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ABSTRACT OF DISSERTATION

ENERGY-AWARE OPTIMIZATION FOR EMBEDDED SYSTEMS WITH CHIP
MULTIPROCESSOR AND PHASE-CHANGE MEMORY

Over the last two decades, functions of the embedded sydtanesevolved from sim-
ple real-time control and monitoring to more complicatedvees. Embedded systems
equipped with powerful chips can provide the performaneg tomputationally demand-
ing information processing applications need. Howevee wuthe power issue, the easy
way to gain increasing performance by scaling up chip fraqgigs is no longer feasible.
Recently, low-power architecture designs have been the trema in embedded system
designs.

In this dissertation, we present our approaches to attazletiergy-related issues in
embedded system designs, such as thermal issues in tiehiBDnultiprocesso(CMP),
the endurance issue in tpbbase-change memdBCM), the battery issue in the embedded
system designs, the impact of inaccurate information inextdbd system, and the cloud
computing to move the workload to remote cloud computingifess.

We propose a real-time constrained task scheduling methditice peak temperature
on a 3D CMP, including an online 3D CMP temperature predictiodehand a set of algo-
rithm for scheduling tasks to different cores in order to imize the peak temperature on
chip. To address the challenging issues in applying PCM iregltied systems, we propose
a PCM main memory optimization mechanism through the utibraof the scratch pad
memory(SPM). Furthermore, we propose an MLC/SLC configurationmojgtion algo-
rithm to enhance the efficiency of the hybrid DRAM + PCM memorg &0 propose an
energy-aware task scheduling algorithm for parallel cotingun mobile systems powered
by batteries.

When scheduling tasks in embedded systems, we make the $olgestkcisions based
on information, such as estimated execution time of taskerdfore, we design an evalua-
tion method for impacts of inaccurate information on thetgse allocation in embedded
systems. Finally, in order to move workload from embeddestiesyis to remote cloud com-
puting facility, we present a resource optimization megarn heterogeneous federated
multi-cloud systems. And we also propose two online dynaafgorithms for resource
allocation and task scheduling. We consider the resounaienton in the task scheduling.

KEYWORDS: Embedded system, CMP, memory, battery, cloud caimgpu
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Chapter 1 Introduction

Over the last two decades, functions of embedded systenesgvalwed from simple real-
time control and monitoring to more complicated servicamimg on smartphones, such
as multi-media streaming, on-line shopping, and bankingb&dded systems have high
influence on both the system industry and our daily life. Edaeel systems equipped with
powerful chips, such as multi-core processors, high-dapatemories, and high-speed
I/O interfaces, can provide the performance that compartatly demanding information
processing application need. Designs from Nvidia alreaeilemonstrated the power of
a quad-core processor for smartphones.

Meanwhile, computer architectures have been evolved lsapidhe last five decades,
in terms of computational power and architecture comp}exitanks to the fast develop-
ment of semiconductor fabrication techniques. The trémsdensity doubles every eigh-
teen months. However, due to the power issue, the easy wayrtangreasing performance
by scaling up chip frequencies is no longer feasible. Regdoth-power architecture de-
signs have been the main trend in computer architecturamgseespecially in embedded
system designs.

The major energy consuming components in embedded systentiseaprocessor and
the memory. Therefore, extra research efforts should bheskxton the energy-aware opti-
mization in processors and memory architectures in emloesiglgems. Meanwhile, since
most of the embedded systems, such as wireless sensors aild davices, are powered
by batteries, the battery-aware optimization is anothethotin low-power embedded

system designs.



1.1 Power related issues in the embedded system architeceur

Chip multiprocessor§CMP) have been widely used in Embedded Systems due to tremen-
dous computation requirements in the modern embeddedgsioge The primary goals
for microprocessor designers are to increase the integratensity and achieve higher
performance without correspondingly increases in frequeHowever, traditionatwo di-
mensiona(2D) planar CMOS fabrication processes are poor at commitiniciatency and
integration density. Thtéhree dimensiongl3D) CMOS fabrication technology is one of the
solutions for faster communication and more functionaditon chip. More functional units
can be implemented while stacking two or more silicon layers CMP. Meanwhile, the
vertical distance is shorter than the horizontal distanca multi-layer chip![l, 2], which
makes the systems more tight. The concern with regard tortkehip temperature is in-
creasing in CMP design. Higher power consumption leads todnign-chip temperature.
Meanwhile, high on-chip temperature impacts circuit taligy, energy consumption, and
system cost. Research shows that a 10 t@€Clifcrease of operation temperature reduces
the lifetime of the chip by half [3].

Memory architecture is another key track in low-power enusetlsystem designs. In
the last three decades, dynamic RAM (DRAM), as the major teglenof the main mem-
ory, has become one of the primary energy consuming pafteambedded systemsl([4,5].
For example, 2GB of DRAM consumes 3W to 6W, which is equivaterihe total power
consumption of the Atom processor [6]. Meanwhile, it has &lsen reaching its scalabil-
ity limits [7]. As the memory demands of applications keegré@asing, the size of DRAM
equipped in a system needs to be larger and larger. HoweRR&kMrequires some spe-
cific architecture solutions to address some drawbacksdsgileThese specific architecture
solutions cause extra costs that are the major reason ofatehdity limit in DRAM.

Phase-change memory (PCM) is emerging as a promising DRAKhattee technique,
featuring many attractive advantages, such as high densityvolatility, positive response

to increasing temperature, zero standby leakage, andlextcstalability [5, 8=11]. PCM



switches its chalcogenide material between the amorphuodishe crystalline states. De-
tecting the resistances of different states, data is siarB€M devices. The application of
heat that is required by the switch between states can bédpbby using the electrical
pulses. Researchers have stated that PCM has more robusilggdi@ayond 40 nm than

DRAM does [12]. And a 32-nm device prototype has been dematest{13].

Even though PCM is alternative to DRAM as the main memory, laffpets are needed
to surmount the disadvantage of PCM. PCM access latenciesciallp in writes, are
slower than those of DRAM. In the read access, PCM is 2x-4x sltwaan DRAM. More-
over, PCM displays asymmetric timings for reads/writes,ctmeans writes in PCM need
5x-10x more time than reads do. Due to the fact that phasegelsan PCM are induced
by injecting current into the chalcogenide material andihgat, writes are the primary
wear mechanism and the most energy-consuming mechanisra PGM. The number of
writes performed before the cell is not able to perform t#iaanges from10® to 10°.
Writes in PCM limits both the performance and the lifetime of PQMerefore, reducing
the number of writes can both increase the lifetime of the PQM decrease the energy
consumption in the memory architecture.

Another attracting property of PCM is that multiple bits candiored in one single
PCM cell, calledVulti-Level Cell(MLC). PCM can provide four times more density than
DRAM [10]. Recently, several studies [8,14-+16] have advat&tethe MLC PCM mem-
ory architecture. The difference of resistance betweenwbestates of the chalcogenide
material is usually 3 orders of magnitude [16]. By preciselding this gap into several
levels, one PCM cell can store more than one bit data. Theretbe scalability of the
PCM memory is four times higher than that of DRAM.

When the MLC technique can enhance the scalability of the PChaong this im-
provement comes at a high price. The degradation of perfmceand endurance of the
PCM memory as well as the increase in energy consumption amndjor drawbacks of

the MLC techniques [16]. As the number of bits stored a siftflV cell increases, the



number of levels divided in this cell increases exponegtiaFor example, a 4 bits/cell
MLC has total sixteen levels of resistance values. In th&ecdue to the 8 times smaller
resistance difference between two consecutive levels,ra precise resistance detection
method is required in this MLC, compared to the one used isitige-level cel(SLC). In
the write operation in the MLC, the “program and verify” prdcee is applied repeatedly
until the resistance is programmed correctively in thedttgvel [4]14]. The repeated
programming current pulses in the “program and verify” eahgh power consumption
in the PCM memory. In addition, these repeated pulses applidte MLC make the al-
ready poor endurance of the PCM memory even worse [16]. TheStC PCM provides
higher performance with less power consumption and lonfgtinhe, while the MLC PCM
enhances the memory capacity without increasing the nuofli@€M cells.

Due to the increasingly energy consuming processor and myamthe embedded sys-
tem, the lifetime of battery in the embedded system has @&sorhe a significant challenge
in the embedded system design. In the recent two decadasctkase of processor speed
is much bigger than the increase of energy density of batfdrghe distributed embedded
system point of view, scheduling tasks across differentexidbd devices with the consid-
eration of battery behaviors can provide the balance betweeperformance of the whole
system and the lifetime of the battery in different embeddiedces.

When scheduling tasks in embedded systems, we make the $olgegtkcisions based
on information, such as estimated execution time of tasksvever, when estimated task
execution time is calculated by using inaccurate inforomgtiestimated tasks execution
times may be different from actual ones. Therefore, degssgenerated by estimated task
execution times may not be robust and the resource alloc@&ioot able to guarantee
the given level ofQuality of ServiceQoS. Therefore, we need to measure thedtapd
inaccurate information on the robustness of the system.

Another approach to reduce the energy consumption of englokesigstems is to move

computation tasks to remote computing facilities. Cloud potimg is a promising method,



in which energy constrained embedded systems rent virtaehmes from cloud providers
or data centers. The energy constrained embedded systgy swrks as a terminal, and
virtual machines in the remote cloud provider are rentecttaoaly execute tasks. In this
case, the embedded system, as a terminal, does not requigrefecant amount of energy.
And a number of virtual machines can be rented based on thpuwatonal demand of
tasks. As embedded systems are widely used in various ftekelslemand of cloud com-
puting for embedded systems may increase exponentialgrefore, the resource capacity
of a single cloud provider may not be enough when a number beeated system clients
submit their tasks to the cloud. Thus, to collaborate moaa tne cloud in a cloud plat-
form, we need to investigate the resource allocation mastraim multi-cloud platform

and provide optimization methods for the cloud services.

