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Abstract

A hybrid method to model the shear wave (SH) scattering from 2D

fractures embedded in a heterogeneous medium is developed by cou-

pling Boundary Element Method (BEM) and Finite Different Method

(FDM) in the frequency domain. FDM is used to propagate an SH

wave from a source through heterogeneities to localized homogeneous

domains where fractures are embedded within artificial boundaries. Ac-

cording to Huygens’ Principle, the boundary points can be regarded as

“secondary” point sources and their values are determined by FDM.

Given the incident fields from these point sources, BEM is applied to

model scatterings from fractures and propagate them back to the artifi-

cial boundaries. FDM then takes the boundaries as secondary sources

and continues propagating the scattered field into the heterogeneous

medium. The hybrid method utilizes both the advantage of BEM and

FDM. A numerical iterative scheme is also presented to account for

the multiple scattering between different sets of fractures. The results

calculated from this hybrid method with pure BEM method are first

compared to show the accuracy of the hybrid approach and the iterative

scheme. This method is then applied to calculate the wave scattered

from fractures embedded in complex media.

PACS numbers:
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I. INTRODUCTION

Precise modeling and understanding of seismic wave scattering from subsurface frac-

tures in a heterogeneous medium is essential for imaging the fractures from seismic survey

data. This forward modeling problem has been extensively discussed in the literature using

different physical models of fractures,1–3 combined with analytical4,5 and numerical tech-

niques, including Finite Difference Method (FDM),6–12 Finite Element Method (FEM)13

and Boundary Element Method (BEM).14–16

Liu et al.4 applied representation theorems to calculate analytically the scattered waves

from fractures based on Kirchhoff (high frequency) approximation. Sánchez-Sesma5 applied

an analytical approach to calculate scattering and diffraction from a crack with traction-free

surface condition. Coates and Schoenberg6 and Krüger et al.7 used an effective medium the-

ory and FDM to calculate seismic wave propagation through the fractures. Groenenboom8

and Vlastos et al.9 also used this effective medium theory to model wave scattering by hy-

draulic fractures and randomly distributed horizontal fractures, respectively. When dealing

with fractures of complex geometries, the effective medium method may have accuracy is-

sues due to the limitation of grid meshing in the traditional FDM. Instead of calculating

the effective elastic constant of each mesh grid, Slawinski and Krebes10, Zhang11 and Zhang

and Gao12 directly impose the boundary conditions on auxiliary grid points surrounding the

fractures. The complexity and computational cost of this method could be very demanding

when non-planar fractures need to be considered, or when the distances between fractures

are smaller than the seismic wavelength, as dense meshing is required. Nakagawa et al.13

applied FEM to calculate 3D elastic wave scattering from parallel fractures in a single hor-

izontal layer. Pointer14, Iturrarán-Viveros et al.15 and Iturrarán-Viveros et al.16 applied an

indirect boundary element method to calculate the scattered field from fractures and cracks.

Chen et al.17 applied BEM to model the scattering of SH waves from 2D fractures.

Compared to the analytical, FD, and FE methods, BEM is potentially more flexible

and accurate in implementing complicated fracture boundary geometries and conditions.
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Also BEM is more computationally efficient since it needs to compute one less space di-

mension compared to FDM or FEM. However, BEM requires an analytical expression of

Green’s functions of the medium; this is only available for few ideal scenarios such as ho-

mogeneous free space or half space. Meanwhile, the computational complexity and cost

could dramatically increase for BEM to calculate scattering from fractures in a layered

medium. These requirements and limitations restrict the applicable range of BEM in the

real geophysical problems. Some authors have discussed hybrid methods by coupling BEM

and other numerical methods. Bouchon and Coutant18 developed a Boundary Element -

Discrete Wavenumber Method. Since the Green’s functions are evaluated by wavenumber

summation, their method is suitable for propagating seismic waves in a layered homogeneous

medium. Wuttke et al.19 presented a coupling method between Boundary Integral Equation

Method (BIEM) and Discrete Wavenumber method (DWN). DWN is used to propagate

wave field in a horizontally layered medium, and BIEM is used to account for the effect of

non-parallel layers and free surface on the wave propagation.

