854 research outputs found

    ENERGY-AWARE OPTIMIZATION FOR EMBEDDED SYSTEMS WITH CHIP MULTIPROCESSOR AND PHASE-CHANGE MEMORY

    Get PDF
    Over the last two decades, functions of the embedded systems have evolved from simple real-time control and monitoring to more complicated services. Embedded systems equipped with powerful chips can provide the performance that computationally demanding information processing applications need. However, due to the power issue, the easy way to gain increasing performance by scaling up chip frequencies is no longer feasible. Recently, low-power architecture designs have been the main trend in embedded system designs. In this dissertation, we present our approaches to attack the energy-related issues in embedded system designs, such as thermal issues in the 3D chip multiprocessor (CMP), the endurance issue in the phase-change memory(PCM), the battery issue in the embedded system designs, the impact of inaccurate information in embedded system, and the cloud computing to move the workload to remote cloud computing facilities. We propose a real-time constrained task scheduling method to reduce peak temperature on a 3D CMP, including an online 3D CMP temperature prediction model and a set of algorithm for scheduling tasks to different cores in order to minimize the peak temperature on chip. To address the challenging issues in applying PCM in embedded systems, we propose a PCM main memory optimization mechanism through the utilization of the scratch pad memory (SPM). Furthermore, we propose an MLC/SLC configuration optimization algorithm to enhance the efficiency of the hybrid DRAM + PCM memory. We also propose an energy-aware task scheduling algorithm for parallel computing in mobile systems powered by batteries. When scheduling tasks in embedded systems, we make the scheduling decisions based on information, such as estimated execution time of tasks. Therefore, we design an evaluation method for impacts of inaccurate information on the resource allocation in embedded systems. Finally, in order to move workload from embedded systems to remote cloud computing facility, we present a resource optimization mechanism in heterogeneous federated multi-cloud systems. And we also propose two online dynamic algorithms for resource allocation and task scheduling. We consider the resource contention in the task scheduling

    Re-designing Main Memory Subsystems with Emerging Monolithic 3D (M3D) Integration and Phase Change Memory Technologies

    Get PDF
    Over the past two decades, Dynamic Random-Access Memory (DRAM) has emerged as the dominant technology for implementing the main memory subsystems of all types of computing systems. However, inferring from several recent trends, computer architects in both the industry and academia have widely accepted that the density (memory capacity per chip area) and latency of DRAM based main memory subsystems cannot sufficiently scale in the future to meet the requirements of future data-centric workloads related to Artificial Intelligence (AI), Big Data, and Internet-of-Things (IoT). In fact, the achievable density and access latency in main memory subsystems presents a very fundamental trade-off. Pushing for a higher density inevitably increases access latency, and pushing for a reduced access latency often leads to a decreased density. This trade-off is so fundamental in DRAM based main memory subsystems that merely looking to re-architect DRAM subsystems cannot improve this trade-off, unless disruptive technological advancements are realized for implementing main memory subsystems. In this thesis, we focus on two key contributions to overcome the density (represented as the total chip area for the given capacity) and access latency related challenges in main memory subsystems. First, we show that the fundamental area-latency trade-offs in DRAM can be significantly improved by redesigning the DRAM cell-array structure using the emerging monolithic 3D (M3D) integration technology. A DRAM bank structure can be split across two or more M3D-integrated tiers on the same DRAM chip, to consequently be able to significantly reduce the total on-chip area occupancy of the DRAM bank and its access peripherals. This approach is fundamentally different from the well known approach of through-silicon vias (TSVs)-based 3D stacking of DRAM tiers. This is because the M3D integration based approach does not require a separate DRAM chip per tier, whereas the 3D-stacking based approach does. Our evaluation results for PARSEC benchmarks show that our designed M3D DRAM cellarray organizations can yield up to 9.56% less latency and up to 21.21% less energy-delay product (EDP), with up to 14% less DRAM die area, compared to the conventional 2D DDR4 DRAM. Second, we demonstrate a pathway for eliminating the write disturbance errors in single-level-cell PCM, thereby positioning the PCM technology, which has inherently more relaxed density and latency trade-off compared to DRAM, as a more viable option for replacing the DRAM technology. We introduce low-temperature partial-RESET operations for writing ‘0’s in PCM cells. Compared to traditional operations that write \u270\u27s in PCM cells, partial-RESET operations do not cause disturbance errors in neighboring cells during PCM writes. The overarching theme that connects the two individual contributions into this single thesis is the density versus latency argument. The existing PCM technology has 3 to 4× higher write latency compared to DRAM; nevertheless, the existing PCM technology can store 2 to 4 bits in a single cell compared to one bit per cell storage capacity of DRAM. Therefore, unlike DRAM, it becomes possible to increase the density of PCM without consequently increasing PCM latency. In other words, PCM exhibits inherently improved (more relaxed) density and latency trade-off. Thus, both of our contributions in this thesis, the first contribution of re-designing DRAM with M3D integration technology and the second contribution of making the PCM technology a more viable replacement of DRAM by eliminating the write disturbance errors in PCM, connect to the common overarching goal of improving the density and latency trade-off in main memory subsystems. In addition, we also discuss in this thesis possible future research directions that are aimed at extending the impacts of our proposed ideas so that they can transform the performance of main memory subsystems of the future