1.2 Contributions

In this dissertation, we present our approaches to attasigegsrelated issues in embedded
system designs, such as thermal issues in the 3D CMP chipraraduissues in PCM, the
battery issue in the embedded system design, the impacaotumate information in em-
bedded system, and the cloud computing to move the worktoezhtote cloud computing

facilities. The contributions are listed as the following:

e \We propose a real-time constrained task scheduling methatitice peak tempera-
ture on a 3D CMP. First of all, we develop an online 3D CMP temipeegprediction
model. Based on this model, we further design a set of algostfor scheduling

tasks to different cores in order to minimize the peak teraoee on chip.

e We propose a PCM main memory optimization mechanism thrdughtilization of
the Scratch Pad memor{&PM). The SPM is a small size on-chip memory mapped
into the memory address space disjoint from the off-chip wmnsuch as the PCM

main memory. We design dnteger Linear Programmin{JLP) algorithm for schedul-



Ing memory activities among the SPMs and the PCM main memogut ILP algo-
rithm, unnecessary writes are eliminated. Instead, the cigties are shared among

the SPMs.

We propose an MLC/SLC configuration optimization algorittorehhance the ef-
ficiency of the hybrid DRAM + PCM memory. Embedded systems asiggded to
execute specific applications. Optimizing the PCM configarabased on the char-
acteristics of applications can further enhance the effayieof the main memory in
embedded CMP systems. We present a set of algorithms for éskhstheduling
and MLC/SLC PCM mode configuration.

We further propose a energy-aware task scheduling algoffidh parallel computing
in mobile systems powered by batteries. With a model of batehaviors, we
develop a energy-aware task scheduling algorithm to opéithie performance while

satisfying the lifetime constraint of batteries.

We design an evaluation method for impacts of inaccurat@nmition on resource
allocation in embedded systems. We propose a systematicofvaneasuring the
robustness degradation and evaluate how inaccurate plibbglarameters affect
the robustness of resource allocations. Furthermore, wgare the performance
of three widely used greedy heuristics when using the inateunformation with

simulations.

We present a resource optimization mechanism in heterogenederated multi-
cloud systems. And we also propose two online dynamic dlyos for resource
allocation and task scheduling. We consider the resouroéention in the task

scheduling.



1.3 Outline

The rest of the dissertation is organized as follows: Chdptpropose an online ther-
mal prediction model for 3D chips. Novel task schedulingoaliipms based on rotation
scheduling is proposed to reduce the peak temperature pn ichChaptef 3, we present
the SPM based memory mechanism and an ILP memory activitiesdslling algorithm to
prolong the lifetime of the PCM memory in embedded systemsalét design four opti-
mization algorithms for embedded systems equipped wittiMh€/SLC PCM + DRAM
hybrid memory in Chaptér 4. In our proposed algorithms, weondt schedule and assign
tasks to cores in the CMP system, but also provide a hybrid meoamfiguration that bal-
ances the hybrid memory performance as well as the effici€@ltgptef b discusses battery
behaviors in embedded systems. We present a systemageorsysidel for task schedul-
ing in embedded system equipped with Dynamic Voltage SgdIVS) processors and
energy harvesting techniques. We propose the three-plygséltans to obtain task sched-
ules giving shorter total execution time while satisfyihg tifetime constraints. Chaptéer 7
proposed a resource optimization mechanism in heterogsrfederated multi-cloud sys-
tems and two online dynamic algorithms for resource aliocaand task scheduling. We
discuss how inaccurate probability parameters affectdbastness of resource allocations
in the distributed embedded system network in Chdgter 6. \&dpgze a systematic way
of measuring the robustness degradation and comparingetti@rmance of three widely
used greedy heuristics when using the inaccurate infoomatith simulations. We con-

clude this dissertation in Chapfér 8.



Chapter 2 Thermal-Aware Task Scheduling in CMP

Chip multiprocessor (CMP) techniques have been implementecthbedded systems due
to tremendous computation requirements. The three-dioer{8D) CMP architecture
has been studied recently for integrating more functidiealeand providing higher perfor-
mance. The high temperature on chip is a critical issue fer3 architecture. In this
chapter, we propose an online thermal prediction model BbcBips. Using this model,
we propose novel task scheduling algorithms based on tagantscheduling to reduce the
peak temperature on chip. We consider data dependengiesi@dy inter-iteration depen-
dencies that are not well considered in most of the curresrhial-aware task scheduling
algorithms. Our simulation results show that our algorghoan efficiently reduce the peak

temperature up to 8:C.

2.1 Introduction

Chip multiprocessor6CMP) have been widely used Embedded Systems for Interactive
Multimedia Service{ES-IMS) due to tremendous computation requirements inemod
embedded processing. The primary goals for microprocesssigners are to increase the
integration density and achieve higher performance witltcouespondingly increases in
frequency. However, traditionalvo dimensiona(2D) planar CMOS fabrication processes
are poor at communication latency and integration denditye three dimensiona(3D)
CMOS fabrication technology is one of the solutions for fasmmunication and more
functionalities on chip. More functional units can be impknted while stacking two or
more silicon layers in a CMP. Meanwhile, the vertical dis@rscshorter than the horizontal
distance in a multi-layer chip [1} 2], which makes the systenore tight.

In CMPs, high on-chip temperature impacts circuit reliagjailenergy consumption, and

system cost. Research shows that a 10 t&€Clibcrease of operation temperature reduces



the lifetime of the chip by half [3]. The increasing temperatcauses the leakage current
of a chip to increase exponentially. Also, the cooling costéases significantly, which
amounts to a considerable portion of the total cost of thepeger system. The 3D CMP
architecture magnifies the thermal problem, due to the Fadtthe cross-sectional power
density increases linearly with the number of stackedaililayers, causing more serious
thermal problems.

To mitigate the thermal problenfQynamic Thermal ManagemefibTM) techniques,
such asDynamic Voltage and Frequency ScalifigVFS), have been developed at the ar-
chitecture level. When the temperature of the processogisehnithan a threshold, DTM
can reduce the processor power and control the temperdttive processor. With DTM,
the system performance is degraded inevitably. Anothertevayleviate the thermal prob-
lem of the processor is to use the operation system level dalkkduling mechanism.
They either arrange the task execution order in a desigmatather, or migrate “hot”
threads across cores to achieve thermal balance. Howewst,ahthese thermal-aware
task scheduling methods focus on independent tasks or veghksut inter-iteration de-
pendencies. Applications in modern ES-IMS often consist nbimber of tasks with data
dependencies, including inter-iteration dependencibsréfore, it is important to consider
the data dependencies in the thermal-aware task scheduling

In this chapter, we propose real-time constrained taskdsdimg algorithms to reduce
the peak temperature in the 3D CMP. The proposed algorithenbased on the rotation
scheduling[[1[7], which optimizes the execution order ofatefent tasks in a loop. The

main contributions of this chapter include:
1. We present an online 3D CMP temperature prediction model.

2. We also propose task scheduling algorithms to reduce éa& femperature. The
data dependencies, especially inter-iteration depemeeircthe application are well

considered in our proposed algorithms.



The organization of this chapter is as follows. In Seclidh e discuss works related
to this topic. Then, models for task scheduling in 3D CMPs aesgnted in Sectidn 2.3.
A motivational example is given in Sectibn P.4. We proposeabgorithms in Sectioh 215,

followed by experimental results in Section]2.6. Finallgc8on2.¥ conclude the chapter.

2.2 Related work

Energy-aware task scheduling has been widely studied ifiténature. Weiser et al. first
discussed the problem of task scheduling to reduce the ggocenergy consumption in
[18]. An off-line scheduling algorithm for task schedulingth variable processor speeds
was proposed in [19]. But tasks considered in these papemsdependent tasks. Authors
in [20] proposed several schemes to dynamically adjust tbegssor speed with slack
reclamation based on the DVS technique. A scheme for theepsot speed management
at branches was presentedin/[21] based on the ratio of tge$dpath to the taken paths for
the branch statement to the end of the program. Howevertuilés above only consider
the uniprocessor system.

Recently, energy reduction has become an important issuarall@ systems. Re-
search in[[22, 23] focused on heterogeneous mobile ad hdegvironments. Authors in
those works studied the static resource allocation for gipéi@ation composed of commu-
nicating subtasks in an ad-hoc grid. However, the goal oatleeation in those works is to
minimize the average percentage of energy consumed by fhieapon to execute across
the machines, while meeting an application execution tiorestraint. This goal may lead
to some cases in which some machines may consume much mogy émen the others,
even though the average consumption is minimized. The¥efpproaches proposed in
those works cannot guarantee the satisfaction of the textyrerconstraint.

Authors in [24] proposed two task scheduling algorithmsdorbedded system with
heterogeneous functional units. One of them is optimal dedather is near-optimal

heuristic. The task execution time information was stotibally modeled. In[[25], the

10



authors proposed a loop scheduling algorithm for voltagggasent problem in embed-
ded system. The researchlin[26] focused on modeling taskigre time as a probabilistic

random variable. Two optimal algorithms, one for unipremesand one for multiprocessor
system, were presented to solve the voltage assignmenpraitfability problem. The goal

of these algorithms is to minimize the expected total eneanysumption while satisfying

the timing constraint. However, none of them consider tlaissues on processors.

In chip design stage, several techniques are implementdtidamal-aware optimiza-
tion. Authors in [27, 28] proposed different thermal-awo®rplanning algorithms. For
floorplanning on 3D chips, several other approaches areopeaprecently [29-32]. The
authors in[[33] proposed the controlliignin-Film Thermoeletric coolingTFTECS) from
the microarchitecture for an enhanced DTM in multi-corendectures. Research in [34]
focuses in improving the efficiency of heat removal.

Job allocation and scheduling is another approach to re@negerature on-chip. Sev-
eral temperature-aware algorithms were presented in B}5e¢ently. The Adapt3D ap-
proach in [37] assigns the upcoming job to the coolest coractoeve thermal balance.
The method in[[41] is to wrap up aligned cores into super cdigen the hottest job is
assigned to the coolest super core. The power and thermagearent framework is pro-
posed in[[38] for memory subsystem. In [39], a thermal manege scheme incorporates
temperature prediction information and runtime worklobhdracterization to perform effi-
cient thermally aware scheduling. A scheduling schemedasanathematic analysis is
proposed on [40]. Authors in_[42] present a slack selectigorahm for thermal-aware
dynamic frequency scaling. But none of these approachesdayaslata dependencies in

an application.