In this paper, we present a hybrid method to model the scattering from fractures in

heterogeneous medium by coupling BEM and FDM. We use FDM to propagate an SH wave

from the source through heterogeneities to localized homogeneous domains where fractures

are embedded within artificial boundaries. According to Huygens’ Principle, the bound-

ary points can be regarded as “secondary” point sources and their values are determined

by FDM. Given the incident fields from these point sources, we apply BEM to model the

scattering from fractures and propagate them back to the artificial boundaries. FDM then

takes the boundaries as secondary sources and continues propagating the scattered field into

the heterogeneous medium. We developed an iterative scheme to account for the multiple

scatterings between different sets of fractures, including the multiple interactions between

fractures and surrounding medium heterogeneities. We also discuss the convergence condi-

tions for the iterative scheme.

There are several advantages in our hybrid method. First, it overcomes the constraint

of the simple homogeneous or layered medium in BEM while maintaining the flexibility of
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BEM in handling boundary conditions and geometries of fractures. Second, it enables us to

calculate scattering from fractures embedded in a complex medium without compromising

the accuracy. Third, our approach can calculate the scattered field for different fracture

distributions, source and receiver configurations, as well as source wavelets, efficiently. When

using Monte-Carlo simulations to characterize the statistical properties of scattering from

fractures, the efficiency issue becomes critical.

II. BEM AND FDM IN THE FREQUENCY DOMAIN

In this section, we briefly introduce BEM17 to calculate SH wave scattering from frac-

tures in a homogeneous free space, and FDM20 to calculate the SH wave propagation in a

heterogeneous medium.

A. BEM Modeling of Scattering from Fractures

The scattered displacement21 from a fracture in the free space is

usca
i (x) =

∫

s

[uk(ξ)]Ckjqp(ξ)
∂Gp

i (x, ξ)

∂ξq
nj(ξ)dξ (1)

where ξ is a point on the 2D fracture surface s, as shown in Fig. 1; Ckjqp(ξ) is the elastic

tensor; Gp
i (x, ξ) is the i

th displacement component of the Green’s function at point x due to a

unit force in the pth direction at point ξ on the fracture surface; nj is the j
th component of the

normal vector n at the fracture surface S; [uk(ξ)] is the kth component of the displacement

discontinuity

[uk(ξ)] = u+
k (ξ)− u−

k (ξ), (2)

where u+
k (ξ) and u−

k (ξ) is the total displacement on the upper and lower surface of fracture,

respectively. The total displacement field uk(ξ) is the sum of the incident ui
k(x) and scattered

displacement. In this paper, the displacement discontinuity is determined from the linear

slip condition1, which assumes that the displacement discontinuity is linearly proportional
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to the traction on the fracture surface, and the traction is continuous across the fracture.

For the SH wave, we have

[u2(ξ)] = Zt(ξ)
(

σ21(ξ)n1(ξ) + σ23(ξ)n3(ξ)
)

= Zt(ξ)
(

µ
∂u2(ξ)

∂ξ1
n1(ξ) + µ

∂u2(ξ)

∂ξ3
n3(ξ)

)

. (3)

Inserting Equation 3 into Equation 1, we can express the scattered field as

usca
2 (x) =

∫

s

Zt(ξ)µ
2
(∂u2(ξ)

∂ξ1
n1(ξ) +

∂u2(ξ)

∂ξ3
n3(ξ)

)(∂G(x, ξ)

∂ξ1
n1(ξ) +

∂G(x, ξ)

∂ξ3
n3(ξ)

)

d.ξ

(4)

The displacement at any x is the sum of the incident and scattered displacement

u2(x) = ui
2(x) + usca

2 (x). (5)

For a point on the fracture surface x(x1, x3)∈ s, it should satisfy Equation 5

u2(x) = ui
2(x) + =

∫

s

Zt(ξ)µ
2
(∂u2(ξ)

∂ξ1
n1(ξ) +

∂u2(ξ)

∂ξ3
n3(ξ)

