6 research outputs found

    heterogeneous public safety network architecture based on ran slicing

    Get PDF
    Efficient communications are of paramount importance to improve public safety (PS) operations allowing better coordination, higher situation awareness, lower response times, and higher efficiency during emergency. Consequently, the evolution of PS communication networks toward commercial broadband networks is widely well accepted. However, this evolution has to cope with several challenges, such as the provision of sufficient communication capacity, coverage, and resilience as well as deployment costs and efficient exploitation of radio resources. This has triggered the need of new architectural solutions. In this paper, we propose a heterogeneous network communication architecture where both infrastructures and spectrum are shared between PS and commercial operators thus reducing deployment costs and times, and addressing the main challenges of PS communications. The shared radio access network (RAN) is managed by means of network slicing and resources virtualization. The proposed architecture is based on a three-tier scheduler that allows to manage different network layers and different RAN slices. Numerical results derived by means computer simulations are provided in order to highlight the efficiency and flexibility of the proposed architecture in comparison with benchmark alternatives

    IEEE Access special section editorial: Mission critical public-safety communications: architectures, enabling technologies, and future applications

    Get PDF
    Disaster management organizations such as fire brigades, rescue teams, and emergency medical service providers have a high priority demand to communicate with each other and with the victims by using mission-critical voice and data communications [item 1) in the Appendix]. In recent years, public safety agencies and organizations have started planning to evolve their existing land mobile radio system (LMRS) with long-term evolution (LTE)-based public safety solutions which provides broadband, ubiquitous, and mission-critical voice and data services. LTE provides high bandwidth and low latency services to the customers using internet protocol-based LTE network. Since mission critical communication services have different demands and priorities for dynamically varying situations for disaster-hit areas, the architecture and the communication technologies of the existing LTE networks need to be upgraded with a system that has the capability to respond efficiently and in a timely manner during critical situations

    On the use of prioritization and network slicing features for mission critical and commercial traffic multiplexing in 5G Radio Access Networks

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The Public Protection and Disaster Relief (PPDR) sector is undergoing an important transition with the deployment of Mission Critical (MC) mobile broadband technology based on 3GPP standards, with multiple initiatives on-going worldwide for providing PPDR agencies with broadband communications capabilities. One common approach being adopted is the delivery of MC services together with commercial traffic over public mobile networks and the use of prioritization mechanisms to protect the MC connections in congestion situations. However, this approach leaves commercial traffic unprotected in front of a noncontrolled surge of MC traffic in specific cells since all resources would be allocated to serve this traffic. In this context, this paper proposes a solution to properly multiplex MC and commercial services with congestion protection for both types of services. The solution is based on the exploitation of the network slicing features brought into the new 5G standards. In particular, the paper describes how different slices can be parameterized in a 5G Radio Access Network (RAN) so that radio load guarantees can be established for each type of service. The proposed solution is evaluated in an illustrative scenario by means of simulations. Obtained results show the improvements in traffic isolation achievable by the slicing configuration when compared to the solution that only relies on prioritization mechanismsPeer ReviewedPostprint (author's final draft

    LMR and LTE for Public Safety in 700 MHz Spectrum

    Get PDF
    This paper presents a concise overview of current public safety communication networks known as LMR (Land Mobile Radio) and emerging LTE-(Long-Term Evolution-) based broadband public safety networks to be deployed in the 700 MHz band. A broadband nationwide network for public safety based on LTE is inevitable where shared or dedicated types of LTE-based public safety networks are possible. Current LTE services do not meet mission-critical requirements and several enhancements have been defined by 3GPP to address this in Releases 12 and 13. First responders are familiar with LMR and consider it to be a reliable technology with massive deployment everywhere. Therefore, it is expected that LMR will continue to exist alongside any new LTE-based broadband public safety network. Recent LTE releases (particularly Release 15) addressed the LMR-LTE interoperability issue and described comprehensive interworking facilities. New and upcoming features and services of LTE in Releases 14 and 15, such as mission-critical data, mission-critical video, and aerial user equipments, are also directly applicable to public safety. The paper endeavours to provide a quick yet meaningful review of all these issues. It also offers a look ahead at the new and rapidly advancing virtualization technologies, such as software-defined radio access network, and radio access network slicing, as enablers for future public safety networks

    Network Slicing Landscape: A holistic architectural approach, orchestration and management with applicability in mobile and fixed networks and clouds

    Get PDF
    Tutorial at IEEE NetSoft2018 - 29th June 2018 Montreal Abstract: A holistic architectural approach, orchestration and management with applicability in mobile and fixed networks and clouds Topics: Key Slicing concepts and history Slicing Key Characteristics & Usage scenarios & Value Chain Multi-Domain Network Function Virtualisation Review of Research projects and results in network and cloud slicing Open Source Orchestrators Standard Organization activities: NGMN, ITU-T, ONF, 3GPP, ETSI, BBF, IETF Industrial perspective on Network Slicing Review of industry Use Cases Network Slicing Challenges Concluding remarks of Network Slicing Acknowledgements & Reference

    Heterogeneous Public Safety Network Architecture Based on RAN Slicing

    No full text
    corecore