11
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Figure 2.1: Thermal model for the 3D chip. (a) A Fourier thafmodel of a single block.
(b) The cross sectional view of a 3D chip. (c) The horizontal gertical heat model, where
theC,; to Cy3 are the IDs of the six cores in this example, Reto R, are the vertical heat
conductances, anfl; to R; are the horizontal heat conductances. (d) The correspgndin

Fourier thermal model.
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2.3 Model and Background

Thermal model

The Fourier heat flow analysis is the standard method of mugiéleat conduction for
circuit-level and architecture-level IC chip thermal aysa [40]. It is analogous to George
Simon Ohm'’s method of modeling electrical current. A basaarier model of heat con-
duction in a single block on a chip is shown in Fig.12.1(a). histmodel, the power
dissipation is similar to the current source and the amlignperature is analogous to the
voltage source. The heat conductance of this block is aflfin@ation of conductivity of its
material and its cross-sectional area divided by its lenlitis equivalent to the electrical
conductance. And the heat capacitance of this block is gnakto the electrical capaci-
tance. Assuming there is a block on a chip with heat parametshown in Fid. 211(a).

The Fourier heat flow analysis model is

(2.1)

C'is the heat conductance of this blodK(t) is the temperature of that block at time
T, 1S the ambient temperatur®, is the power dissipation, anfl is the heat resistance.

By solving this differential equation, we get the temperatoirthat block as follows:

T(t) =P X R+ Ty — (P X R+ Typmpy — Tiniz)e ' EC (2.2)

T;,:: is the initial temperature of that block.
Considering there is a tagkrunning on this block and the corresponding power con-
sumption isP,, we can predict the temperature of the block by equalion).(28suming

that the execution time af is t,, we get the temperature of the block wheis finished:
T(ta) = Pa X R + Tamb - (Pa x R + Tamb - T‘im't)eita/RC (23)

When the execution of tagkgoes infinite, the temperature of this block reaches a stable
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state,T,, which is shown as follows:
Tss = Pa x R+ Tamb (24)

Substituting equation (2.4) in equation (2.3), we can getl@mnative way of predicting

the finish temperature of taskrunning on that block:
T(te) = (Tus — Tinit) (1 — e/ FO) + Ty (2.5)
We can further simplify equatiof (2.5) as follows:
T(tq) = (Tos — Tinit) (1 — €7") + Tipgy (2.6)

whereb = 1/RC.

The 3D CMP and the core stack

A 3D CMP consists of multiple layers of active silicon. On edayer, there exist one
or more processing units, which we call cores. Eigl 2.1(losha basic multi-layer 3D
chip structure. A heat sink is attached to the top of the abipetnove the heat from the
chip more efficiently. The horizontal lateral heat condactais approximately 0.4 W/K
(i.e. “R,” in Fig. 2.1(c)), much less the conductance between twadoadly aligned cores
(approximately 6.67 WI/K, i.e. Ry” in Fig. 2.1(c)) [40]. The temperature values of verti-
cally aligned cores are highly correlated, compared withttmperatures of horizontally
adjacent cores.

Therefore, for the online temperature prediction modebugseour scheduling algo-
rithms, we ignore the horizontal lateral heat conductahee that, even though we ignore
this heat conductance in our model, the simulator used irxperiment is a general ther-
mal simulator that considers both the horizontal laterait lmenductance and the vertical
conductance. The efficiency of our low-computation modéésted through this general
thermal simulator in our experiment. We call a set of velycaligned cores as aore

stack Cores in a core stack are highly thermal correlated. The teigiperature of a core
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caused by heavy loading will also increase the temperatdii@ser cores in the core stack.
For cores in a core stack, the distances from them to the imkadr® different. Considering
a numbetrk of cores in a core stack, where cdres the furthest from the heat sink and core
1 is the closest to the heat sink; the stable state temperatuhe corej (7 < k) can be

calculated as,

J k
) =Y P xR)+ Tum (2.7)

=1 =i
where/F, is the power consumption of the carand R; is the inter-layer thermal conduc-

tance between corés- 1 andi (see Fig[ Z11(d)).
In order to predict the finish temperature of taskunning on corej online, we ap-
proximate this finish temperatutg (¢,) by substituting equation_(2.7) in equatidn (2.5)

as

J

Z ZPl X R;) + Tomp — Tinit )

=1 [=i

(1 ta/R] ) + Enzt _J (28)

Application model

A Data-Flow Graph(DFG) is used to model an embedded system application. A DFG
typically consists of a set of verticés, each of which represents a task in the application,
and a set of edge’s, showing the dependencies among the tasks. The eddgec®ttains
edgese;; for each task; € V that taskv;, € V depends on. The weight of a vertex
represents the task type of taiskn our model, the number of tasks may be larger than the
number of task types. And the tasks with the same task type thawsame execution time.
Also the weight of an edge; means the size of data which is producedpgind required
by v;.

We use a cyclic DFG to represent a loop of an application is ¢chapter. In a cyclic

DFG, a delay functioni(e;;) defines the number of delays for edge. For example,
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assumingli(e,,) = 1 is the delay function of the edge from tasko b, which means the
taskb in the ™ iteration depends on the tagkn the (i — 1) iteration. In a cyclic DFG,
edges without delay represent the intra-iteration datzggncies, while the edges with
delays represent the inter-iteration dependencies. Ampbeaof a cyclic DFG is shown in
Fig.[2.2(a) where one delay is denoted as a bar. There is-gimeaktonstraint., which

is the deadline of finishing one period of the application.gémerate a schedule of tasks
in a loop, we use the statdirect acyclic grapKDAG). A static DAG is a repeated pattern
of an execution of the corresponding loop. For a given cyBkS, a static DAG can be
obtained by removing all edges with delays.

Retiming is a scheduling technique for cyclic DFGs consitginter-iteration depen-
dencies|[17]. Retiming can optimize the cycle period of aicyDlFG by distributing
the delays evenly. For a given cyclic DRG, the retiming function-(G) is a function
from the vertices seV’ to integers. For a vertex,; of G, r(u;) defines the number of
delays drawn from each of the incoming edges of nedand pushed to all of the outgo-
ing edges. Let a cyclic DF@:, be the cyclic DFG retimed by(G), then for a edge;;,
d.(e;;) = d(eij) + r(v;) — r(v;), whered,(e) is the new delay function of edge; after

retiming andd(e;;) is the original delay function.

Energy model

We consider the CMP in which each core is featuring the DVF8&riegie. In order to
reduce the energy consumption, the DVFS technique joirttyehses the processor speed
and the supply voltage. Research [in][43] shows that the dezr@aprocessor voltage
causes nearly linear increase in execution time and appeigly quadratic decrease in
energy consumption. Without loss of generality, we assuraedach core has three DVFS
modes, denoted ds, L, andLs, respectively.L; has the slowest frequency and the lowest
supply voltage, while thé ; has the fastest frequency and the highest supply voltagie. No

that our approach is general enough for the number of DVFSesadger than four. Our
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algorithms are not limited by the assumption of the DVFS nsadembers in the system.

Assume we know the power consumption and the execution tird€ferent tasks run-
ning on different cores. We use a two-dimensional maiifxto represent this information.
We assume the CMP system has heterogeneous cores, which iis general assumption
compared to the homogeneous CMP. When applying our approatie ihnomogeneous
CMP system, we only need to set execution time of a given taglery core as the same.
There are two values in each entry of thé matrix, one is execution time and the other
is power consumption. For exampte,; = {e;;, p;;} iS one entry of theZ P matrix. e;; is

the execution time of taskrunning on corg, while p;; is the power consumption.

2.4 Motivational Example

An example of task scheduling in CMP

We first give an example of task scheduling in a multi-corg@pchiVe schedule an applica-
tion (see Fig._2J2(c)) in a two-core embedded system. A D@Besenting this application
is shown in Figl.2.2(a). There are two different cores in @yet. The execution times)(
and the stable state temperaturés) of each task in this application running on different
cores are shown in Fig.2.2(b). For simplicity, we provide $itable state temperatures in-
stead of power consumptions in this example, and we asswnathe of b (see equation
(2.8)) in each core is the same: 0.025. We also assume tlie teinperatures and the

ambient temperatures are°&D

List scheduling solution

We first generate a schedule through the list-schedulingrighgn. Fig.[2.8(b) shows a

static DAG, which is transformed from the DFG (see [Eigl 236y removing the delay

edge. For the DAG of this example, we can get the assigningras{ A, B, C, D, E}. For

a task, we can calculate the peak temperatures when it isitexeon different cores based

on equation[(2]5). Then tasks are assigned in a specific trde core that can finish it

17



P1 P2
o Task

t [Tss| t |Tss| [for(i=2;i<N;i++) {

e e A | 95|84 |65]|92]| |Alil=TaskA(E[i-2]);
B (70|80 |60 |78]| |Bli]=TaskB(A[i]);
Cc |e60]95]|65]|82] |Cl[il=TaskC(A[i]);
Q D |80|82]80]|70]| |DIi]=TaskD(BIi],C[i]);
() = {50 7575 s |ElI=TaskE(CIDIl)})

(a) (b) (c)

Figure 2.2: An example of task scheduling in a multi-corgclia) The DFG of an appli-
cation. (b) The characteristics of the tasks. (c) The pseode of this application.

at the coolest temperature. In the list scheduling, a tasiigaisg order is generated based
on the node information in the DAG, and the tasks are assigméte “coolest” cores in
that order. A schedule is generated as Fig. 2.3(c). With ¢uaton [2.5), we can get the
peak temperature of each task as Figl 2.3(d). Task A has ghesti peak temperatures in
the first two iterations. In the first iteration, task A staatshe temperature of 3¢ and
ends at the temperature of 80284 In the second iteration, task A starts immediately after
the first iteration of task E finishes, which means it starthattemperature of 67.8G.
Since it has a higher initial temperature, the peak tempexg82.50C) in this iteration is

higher.