)(∂G(x, ξ)

∂ξ1
n1(ξ) +

∂G(x, ξ)

∂ξ3
n3(ξ)

)

dξ,

(6)

where =
∫

s
donates the hyper-singular integral equation or a Cauchy’s principal value. We

take derivatives of Equation 6 over x1 and x3, respectively

∂u2(x)

∂x1

=
∂ui

2(x)

∂x1

+ =

∫

s

Zt(ξ)µ
2
(∂u2(ξ)

∂ξ1
n1(ξ) +

∂u2(ξ)

∂ξ3
n3(ξ)

)(∂2G(x, ξ)

∂ξ1∂x1

n1(ξ) +
∂2G(x, ξ)

∂ξ3∂x1

n3(ξ)
)

dξ,

(7)

and

∂u2(x)

∂x3

=
∂ui

2(x)

∂x3

+ =

∫

s

Zt(ξ)µ
2
(∂u2(ξ)

∂ξ1
n1(ξ) +

∂u2(ξ)

∂ξ3
n3(ξ)

)(∂2G(x, ξ)

∂ξ1∂x3

n1(ξ) +
∂2G(x, ξ)

∂ξ3∂x3

n3(ξ)
)

dξ,

(8)

by applying a theorem proved by22. We now turn the displacement boundary integral

equation (1) into two traction-related boundary integral equations (7 and 8). Solving these
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two equations provides values of the displacement derivative ∂u2(x)
∂x1

and ∂u2(x)
∂x3

across the

fracture. By inserting these two derivatives into Equation 4, the displacement field scattered

from the 2D fracture can be finally calculated. Also, the derivative of the scattered field is

∂usca
2 (x)

∂x
=

∫

s

Zt(ξ)µ
2
(∂u2(ξ)

∂ξ1
n1(ξ) +

∂u2(ξ)

∂ξ3
n3(ξ)

)(∂2G(x, ξ)

∂ξ1∂x
n1(ξ) +

∂2G(x, ξ)

∂ξ3∂x
n3(ξ)

)

dξ,

(9)

which is needed in the coupling of BEM with FDM.

B. FDM to Model Wave Propagation in an Heterogeneous Medium

In the frequency domain, the SH wave equation is

∂

∂x

[ 1

ρ(x, z)

∂

∂x
u(x, z, ω)

]

+
∂

∂z

[ 1

ρ(x, z)

∂

∂z
u(x, z, ω)

]

+
ω2

µ(x, y)
u(x, z, ω) = s(x, z, ω), (10)

where ρ(x, z) is the density, u(x, z, ω) is the displacement, ω is the angular frequency, µ(x, z)

is the modulus of rigidity, and s(x, z, ω) is the source term. We discretize Equation 10 with

a low-dispersion fourth-order finite difference scheme in space by following Equation A3 in

Ref.20

−ω2

Ki,j

ui,j =
1

∆2

{9

8

[ 1

ρi+1/2,j

(9

8
(ui+1,j − ui,j −

1

24
(ui+2,j − ui−1,j)

)

−
1

ρi−1/2,j

(9

8
(ui,j − ui−1,j −

1

24
(ui+1,j − ui−2,j)

)]

−
1

24

[ 1

ρi+3/2,j

(9

8
(ui+2,j − ui+1,j)−

1

24
(ui+3,j − ui,j)

−
1

ρi−3/2,j

(9

8
(ui−1,j − ui−2,j)−

1

24
(ui,j − ui−3,j)

]}

+
1

∆2

{9

8

[ 1

ρi,j+1/2

(9

8
(ui,j+1 − ui,j −

1

24
(ui,j+2 − ui,j−1)

)

−
1

ρi,j−1/2

(9

8
(ui,j − ui,j−1 −

1

24
(ui,j+1 − ui,j−2)

)]

−
1

24

[ 1

ρi,j+3/2

(9

8
(ui,j+2 − ui,j+1)−

1

24
(ui,j+3 − ui,j)

−
1

ρi,j−3/2

(9

8
(ui,j−1 − ui,j−2)−

1

24
(ui,j − ui,j−3)

]}

+ Si,j. (11)
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We use a regular finite-difference scheme instead of the mixed-grid scheme20. This is be-

cause point source excitation in the mixed-grid scheme would result in numerical noises and

obscuring the weak scattered field. In general, Equation 11 can be written as

Au = S, (12)

where A is the impedance matrix constructed by the FD operators shown in Equation 11

and S is the source vector. To solve Equation 12, we can use the LU factorization23 to

decompose matrix A. We also implement the Perfectly Matched Layers (PMLs) in the

surrounding areas to absorb outgoing waves.