    Constraint-Aware, Scalable, and Efficient Algorithms for Multi-Chip Power Module Layout Optimization

    Get PDF
    Moving towards an electrified world requires ultra high-density power converters. Electric vehicles, electrified aerospace, data centers, etc. are just a few fields among wide application areas of power electronic systems, where high-density power converters are essential. As a critical part of these power converters, power semiconductor modules and their layout optimization has been identified as a crucial step in achieving the maximum performance and density for wide bandgap technologies (i.e., GaN and SiC). New packaging technologies are also introduced to produce reliable and efficient multichip power module (MCPM) designs to push the current limits. The complexity of the emerging MCPM layouts is surpassing the capability of a manual, iterative design process to produce an optimum design with agile development requirements. An electronic design automation tool called PowerSynth has been introduced with ongoing research toward enhanced capabilities to speed up the optimized MCPM layout design process. This dissertation presents the PowerSynth progression timeline with the methodology updates and corresponding critical results compared to v1.1. The first released version (v1.1) of PowerSynth demonstrated the benefits of layout abstraction, and reduced-order modeling techniques to perform rapid optimization of the MCPM module compared to the traditional, manual, and iterative design approach. However, that version is limited by several key factors: layout representation technique, layout generation algorithms, iterative design-rule-checking (DRC), optimization algorithm candidates, etc. To address these limitations, and enhance PowerSynth’s capabilities, constraint-aware, scalable, and efficient algorithms have been developed and implemented. PowerSynth layout engine has evolved from v1.3 to v2.0 throughout the last five years to incorporate the algorithm updates and generate all 2D/2.5D/3D Manhattan layout solutions. These fundamental changes in the layout generation methodology have also called for updates in the performance modeling techniques and enabled exploring different optimization algorithms. The latest PowerSynth 2 architecture has been implemented to enable electro-thermo-mechanical and reliability optimization on 2D/2.5D/3D MCPM layouts, and set up a path toward cabinet-level optimization. PowerSynth v2.0 computer-aided design (CAD) flow has been hardware-validated through manufacturing and testing of an optimized novel 3D MCPM layout. The flow has shown significant speedup compared to the manual design flow with a comparable optimization result

