying in which the source, 
red star, and receivers, blue stars, are aligned at the top of the model (left) 
and the wave propagates down into the model (right). The second row 
shows a test model with receivers aligned along the top of the model and the 
source in the center of the model so that the wave propagates out in all 
directions. With a diagonal source, only shear movement should be felt by 
the receivers in the Ux direction and only compressional movement should 
be felt by the receivers in the Uz direction. Because this is not the case when 
the source is at the top of the model, it can be deduced that linear features 
are head waves from the source’s interaction with the upper-most model 
boundary. 

As a test, the source was changed from z-directed downward pulse to a diagonally 

directed pulse. With this type of source, only shear movement should be recorded as the x-
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component of motion by the receivers and only compressional movement should be 

recorded as the z-component of motion by the receivers. When the diagonal source was 

placed at the top of the model, the wavefield appeared only slightly different than the 

strictly z-directed source, which is counterintuitive. When the diagonal source was placed 

in the center of the model, however, the wavefield appeared as expected, with only slower 

S-wave motion recorded as the x-component of motion and only faster P-wave motion 

recorded as the z-component of motion (Figure 4.1, bottom-right). The conclusion from 

this experimentation was that the linear feature propagating off of the S-wave was indeed 

a head wave caused by the interaction of the S-wave with the interface at the top of the 

model.  

Absorbing Boundary Parameters 

Without absorbing boundaries applied, a model becomes cluttered with reflections 

off of the model edges that are unnatural and cloud interpretation (Figure 4.2, top-left). 

Although SWP3D has four types of absorbing boundary conditions available, only the 

Tapering Boundary Condition has been implemented for use with the Discontinuous 

Galerkin method (De Basabe, personal correspondence). The tapering parameters alpha 

and beta define the onset of tapering and how severely the wavefield is truncated, 

respectively. To find the best tapering parameters for this study, models were generated 

with a range of alpha and beta values, the most pertinent of which are shown in Figure 4.2. 

When compared to the model with no defined absorbing boundaries in the top-left corner, 

it can be discerned that when beta is equal to zero, the largest amount of absorption at 

model boundaries occurs.  Also apparent is that small values of alpha prevent the removal 

of expected P-wave polarity reversals upon reflecting off of the model boundary. 
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Therefore, the values deemed most effective and implemented in this study are alpha equal 

to 0.005 and beta equal to zero (Figure 4.2, bottom-left). 

 

Figure 4.2: Comparison of various values of alpha and beta tapering parameters for the 
creation of tapering absorbing model boundary conditions. When compared 
to the model with no defined absorbing boundaries (top-left), it can be 
discerned that small values of beta have the largest effect on absorption at 
model boundaries and small values of alpha prevent the removal of P-wave 
polarity reversals upon reflecting off of the model boundary. The values 
deemed most effective and implemented in this study are bolded in red 
(bottom-left).  
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Mesh Parameters 

In this section, the extent of the model and background matrix velocity and density 

are defined. For this study, the background material could easily be modeled as sandstone, 

shale, or limestone. The variability of velocity and density in shales makes modeling the 

generic seismic response to that material difficult, and it was removed from contention. 

Because limestone rocks have, on average, a noticeably higher velocity that sandstones, a 

wave in limestone (Figure 4.3, left) will propagate quickly through the model and reflect 

off of the boundaries more quickly than a wave in sandstone (Figure 4.3, right). Because 

seismograms are shown in time, both direct wave velocities will reach the model 

boundaries at the same apparent “depth”, though the wave through limestone will reach 

that apparent depth much more quickly than a wave in sandstone. Therefore, the faster 

wave on the left of Figure 4.3 will cover the shorter total distance traveled by the slower 

wave on the right in about one-third of the time. Thus, the background matrix was modeled 

as a limestone, with a P-wave velocity of 4,600 m/s, an S-wave velocity of 2,400 m/s, and 

a density of 2,400 kg/m^3, to decrease model computation time.     
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Figure 4.3: Comparison of the effect of matrix velocity on the resulting wavefield in a 
model with imperfectly absorbing boundary conditions. When velocity is 
large, as in a limestone (left), the wave propagates quickly through the 
model and reflects off of the boundaries more quickly than when velocity is 
small, as in a sandstone (right). Because seismograms are shown in time, 
both direct wave velocities will reach the model boundaries at the same 
apparent depth. Therefore, to cover only the shorter distance traveled by the 
slower wave on the right, the faster velocity model on the left will only have 
to be run about one-third of the time as the right model, which is optimal.   

To minimize boundary reflections, the model shown in Figure 4.3, which is a 1.5 

by 1.5 kilometer square, must be widened. The effect of this change is visually similar to 

the effect of velocity change.  If the model becomes wider, velocity will appear to slow 

because the time it takes to propagate out to the boundaries has increased, and the wave is 

able to travel deeper within the model before boundary reflection occurs. A wider model 

will, therefore, act to optimize the area within the seismogram that is not contaminated by 

boundary reflections. Models in SWP3D must be square to be saved as readable binary 
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files. Therefore, a balance between model width and total model run time had to be reached.  

The model width chosen was 3 by 3 kilometers, or double that shown in Figure 4.3.  

A way around the constraint of modeling square meshes is the choice of model run 

time. Though the model used in this study extends down 3 kilometers, the total propagation 

time can be set so that it is only long enough to record specific reflections within the upper 

portion of the model. The optimal area for studying seismic wavefield variations to fracture 

parameters will be within the area of the seismogram that is not contaminated by boundary 

reflections. Thus, the only area within the model that should be recorded is within this 

uncontaminated zone, delineated in yellow on the left side of Figure 4.4. The time to the 

direct P-wave intersection point at the base is the one-way distance traveled by the P-wave, 

3,000 meters, divided by P-wave velocity, 4,600 m/s, plus an extra 0.1 second for the 

source’s time delay. Therefore, the optimal model run time is 0.752 seconds, even though 

this is only simulated wave propagation time and not the actual time the model takes to 

run.  

To test the seismic response to various fracture attributes, fractures are 

systematically added to a horizontal layer within the model. Again, to optimize view of 

fracture-related wavefield features, the fractured interval must be centered within the 

uncontaminated zone in the polygon created by the direct P-wave. From model run time, it 

is calculated that the deepest features recorded lie at a depth of approximately 1,500 meters. 

Therefore the recorded portion of the model can be divided into three even subdomains, 

with the fractured subdomain extending from 500 to 1,000 meters depth (Figure 4.4, right).  
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Figure 4.4: Illustration of fractured interval placement and determination of model run 
time. After optimal model width has been determined, the fractured interval, 
boxed in red on the right, is centered within the area of the seismogram that 
is less contaminated by boundary reflections, outlined in yellow on the left 
in the isotropic model. Because the model must be symmetric and because 
the fractured interval must be located shallowly for optimal placement 
within the seismogram, a large portion of the model is unnecessary. 
Therefore, wave propagation is cut short at 0.752 seconds to preserve only 
the fractured interval reflections and a buffer zone below.  

Grid Parameters 

After material properties are added to the mesh, it must be discretized into uniform 

grids upon which nodes are placed so that the wavefield can be calculated. Discretization 

presents another time optimization problem: as the number of grids is increased, the time 

the model takes to complete its calculations exponentially increases. An arbitrarily small 

number of grids cannot be chosen simply to speed up the real time in which the model runs 

because of a phenomenon called grid dispersion. Grid dispersion is solely the product of 
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numerical calculation and does not exist in real seismic data. The Finite Element method 

is best at modeling fractured materials because it more thoroughly utilizes nodes of the 

surrounding mesh to smooth the wave equation solution at a discontinuous location (Figure 

3.2 in chapter 3). This smoothing of the solution, however, creates signal where no signal 

should occur (Figure 4.5, right). When a mesh is sufficiently fine, enough nodes exist in 

each area so that discontinuities can be overcome without using and contaminating nodes 

located far away from the node in question. 