III. HYBRID METHOD

In this section, we first introduce the approach to coupling BEM with FDM for calculat-

ing the primary scattering from an individual set of fractures without considering the second

or higher order interactions either between different sets of fractures or between fractures

and heterogeneities. Then, we will discuss an iterative method to include the higher order

scatterings.

A. Coupling between BEM and FDM

The basic idea of the hybrid method is to use a boundary integral equation and local

Green’s functions to represent a global Green’s function, which can not be expressed analyt-

ically due to the presence of heterogeneities, as shown in Fig. 2. The local domain hosting

fractures is surrounded by an artificial closed boundary Γ. Although embedded in a hetero-

geneous medium, this small local domain can be reasonably assumed to be homogeneous.

According to representation theorems, we can express the global displacement Green’s func-

tion in terms of the combination of the local Green’s functions and the normal derivatives

of local Green’s functions along boundary Γ

G(x,x0) =

∮

Γ

[∂u(ξ,x0)

∂n
G(x, ξ)− u(ξ,x0)

∂G(x, ξ)

∂n

]

dξ, (13)
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where x0 and x are the source and receiver position, respectively; ξ is a point at Γ. The

displacement Green’s function for SH wave in a 2D homogeneous medium is

G(x, ξ) =
i

4πµ
H0(k|x− ξ|). (14)

where H0 is zero order Hankel function. Note that G(x, ξ) and ∂G(x,ξ)
∂n

in Equation 13

represent a monopole and dipole source, respectively, whose amplitude ∂u(ξ,x0)
∂n

and −u(ξ,x0)

are determined by FDM.

To couple FDM and BEM, we first need to discretize the boundary Γ to ΓFDM composed

of regular finite difference grids, as shown in Fig. 3. The reason for placing two boundaries

ΓFDM and ΓBEM in the coupling scheme will be elaborated in Section III.B. Using the grid

points as secondary sources, we can construct the incident field for fractures surrounded by

ΓFDM and discretize Equation 13 to

G(x,x0) ≈ Gupper +Gdown +Gleft +Gright (15)

where

Gupper =
M−1
∑

i=2

[

−
∂u(ξi,x0)

∂y
G(x, ξi) + u(ξi,x0)

∂G(x, ξi)

∂y

]

∆

+
1

2

∑

i=1,i=M

[

−
∂u(ξi,x0)

∂y
G(x, ξi) + u(ξi,x0)

∂G(x, ξi)

∂y

]

,∆

Glower =
M−1
∑

j=2

[∂u(ξj,x0)

∂y
G(x, ξj)− u(ξj,x0)

∂G(x, ξj)

∂y

]

∆

+
1

2

∑

j=1,j=M

[∂u(ξj ,x0)

∂y
G(x, ξj)− u(ξj,x0)

∂G(x, ξj)

∂y

]

,∆

Gleft =
N−1
∑

l=2

[

−
∂u(ξl,x0)

∂x
G(x, ξl) + u(ξl,x0)

∂G(x, ξl)

∂x

]

∆

+
1

2

∑

l=1,l=N

[

−
∂u(ξl,x0)

∂x
G(x, ξl) + u(ξl,x0)

∂G(x, ξl)

∂x

]

,∆

Gright =
N−1
∑

k=2

[∂u(ξk,x0)

∂x
G(x, ξk)− u(ξk,x0)

∂G(x, ξk)

∂x

]

∆

+
1

2

∑

k=1,k=N

[∂u(ξk,x0)

∂x
G(x, ξk)− u(ξk,x0)