    Improving Performance and Endurance for Crossbar Resistive Memory

    Get PDF
    Resistive Memory (ReRAM) has emerged as a promising non-volatile memory technology that may replace a significant portion of DRAM in future computer systems. When adopting crossbar architecture, ReRAM cell can achieve the smallest theoretical size in fabrication, ideally for constructing dense memory with large capacity. However, crossbar cell structure suffers from severe performance and endurance degradations, which come from large voltage drops on long wires. In this dissertation, I first study the correlation between the ReRAM cell switching latency and the number of cells in low resistant state (LRS) along bitlines, and propose to dynamically speed up write operations based on bitline data patterns. By leveraging the intrinsic in-memory processing capability of ReRAM crossbars, a low overhead runtime profiler that effectively tracks the data patterns in different bitlines is proposed. To achieve further write latency reduction, data compression and row address dependent memory data layout are employed to reduce the numbers of LRS cells on bitlines. Moreover, two optimization techniques are presented to mitigate energy overhead brought by bitline data patterns tracking. Second, I propose XWL, a novel table-based wear leveling scheme for ReRAM crossbars and study the correlation between write endurance and voltage stress in ReRAM crossbars. By estimating and tracking the effective write stress to different rows at runtime, XWL chooses the ones that are stressed the most to mitigate. Additionally, two extended scenarios are further examined for the performance and endurance issues in neural network accelerators as well as 3D vertical ReRAM (3D-VRAM) arrays. For the ReRAM crossbar-based accelerators, by exploiting the wearing out mechanism of ReRAM cell, a novel comprehensive framework, ReNEW, is proposed to enhance the lifetime of the ReRAM crossbar-based accelerators, particularly for neural network training. To reduce the write latency in 3D-VRAM arrays, a collection of techniques, including an in-memory data encoding scheme, a data pattern estimator for assessing cell resistance distributions, and a write time reduction scheme that opportunistically reduces RESET latency with runtime data patterns, are devised

    Thermal Management of Electronics and Optoelectronics: From Heat Source Characterization to Heat Mitigation at the Device and Package Levels

    Full text link
    Thermal management of electronic and optoelectronic devices has become increasingly challenging. For electronic devices, the challenge arises primarily from the drive for miniaturized, high-performance devices, leading to escalating power density. For optoelectronics, the recent widespread use of organic light emitting diode (OLED) displays in mobile platforms and flexible electronics presents new challenges for heat dissipation. Furthermore, the performance and reliability of increasingly high-power semiconductor lasers used for telecommunications and other applications hinge on proper thermal management. For example, small, concentrated hotspots may trigger thermal runaway and premature device destruction. Emerging challenges in thermal management of devices require innovative methods to characterize and mitigate heat generation and temperature rise at the device level as well as the package level. The first part of this dissertation discusses device-level thermal management. A thermal imaging microscope with high spatial resolution (~450nm) is created for hotspot detection in the context of diode lasers under back-irradiance (BI). Laser facet temperature maps reveal the existence of a critical BI spot location that increases the laser’s active region temperature by nearly a factor of 3. An active solid-state cooling strategy that could scale down to the size of hotspots in modern devices is then explored, utilizing energy filtering at carbon nanotube (CNT) junctions as a means to provide thermionic cooling at nanometer spatial scales. The CNT cooler exhibits a large effective Seebeck coefficient of 386μV/K and a relatively moderate thermal conductivity, together giving rise to a high cooling capacity (2.3 × 106 W/cm2). Thermal management at the package level is then considered. Heat transfer in polymers is first studied, owing to their prevalence in thermal interface materials as well as organic devices (e.g., OLEDs). Employing molecular design principles developed to engineer the thermal properties of polymers, molecular-scale electrostatic repulsive forces are utilized to modify chain morphologies in amorphous polymers, leading to spin-cast films that are free of ceramic or metallic fillers yet have thermal conductivities as high as 1.17 Wm-1K-1, which is approximately 6 times that of typical amorphous polymers. Electronics packaging designs incorporating phase change materials (PCMs) are then considered as a means to mitigate bursty heat sources; PCM incorporation in a packaged accelerator chip intended for large-scale object identification is found to suppress the peak die temperature by 17%.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/150013/1/chenlium_1.pd
    • …
    corecore