To determine how fine a grid must be to prevent contamination of the wavefield 

with grid dispersion the following equation is used: 

                                                 (4.1) 

where ܸݏ is the shear velocity, ݂ is the source peak frequency, ݔ is the distance along the 

x-axis, and ∆ݔ is the number of the grids in the x-direction (De Basabe, personal 

correspondence).  In this case, shear wave velocity is 2,400 m/s, peak frequency of the 

source is 23 Hz, distance along the x-axis is 3,000 meters, and the grid size is 10 by 10 

meters allowing for 300 grids along the x-axis (Figure 4.5, left). Therefore N = 10.4 and is 

well above the required value of 5. The grid in this study is excessively refined in this way 

to model “thin” fractures that are limited in width to the width of an individual grid cell 

and cannot be smaller.  
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Figure 4.5: Comparison of differences in the ratio of length of the model in the x-
direction to number of grids in the x-direction. When this ratio is small, i.e., 
grid width is small and the number of grids in the x-direction is large, grid 
dispersion is insignificant, and all energy contained within the model can be 
considered the result of wave interaction with the modeled mesh (left 
column). When this ratio is small, i.e. the grid width is large and the number 
of grids in the x-direction is small, grid dispersion is significant and 
generates energy within the model that is unrelated to features in the model 
mesh (right column).  

Defining Fracture Parameters  

The last section of the input file involves the addition of fractures to a model. Recall 

from chapter 3 that in discrete fracture finite difference gridded meshes, fractures are 

defined by the compliance they add to the matrix material by closing or giving way slightly 
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as a seismic wave propagates past them. Therefore, fractures that are filled with easily 

compressible gas will add significantly more compliance to the matrix than less easily 

compressible oil or effectively incompressible water or cement. Recall also from chapter 3 

that fracture compliance is divided into a component normal to the fracture face and a 

component parallel, or tangential, to the fracture face. This division is important in long 

slender features such as fractures because the ease of compressing the widest opening of 

the fracture in its center will be much greater than at its thin curved ends.  

Using equations 3.11 and 3.12, the normal compliance and tangential compliance 

of a fracture can be calculated based on the P-wave velocity, S-wave velocity, and rigidity 

of the matrix material, the rigidity and bulk modulus, or incompressibility, of the fracture 

fill, the proportion of the fracture surface area that is a welded contact, the mean radius of 

the contact areas, and the mean aperture of the fracture. Recall from the section above that 

fracture width had to be set to the unrealistic value of 10 meters due to constraints on the 

time it would take to model with a finer grid. Therefore, to obtain more realistic values of 

compliance, fracture aperture was set to 1 meter in equations 3.11 and 3.12. The proportion 

of welded surface along the fracture was set to 0.15 to account for the welded ends of each 

fracture, and the contact radius was set to 0.5 or half of the fracture aperture. Table 4.1 lists 

the different velocities and bulk moduli, K, of the various materials used in this study and 

the resultant normal and tangential compliances utilized in the input file. 
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Table 4.1: Elastic parameters used to define each material modeled: compressional 
wave velocity (Vp), shear wave velocity (Vs), density (ρ), bulk modulus 
(K), normal compliance (Zn), and tangential compliance (Zt). These values 
were gathered from Bourbie et al. (1987) and Mavko et al. (2009). 

 

PHASES OF FRACTURE NETWORK MODELING 

The isotropic limestone model defined in the previous sections is divided into three 

separate subdomains, delineated by the bolded horizontal lines in Figure 4.6. Fracture 

modeling consists of populating the center subdomain with three phases of fracture 

attribute alteration. Phase 1 tests the seismic response to a single idealized vertically 

fractured cluster centered directly below the seismic source within the center subdomain 

(Figure 4.6, right). Fracture spacing was uniformly decreased between each fracture from 

1000 meters, allowing for only 2 fractures in the cluster, to 10 meters, allowing for 150 

fractures in the cluster. In this last scenario, fracture spacing is equal to fracture width and, 

therefore, represents a horizontal transversely isotropic medium. Next, the length of all 

fractures within the cluster is shortened from 500 meters, well above seismic resolution, to 

20 meters, well below seismic resolution. The effects of fracture spacing and length are 

related to velocity anisotropy and seismic coda density, spacing, and intensity.  
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Phase 2 tests the seismic response to the addition of less idealized vertically 

fractured clusters within the center subdomain. Clusters are added in pairs to the model and 

are evenly spaced within the model. To better mimic natural fracture networks that are 

characterized by fracture density distributions, the clusters in this section have fracture 

spacing that exponentially decreases toward the center of the cluster. This creates areas 

within the model between clusters that are fracture free and areas in the center of clusters 

with high fracture density (Figure 4.6, left). This non-uniform fracture spacing varied 

further with changes in the number of fractures within each cluster and the spacing between 

each cluster.  The outcome of these alterations are then related back to the wavefield and 

seismogram features of uniform variation in fracture spacing within a single idealized 

cluster described in the Phase 1.  

 

Figure 4.6: Parameters of 2D model construction and steps of fracture cluster modeling. 
A wave generated by a seismic source, shown as a red star, propagates 
through the model and recorded by receivers, shown as blue triangles (left).  
The model is divided into three horizontal initially isotropic layers. The top 
and bottom layers remain isotropic, while the center isotropic medium, 
represented by the light colored grids, is populated with vertical fractures of 
various parameters, represented by the dark colored grids (right).  
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Seismic Response to a Modeled Fracture  

Figure 4.7 breaks down the wavefield response to an individual fracture so that, 

going forward, it will be clear what each feature described in chapter 2 looks like in 

modeled results. The wavefield snapshot (left) captures the interaction of the wavefield 

with the fractures after 0.44 seconds of modeled wave propagation time. The downgoing 

direct P-wave is delineated in orange, and the slower direct S-wave above is delineated in 

yellow. The vertical red lines represent the locations of the two fractures evenly spaced 

within the center interval of the model. The pair of mode converted S-reflections off of 

each fracture is delineated in light blue and form a “V” shape around their respective 

fractures.  These features are present because the time elapsed since the direct P-wave 

interacted with the top of the fracture causing mode conversion is longer than the time 

elapsed since the interaction with the bottom of the fracture. It is important to mention that 

the arm of the “V” shape on the side of the fracture facing the source, centered at the top 

of the model, is noticeably stronger than the arm from the non-source facing side of the 

fracture.  

P-wave and S-wave seismic diffraction coda are only generated on the side of the 

fracture facing the source and are delineated in purple and green, respectively. The P-wave 

coda appear below the fractures because they are created when the P-wave wavefront first 

contacts the fracture and continues to grow in horizontal extent as it travels along the length 

of the fracture. This phenomenon can be seen with the S-wave coda above that has just 

formed and is beginning to travel along the source-facing side of the fracture. Once the P-

wave has passed below the fracture, the P-wave coda ceases horizontal growth but 

continues to propagate directly down into the model with the P-wave wavefront. 

The seismogram (right) shows the wave energy collected by the receivers at the top 

of the model. The direct P-wave and its reflection off of the slightly absorbing model 
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boundary is delineated in orange, whereas the mode converted component of P-wave 

reflection off of the model is delineated in brown. The direct S-wave is delineated in yellow 

and, again, the vertical red lines represent the locations of the two fractures within center 

interval of the model. The hyperbolic P-reflections off of the top and bottom of each 

fracture are highlighted in purple and light blue, respectively, and the hyperbolic S-wave 

reflections off of the top of the fractures are highlighted in green. The S-reflection off of 

the base of the fractures was not recorded because it had not propagated back up to the 

receivers before model propagation ended at 0.752 seconds. These reflections are attributed 

to the unnatural width of the fractures and should be replaced by more incoherent 

diffractions as fractures are thinned. It is important to note that the seismograms have been 

gained seven times more than the snapshots because most energy reflects between the 

fractures and does not escape to the surface to be recorded. 
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Figure 4.7:  An annotated explanation of the seismic response to a vertical fracture. The 
snapshots (left) capture the interaction of the wavefield with two vertical 
fractures at a specific moment in time, and the seismograms (right) show the 
wave energy collected by the receivers at the top of the model. In the bottom 
annotated row, the two vertical fractures are delineated by red lines, the P-
wave wavefront is delineated in orange, and the S-wave wavefront is 
delineated in yellow. The seismograms also show a P to S-wave mode 
converted reflection off the model boundary in brown. In the snapshot only, 
mode converted “V” shaped fracture reflections are shown in light blue, and 
P-wave and S-wave coda are shown in purple and green, respectively. In the 
seismogram, the upper and lower P-wave reflections off of the top and 
bottom of each fracture are shown in purple and light blue, respectively, and 
the S-wave top of fracture reflection is shown in green. Note that the 
seismograms have been gained seven times more than the snapshots. 
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SUMMARY 