Our solution

Our proposed algorithm uses rotation scheduling to funth@uce peak temperature. From
the schedule in Fig. 2.3(c), we can find that Task A is the fask$ executed in core PO,
and Task A has inter-iteration data dependency with Task thi$ case, we can implement
the rotation scheduling and Task A is the proper candidateotation. In Fig[2.4(a), we
transform the original DFG into a new DFG by moving a delayrfredgee 4 to edges
eap andesc. The new corresponding static DAG is shown in Figl 2.4(b).this new
DAG, there are two parts: node A and the rest nodes. There gependency between

node A and the rest nodes. The new pseudo code of this new Dét@um in Fig[2.4(c),
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3 ¢

() (b)

_ PO P Task Peak temperature
time Iteration 1|Iteration 2
task| Temperature |task [ Temperature

0~95 | A | 50~80.84 | ID 50 A | 8084 | 82.50
95~155 B | 50~71.75 | | B | 7175 | 71.88
155~220| ID | 80.84~50.18 | C |71.75~79.98| | C | 7998 | 80.01
220~300 D |79.98~71.35 D | 7135 | 7135
300~350| E |50.18~67.89| ID |71.35~56.11 E | 67.89 | 67.89

(©) (d)

Figure 2.3: List Scheduling in a multi-core chip. (a) The DEK The static DAG. (c) The
schedule generated by list scheduling. (d) The peak teryseréC) of each task.

where the operation “Afi+1]=TaskA(E[i-1]);” can be placadywhere in the loop, due to
its independence. More details of the rotation schedulmegsaown in Algorithni 27 of
Sectior 2.5.

In this case, we can first assign the dependent nodes (B to &rés with the same
policy used in the list scheduling. Tasks B, C and D are asdigmeore P1 at the time
slot of [0, 205]. And task E is scheduled to run on core PO abJ2®5]. In this partial
schedule, we discover that there are three time slots atwirccan schedule task A. One
is the idle gap of core PO at [0, 205], another is the time diatr dask E is done (time
255) on PO, and the last one is time slot after task D (time 203p1. Because the peak
temperature of task A is the lowest when running in the idle gfecore PO at [0, 205], this

time slot is selected. Task A runs after the last iteratiotask E, so the longer the idle gap
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between them, the cooler the initial temperature at whisk fastarts. Thus, we schedule
task A's starting time at 110. A schedule is shown in Eigl @4(n this schedule, the peak
temperature is 8C when task A is running in the second iteration (see [Eid.€3)4Our

approach reduces the peak temperature BYCl.Bloreover, the total execution time of one

iteration is only 255, while the total execution time geneftay list scheduling is 350.

A[2]=TaskA(E[0]),

u @ for(i=2,i<N-1;1++) {
Bli]=TaskB(A[i]):
Cli]l=TaskC(A[i]);
Ali+1]=TaskA(E[i-1]);
D[i]=TaskD(B]i],C[i]);
E[i]=TaskE(C[i].D[i]); }
Q o B[N]=TaskB(A[N]);
CIN]=TaskC(A[N]);
D[N]=TaskD(B[N],C[N]);
G e E[N]=TaskE(C[N],D[N]);
@ (b)

(©

" PO " P1 Task Peak temperature
Me ltask Temperature 'Me Ttask Temperature Iteration 1|Iteration 2

- 0~60 | B | 50~71.75 A | 80.84 | 81.00

S > 60~125| C |71.75~79.98 i 7175 7312
; : C 79.98 80.25

110~205| A | 50~80.04 [125~205( D |79.98~71.35| [ p | 7135 | 71.39
205~255| E [80.04~67.89/205~255[ ID |71.35~56.11 E | 7667 | 76.72

(d) (€)

Figure 2.4: Rotation Scheduling in a multi-core chip. (a) Tégmed DFG. (b) The new
static DAG. (c) The pseudo code of the retimed DFG. (d) Theduale generated by our
proposed algorithm. (e) The peak temperat€d ©f each task.

In the next section, we will discuss our thermal-aware tasieduling algorithm with

more details.

2.5 Thermal-aware task scheduling algorithm

In this section, we propose an algorithm, TARérmal-Aware Rotation Schedulngo

solvethe minimum peak temperature without violating real-tino@straints problemBy
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repeatedly rotating down delays in DFG, more flexible st2afs are generated. For each
static DAG, a greedy heuristic approach is used to generatbedule with minimum peak

temperature. Then the best schedule is selected amongibeuses generated previously.

The TARS Algorithm

Algorithm 2.1 The TARS algorithm
Input: A DFG, the rotation times R.
Output: A scheduleS, the retiming function-.
1: rot_cnt«+ O /*Rotation counter.*/
2. Initial Syin, Tminy PTmin, Tewr 1¥The optimal schedule, the according retiming func-
tion, the according peak temperature and the current negifiinction*/
3: while rot.cnt< Rdo
4:  Transform the current DFG to a static DAG
5. Schedule tasks with dependencies. /* using the PTMM algordr PTLS algorithm
*/
6: Schedule independent tasks, using the MPTSS algorithm
7. Scale the frequencies, using the PPS algorithm /* A scheflylefor the current
DFG is generated */
8: Getthe peak temperaturf&l,,, of the current schedule
9. if PT,, < PT,,, andS.,, meets the real-time constraien
10: Sm'm < Scur’ Tmin < Teur, Pl +— PT,,,
11: endif
12:  Use RS algorithm to get a new retiming functiqg,
13:  Get the new DFG based of,,
14:. R+ R+1
15: end while
16: Output theS,,in, Teur

In the TARS algorithm shown in Algorithin 2.1, we will try to @&tk the original DFG
by R times. In each rotation, we get the static DAG from thated DFG by deleting
the delay edges in DFG. A static DAG usually consists of twadki of tasks. One kind
of tasks are the tasks with dependencies, like the tasks B, @n®E in Fig[2.4(b).
The other kind of tasks are the independent tasks, like thle Aain Fig.[2.4(b). The
independent tasks do not have any intra-iteration relatibim other tasks. Below, we first
present two algorithms, the PTMM algorithm and the PTLS algm, to assign tasks with

dependencies.
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The PTMM algorithm

The Peak Temperature Min-Mi(PTMM) algorithm is designed to schedule the tasks with
dependencies. Min-Min is a popular greedy algorithm [44he Driginal Min-Min algo-
rithm does not consider the dependencies among tasks.fotesr@ the Min-Min baseline
algorithm used in this chapter, we need to update the addmgtask set in every step to
maintain the task dependencies. We define assignable tas&s the unassigned task
whose predecessors all have been assigned. Since the &unpsrof the cores in a core
stack are highly correlated in 3D CMP, we need to schedulestagtk consideration of
vertical thermal impacts. When we consider assigning afas& coreC;, we calculate
the peak temperatures of cores in the core stacK;afuring theZ; running onC;, based
on the equatiori(2]8).

Let 7)., (7, 7) be the maximum value of the peak temperatures in the corle. 3téten
we decide the assigning @f, we calculate all thd’,,,.(i,j), for j = every core. Due
to the fact that the available times and the power charatiesiof different cores in the
same core stack may not be identical, the peak temperattithe given core stack may
be various when assigning the same task to different corssotore stack respectively.
Let C,.;, be the core with minimurft,,,...(, 7). In each step in PTMM, we first find all the
assignable tasks. Then we will form a paif;, C,,.;,> for every assignable task. Only the
<T;, Cin> pair which gives the minimur,,,...(¢, j) will be assigned accordingly. And
we also schedule the start execution tim&pés the time when the predecessor& odre

done and coré€’,,;, is ready. The PTMM is shown as AlgoritHm 2.2.

The PTLS algorithm

The Peak Temperature List Scheduli(fTLS) algorithm is another algorithm that we use
to schedule the tasks with dependencies. In the PTLS, wdidirshe tasks in a priority
list considering the data dependencies (see the Algofitin BSome definition used in

the Task Listing(TL) algorithm is provided as following. ThE&arliest Start TImgEST)
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Algorithm 2.2 The PTMM algorithm
Input: A static DAGG, m different coresF P matrix.
Output: A schedule generated by PTMM.
1: Form a set of assignable tasks
2: while P is not emptydo
3: for t =everytaskinP do
4: for j = 1tom do
5 Calculate the peak temperatures of cores in the core stack aelssuming is
running onC;;. And find the minimum peak temperatuifg,,. (¢, j)
end for
Find the core’,,.;,,(t) giving the minimum peak temperaturg, .. (¢, j)
Form a task-core pair ast, C,,;,(t)>
end for
10: Choose the task-core pait,in, Cumin(tmin)> Which gives the minimum
Tmaw(t> Cmin (t>>
11:  Assign task,,;, to coreC,,;, (tmin)
12:  Schedule the start time @f,;, as the time when all the predecessors,pf, are
finished and’,,;, (tm:n) IS ready
13:  Update the assignable task g&t
14:  Update time slot table of coi@,,;, (t...») and the expected finish time of;,
15: end while

and theLatest Start TimgLST) of a task are shown as in equation [2.9) dnd (2.10). The
entry-tasks have EST equals to 0. And the LST of the exitstaskial to their EST.

EST(i) = méﬂg};(i){EST(m) + AT (m)} (2.9)
LST(i) = min {LST(m)} — AT () (2.10)

mesuce()

where AT'(i) is the average execution time of task The critical node (CN) is a set of
vertices in the DAG of which EST and LST are equal.
After a priority list is generated, we assign the tasks, endider of the priority list, to

the core with the minimum peak temperature (see the AlgoiZi).

The MPTSS algorithm

Using one of the PTMM and the PTLS algorithm, we can get ag@asthedule, in which

the tasks with dependencies are assigned and scheduled edietan further assign the
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Algorithm 2.3 The TL algorithm

Input: A static DAG, Average execution timé7" of every task in the DAG.
Output: An assigning order of tasks.

Ao dhRE

10:
11:
12:
13:
14:
15:

. [*List tasks with dependencies*/
Calculate the EST and the LST of every task which has deperetenc
Empty list P and stackS, and pull all tasks with dependencies in the list of tAsk
Push the CN task into stackin the decreasing order of their LST, and remove them
fromU
while The stackS is not emptydo
if top(S) has immediate predecessordirthen
S «the immediate predecessor with least LST
Remove this immediate predecessor from
else
P <« top(S)
Poptop(S)
end if
end while
[*List independent tasks*/
Push independent tasks ihin the decreasing order of their power consumptions.