∂G(x, ξk)

∂x

]

∆, (16)
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where ∆ is the FD discretization length, M and N are the total grid points along horizontal

and vertical directions. Since the corner points only span half-grid length compared to the

rest of the points, a weight 1/2 in Equation 16 is used to account for this difference. The

amplitudes of dipole sources, u(ξi,x0), −u(ξj,x0), u(ξk,x0) and -u(ξl,x0), can be obtained

directly from FDM. The amplitudes of the monopole sources, −∂u(ξi,x0)
∂y

,
∂u(ξj ,x0)

∂y
, -∂u(ξk,x0)

∂x

and ∂u(ξl,x0)
∂x

, however, need to be evaluated via a fourth-order finite difference approximation,

for being consistent with the global fourth-order accuracy of FDM scheme. For instance,

the displacement gradient at point ξn (Fig. 3) is

∂u(ξn,x0)

∂x
=

−2
3
u(ξn−1,x0) +

2
3
u(ξn+1,x0) +

1
12
u(ξn−2,x0)−

1
12
u(ξn+2,x0)

∆
, (17)

which requires the displacement values at four different grids, with two inside and two outside

boundary ΓFDM.

After the amplitudes of surrounding monopole and dipole sources are determined, we

can adopt BEM to calculate the displacement discontinuities across the upper and lower

surfaces of the fractures subjected to the incidence from the surrounding sources. Given

the displacement discontinuities, the scattered field usca
2 and the normal derivative of the

scattered field
∂usca

2

∂n
at another boundary ΓBEM are calculated analytically via Equations 4

and 9.

Finally, we rely on FDM to propagate the scattered field at ΓBEM outward to any outside

location x via

usca(x) =

∮

ΓBEM

[∂usca
2 (ξ

′

)

∂n
G(x, ξ

′

)− usca
2 (ξ

′

)
∂G(x, ξ

′

)

∂n

]

dξ
′

, (18)

where ξ
′

∈ ΓBEM. The Green’s function G(x, ξ
′

) (monopole source) is directly implemented

by FDM, while the dipole source at ξ
′

n needs to be implemented by

usca
2 (ξ

′

n)
∂G(xn, ξ

′

n)

∂n
= usca

2 (ξ
′

n)
2
3
G(x, ξ

′

n−1)−
2
3
G(x, ξ

′

n+1) +
1
12
G(x, ξ

′

n−2)−
1
12
G(x, ξ

′

n+2)

∆
,

(19)

which requires implementation of four monopole sources at ξ
′

n−2, ξ
′

n−1, ξ
′

n+1 and ξ
′

n+2, as

shown in Fig. 3. The numerical implementation of the monopole term in Equation 18
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requires injecting the source excitation
∂usca

2
(ξ

′

)

∂n
in the RHS of Equation 12 at the corre-

sponding position ξ
′

; the dipole term requires injecting the source excitations 2usca
2 (ξ

′

)/3∆,

−2usca
2 (ξ

′

)/3∆, usca
2 (ξ

′

)/12∆ and −usca
2 (ξ

′

)/12∆ at four postions in the RHS of Equation

12.

The aforementioned BEM can be applied to calculate multiple interactions among frac-

tures embedded within the same local domain.17 When the separation between different

fractures is larger than the wavelength, it is unrealistic to circumscribe all fractures into

one big domain and assume the homogeneity of the whole domain. Therefore, we need an

iterative method to include the multiple scatterings, as discussed in Section III.B.

B. Iterative Method for Multiple Scattering

In this section, we show how to apply an iterative method to calculate the multiple

scattering between different sets of fractures or between fractures and heterogeneities. The

idea of the iterative scheme is to calculate Born series to account for multiple scattering. In

the Appendix, we briefly discuss the convergence conditions of the iterative scheme for the

multiple scatterings.