This chapter details the steps to modeling individual fracture attributes from model 

set up to what to examining resulting images. Using SWP3D, the wave propagation 

parameters of the type of wave equation used, dimensions modeled, type of wave 

propagation, and type of time stepping are defined, based upon the theory outlined in 

chapter 3 and in De Basabe (2009). Next, the steps were shown to determine appropriate 

model parameters for the source type and location, location of receivers, and absorbing 

boundary type.  The modeled mesh was then given physical parameters of extent, velocity, 

and density. Trial and error was the main process used in this section to determine optimal 

parameters specific to the objectives of this study.  Model run time was defined to minimize 

the real time in which these complex models take to complete. Grid refinement was done 

to ensure the resulting wavefields contained only modeled information and not numerical 

error. The physical model was completed with the definition of fracture parameters using 

the theory outlined in chapter 3. Lastly, the scope of this study was divided into two phases 

of fracture network attribute alteration.  The seismic response to individual fractures was 

diagrammed so that the results in the following chapter may be more easily understood.  
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Chapter 5:  Fracture Network Modeling Results 

 

PHASE 1: SINGLE FRACTURE CLUSTER 

Visual Comparison 

Phase 1 of fracture network attribute modeling tests the seismic response to a single 

idealized vertically fractured cluster.  This phase begins with infinite fracture spacing, 

representing an isotropic medium. Next, the center subdomain is populated with a single 

cluster containing evenly spaced, parallel, vertical, 10 meter-wide gas-filled fractures. The 

uniform spacing between each fracture was decreased from 1000 meters, allowing for only 

2 fractures in the cluster, to 10 meters, allowing for 150 fractures in the cluster. The results 

of phase 1 are displayed in the following figures, with Figures 5.1 and 5.2 showing all 

unannotated and annotated wavefield snapshots, respectively, and Figures 5.3 and 5.4 

showing all unannotated and annotated seismograms, respectively. 

The wavefield snapshot for the first case of an isotropic medium with infinite 

fracture spacing is located in the top left corner of Figures 5.1 and 5.2. In an isotropic 

model, the P-wave and S-wave wavefronts should have a semi-circular shape, indicating 

that there have been no features for the waves to interact with during their traverse of the 

model. Isotropy is confirmed by measuring to determine that the distances traveled by the 

P-wave are equal in the x and z directions. This distance is a little more than 1500 meters 

in both directions. The second model from the left on the top row contains a cluster of two 

fractures spaced 1000 meters apart, even though only one fracture is visible in this quadrant 

of the model. The location of the fracture can be discerned from the wavefield events 

diagramed in Figure 4.7 of chapter 4 and highlighted in Figure 5.2. The fracture is centered 

within the mode converted S-wave “V” shape, delineated in blue, and directly above the 
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left-most end of the P-wave coda, delineated in purple, and height of the fracture is equal 

to the vertical extent of the mode converted “V” shape. As the number of fractures within 

the cluster increases from left to right across the top row, a set of fracture wavefield events 

indicates the vertical extent and location of each fracture within the model, though some 

events cannot be seen in this quadrant of the model.  

The left-most model in the center row of Figures 5.1 and 5.2 contains a cluster of 

14 fractures spaced 190 meters apart. At this point it becomes difficult to discern all fracture 

wavefield events, but the stronger source-facing side of the mode converted “V” shape is 

still visible and indicates the location and vertical extent of each of the 7 fractures present 

in this quadrant of the model. The same is true for the second model from the left that 

contains a cluster of 18 fractures that have a spacing equal to the wavelength of 150 meters.  

The two models on the right contain fractures spaced less than the wavelength apart, and it 

is no longer possible to identify the location or spacing of individual fractures due to 

interference among each fracture’s wavefield events. From these right most models, it 

becomes more apparent that the mode converted “V” shaped features do not leave the 

fractured interval as the coda do, but instead remain as trapped energy between the 

fractures. This can be seen by looking between and below the yellow dotted lines indicating 

the location of the interval containing fractures. Between the yellow lines, there is a distinct 

linearity to the wavefield events, and the linear features are at an angle similar to that of 

the two models on the left, while below the lower-most yellow line, there exists only arcing 

coda energy.  

When fracture spacing within the cluster decreases to less than one-half of the 

wavelength of 70 meters, coda energy becomes trapped within the fractured interval. This 

energy cannot continue to propagate out of the fractured interval without encountering 

another fracture’s wavefield events or the fracture itself. This is confirmed in the two 
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models on the left of the bottom row that contain only faint reverberated events visible 

below the lower-most yellow dotted line. When fractures are spaced below seismic 

resolution, or one-fourth of the wavelength – 40m, no wavefield events can escape 

reverberation within the fractured interval. This is evident in the two models on the right 

of the bottom row that contain no energy other than the P-wave wavefront propagating 

down into the model. Instead, an “X” shape can be seen between the yellow dotted lines 

and the P-wave and S-wave wavefronts, delineated in pink. This X is formed when the 

wide fractures become so closely spaced that they effectively act as a layered interface and 

produce reflected events at the top and bottom of the fractured interval.  

With the addition of more closely spaced fractures within the cluster, the P-wave 

directional velocity anisotropy described in chapter 2 is expected to become apparent in 

the lower-most row of Figures 5.1 and 5.2. The S-wave remains unaffected by the presence 

of the fluid-filled fractures. It is difficult to tell if the P-wave wavefront velocity has slowed 

upon exiting the fractured interval because these 2D models only provide a viewpoint 

perpendicular to fracture strike. Therefore, it is necessary to compare the P-wave wavefront 

within and below the fractured interval delineated by the yellow dotted lines. Below the 

fractured interval, the P-wave has, theoretically, traveled parallel to the fractures during its 

propagation directly downward into the model. Within the fractured interval, however, the 

P-wave has propagated out at various angles through the fractures and is slowed in these 

directions. This is apparent in the right-most model of the bottom row that represents a 

horizontal transversely isotropic medium. The P-wave wavefront below the fractured 

interval is rounded and resembles the wavefront of the isotropic model in the top left corner, 

whereas the wavefront within the fractured interval appears to have been straightened 

because it is traveling slower and has not propagated as far as the wavefronts above and 

below it.  
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Figure 5.1: Results of Phase 1: Overview of wavefield snapshots, unannotated and 
showing the upper-left quadrant of the model only. Starting in the top left 
corner, the spacing between each fracture within a single cluster is 
uniformly decreased from infinite spacing, representing an isotropic 
medium, to 10 meter spacing in the bottom right corner, representing a 
horizontal transversely isotropic medium. The models containing fracture 
spacing equal to the wavelength, half of the wavelength, and one-fourth of 
the wavelength have their titles highlighted in blue, green, and red, 
respectively. Figure 4.7 in chapter 4 shows the scale bar for these wavefield 
snapshots.   
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Figure 5.2: Results of Phase 1: Overview of wavefield snapshots with annotations. In 
each figure, the fractured interval is delineated by yellow dotted lines. The 
first row of models highlights the location and vertical extent of each 
fracture within the single cluster in red, S-wave coda in green, P-wave coda 
in purple, and mode converted S-wave “V-shaped” signature in light blue. 
Due to the increased fracture density in the second row of models, only the 
stronger source-facing side of the mode converted “V” shape is shown in 
blue to indicate the location of each fracture, when possible. The third row 
of models highlights the anisotropic straightening of the P-wave wavefront 
in orange and the effective reflections from the fractured interval in pink. 
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The seismogram for the first case of an isotropic medium with infinite fracture 

spacing is located in the top left corner of Figures 5.3 and 5.4. Isotropy of the host medium 

is confirmed by the presence of only the direct P-wave, the direct S-wave, and the P-wave 

reflection and mode conversion off of the sides of the model. The second model from the 

left on the top row contains a cluster of two fractures spaced 1000 meters apart, though 

again only one fracture is visible in this quadrant of the model. The location of the fracture 

can be discerned from the seismogram events diagramed in Figure 4.7 of chapter 4. The 

fracture lies centered between the apex of the two reflection hyperbolas formed from the 

top and base of the wide fracture, delineated by the solid bold yellow lines. As the number 

of fractures within the cluster increases from left to right across the top row, it quickly 

becomes difficult to separate individual fracture hyperbolas and, therefore, discern fracture 

location, extent, and spacing. The seismograms are shown with time along the z-axis 

creating the illusion that the left most fractures occur deeper within the model only because 

the P-wave wavefront requires more time to reach them.  