Algorithm 2.4 The PTLS algorithm

Input: An priority list of tasks with dependenci€®, m different coresF P matrix.
Output: A schedule generated by MPT.

1:

3
4.

© N o’

9:
10:
11:

while The list P is not emptydo
t = top(P)
for j = 1tomdo
Calculate the peak temperatures of cores in the core staCk,assuming is
running onC;. And find the minimum peak temperatufg, .. (¢, j)
end for
Find the core”,,,;, giving the minimum peak temperature, . (¢, j)
Assign task to coreC,,;,
Schedule the start time ofas the time when all the predecessors afe finished
andC,,;, is ready
Removet from P
Update time slot table of cor€,,;,, and the expected finish time of
end while
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independent tasks in the static DAG. Since the independskstdo not have any intra-
iteration relations with others, they can be scheduled ygpassible time slots of the cores.
In the Minimum Peak Temperature Slot SelectiMPTSS) algorithm, we assign the in-
dependent tasks in the decreasing order of their power ogotsan. Tasks with larger

power consumption likely generate higher temperaturese Higher assigning orders of
these tasks, the better fitting cores these tasks will bgreesdito, and probably the lower
resulting peak temperature of the finial schedule.

time  Core PO Core P1
0 5% *I
I

35

|
|
I
o |
70!
! ey
N O/
105! | |
! B
|

140,

& [

| I
| I
| |
175, | I
| I

210

D | I

245 I®I
I I

280" '@' | !

Figure 2.5: An example of time slot set for an independerk tas

Before we assign an independent takkas shown in Fid. 215, we first find all the idle
slots among all cores, forming a time slot §&f. In the example shown in Fig._ 2.5, there
are four time slots indicated with circled numbers for tasskfwo of them, i.e., time slot 1
and 2, are among the previously scheduled tasks. And thetwtbei.e., time slot 3 and 4,
are at the end of cores’ schedules of one iteration. The tiotg that are not long enough
for the execution ofd will be removed froml’S. Then we calculate the peak temperature
of the according core stack,,...(A, core), which is defined in the PTMM algorithm, for
every time slot. One problem arise here: since the remaie $iots are long enough for

the execution of4, we need to decide when to start the execution.
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We use two different schemes here. The first one iAth&arly As PossibléAEAP),
which means the task; should be scheduled to start at the beginning of that time slo
The other one ig\s Late As Possibl€ALAP), which means we should schedule the start
execution time of the task; at a certain time so thaf; will finish at the end of the time

slot. These two schemes result in different impacts on psalpérature.

tlgwe Core i t|cr)ne Core i tlcr)ne Core i
— — —
s . . i . o | .
.y . i ® | (]
100~ e 100+~ - 100~ =
| A : A | A
120 : 120 : 120 :
| \ : |
140! 140, X 140 |
| \ l |
160 | 160, 160 |
INEE | :
180 1801 180
|
I | |
| |
2001 2001 2001 | X
|
| | |
| |
220! 2201 2201
|8 I | B | B
| |
24 240 240"

(a) (b) (c)

Figure 2.6: An example of the AEAP scheme and the ALAP schefagpThe task X is
scheduled in a time slot in core i, (b) The task X is schedulethe AEAP scheme, (c)
The task X is scheduled by the ALAP scheme.

Let us assume we are considering scheduling #as$& corei in the time slot, which is
shown as a shadowed rectangle in Eigl 2.6(a), and tAsksd B are previously scheduled
on the beginning and the end of this time slot on cor&@he AEAP scheme generates a
time gap betweerX and B, as shown in Fig._2|6(b). The temperature of coman be
cooled down during this time gap, i.e., 160 to 220. The ALAResue scheduleX right
before B without any time gap, as shown in Fig. 2.6(c). So the inigahperature of3 is
lower with the AEAP scheme, i.e. the schedule in Eigl 2.&f@n with the ALAP scheme,
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i.e. the schedule in Fig. 2.6(c), due to the cooling time d#(to 220) between the tasks
X andB.

Given a certain execution time &f, lower initial temperature leads to lower peak tem-
perature. In addition, if the power consumptionifs higher than the power consumption
of X, the peak temperature &fis likely higher than the one of’, which means we should
try to cool downB rather thanX in this case. Implementing the AEAP in schedulilig
can cool down theX at most here. On the other hand, the ALAP can create a time gap
betweenX and the taski that is previously scheduled right before the time slot.sTime
gap, e.g., the time gap 120 to 180, can reduce the initial ¢éeatpre ofX. So in the case
where the power consumption &f is higher than the one a8, using ALAP can reduce
the peak temperature &f. Thus, when we consider scheduling a task to a time slot, we
will compare the power consumption of this task and the taskipusly scheduled right
after this time slot. If the task being scheduled has moregp@ensumption, we will use
the ALAP scheme. Otherwise, the AEAP scheme will be impleedn

When we try to schedule tasks to the time slots which locatekeatend of cores’
schedules, we will determine which scheme, either AEAP oARLwill be used based on
the power consumption comparison of this task and the tashknhi start first in the next
iteration. For example, in Fig. 2.5, when we try to schedagkt to time slot 4, we will
compare the power consumptions of tasland B. We will schedule a large enough time
slot for cooling down the task that needs more concern,the.more power consuming
one between the task to be scheduled and the task startinig tine next iteration.

Another question arises: how large the cool time slot shbalscheduled? We will pre-
determine a threshold cooling temperatilife Then we will create a cooling time slot large
enough to let the more power consuming task cooling downeahhesholdr’,., without
violating the real-time constraint. The reason that welsethreshold temperature is that
when the temperature of a core is cooling down, it drops dtiaally at the beginning, as

shown in Fig[2.l7. However, it becomes stable as the coréma¥ to cool down. Hence, if
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Figure 2.7: Examples of cooling temperature on-chip. Alethcooling temperatures start
from the initial temperature of 88’ to the stable temperature of 0. We can observe

that the cooling speeds in these three scenarios are slaewg dramatically near the
threshold temperaturg.-.

we try to cool down the core completely, it will take a sigrdgintly long time. As shown in
Fig.[2.1, if we just need to reduce the core’s temperaturegdireshold, i.e., the horizontal

dot line, it will be more time-efficient. We present our MPT&§orithm in Algorithn{2.5.

The PPS algorithm

Once we get a full schedule from the previous steps, we céimgiureduce the peak temper-
ature by dynamic frequency assignment. We assume thatatyedncies of different cores
can be different and there are several frequencies opti@iksble for each core. From a
given schedule, we can predict the task which causes thetpesgderature. We can further

decrease the peak temperature by changing the frequenggrassit of the corresponding
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Algorithm 2.5 The MPTSS algorithm
Input: A partial schedule generated by PTMM, a set of independehsta: different
cores,E P matrix.
Output: A schedule generated by MPTSS.
1: List independent tasks in a li$t in the decreasing order of their power consumption
2: while The list P is not emptydo

3. t=top(P)
4:  Collect all the time slots which is long enough faacross all cores, form a time slot
setT'S.

5. for Every time slots; in 7'S do
6: j < the according core afs;
7: Find the task,.,; which is schedule to start right aftes; on the core’;.
8: if Power(t) < Power(tpe.) then
9: Find the start time with the AEAP scheme
10: else

11: Find the start time with the ALAP scheme

12: end if

13: Get theT),..(t, 7) I*similar to the one in PTMM?*/
14:  end for

15:  Find the time slots,,;,, giving the minimum peak temperatufe,,..(¢, j)

16:  Assign task to coreC,,;, /*C,,:, is the core of time slots,,,;,*/

17:  Schedule the start time ofin time slotts,,;,, based on the scheme selected in the if
statement (line 8)

18: Removet from P

19:  Update time slot table of cor@,,,;,

20: end while

core when that task is running.

We propose our dynamic frequency assignment algorithnredc#the Peak Point Scal-
ing (PPS), in Algorithni.2J6. Given a schedule, we first find thé taigh the highest peak
temperature over all the tasks. Then the core frequency wimamng this task is set to
one slower level. We calculate the period of this new schedlilit meets the real-time
constraint, this new schedule is acceptable. Otherwisgmic frequency scaling cannot
reduce the peak temperature. If the new schedule is act¢eptiaén we find the task with
the highest peak temperature in the new schedule, and riygeequency scaling again.
This frequency scaling repeats until a schedule which taslgéhe real-time constraint is

generated. We output the last version of the acceptablelstdse

29



Algorithm 2.6 The PPS algorithm
Input: An initial schedulesS;,,;;, E'P matrix, a real-time constraiftC
Output: A schedule generated by PPS.
1: Stemp A S’init
2: while Period(Siem,) < T'C do
3 S Semp
4:  Find the task,,,, generating the highest peak temperaturé&,n,,, and the core
Chrnae Which runst,,, ...

5. if frequency ofC,,,,. when running,,... is the slowest levethen
6: Break
7:  endif
8: Setthe frequency af',., when running,,... to one slower level
9:  UpdateSiem

10: end while

11: OutputS

The RS algorithm

At the end of each iteration of the TARS algorithm, we createew DFG by rotating
the current DFG. First, we need to form a set of rotation taska task is the first task
scheduled on a core and there is at least one delay in eachin¢@ming edge, this task is
a rotation task. Th&otation SchedulingRS) algorithm is shown in Algorithin 2.7.

Fig.[2.8 shows an example of our RS algorithm. Assuming amifitFG shown in
Fig.[2.8(a), we can transform the DFG into DAG by removingalges with delays. Then
a schedule is generated by the algorithms presented in ¢élv@ops subsections.

In the first rotation, we can find the taskand C are the first tasks executed in two
cores. So the rotation task set includes these two taskse 8were is none delay on the
incoming edge and the outgoing edge of taskwe keep the edges of taskunchanged.
For taskA, there are three delays on its incoming edge, i.e. edgeThus, in this rotation,
we reduce one delay on edgg,, and increase the delays of all three outgoing edges of
task A by one, respectively, as shown in Hig.|2.8(b). We can findttek A now becomes
independent in the corresponding DAG. A new schedule isrgée@ based on this new
DAG. In this schedule, task andC are the first tasks in two cores. These two tasks form

the set of rotation tasks in the next rotation.
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Figure 2.8: An example of the rotation scheduling. (a) ThigalhDFG, the corresponding
DAG and schedule. (b) The rotated DFG in the first rotatioe, ¢brresponding DAG
and schedule. (c) The rotated DFG in the second rotation¢cdh®sponding DAG and
schedule.
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In the second rotation, the delays of the incoming edgesséf FaandC, i.e., e,
eac, are all reduced by one. The outgoing edges of fagindC, i.e.,egp, epr, andecg,
increase their delays by one, as shown in Eig. 2.8(c). Adngrib this new DFG, tasi
and E become independent. The third schedule is created in ttagan.