To simplify the discussion, we assume that there are two sets of fractures A and B

embedded in a heterogeneous medium. We first calculate the primary scattered field usca
A and

usca
B from fracture set A and B individually, and then use FDM to propagate them outward

simultaneously into the heterogeneous medium. After some interactions with heterogeneities,

the primary scatterings propagate onto both fracture sets A and B, hence resulting in second

scatterings. To calculate the second scattered field, we follow the same procedure described

in Section. III.A. For fracture set A, the incident wave field along ΓA
FDM is

uinc2(x) =

∮

ΓA
FDM

[∂usca(ξ)

∂n
G(x, ξ)− usca(ξ)

∂G(x, ξ)

∂n

]

dξ (20)
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where usca(ξ) is calculated by

usca(ξ) =

∮

ΓA
BEM

[∂usca
A (ξ

′

)

∂n
G(ξ, ξ

′

)− usca
A (ξ

′

)
∂G(ξ, ξ

′

)

∂n

]

dξ
′

+

∮

ΓB
BEM

[∂usca
B (ξ

′

)

∂n
G(ξ, ξ

′

)− usca
B (ξ

′

)
∂G(ξ, ξ

′

)

∂n

]

dξ
′

, (21)

which originates from the primary scattered fields usca
A and usca

B , propagated numerically by

FDM. The incident field on fractures set B is calculated with the same method. BEM is

applied again to calculate the second scattering usca2
A and usca2

B from fracture A and B due to

the new incident field uinc2. Afterwards, FDM is used to propagate the second scattered fields

usca2
A and usca2

B outward. We iterate the above steps to account for the multiple scatterings

until the energy of the higher scattering is negligible. The iterative scheme (Equations 20

and 21) assures the causality such that a lower scattering is the source for the next higher

scattering. The temporal sequence of the different orders of the scattered field is determined

implicitly by the phases.

We use boundary ΓFDM when propagating the wave field by FDM into a local domain,

and use the boundary ΓBEM to propagate the scattered field out of the local domain, as

shown in Fig. 3. According to Huygens’ principle, ΓBEM is an outward-radiation bound-

ary. As a result, Equation 18 can only provide the correct primary scattered field usca(x)

at x outside the domain surrounded by ΓBEM, but not for any point within ΓBEM. This

causes issues for the calculation of secondary scattering from fractures, e.g., the calculation

of the displacement gradient ∂usca(ξi)
∂x

for a grid point m at ΓFDM requires displacement values

usca(ξm−1), u
sca(ξm−2), u

sca(ξm+1) and usca(ξm+2) at four different grids according to Equa-

tion 17. If the separation between ΓFDM and ΓBEM is smaller than two grids, usca(ξm+1) and

usca(ξm+2) could fall inside the domain surrounded by ΓBEM and then their values are not

calculated correctly. This leads to an incorrect computation of ∂usca(ξm)
∂x

. We can easily solve

this issue by placing ΓFDM two grids bigger than ΓBEM. It should be noted that these two

boundaries can be collocated if we only consider the primary scattering from the fractures.
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C. Monte-Carlo Simulations

In order to perform Monte-Carlo simulations to characterize the statistical properties

of scattering from fractures, we need to calculate the scattering from random fracture real-

izations. Given that the background medium remains unchanged and does not depend on

the geometries and properties of fractures, we only need to perform the LU factorization,

which takes a major part of the computational time, to the impedance matrix A once for

each frequency

L(ω) · U(ω) = P (ω) · A(ω) ·Q(ω), (22)

where L(ω) and U(ω) are the lower and upper triangular matrices, respectively; P (ω) and

Q(ω) are the row and column permutation matrices for numerical stability. To calculate the

response of the medium to different source excitation S(ω), e.g., point sources or secondary

sources from fracture scatterings, we only change the right-hand side of Equation 12 with

the corresponding source term. Given L, U , P and Q, solving Equation 12 takes negli-

gible computational time. Therefore, Monte-Carlo simulations can be implemented very

efficiently.

IV. NUMERICAL EXAMPLES

In this section, we first provide two examples that compare the results from the hybrid

method with the ones from the BEM in a homogeneous medium. Then, we show the

simulations of the scattered waves from fractures embedded in a horizontally layered medium

and a more complex Marmousi model.