The chaotic appearance of the interfering hyperbolas within and below the fractured 

interval can be seen in the two seismograms on the left of the center row in Figures 5.3 and 

5.4. When fracture spacing within the cluster decreases below the wavelength of 150 

meters, however, the chaotic pattern is replaced by a more regular crosscutting pattern, 

highlighted by the blue boxes in the two models on the right of the center row. Remember 

that at this point of fracture spacing decreasing below the wavelength in the snapshots, it 

became impossible to identify the location or spacing of individual fractures due to 

interference between each fracture’s wavefield events. Also, at this point, it became 

apparent in the wavefields that the mode converted “V” shaped energy remained as trapped 

reverberations within the fractured interval. Therefore, the regularity of this crosscutting 

pattern in the models is due to uniformity in the shape of the coda from each fracture, which 
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are regularly spaced and propagate downward with the same energy and at the same arcing 

angle.  

As fracture spacing within the cluster is decreased below one-half of the 

wavelength of 70 meters, the time at which crosscutting energy appears begins to lengthen. 

This can be seen within the orange shaded regions of the models in the lowest row of 

Figures 5.3 and 5.4. At 60 meter fracture spacing, crosscutting energy appears half way 

through the fractured interval, delineated by the yellow dotted lines. Below 40 meter 

fracture spacing, crosscutting energy no longer appears within the fractured interval but, 

instead, directly below it. When fracture spacing within the cluster is decreased below half 

of the wavelength, coda energy can no longer propagate directly out of the fractured 

interval. Instead, the coda are subject to reverberation between the closely spaced fractures 

before escaping downward with much reduced energy.    

When fractures within the cluster are spaced below seismic resolution of 40 meters, 

the wavefield snapshots indicated that the fractures effectively acted as a layered interface 

and produced a distinct reflection from the top and bottom of the fractured interval. In the 

seismograms in the two models on the right of the lowest row in Figure 5.4, distinct P-

wave reflections are verified and lie directly below the yellow dotted lines.  P-wave 

directional velocity anisotropy is, however, unapparent within the seismograms and will 

require 3D modeling to detect. An S-wave reflection off of the top of the fractured interval, 

delineated in pink, can be identified by a steep slope indicating slower velocity within the 

seismogram. The S-wave reflection can also be identified by its drop in amplitude at normal 

incidence to the source along the right edge of the figure where energy travels 

perpendicularly to the receivers. Lastly, a multiple of the P-wave reflection off of the top 

of the model, delineated in green, can be identified by its parallel slope to the primary P-

refection and its double delay in time of the primary P-reflection.  
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Figure 5.3: Results of Phase 1: Overview of seismograms, unannotated and showing the 
left quadrant of the model only. Starting in the top left corner, the spacing 
between each fracture within a single cluster is uniformly decreased from 
infinite spacing, representing an isotropic medium, to 10 meter spacing in 
the bottom right corner, representing a horizontal transversely isotropic 
medium. The models containing fracture spacing equal to the wavelength, 
half of the wavelength, and one-fourth of the wavelength are highlighted in 
blue, green, and red, respectively. Figure 4.7 in chapter 4 shows the scale 
bar for these seismograms.   
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Figure 5.4: Results of Phase 1: Overview of seismograms with annotations. The first 
row of models highlights the location and vertical extent of each fracture in 
red. The solid bold yellow lines delineate individual reflection hyperbolas 
while the location in time of the fractured interval is delineated by yellow 
dotted lines. The first appearances of distinct fracture-related crosscutting 
energy is boxed in dotted blue lines, and the decrease in the extent of 
crosscutting energy with depth as fracture spacing decreases is shaded in 
orange. The pink line delineates the effective S-reflection off the top of the 
fractured interval, and the green line delineates the P-reflection multiple.   
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Sensitivity of Coda Crosscutting Signature 

Effect of Uniform Fracture Spacing 

The results of Figures 5.3 and 5.4 indicate that crosscutting energy patterns within 

a seismogram can indicate the presence of a fracture network whose fracture spacing is 

relatively small. The results above also indicate that this energy most often occurs in a 

location away from where the fractures are present. To gain more insight on the depth at 

which fracture related crosscutting energy appears in seismograms, its sensitivity to 

fracture spacing must be tested. The relationship between the first occurrence of 

crosscutting energy and uniform fracture spacing is analyzed in this subsection. Figure 5.5 

shows all models with fractures spaced less than one-half of the wavelength, when this 

crosscutting phenomenon occurs. The depth of first occurrence has been delineated by the 

red dotted line in each model and written below each model after being converted from 

time using normal moveout velocities.  The annotated depths in Figure 5.5 confirm that the 

depth at which crosscutting energy occurs exponentially decreases with a decrease in 

fracture spacing. This delay in first occurrence of crosscutting energy is the result of 

seismic coda reverberating more often between the more closely spaced fractures. The 

increased time required for this energy to escape the clustered interval causes the seismic 

coda to appear well below the true location of the fracture cluster.  
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Figure 5.5: Analysis of Phase 1: Sensitivity of the depth of fracture-related crosscutting 
energy to decreased fracture spacing. The models have had double the 
amount of gain applied to help aid detection of the time and depth at which 
crosscutting energy first occurs. The location in time of the fractured 
interval is delineated by the yellow dotted lines, and the time at which 
crosscutting energy first appears is delineated by the red dotted lines. Using 
the defined background velocity and the normal moveout velocity of the 
reflection off of the base of the fractured layer, the time of first crosscutting 
energy is converted to depth below each model so that it can be more easily 
compared to fracture spacing. Again, the title of the model containing 
fracture spacing equal to one-fourth of the wavelength is highlighted in red.  
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Effect of Fracture Length 

The analysis of Figures 5.5 lead to the hypothesis that the location of crosscutting 

energy is directly related to the degree of reverberation that the wavefield undergoes during 

is traverse of the fractured interval. A reasonable inference from this statement is that as 

fracture length decreases, crosscutting delay time should decrease and intensity should 

increase because fewer reverberations will occur within a shorter fractured interval. A 

literature review of this scenario, however, states that as fractures are shortened, scattered 

energy from a fractured interval will increasingly attenuate (Grandi-Karam, 2008). Upon 

shortening the fractures in this study from 500 to 20 meters, surprisingly little change in 

either energy amplitude or delay time of crosscutting can be seen (Figure 5.6). An 

explanation is that as the wavefront enters a corridor between fractures, it arrives incident 

upon the face of a fracture at an angle independent of fracture length. Therefore, only when 

fracture spacing changes does the angle at which the wavefront comes in contact with the 

fracture face change, resulting in a change of delay time. Closer examination of Figure 5.6 

also reveals that, at all fracture spacings less than one-half of the wavelength and greater 

than an effective HTI medium, there is a slight crosscutting amplitude decrease when 

fractures are slightly above one-fourth of the wavelength, or 50 meters, and a slight 

amplitude increase when fractures are below one-fourth of the wavelength, or 20 meters. 

These fracture lengths most likely correspond to minimum and maximum lengths for 

constructive interference, respectively. 
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Figure 5.6: Analysis of Phase 1: Sensitivity of the depth of fracture-related crosscutting 
energy to decreased fracture length. The models have had triple the amount 
of gain applied to help aid detection of changes in crosscutting energy. As 
fracture length is decreased from 500m in the left-most column to 20m in 
the right-most column, little difference can be seen in the models of 60m, 
40m, and 20m fracture spacing, from top to bottom, respectively. A slight 
drop in amplitude of crosscutting can be seen with all fracture spacings 
when fracture length is 50m and a slight increase in amplitude can be seen 
with all fracture spacings when fracture length is 20m.  
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Effect of Cluster Non-Uniformity 

To further constrain the limits of discernibility of crosscutting energy, the single 

idealized cluster is randomized to better mimic fracture networks present in the subsurface. 