As shown in this example, the RS algorithm can redistribugedélays in the DFG.
Therefore, various DAGs can be reached. In these variousdDAiBerent tasks become
independent, which leads to diverse scheduling orderssi&ftand different schedules. As
we implement the RS algorithm at the end of each iteration off[&RS algorithm, and
we repeat the TARS algorithm for a pre-determined numbereoéiitons, we can select
the rotations with the best schedule among a number of stéeenfuthe sense of reducing

peak temperature.

Algorithm 2.7 The RS algorithm
Input: Aninput DFGD;, and a schedulé based onD,,,, a retiming functionr.
Output: An output DFGD,,,; generated by rotation scheduling, a new retiming function

Tnew-
: Form the set of rotation task$l” based orD,,, and.S
. for Every taskt; in RT do
Reduce one delay from every incoming edges of tagk D;,,
Increase one delay from every outgoing edges of taskD;,,
r(t;) < r(t;) +1
end for
Dy < D;, andr,e, < 7

NoasrwDdhRE

2.6 Experimental results

In this section, we present the experimental results of tgordhms. We develop our
experiments as follows: we first use a precise microprocessswlator, Wattch 1.0.2 [45],
to get the execution and power characteristics of a set aftbearks. Then we generate a
number of random DFGs consisting of this set of benchmar&sk $chedules and power
traces are created by our algorithm. We input these scheduld power traces into a

thermal analysis simulator, called Hotspot 4.1/[46]. Hywale evaluate our algorithms
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with the comprehensive thermal analysis generated by ldb&pA. All experiments are
conducted on Linux machine equipped with an Intel Core 2 Du40B8CPU and 3GB of
RAM.

Experiment setup

The 3D CMP architecture simulated in our experiments is alayer front-to-back archi-
tecture. There are eight Alpha 21264 (EV6) microprocessog<in each layer with con-
figuration as Table 211. We use per core DFVS in our simulatith three DVFS levels
(3.88GHz, 4.5GHz, and 5 GHz) configured based on the parasnatélpha 21264/[47].

Table 2.1: Configuration of Alpha cores

Processor core | Alpha 21264
Core technology 65nm
Nominal frequency 5GHz
L1 data cache 64K, 2-way
L1 instruction cache 64K, 2-way
L2 cache 2M

We choose the SPEC CPU 2000 benchmark suite and the MiBenchrbaricsuite
in our experiment. The execution time and the power consiompf each benchmark on
Alpha core are tested through the Wattch 1.0.2 simulatdr thig2 above configuration. For
each benchmark, we run it under those three DFVS levels wafeorder mode to get
the task characteristic of this benchmark. We generateridbra DFG-based applications.
The tasks in these applications are randomly selected fierSPEC2000 and the MiBench
benchmarks. For each application, we set the real-timeti@ns?’'C' (i.e., deadline) as

follows:
N
re = 2zt (2.11)
P
where N is the number of tasks in this application,is the execution of time of task

under the highest frequencl, is the total number of cores, i.e., 16 in our simulation, and
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cis a constant which is set to 5, generating neither too tighteoo loose constraints.

Table 2.2: Thermal parameter for Hotspot

Layer | Conductivity | Capacitance per unit volumn
Silicon | 100W/(m - K) 1.75x 10° J/(m? - K)
TIM | 4W/(m-K) 40x 10° J/(m® - K)
Copper| 400W/(m - K) 3.55x 10° J/(m? - K)

The thermal simulation is conducted in the Hotspot 4.1 saaulby using the power
consumption traces created by our program. In the Hotsfaosishulator, the lateral and
vertical thermal interactions among adjacent core areaadifally considered and modeled.
As we mentioned above, the architecture model used in thepdbsimulator is a two-
layer architecture, in which the thickness of the top laylee one far from the heat sink) is
50u:m, and the thickness of the bottom (the one close to the hagtisi30Q:m. There is a
Thermal Interface Materig(TIM) layer between these two layers. The core size is 4mm
8mm. Some other parameters is listed in Tablé 2.2. We alshes&mperature parameters

as shown in Table2.348].

Table 2.3: Temperature parameter setting

Temperature parametenalue
Ambient temperature| 35°C
Initial temperature | 55°C
Critical temperature | 85°C

Peak temperature

As our algorithms are to reduce the peak temperature in 3D Qfelitectures, we show
the average peak temperature of all 16 cores over 10 apphisah Fig[2.9. By comparing
the result of list scheduling, we find that both of our aldgamt can reduce the peak tem-

peratures. The PTLS based TARS reduces up@ And the PTMM based TARS is even
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Figure 2.9: Core peak temperatures comparison. The “Coretieir-axle represents the
IDs of the sixteen cores, where cores 1 to 8 are in the upper kyd the cores 9 to 16 are
in the lower layer.

better, reducing up to 8C. Both the peak reductions happen on the cores in the upper
layer. For the cores in the top layer (core 1 to 8), the pealpézatures are consistently
higher than the ones in bottom layer (core 9 to 16). This teésaligned to our online ther-
mal prediction model. The peak temperatures of top layegsc@ around 8% with our
PTMM based TARS algorithm, about 84G with our PTLS based TARS algorithm, and
about 90C with the list scheduling. With the two phases consideraticthe PTMM, i.e.,
the Min-Min initial scheduling algorithm, more global infoation is used in making the
assigning decisions. Thus it generates better initialdles leading to better performance
than our PTLS based TARS algorithm does.

Larger improvements are made in the top layer cores. Themgashat in our proposed

algorithm, more effort is made in reducing the temperatdrthe hottest core, which is
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usually located in the top layer. Even though the improvaséor cores in the bottom
layer are not as significant as the ones in top layer, lowek fEaperatures are achieved,
due to the more flexible execution order explored in our algor and less impact from
the aligned cores on the top layer. The reduction of peak ¢eatpre in the bottom layer
is about 4.8C with our PTMM based TARS algorithm, about 3Clwith our PTLS based
TARS algorithm.

10 4

-6~ List scheduling H
=¥ PTMM based TARS
——PTLS based TARS

Temperature violations (# of runs)

0\\\\\\\\ 1 L
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Core #
(1 to 8 are in the upper layer, 9 to 16 are in the lower layer)

Figure 2.10: Core temperature violations comparison. Theé€@ds in the x-axle repre-
sent the IDs of the sixteen cores, where cores 1 to 8 are inpgherlayer and the cores 9 -
16 are in the lower layer. Out of the 10 runs in the experimidmat temperature violations
are number of runs in which the corresponding core has thie teeaperature higher than
the temperature constraint.
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Temperature violations

In this section, we compare the schedules in the sense afiagair minimizing the num-
ber of temperature violations, which is shown in Hig, 2.10e Wéfine the temperature
violation as the situation where the core’s temperaturegkdr than the critical tempera-
ture. The differences of temperature violations of corgeede on a few factors, such as the
workloads of cores, the location relationship with othemeso The cores 5, 6, and 7 have
more temperature violations than that of cores 10-13. Tasaris that the cores 5, 6, and
7 is on the upper layer of the 3D CMP. The cores in the top layenaore likely to have
higher temperature than the critical temperature. Sinceerafiorts are made to reduce
the temperature of the hottest core in our TARS algorithmsTAIRS algorithms can dra-
matically reduce the number of times of temperature viofetiin the top layer cores. Up
to 80% temperature violations in the list scheduling arddeabin the top layer. Aligned
to the result of the above subsection, the PTMM based TARSi#lgo outperforms the
PTLS based TARS algorithm.

For the cores in the bottom layer, only a small number of ofations occur. In both
TARS algorithms, there is one core that never has temperaiginer than the critical cores.
No more than two violations happen in any core in the bottgradaln summary, both our
TARS algorithms can reduce the temperature violations ih tia top layer and the bottom

layer.

2.7 Conclusion

In this chapter, we presented an online 3D CMP temperatuidighi@en model for mul-
timedia embedded systems. We also proposed our real-timetramed task scheduling
algorithms, the TARS algorithms, to reduce peak temperatuee3D CMP. By consid-
ering the the inter-iteration data dependencies and frezieg assignment collaboratively,
our proposed TARS algorithms can significantly reduce th& peraperature on chip and

avoid most of the temperature violations. Our simulaticsules showed that our TARS
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algorithms can reduce peak temperature by®,and avoid up to 80% violations in the
top layer and up to 100% violations in the bottom layer.

Our future works are two-fold: 1) we will investigate the ilementation of stochastic
approaches in our CMP temperature prediction models; ane ®jilvalso further consider

the priorities of tasks in our task scheduling algorithms.

Copyright® Jiayin Li, 2012.
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Chapter 3 ILP memory activities optimization algorithm

Phase Change Memo(PCM) is emerging as one of the most promising alternativie-tec
nology to theDynamic RAM(DRAM) when building large-scale main memory systems.
Even though the PCM is easy to scale, it encounters seriousa@mke problems. Writes
are the primary wear mechanism in the PCM. The PCM can perfiéfhto 10° times

of writes before it cannot be programmed reliably. In additithe PCM has high write
latency. To prolong the lifetime of the PCM as the main memaorgt anhance the per-
formance, we propose &cratch Pad MemorySPM) based memory mechanism and an
Integer Linear ProgrammingILP) memory activity scheduling algorithm to reduce the
redundant write operations in the PCM. The idea of our appraato share data copies
among the SPMs, instead of writing back to the PCM main memach ¢ime when a
modify occurs. Our experimental results show that the ILredaling algorithm can gen-
erate the optimal schedule of memory activities with minimwrite operations, reducing

the number of write operations by 58% on average.