For the first example, a horizontal fracture is embedded in a homogeneous medium with

Vs = 2500 m/s and ρ = 2200 kg/m3, as shown in Fig. 4. The tangential compliance of the

fracture is 10−9 m/Pa. The fracture is 100 m in length. We denote the local domain with

a white box surrounded by the artificial boundary ΓBEM. The source has a unit amplitude.

The frequency of the incident wave is 20 Hz, corresponding to a wavelength of 125 m.
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The black dot represents the source location, and the white crosses represent the receiver

locations. Fig. 4 shows the amplitude of the scattered field, which exhibits strong scattering

patterns in the forward and backward directions. The tip scattering from the fracture is

relatively weak due to the direction of the incident wave. Fig. 5 compares the amplitude and

phase of the scattered field between the hybrid method and BEM. The maximum difference

in both amplitude and phase is less than one percent.

In the second example, we have four inclined fractures embedded in the same background

medium as in the previous example (Fig. 6). The incident field is also the same as in the

first example. The total scattered field shows a strong interference pattern, particularly

between the inner pair of fractures. The scattering in the forward direction is much stronger

than in the backward direction. We use the iterative method to calculate the multiple

scattering between different fractures (Fig. 7). Since the first iteration only includes the

single scatterings from each fracture, there is some difference with the BEM solution. After

five iterations, the result from the hybrid method converges to the result from BEM, with

the difference smaller than one percent.

In most real cases, velocity heterogeneities exist and obscure the scattering signals from

the fractures. In the next two examples, we show the scatterings from fractures embedded

in a layered model and a modified Marmousi model. For the layered model as shown in

Fig. 8, we placed 12 randomly distributed fractures, four of which cross each other within

the same artificial boundaries. The densities for the three layers from top to bottom are

2000 kg/m3, 2200 kg/m3, 2500 kg/m3, respectively. The compliance of each fracture is

5×10−10m/Pa. Fig. 9 shows the incident waves (red) and the scattered waves (blue) at the

receivers. The incident waves refer to the response of the background medium to the source

excitation. We see clear direct arrivals and primary reflections from the layer interfaces,

while weak multiple reflections among the interfaces are difficult to observe. The scattered

waves (amplitudes amplified by ten times to show the details) arrive between the primary

reflections from interfaces, as expected. The scatterings from the fractures consist of single

scattering from tips of fractures, multiple scatterings among fractures, as well as multiple
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interactions between fractures and layer interfaces. The scattered waves show a coherent

pattern, e.g., similar waveforms are observed at different receivers with varying delay times.

We also placed 12 randomly distributed fractures in a modified Marmousi model (Fig.

10). The fractures have varying lengths and inclinations, but are with the same compliance

(5 × 10−10m/Pa). In an ideal case, our hybrid scheme requires homogeneity within the

boundary ΓFDM. Practically, if the medium heterogeneity is weak within ΓFDM and the

medium is approximately homogeneous, our hybrid scheme can still be applicable. The

incident waves show complex patterns due to the significant heterogeneities of the model,

and the signals arrived after 1 s are relatively weak, as shown in Fig. 11 (a). In comparison,

multiple scatterings from fractures reverberate between 0.6 s and 1.5 s. Though propagating

through the complex model, coherent patterns can still be observed in the scattered waves.

Figs. 11 (c) and (b) shows a typical incident waveform and a scattered waveform at a

receiver (‘diamond’ in Fig. 10). The maximum amplitude of the scattered wave is about 2

percent of that of the incident wave.

The amplitudes of the multiple scatterings decay with the increasing scattering orders,

and are negligible after the 5th iteration (Fig. 12). Also, the arrival times of the scattered

waves of different orders are monotonically delayed, since higher order scatterings take longer

time to propagate among fractures before arriving at the receivers. We also found that the

dominant energy spectrum shifts to higher frequency band with the increasing scattering

order, as higher frequency contents are scattered more strongly by the fractures.