To do so, individual fractures within the cluster are randomly selected and moved from 

their uniformly spaced locations to arbitrary locations. If the new location fell on top of 

another fracture, the fracture being moved was deleted from the model. The number of 

fractures selected and moved was systematically increased from 3 to 36 in order to 

determine the limit of confident identification of crosscutting energy as an indication of the 

presence of a fracture cluster. Figure 5.7 depicts the change from a regular crosscutting 

pattern to incoherent hyperbolic events in the seismograms as fracture locations are 

randomized. The top-left model in Figure 5.7 is identical to the top-left model in Figures 

5.5 and 5.6, and contains a single cluster of 42 fractures that are each uniformly spaced 60 

meters apart. This analysis indicates that crosscutting is visually detectable when the cluster 

of 42 fractures contains less than 12 randomized fractures, or 28% non-uniformity, which 

could exist in natural rock formations.  



 66

 

Figure 5.7: Analysis of Phase 1: Sensitivity of fracture-related crosscutting energy to 
the addition of non-uniformities to the cluster. The models have had double 
the amount of gain applied to help aid detection of changes in crosscutting 
energy. The location in time of the fractured interval is delineated by the 
yellow dotted lines. As the number of fractures randomly moved to new 
locations within the cluster increases, the regular shape of the crosscutting 
pattern fades, making it difficult to identify confidently. The limit of the 
discernibility of crosscutting energy is 12 random fractures within the 
cluster of 42 fractures, highlighted in red.  

 

PHASE 2: MULTIPLE FRACTURE CLUSTERS 

Visual Comparison 

Phase 2 of fracture network attribute modeling tests the seismic response to the 

addition of less idealized vertically fractured clusters within the center subdomain. In this 
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phase, clusters are added in pairs to the model and are evenly spaced within the model. To 

better mimic natural fracture networks, the clusters have fracture spacing that exponentially 

decreases toward the center of the cluster. This creates areas within the model between 

clusters that are fracture free and areas in the center of clusters with high fracture density. 

The results of phase 2 are displayed in the following figures, with Figure 5.8 showing 

unannotated wavefield snapshots and corresponding seismograms and Figure 5.9 showing 

annotated wavefield snapshots and corresponding seismograms.  

The wavefield snapshot for the first case of a single cluster of fractures with 

exponentially decreasing fracture spacing toward the center of the cluster is located in the 

top left corner of Figures 5.8 and 5.9. This cluster contains 13 gas-filled fractures that are 

spaced from right to left as follows: 320m, 160m, 80m, 40m, 20m, 10m, 10m, 20m, 40m, 

80m, 160m and 320m. The center of the cluster is defined by the fracture located between 

the two 10 meter spacings. Though the cluster is centered in the model, with the location 

of highest fracture density indicated by the red line in Figure 5.9, only the left half of the 

cluster can be seen in this quadrant of the model. The location of highest fracture density 

is discernible by looking at how the wavefield features from each fracture interact. On the 

left side of the figure, distinct mode conversion and P-wave coda can be seen indicating 

the presence of a single fracture. On the far right side, wavefield events from the more 

closely spaced fractures are destructively interfering and appear as more diffuse energy 

with blurred crosscutting coda below the densest point within the cluster. In the 

seismogram below, however, chaotic reflection hyperbolas dominate, and little difference 

can be seen between the left and right side of the model to indicate the location of highest 

fracture density.  

With the addition of evenly and equally spaced clusters to the model, it becomes 

more difficult to differentiate areas of well-formed fracture wavefield features from areas 
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of destructive interference. This is the result of maintaining a large space between each 

cluster, which resulted in the systematic removal of the two outward-most fractures with 

the greatest fracture spacing from each cluster. Therefore, the second model from the left 

contains two clusters spaced 310 meters apart that contain 11 fractures each that are spaced 

from left to right as follows: 160m, 80m, 40m, 20m, 10m, 10m, 20m, 40m, 80m, and 160m.  

The second model from the right contains four clusters again spaced 310 meters apart that 

contain 9 fractures each that are spaced from left to right as follows: 80m, 40m, 20m, 10m, 

10m, 20m, 40m, and 80m. Lastly, the right-most model contains six clusters again spaced 

310m apart that contain 7 fractures each that are spaced from left to right as follows: 40m, 

20m, 10m, 10m, 20m and 40m. 

In the seismograms below, the chaotic nature of the hyperbolas again makes it 

difficult to extract useful information about cluster attributes. The second model from the 

left on the bottom row containing two clusters has the most crosscutting energy in the 

location between the two clusters, while the next model over to the right containing 4 

clusters is dominated by intervals of destructive interference with little energy and 

constructive interference with brighter hyperbolic shapes. The seismogram farthest to the 

right containing 6 clusters has constructive interference at the top and base of the fractured 

interval, highlighted by the yellow arrows, and destructive interference within and below 

the fractured interval that begins to form the coherent layer-like reflections noted in the 

bottom-right model of Figure 5.4. It is interesting that these reflection features are present 

within this model containing a total of only 42 fractures, while 60 evenly spaced fractures 

were needed within a model to delineate both the top and bottom of the fractured interval.  

Though the fracture-related wavefield and seismogram features of Figures 5.8 and 

5.9 fail to convey much about the clusters within, two important wavefront features are 

able to differentiate areas of high and low fracture density. Below the center location of 
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each cluster, delineated in red in Figure 5.9, a bend forms in the P-wave wavefront, 

delineated in blue. As the number of clusters increases, the bends become more apparent, 

and the wavefront is transformed into a polygonal shape. These bends are formed in the 

same way that the P-wave wavefronts of the bottom row in Figure 5.2 form and are, 

therefore, a type of heterogeneous anisotropy.  

Below the location of highest fracture density within each cluster, there is also a 

noticeable decrease in P-wave wavefront amplitude at the point of maximum curvature 

within the bend. The decrease in amplitude is most apparent in the model farthest to the 

right with the largest number of clusters, though those clusters contain the smallest number 

of fractures. Because cluster spacing has been maintained and a decrease in fracture 

number should not increase amplitude attenuation, this phenomenon is attributed to the 

presence of only very closely spaced fractures within these 6 clusters. When the hyperbolas 

from reflections off of the top of fractures within the clusters are traced, shown in orange 

in Figure 5.9, the heterogeneous bends are faintly visible. It is unclear if these bends are 

the result of anisotropy or possibly the individual hyperbolas from the fractures with the 

largest spacing on each end of the clusters.  
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Figure 5.8: Results of Phase 2: Overview of wavefield snapshots and seismograms, 
unannotated and showing the left quadrant of the model only. The left-most 
model contains a cluster of 13 gas-filled fractures that are spaced from left 
to right as follows: 320m, 160m, 80m, 40m, 20m, 10m, 0m, 10m, 20m, 
40m, 80m, 160m, 320m, and there are 810m buffers between the last 
fracture on each end and the edge of the model. The second model from the 
left contains two clusters spaced 310m apart that contain 11 fractures each 
that are spaced from left to right as follows: 160m, 80m, 40m, 20m, 10m, 
0m, 10m, 20m, 40m, 80m, 160m, and there are 620m buffers between the 
last fracture on each end and the edge of the model. The second model from 
the right contains four clusters spaced 310m apart that contain 9 fractures 
each that are spaced from left to right as follows: 80m, 40m, 20m, 10m, 0m, 
10m, 20m, 40m, 80m, and there are 250m buffers between the last fracture 
on each end and the edge of the model. The right-most model contains six 
clusters spaced 310m apart that contain 7 fractures each that are spaced from 
left to right as follows: 40m, 20m, 10m, 0m, 10m, 20m, 40m, and there are 
100m buffers between the last fracture on each end and the edge of the 
model. 
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Figure 5.9: Results of Phase 2: Overview of wavefield snapshots and seismograms, with 
annotations. The yellow arrows indicate the location of the fractured 
interval. In the wavefield snapshots above, the red lines show the center 
location of each cluster where fracture density is greatest and do not 
represent a particular fracture. The P-wave wavefront is delineated in blue to 
emphasize the bends, or heterogeneous anisotropic pattern, that form below 
the densest portion of each cluster. In the seismograms below, the reflection 
off of the top of the fractured interval is delineated in orange to again 
emphasize the heterogeneous anisotropy produced by each cluster. 