3.1 Introduction

Dynamic RAM(DRAM) has been the most widely used technology of the main amgm
for over three decades. However, the main memory that dsnsisentirely DRAM is
already reaching the power and scalability limits [7]. Asmoey demands increase, the
main memory has now become quite large. It has become onexgbrttmary energy
consuming parts of the embedded system|[4, 5]. For exam@B,& DRAM consumes
3W to 6W, which is equivalent to the total power consumptibthe Atom processor?.
Besides, DRAM also has the scalability issue. Due to some piepedf DRAM, such
as destructive reads and low retention time, some specdigtacture solutions, such as,

write after read operations and the refresh control, aréeémented[[6]. These extra costs
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limit the scalability of DRAM.

New techniques, such @hase-Change MemorfPCM) [10] and Magnetic RAM
(MRAM) [49], have been studied for the replacement of the DRAMiIimmMemory [[5].
PCM is a potential alterative of the DRAM main memory, due tantmny desirable prop-
erties [6]. PCM is a non-volatile memory that switches itslcbgenide material between
the amorphous and the crystalline states. By detecting thstaaces of different states,
data is stored in PCM devices. The application of heat thaqsired by the switch be-
tween states can be provided by using electrical pulses.

In the PCM write, it relies on analog currents and thermalo$fevhich means it does
not require control over discrete electrons|[12]. In additianother attracting property of
PCM is that multiple bits can be stored in one single PCM celledaViulti-Level Cell
(MLC). PCM can provide four times more density than DRAMJ[10]. Bashers have
stated that PCM has more robust scalability beyond 40 nm tHRAND does [12]. In
addition, a 32-nm device prototype has been demonstraBid [1

Even though PCM is alternative to DRAM as main memory, largeresfare needed to
surmount the disadvantage of PCM, compared to DRAM. PCM acats¥ies, especially
in writes, are much slower than those of DRAM. In the read a&;d@€M is 2x-4x slower
than DRAM. Moreover, PCM displays asymmetric timings for i€adites, which means
writes in PCM need 5x-10x more time than reads do. Due to thetliat phase changes
in PCM are induced by injecting current into the chalcogenmderial and heating it,
thermal expansion and contraction in the chalcogenide mahteake the programming
current injection no longer reliable [12]. Writes are thenpairy wear mechanism in PCM.
The number of writes performed before the cell is not ablestdgom reliably ranges from
108 to 10°. Therefore, writes in PCM limits both the performance andifeéme of PCM.

In the embedded system design field, more and more processoesuipped with the
Scratch Pad memoi§sPM), such as Motorola Mcore [50], Texas Instruments TM&3¢[51],

Motorola 68HC12[[52], etc. The SPM is a small size on-chip mgnmapped into the
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memory address space disjoint from the off-chip memoryhagthe PCM main mem-
ory. The SPM memory is managed by the application softwarautomated compiler
support[53]. Compared to a hardware-managed cache merher§RM of the same ca-
pacity are 34% smaller in term of size, and 40% lower powesamption [[53]. From the
memory activities optimization point of view, the SPM membas two attracting advan-
tages: 1) itis easier to manage without hardware modificatiompared to cache memory;
and 2) it guarantees the single-cycle access latency, niurtes than that of the off-chip
memory.

In this chapter, we propose a PCM main memory optimizationhaeism through the

utilization of SPM. The major contributions of this chapiteclude:

e We propose a PCM main memory architecture with the SPM. Eahindhechip
multiprocessor¢CMP) is equipped with an SPM memory. All SPMs are connected
to the PCM main memory controller via on-chip data buses. Dapges are shared
among SPMs via on-chip data buses. The sharing copies ofcdatdenefit the

endurance of the PCM main memory by eliminating unnecessatgsv

e An Integer Linear ProgrammingILP) memory activities scheduling algorithm is
proposed to minimize the number of writes in PCM. There areetlnajor parts in
our algorithm: the baseline scheduling, the ILP-based mmgm@ctivities scheduling,
and the post ILP procedure. The baseline scheduling geseaabaseline schedule
for both task executions and SPM assignments. Then, théodsed memory ac-
tivities scheduling will find the optimal memory activitisgrategy to minimize the
memory writes based on the baseline scheduling. Finalgypthst ILP procedure
will further reduce total execution time by eliminatingedilots in the schedule. Our

ILP memory activities scheduling algorithm reduces theegrby 58% on average.

Memory activities optimization through the utilization tfe SPM is a challenging

problem. First of all, to minimize the number of write opévas, data need to be shared
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among SPMs by data migrations. In some cases, multi-hoprdagaations, which are
necessary for optimal memory activities optimization,rearbe well scheduled by greedy
scheduling algorithms. Compared to greedy scheduling iéhgas, our ILP method is
more promising, because it explores a larger solution sgda@ever, modeling the mem-
ory activities scheduling problem through the utilizatmfrthe SPM is more sophisticated
than the existing ILP-based memory optimization problefds 55]. The size of the SPM
is much less than the size of the main memory, resulting istitieter SPM size constraint
in the problem. Since the SPM space is limited, the optinonanethod should decide not
only which copies of data should be kept, but also how longSR& should keep these
copies. Moreover, due to data sharing operations among StPkle are more kinds of
memory activities to schedule than that in the existing IL&hmry optimization methods.
For example, to have a copy of data in a given SPM, there aee thvays: loading the
data from the PCM main memory to the SPM; outputting the daten fthe core to the
SPM; and copying the data from a remote SPM via the data nograthich is either for
the input requirement of the next task, or just temporaryestdor future data migrations.
Since copies of data are sharing among SPM via the on-chiponletdata migration ac-
tivities are also subject to the bandwidth of the networktaD#ependencies across tasks
further complicate the memory activities scheduling. Meynactivities should not vio-
late any data dependency. In this chapter, we present a ebemsive ILP format that
covers different kinds of PCM memory activities when utiligithe SPMs. System and
application constraints, such as the size of SPM, the op+odiwork bandwidth, and data
dependencies, are formulated in our ILP algorithm.

In Sectior 3.2, we discuss works related to this topic. Inige.3, the background
knowledge of phase change memory is presented. An illusgraxample is given in
Sectior.3.4. We propose our algorithms in Sedtioh 3.5, Wb by experimental results in
Sectior 3.6. Finally, we conclude in Secton]3.7.
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3.2 Related work

For CMPs, the problem of scheduling tasks represented by a BA®-complete. A
number of heuristics were compared in|[56]. An unbalanceeaith scheduling method
was proposed to fully utilize the advantage of CMP architegtwhich allocates the right
amount of resources to each threlad [57]. Dhiman et al. predgower-aware scheduling
mechanisms and policies for CMP at the operating system, lewéinprove the system
performance per watt [58]. Another scheduling approachintasduced in[[59], based on
the execution phases of simultaneous threads. An opersystgm scheduler design was
presented for CMPs, especially the network-on-chip archite [60], which is based on
the on-chip data traffic calculation of applications. Teedou et al. proposed a power-
aware scheduling mechanism for CMP with the consideratiovaghtion effects on the
static power consumption and the maximum supported frexyufi]. However, the re-
lated works above mainly focused on the scheduling in CMP.alttigity optimization in
memory was not studied in these papers. In this chapter, wibioe the task schedul-
ing and the memory activity optimization for the CMP systempioving not only the
performance of the system, but also the lifetime of the PCM orgm

The PCM incorporated in the memory hierarchy was studied2h [& DRAM based
page cachevas implemented for a large PCM memory. This page cache npeohlances
the performance by buffering frequently used pages, butiatproves endurance by re-
ducing writes. Enhancement approaches, such as reacehefive, row-level rotation and
segment swapping, were proposed to improve the lifetima@PCM [9]. By rotating the
cache line, the row-level rotation can distribute the rovelevear evenly. In the segment
swapping, the contents of the least-frequently-writtegepand the page being written are
swapped. Lee et al. presented a PCM storage device with avbitriead-before-write
loop [63]. Ferreira et al. described three lifetime enhameet methods for PCM: N-
Chance victim selection replacement policy, bit level vajteand a swap management on

page cache writebacks [6]. Although techniques introdircéitese papers improve the en-
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durance of the PCM, all of them require significant modificagian the hardware design.
In this chapter, by utilizing the SPM in CMP, our optimizatiapproach does not require
hardware modifications.

A recent trend in PCM techniques has been focused on the MU iepee [8, 14-16].
In [14], multi-level programming algorithms were propodessed on the control of the
tail-end of the programming pulse. A 2 bits/cell MLC PCM desigas proposed in [15].
Authors in [15] also presented a programming algorithmadlé for their MLC design.
A morphable memory syste(lWIMS) was proposed in [16]. This MMS can switch the
PCM cell between the SLC and the MLC with small hardware oweilke The adjust-
ment is based on the statistic information of memory traffithie running time. Another
MLC/SLC PCM architecture was presented!(in [8]. The PCM configman [8] is also
based on device capacity utilization in the running timewieer, these MLC techniques
have inherently negative impacts on the endurance of PCMialthe iterative program-
and-verify procedure applied in the MLC PCM [16].

Another major trend of techniques of improving the lifetiofenon-volatile memories
is the application level design. An application-specifisfilanemory was used as the main
memory [64]. Xu et al. proposed an application-specific apph to minimize the con-
nections by finding the minimal communication between cor€3MP [65]. The memory
latency can also be hidden by optimizing the loops in theiegpbn [66]. However, these
works do not consider the capacity constraint of memoryctvinay cause serious prob-
lems in SPM due to its limited capacity. Koc and Kandemir etiakd the recomputation in
the SPM to reduce communications among different cores ip@H], as well as between
the cores and off-chip memory [68], which can reduce the remolb reads in the main
memory. But these recomputation techniques cannot redunenaaication significantly
when the application does not consist of many loops and +dirttemsion arrays. A CMP
cache management approach was presented with the ideaaahdaation [69]. This ap-

proach tries to keep as many pages as possible in the cadaéesfonse. Hu et al. modeled
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the data migration problem as a shortest path program andiedkthe best route for a given
data to migrate from the source core to the destination &} Nevertheless, the on-chip
data traffic was not considered, which may lead to performamnawback when sharing a
large amount of data simultaneously. Two different optatian approaches for memory
activities in CMP were proposed [71,/72]. These two optimaraapproaches cannot han-
dle the data sharing among SPMs. In our ILP-based optimizatpproach, we take the
capacity constraint in memory, on-chip data bus bandwikhyell as data dependencies
into account. Memory operations such as load, store, an@ stna well scheduled in the

optimal solution generated by our ILP-based optimization.