V. CONCLUSION

In this paper, we proposed a hybrid method in the frequency domain to model the

SH wave scatterings from fractures embedded in a 2D heterogeneous medium by coupling

BEM and FDM through two artificial coupling boundaries. We also presented an iterative

scheme to account for the multiple scatterings between different sets of fractures including

the multiple interactions between fractures and surrounding medium heterogeneities. We
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showed the accuracy of our method by comparing the results with those from pure BEM.

The hybrid method can be applied to calculate scattering from fractures with arbitrary

geometries embedded in a complex heterogeneous medium. With the efficiency of our hybrid

method, it can potentially be used to perform Monte-Carlo simulations to characterize the

statistics of scattering signals from subsurface fracture networks.
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APPENDIX A: CONVERGENCE CONDITIONS OF THE ITERATIVE

SCHEME FOR THE MULTIPLE SCATTERINGS

In this section, we briefly discuss the convergence condition of the multiple scatterings

between different fractures, i.e., the Born series.

We start with a simple scenario of two fractures A and B embedded in a free homoge-

neous space. We can express Equations 7 and 8 in terms of







A Ab

Ba B













Ua
sca

U b
sca






=







ua
inc

ub
inc






(A1)

where A and B are the matrices that characterize the response of fracture A and B to an

external field, such as the incident field or the scattered field; Ab is a propagator matrix

(Green’s function) that propagates the response from fracture B to fracture A and vice

versa for Ba; Usca = [u] is displacement discontinuity on the surfaces of the fractures due to

the exnternal field. Since Ab and Ba can only be calculated numerically for a heterogeneous

medium, we can not solve Equation A1 directly and need the iteration scheme to account

the multiple interactions.

The first order Born scattered fields are

Ua
sca = A−1ua

inc

U b
sca = B−1ub

inc (A2)

where ua
inc and ub

inc are the incident field on fracture A and B, respectively. The second

order Born scattered fields are

Uab
sca = (A−1Ab)U

b
sca = (A−1Ab)B

−1ub
inc

U ba
sca = (B−1Ba)U

a
sca = (B−1Ba)A

−1ua
inc, (A3)

where Uab
sca originates from the scattering of fracture B (U b

sca), propagated through the

medium (Ab) and causing the response on fracture A (A−1). Similarly, the third Born
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scatterings are

Uaba
sca = (A−1Ab)U

ba
sca = (A−1Ab)(B

−1Ba)A
−1Ua

inc

U bab
sca = (B−1Ba)U

ab
sca = (B−1Ba)(A

−1Ab)B
−1U b

inc (A4)

by adding iteration factors A−1Ab and B−1Ba to the second order Born scattering. The next

order scattered field can also be calculated by adding the iteration factors to the scattered

field of the previous order. To guarantee the convergence of the multiple scattering series,

the spectral radii of the iteration factors (maximum absolute eigenvalue) needs to be smaller

than 124

max|λ(A−1Ab)| < 1

max|λ(B−1Ba)| < 1.

For a scenario of N fractures, we have
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(A5)

where Fii is the matrix that characterizes the response of fracture i to the external field and

Fij(i 6= j) is the propagator that propagates the response from fracture j to fracture i.

The first Born scattering for the ith fracture is

U i1
sca = F−1

ii U i
inc. (A6)

The second Born scattering for the ith fracture is

U i2
sca =

N
∑

j=1,j 6=i

(F−1
ii Fij)U

j1
sca =

N
∑

j=1,j 6=i

(F−1
ii Fij)F

−1
jj U j

inc (A7)

The third Born scattering for the ith fracture is

U i3
sca =

N
∑

j=1,j 6=i

(F−1
ii Fij)U

j2
sca. (A8)
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The higher order scattered fields can also be derived in the similar way.

To converge the multiple scatterings, the maximum absolute eigenvalue of the iteration

factors summation needs to satisfy

max|λ(
N
∑

j=1,j 6=i

(F−1
ii Fij))| < 1 (A9)

assuming that the first scattered field U i1
sca from each fracture is approximately the same. For

instance, max|λ(
∑N

j=1,j 6=i(F
−1
ii Fij))| is 0.46 in the second example with 4 inclined fractures

at 20Hz (Fig. 6). The Born series are converged after 5 iterations.
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