Sensitivity of Heterogeneous Anisotropy 

Effect of Fracture Density 

To better understand the limitations of using heterogeneous anisotropy to identify 

fracture clustering, its sensitivity to cluster parameters must be tested. The number of 

fractures needed within a cluster to form heterogeneous bends and amplitude variation in 
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the P-wave wavefront is analyzed in this subsection. The results are displayed unannotated 

and annotated in Figures 5.10 and 5.11, respectively. The first column of Figures 5.10 and 

5.11 is identical to the last column of Figures 5.8 and 5.9, and contains 6 clusters spaced 

310 meters apart that contain 7 fractures each. This model had the most exaggerated 

heterogeneous anisotropy in its P-wave wavefront, delineated in blue in Figure 5.9, and in 

its upper fractured interval reflection, delineated in orange.  

The column second to the left was generated by removing the outermost fracture 

from each side of each cluster, resulting in 6 clusters of 5 fractures that have the same 

exponential decrease in fracture spacing described in the section above. Because the 

number of fractures in each cluster has decreased but the number of clusters remains the 

same, cluster spacing has increased to 410 meters. In the wavefield snapshot above, there 

is a noticeable decrease in the number of fracture-related wavefield events surrounding the 

center location of each cluster, yet there appears to be no change in the severity of the bends 

in the P-wave wave front. The decrease in amplitude at point of maximum curvature in 

each bend does appear to have lessened, however. In the snapshots below, however, it 

becomes apparent that the bends in the upper fractured interval reflection are due to the 

adjoining curves of interfering hyperbolas from singular fractures and not an indication of 

anisotropy.  

The second column from the right in Figures 5.10 and 5.11 was generated by 

removing two more outer fractures from each cluster, resulting in 6 clusters spaced 470 

meters apart with 3 fractures in each. Again, there is a noticeable decrease in the number 

of wavefield events in the wavefield snapshots above but, in this case, there is also a 

decrease in the severity of the bends in the P-wave wavefront and a further decrease in the 

amplitude dampening at the elbow of each bend. In the seismograms below, cluster spacing 

has increased such that it is now possible to pick out some of the brighter individual fracture 
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hyperbolas, further confirming that it is the adjoining of hyperbolic curves that creates the 

bends in the upper fractured interval.  

The column farthest to the right was generated by removing all but the centermost 

fracture from each cluster, essentially modeling 6 individual fractures spaced 510 meters 

apart. It is at this point that there is no visual indication of heterogeneous anisotropy in the 

amplitude or shape of the P-wave wavefront in the snapshot above or in the seismogram 

below. Therefore, the limit to the number of fractures within a cluster that can cause 

heterogeneous anisotropic characteristics is 3 fractures. It is important to remember that 

the fractures being modeled are 10 meters wide and, therefore, the more realistic sensitivity 

of heterogeneous anisotropy is that of 30 meters of fracture infill, for every 80 meters of 

background material.  
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Figure 5.10: Analysis of Phase 2: Sensitivity of heterogeneous anisotropy to a decrease in 
fracture density within a cluster, unannotated and showing the left quadrant 
of the model only. The left-most model is the same as the right-most model 
in Figures 5.8 and 5.9 and contains six clusters spaced 310m apart that 
contain 7 fractures each that are spaced from left to right as follows: 40m, 
20m, 10m, 10m, 20m, 40m, and there are 100m buffers between the last 
fracture on each end and the edge of the model. The second model from the 
left contains the same six clusters but with the two outward most fractures 
removed from each cluster, resulting in only 5 fractures in each cluster and a 
cluster spacing of 410m. The second model from the right contains the same 
six clusters but with the four outward most fractures removed from each 
cluster, resulting in only 3 fractures each cluster and a cluster spacing of 
470m. The right-most model contains the same six clusters but with the six 
outward most fractures removed from each cluster, resulting in only 1 
fracture each cluster and a cluster spacing of 510m.  
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Figure 5.11: Analysis of Phase 2: Sensitivity of heterogeneous anisotropy to a decrease in 
fracture density within a cluster, with annotations. The yellow arrows 
indicate the location of the fractured interval. In the wavefield snapshots 
above, the red lines show the center location of each cluster where fracture 
density is greatest, and the blue lines highlight the P-wave wavefront bends, 
or heterogeneous anisotropy. In the seismograms below, the reflections off 
of the top and bottom of the fractured interval are delineated in orange in the 
left two models to again highlight the heterogeneous anisotropic bends. In 
the right two models, fracture density is not great enough to produce a 
coherent reflection off of the fractured interval and, instead, the hyperbolas 
from the right most cluster are delineated in green, and the hyperbolas from 
the center cluster are delineated in purple. The left most cluster is too close 
to the boundary of the model to produce coherent hyperbolas due to model 
edge effects.  
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Effect of Cluster Spacing 

The spacing needed between each cluster to form heterogeneous bends and 

amplitude variation in the P-wave wavefront is analyzed in this subsection. The results are 

displayed unannotated and annotated in Figures 5.12 and 5.13, respectively. The first 

column of Figures 5.12 and 5.13 is identical to the first column of Figures 5.10 and 5.11, 

and contains 6 clusters spaced 310 meters apart that contain 7 fractures each that have an 

exponential decrease in fracture spacing from 40m between the outer-most fractures to 10m 

between the inner-most fractures. The center column contains the same six clusters but 

with a cluster spacing decreased to 150 meters, allowing for 16 fractures in each cluster. 

The amplitude decrease in the P-wave wavefront is still readily apparent in the wavefront 

snapshot above, but the bends within wavefront are less regular. In particular, the bend 

furthest to the left is most visible and appears to be twice as long as others further down in 

section from it.   

The right column of Figures 5.12 and 5.13 contains the same six clusters again, but 

with a cluster spacing of 70 meters, allowing for 20 fractures in each cluster. At this point, 

there is very little amplitude variation, and only a small degree of bending in the P-wave 

wavefront. Instead, the effects of an effective horizontal transversely isotropic medium, 

described in the results of phase 1, become apparent in the velocity variation of the 

wavefront that propagates parallel to the fractures downward. The wavefront that travels 

through the fractures due to its angle of propagation.  In the seismogram below, the 

effective reflection off of the top of the fractured interval is readily apparent, while the 

bottom reflection has not formed yet from constructive interference of reflection 

hyperbolas. Therefore, the lower limit to the separation that clusters can have and cause 

heterogeneous anisotropic characteristics is 150 meters, or the wavelength of the source 

used.  
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Figure 5.12: Analysis of Phase 2: Sensitivity of heterogeneous anisotropy to decreased 
spacing between each cluster, unannotated and showing the left quadrant of 
the model only. The left column is the same as the left-most model in 
Figures 5.10 and 5.11 and contains six clusters spaced 310m apart that 
contain 7 fractures each cluster. The center column contains the same six 
clusters but with a cluster spacing of 150m and 16 fractures in each cluster. 
The right column contains the same six clusters but with a cluster spacing of 
70m and 20 fractures in each cluster. 
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Figure 5.13: Analysis of Phase 2: Sensitivity of heterogeneous anisotropy to decreased 
spacing between each cluster, with annotations. The yellow arrows indicate 
the location of the fractured interval. In the wavefield snapshots, the red 
lines show the center location of the six clusters in each model and the blue 
lines highlight the P-wave wavefronts’ bends, or heterogeneous anisotropy.  

Single Idealized Cluster versus Multiple Realistic Clusters 

As a final step to understanding the seismic response to fracture clustering, the 

difference in sensitivity of wavefield events to uniform and non-uniform fracture clusters 

is compared in this section. Only seismograms are compared because they are information 

available from seismic surveying and, therefore, show what information can realistically 

be obtained about fracture spacing from seismic data. The top-left model of Figure 5.14 is 

identical to bottom-left seismogram in Figures 5.3 and 5.4, though it has been gained three 
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times more. This model contains a single cluster of 42 fractures uniformly spaced 60 meters 

apart. Because only one cluster is modeled in Phase 1, this cluster spans the width of the 

model, or 2880 meters. The bottom-left model is identical to the bottom-left seismogram 

in Figures 5.10 – 5.13, though it has again been gained three times more. This model 

contains 6 clusters spaced 310 meters apart that contain 7 fractures each that have an 

exponential decrease in fracture spacing from 40m between the outer-most fractures to 10m 

between the inner-most fractures. Though both models contain a total of 42 fractures, their 

seismograms are significantly different. The distinct crosscutting energy produced by the 

uniform cluster is an obvious indication of fracture clustering, but the non-uniformity of 

the multiple clusters with variable fracture density renders the seismogram almost useless 

for confident identification of cluster presence, properties, or location.  

Though the differences between the seismograms in left column of Figure 5.14 are 

obvious when gained, before concluding on the sensitivity of a seismic wave’s ability to 

detect uniform and non-uniform variations in fracture clustering, it is important to see how 

large of an effect adding noise has on the features outlined above. The right column of 

Figure 3.14 contains the same models but Gaussian noise has been added to each at a 

forgiving 500 signal to noise ratio. With a small amount of noise added, it becomes difficult 

to differentiate wavefield events other than the direct arrivals. Although identification of 

crosscutting energy is possible in the lower right corner of the upper seismogram, it is 

impossible to detect wavefield events truly indicative of fracture clustering in the lower 

seismogram. Therefore, crosscutting energy might not be an effective interpretation tool 

when dealing with natural, non-uniform fracture clusters within subsurface reservoirs.   
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Figure 5.14: Analysis of Phase 2: Differentiation of uniform versus non-uniform fracture 
clustering with Gaussian noise added at a signal to noise ratio of 500:1. 
Though uniform fracture clustering produces distinct crosscutting energy in 
seismograms that is detectible with and without noise, non-uniform more 
realistic clusters produce little discernible pattern that hold up with the 
addition of noise.  

 

SUMMARY 

This chapter systematically outlines the results of the two phases of fracture 

network attribute alteration. Phase 1 showed that the seismic response to a single idealized 

fracture cluster is a regular crosscutting amplitude pattern that appears within and below 

the fractured interval as long as fracture spacing remains above seismic resolution. Further 

analysis showed that as fracture spacing decreases below one-half of the seismic 
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wavelength, the depth at which crosscutting energy appears exponentially increases. This 

relationship holds until 28% of the fractures are moved from their uniformly spaced 

locations to random locations within the cluster. The vertical thickness of the cluster has 

little effect on the location or strength or the crosscutting signature. When fracture spacing 

decreases below seismic resolution, one fourth of the wavelength, effective reflections 

from the top and bottom of the fractured interval are generated.  

Phase 2 showed that the seismic response to multiple realistic fracture clusters is 

heterogeneous anisotropy of compressional wave velocity and amplitude decay below the 

location of highest fracture density within each cluster.  Further analysis showed that these 

features appear only when the ratio of fracture material to matrix material is at or greater 

than 3:5 within a cluster and when cluster spacing is equal to or greater than the 

wavelength. A summary of the sensitivity of the seismic response to fracture clustering 

showed that, with very little noise added, it became difficult to differentiate between 

uniform and non-uniform fracture clustering.  
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Chapter 6:  Conclusions, Discussion, and Future Considerations 

 

The specific objective of this study was to identify and analyze the seismic response 

to fracture clustering. Phase 1 first confirmed that the seismic response to a single idealized 

fracture cluster is a regular crosscutting amplitude pattern within a seismogram. As 

previously reported, the crosscutting pattern only appears within the fractured interval 

when fracture spacing is greater than the seismic resolution. Contrary to previous reports, 

however, crosscutting energy does not fade from the seismogram as fracture spacing 

decreases; rather, the energy is delayed in time and is visible below the fractured interval. 

Further analysis showed that as fracture spacing decreases below one-half of the seismic 

wavelength, the depth at which crosscutting energy appears exponentially increases. This 

relationship is visually detectable until approximately 28% of the fractures are moved from 

their uniformly spaced locations to random locations within the cluster. At this point, 

fracture-related seismic coda are not regularly spaced enough to constructively interfere 

and form a discernible crosscutting pattern. Further investigation also showed that the 

vertical thickness of the cluster had little effect on the location or strength or the 

crosscutting pattern. Lastly, Phase 1 showed that when fracture spacing decreases below 

seismic resolution, one fourth of the wavelength, effective reflections from the top and 

bottom of the fractured interval are generated within a seismogram.  

The results from Phase 1 indicated that the seismic response to more natural 

randomly spaced fractures clustered together is not visually discernible in a seismogram. 

Therefore, to gain insights on multiple clusters, it was necessary to shift the focus of Phase 

2 from common seismograms to wavefield snapshots that are not easily constructed from 

seismic surveys. Phase 2 showed, however, that the seismic response to multiple realistic 
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fracture clusters is heterogeneous anisotropy of compressional wave velocity and 

amplitude decay below the location of highest fracture density within each cluster.  Further 

analysis showed that these features appear in a wavefield snapshot only when the ratio of 

fracture material to matrix material is at or greater than 3:5 within a cluster and when cluster 

spacing is equal to or greater than the seismic wavelength. To further constrain the 

discernibility of the seismic response to fracture clustering, a comparison was made 

between the single idealized cluster of Phase 1 and the multiple more realistic clusters of 

Phase 2. A juxtaposition of their seismograms showed that with little noise added, it is 

difficult to differentiate between idealized and realistically spaced fracture clustering.  

 

THE SEISMIC RESPONSE TO FRACTURE CLUSTERING 

Although briefly covered above, it is necessary to discuss the implications of a few 

of the results from the phases of fracture cluster modeling. Phase 1 defined a method for 

determining the location and fracture density of a single cluster: measurement of the change 

in depth of crosscutting energy within a seismogram. This finding contradicts the results 

of all other studies on the subject that, instead, state that crosscutting scattered energy 

becomes fainter and less detectable as fracture spacing approaches seismic resolution 

(Pearce et al., 2003; Burns et al., 2007; Willis et al., 2004, Grandi-Karam, 2008; Xu, 2011).  

Their conclusions are a result of their sole focus on the fractured interval itself. Within the 

fractured interval, visible scattering becomes fainter but the energy has not dissipated. It is 

simply delayed in time. Therefore, use of the whole seismogram is important when 

extracting information about fracture networks with realistically small fracture spacing.  

Phase 1 also showed that the vertical thickness of the cluster has little effect on the 

location or strength or crosscutting energy. This finding again contradicts the results of 
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other studies that conclude that that as fractures are shortened, scattered energy 

increasingly attenuates (Grandi-Karem, 2008). The resulting seismic response to fracture 

length in this study also contradicted the hypothesized result as well. Instead of behaving 

in the simplistic manner diagrammed in Figure 2.3, the intensity of crosscutting energy is 

not a function of the number of times a ray reflects between two fractures; instead the 

energy is a function of the angle at which the wavefront arrives incident upon the face of a 

fracture.  This result is counterintuitive, and it is unclear whether or not this is a numerical 

wave propagation approximation or a physical phenomenon.  

Future Considerations 

Fracture Width 

The wavefield response to uniformly spaced fractures has been documented by 

recent authors. This study presents the same approach as outlined in the left column of 

Figure 4.7. However, the hyperbolic events that form at the top and bottom of each fracture 

within a seismogram has gone relatively unnoticed. Most other studies change the matrix 

velocity within the fractured interval, causing true reflections to occur where the 

hyperbolas align. Because a velocity change was not used in this study, the hyperbolic 

reflections are readily apparent and call attention to the extreme width of the fractures used 

in this and most other studies (Figure 5.2K and L; Figure 5.4K and L). Fracture width could 

potentially be responsible for the effective reflections off of the top and bottom of the 

fractured interval when fractures are closely spaced. Therefore, a pertinent phase that 

should be completed is to test the seismic response to fractures with thinner apertures. 

Without this knowledge, it is unclear whether or not any of the hyperbolas, mode converted 

S-waves, seismic coda, and therefore cross-cutting energy pattern will exist in a realistic 

setting. Unfortunately, this phase of fracture attribute alteration was not performed because 
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SWP3D could not be run in parallel and the models, otherwise, would have taken far too 

long to run. 

Quantitative Comparison 

A third phase of fracture modeling performed for this study focused on the seismic 

response to fracture infill. The results of this phase produced little insight into the effect 

that infill has on seismic waves, however. All seismograms and wavefield snapshots 

showed no visual contrast between gas, oil, and water-filled fractures for all variations of 

fracture spacing outlined in Phases 1 and 2 (e.g. Figure 6.1). There was a large decrease in 

the amplitude of wavefield features with cement-filled fractures but no change in the shape 

or locations of the events outlined in Figures 5.2 and 5.4.   This feature was attributed to 

the fact that the calcite cement velocity closely resembled the limestone matrix velocity, 

whereas their densities differed measurably. The compliances used to define these fracture 

infills can be found in Table 4.1.  
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Figure 6.1: An emphasis of the difficulty in comparing the seismic response to 
variations in fracture infill. All models contain a cluster of 2 fractures 
spaced 1000m apart, though only one fracture, delineated in red, is visible in 
this quadrant of the model. Little if any visible difference can be discerned 
from fractures containing gas, oil, and water no matter the fracture density 
or number of clusters. Calcite cement filled fractures produce much weaker 
events and the right column had to be gained four times more than the others 
to make out the faint fracture-related events.  

In order to extract more usable information when changing fracture fill, the 

seismogram comparison will have to be performed quantitatively instead of visually. The 

extraction of amplitude spectra, quality factor, and scattering index from modeled results 

can aid in the extrapolation of fracture network attributes from a complex wavefield 

(Appendix: Quantitative Measurements). Although quantitative information is pertinent to 

differentiating between fracture fluid types, the methods listed below could not be 

performed in this study in its current state for two reasons: (1) the matrix velocity within 

the fracture interval was not altered, preventing the formation of coherent reflections in all 
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models from which to extract the quantitative parameters (Figure 6.2, left), and (2) the 

inadequate absorbing model boundaries that contaminated all but the center portion of the 

fractured interval with linear direct waves that are impossible to remove without altering 

fractured energy as well (Figure 6.2, right). 

 

Figure 6.2: An emphasis of the difficulty in extracting quantitative measurements from 
reflections in moderately fractured media. The top-left image shows the 
unprocessed seismogram of a medium containing 6 gas-filled fractures 
spaced 420m apart and the resulting faint reflection hyperbolas from the top 
and bottom of each fracture. The bottom-left image shows the result of 
subtracting an isotropic seismogram from the fractured seismogram and 
applying NMO-correction. The top-right image shows the unprocessed 
seismogram of a medium containing 150 gas-filled fractures spaced 10m 
apart and the resulting effective reflections from the top and bottom of the 
fractured interval. The bottom-right image shows the result of subtracting an 
isotropic seismogram from the fractured seismogram and applying NMO-
correction. Although the top and bottom of the fractured layer have been 
flattened, boundary reflections still contaminate the image.  
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Modeling in 3D 

The last item to discuss is the benefits of modeling in 3D, which could not be 

performed in this study due again to the issues encountered with trying to run SWP3D in 

parallel. The results of this 2D study are limited to only views of wavefield events 

perpendicular to fracture strike. By modeling in 3D, variations can be documented parallel 

to fractures, perpendicular to fractures, and at any angle to fractures. This is of the utmost 

help when working with the faint seismogram features outlined above. Although a 2D set 

up allows for the study of crosscutting and scattered energy from between fractures, Figure 

5.14 shows how, with a small amount of noise added to the seismograms, it becomes 

extremely difficult to detect these wavefield features. When modeling in 3D, seismograms 

perpendicular and parallel to fracture strike can be compared to highlight the fracture-

related events from the background noise (Figure 2.6).  Modeling in 3D could also shed 

light on the detectability of Phase 2 results in real seismic data. Although wavefront 

analysis in snapshot view is not available from seismic surveying, the phenomena of 

directional phase velocity variation and amplitude decay associated with heterogeneous 

anisotropy could be detected in seismograms produced from 3D models.  
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Appendix: Quantitative Measurements 

The extraction of amplitude spectra, quality factor, and scattering index from 

modeled results can aid in the extrapolation of fracture network attributes from a 

convoluted wavefield. Seismic amplitude spectral analysis allows for a visual comparison 

of the strength of different frequency components as they vary throughout the model. A 

simple Fourier transform converts the time domain seismogram x(t) into its frequency 

spectrum X(f) and, by windowing the signal in accordance with the Short-Time Fourier 

Transform Method (STFT), the time dependence of frequency changes can be observed:  

 

  

,ሺ߬ܶܨܶܵ        ߱ሻ ൌ ׬	 ݐሻ݃ሺݐሺݔ െ ߬ሻ݁ሺି௜ఠ௧ሻ݀ݐ	
ାஶ
ିஶ ,                            (6.1)                               

where ݐ is time, ߱ is angular frequency, ߬ is the time instant, and ݃ሺݐሻ is the window 

function (Chakraborty and Okaya, 1995). Therefore, from an amplitude spectra versus 

offset plot of the region below the fractured interval, it is possible to see the frequency 

signature of each individual fracture in space and, from the frequency shift, differentiate 

between differing fracture fills.  

Quality factor, Q, is a measure of the amplitude decay a seismic wave undergoes as 

it travels through a medium. Q is the inverse of attenuation, which is caused by absorption, 

spherical divergence, mode conversion, viscoelastic fluid effects, and scattering (Sheriff 

and Geldart, 1995). The classic method for measuring Q in seismic reflection data is the 

Dasgupta and Clark (1998) quality factor versus offset, or QVO, method:    
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 .                                              (6.3) 
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In this method, the logarithm of the ratio of recorded signal amplitude spectrum ܣሺ݂ሻ to 

the source signal amplitude spectrum ܣ଴ሺ݂ሻ is related to an intercept term, containing the 

reflection coefficient of the boundary ܴ and the geometric spreading factor ܩ, and a slope 

term, containing the record time of the two signals ݐ and  ݐ଴, the frequency ݂, and the 

interval quality factor ܳ௜ (Equation 6.2). To solve, the ratio of the amplitude spectra, or 

spectral ratio, is calculated from the seismic data and a linear regression of the logarithm 

of the spectral ratio against frequency gives the intercept and slope terms. Using equation 

6.3, the change in quality factor, i.e. magnitude of attenuation, from the top ݐ଴ and bottom 

 ௡ of a target interval can be determined. Using the isotropic model as a reference forݐ

background Q, the effects of fracture scattering attenuation and mode conversion can be 

isolated. 

Scattering Index, SI, is a measure of the ringing a source wavelet develops as it 

travels through a fractured interval and is contaminated by coda reflections (Willis et al., 

2004). In order to measure SI, two apparent source wavelets are extracted from the model 

by computing autocorrelations from windowed portions of the reflection time series above 

and below the fractured interval, representing the input ݅ሺݐሻ and output ݋ሺݐሻ wavelet, 

respectively. 

݅ሺݐሻ ∗ ݄ሺݐሻ ൌ  ሻ                                                       (6.4)ݐሺ݋

 

The time domain transfer function ݄ሺݐሻ is then produced by deconvolving the 

autocorrelation of the input wavelet from the autocorrelation of the output wavelet 

(Equation 6.4). A simple pulse shaped transfer function indicates that no scattering has 

occurred in the interval between the analysis windows, whereas a long ringing transfer 

function indicates extensive scattering, in this case, due to fractures. SI reduces the transfer 

function into one number and is essentially the moment of the transfer function: 
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ܫܵ ൌ 	∑ ݅|௜ݐ|
௠
௜ୀ଴                                                        (6.5) 

 

where ݅ is the time lag, ݐ௜ is the time domain transfer function amplitude lag at lag ݅, and 

݅௠ is a lag at which there is no more significant energy in the transfer function (Willis et 

al., 2004).  Therefore, the more fractures that are present in the model, the more the transfer 

function will ring and the value of SI will increase. 
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