3.3 Model and Background

Phase-change memory

As one type of non-volatile memory, PCM exploits the uniquarelteristic of the chalco-
genide to store bits. A typical PCM cell consists of a chalcaode layer and two electrodes
on both sides. Two stable states of the chalcogenide Heecrystalline and the amorphous,
can be switched between when different amount of heat isexpipl the chalcogenide. This
procedure is done by injecting current into the PCM cell. Wheiting the PCM cell, the
SET operation heats the chalcogenide layer to temperagimesbn the crystallization tem-
perature (300C) and the melting temperature (6@). By this operation, the chalcogenide
is in the low-resistance crystalline state, which corresjzato the logic “1”. On the other
hand, the RESET operation heats the chalcogenide layer abeveelting temperature.
The corresponding state of the high resistance is amorpdtates, i.e., the logic “0”. The
read operation of the PCM is basically sensing the resistkevet of the PCM cell. It is
non-destructive and involves much less heat stress, caupathat of the write operation.
Since both the SET and the RESET write operations apply drarheaat stress into
the phase change material, write is the major wear mechdoisthe PCM. A PCM cell

can perform stably within0® to 10° times of writes. Compared to thi)!°-time-write
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endurance of the DRAM, the lifetime of the PCM becomes the msgoie in implementing

the PCM as the main memory.

The memory banking and memory controller

In the PCM cell array, there are several peripheral logicsh ¢ decoders, sense ampli-
fiers, and write drivers, to form the memory structure, whehkimilar to that of DRAM.
The cells in the array are organized in the similar way asdah#te DRAM, grouped into
sub-blocks, blocks, and banks.

Among the peripheral logics, the memory controller is on¢hef crucial parts in the
PCM. When operating a memory request, the memory controlietssa sequence of mi-
cro commands to the memory banks. In the traditional DRAM iggcture, a precharge
command to write back a row buffer should be issued beforevarow is loaded, when the
read miss occurs in the row buffer. However, this prechasgeot necessary in the PCM
architecture. Instead, the PCM memory controller bypadsesaw buffer and writes to
cells directly, in a write operation. In addition, we use &M as buffers, reducing the
unnecessary write to the PCM memory in this chapter.

In the read operation, the controller first checks the rowdsufif the target is in the
buffer, the memory controller obtains the entry withoutessing the memory bank. Oth-
erwise, the memory controller will issue an activate comdiamove the data to an empty
row in the buffer, and a read command to get the data. In thte wperation, the memory
controller issues the write command and sends the datalgliteche memory bank.

The multi-entry row buffer is also implemented in the PCM @ellay. Replacement
policies, such ateast Recently UsefLRU), are used to manage the entries in the row
buffer. When a miss happens in the row buffer, the selectey eioes not need to send

back to the bank, since every write is directed to the memankb
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Figure 3.1: The CMP architecture with SPMs and the PCM main nngmo

Scratch pad memory

The SPM is an on-chip memory that can be accessed directlydzggsors with very low
latency. The major difference between the SPM and the cadhat the data storage in the
SPM is controlled by the system software, while the cacheiismatically controlled by
the hardware [72]. Due to the existence of the controllgbdn data storage in the SPM,
we are able to optimize memory activities based on the cleatics of the application
running in the system.

In this chapter, we focus on a CMP architecture as shown if&E1g.In this architec-
ture, each core is connected to an SPM array. All SPMs areonkdd with the memory
controller, which is also attached to the PCM main memory. alxat loaded or stored
between the SPMs and the PCM main memory, via the memory dientrén addition,
copies of data are transferred among the SPMs. When a coredstelg a task, it can load

data from its own SPM. The resulting data of a task can beewritack to the SPM.
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Application model

We model the application in this chapter as a grépk (T, E, P, Ry;, Wy, E¢). T =
(t1,t9,t3,...,t,) iS the set of n tasksE C T x T is the set of edges whefe,v) € E
means that task must be scheduled before task P = (py, p2, p3, ..., pm) IS the set of
m pages that are accessed by the tagkg.: 7' — P is the function wherd?,,(¢) is the
set of pages that tagkreads from.WW,, : T — P is the function wheréV,(¢) is the set
of pages that taskwrites to. E¢(t) represents the execution time of taswhile all the

required data are in the SPM.

3.4 lllustrating Example

An example of an application and a system

@ Read | Write
Task

pages | pages

>

5,6

(O BN I
0o

8,12 | 13
514 | 15

® (H)
a @ 11,16 | 17
9,17 | 18

(a) (b)

Figure 3.2: An example of memory activities in the PCM. (a) TG of the application
in the example, (b) Read pages and write pages of tasks in featpon.

B
C
D
E 6 11
F
G
H
|

First we give an example that reduces the number of writehenPtCM by sharing
copies across the SPM. Considering a schedule of an appha&presented by the DAG
in Fig.[3.2(a) in a three-core system, each task in the agij@ic requires up to 2 pages
that should be in the SPM before the core executes it. Thereshpageds?,, of each task

are shown in the “Read page” column of Hig.]3.2(b). Moreowasks also need to output
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and modify up to 2 pages, i.é¥,,. The write pages$V,, of each task are shown in the
“Write page” column. For example, task A requests two pagesge 1 and 2, before its
execution, and writes its result in one pag@age 3.

Using the list scheduling, we have a baseline schedule lasvi&ltask A, D, and G are
assigned to core 0O; task B, E, H, and | are assigned to core 1ask and F are assigned
to core 2. A detailed schedule with memory activities is shawFig.[3.3(a). The Y axis
represents the clock cycles. We assume the execution tireaobf task is 8 clock cycles.
A core needs 2 cycles to access its own SPM, 5 cycles to a resfdie We also assume a
read from the PCM main memory takes 80 cycles, while a writed&@00 cycles [70]. The
memory activities, i.e., the shaded boxes in Eigl 3.3(&)tla& major time consuming part
in this schedule.

We observe that before core 0 reads page 5 in its SPM1, pagetieka modified by
the core 1, which is the output of task B. In this case, transigpages across the SPMs
reduces the write, since it is not necessary to write baclk pagefore loading it again in
the SPM. In addition, the time of sharing across SPMs shoelthbch shorter than the
time of writing and reading in PCM.

We modify the schedule as shown in Hig.|3.3(b). In this examnipistead of writing
back page 5 right after the executions of task B, we move thg abpage 5 from the SPM
of corel to the SPM of core0 before the execution of task D¢lvis represented as a red
dotted arrow. The move occurs before the execution of task &0cel, due to the need of
space in the SPM of corel for storing tRg; of task E. After the move, a copy of page 5 is
kept in the SPM of core0, until task D is executed by core0. Bypglthis, an unnecessary
write is eliminated. Similarly, we move the copy of page dfrthe SPM of core0 to the
SPM of corel after the execution of task D, which is requingthie later executed task I.

In the next section, we will discuss our ILP-based optimaagalgorithms with more

details.
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Figure 3.3: The schedules for the application in Figl 3.2xmig a three-core CMP system
with two SPM blocks per core. The schedule in (a) is withodaddaring in SPMs. The
schedule in (b) is with data sharing in SPMs. The verticat agpresents the clock cycles.
Each core has two SPM blocks, represented as the “B0” and “Blifrots. The blank box
with number: in the “Bx (0 or 1)” column indicates that pageesides in SPM block “Bx”
at the corresponding cycles. Since the write operation (806 cycles) is 400 times longer
than the core execution time (2 cycles), the scale of theaesgloes not strictly represent
accurate clock cycles, only demonstrating the orders aigtlsehedules.
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3.5 ILP memory activities optimization algorithm

In this section, we present our ILP memory activities optiation algorithm. There are
three major parts in our algorithm: the baseline schedutimg ILP-based memory activi-
ties scheduling, and the post ILP procedure. The basellmedsiting generates an baseline
schedule for both the task executions and the SPM assigemdiiiten, the ILP-based
memory activities scheduling will find the optimal memoryigities strategy to minimize
the memory writes based on the baseline scheduling. Firth#ypost ILP procedure will

further reduce total execution time by eliminating the igliets in the schedule.

Baseline scheduling

The Min-Min is a popular greedy scheduling algorithml[44], 7Bhe Min-Min algorithm
generates near-optimal schedule with comparatively lompgdational complexity [74].
In the Min-Min baseline algorithm used in this chapter, wedhéo update the mappable
task set in every step to maintain the task dependencieks Tashe mappable task set
are the tasks of which all the predecessor tasks are finisAégbrithm [3.1 shows the
procedure of the Min-Min algorithm. Before we schedule a gitask executed on a given
core, we should schedule the required memory pages altboatee SPM of the core in
advance. We assume that the time of reading a memory pagetfi®i®PM is included
in the execution time of this given task. We also assume tirasdme tasks, the output
may be stored in the memory page that is different from thaired pages. For example, a
task may require pag® andp; as the input, and output the result in pageln this case,
the modified page should be loaded in the SPM before it isewritiack to the PCM main
memory. In the case where multiple tasks on different coeesirio store their results in
the same page, we will schedule the SPM modifying procesffettaht clock cycles, even
though these tasks may be finished at the same time. Complipateies for memory
coherence are out of the scope of this chapter. We apply sionpdespolicies to keep the

memory content among SPMs and the PCM main memory coherent:
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Where a core initiates an SPM modifying process of a given pagther cores that
have a copy of this page in their SPM should initiates an SPigtiag process of

this page. By doing this, there is no “dirty” copy of this pageéses in the SPMs.

In the baseline scheduling process, we don’t consider tteestearing in SPMs. We

will write back the modified page right after the modificatisriinished.

In some cases, some tasks may require the page that is mdayfiadother task

previously. The read process can only be initiated aftentbdification is finished.

We implement thé.east Recently Usgd.RU) replacement policy in the SPM man-

agement.

Algorithm 3.1 Min-Min algorithm

Input: A set of 7" tasks represented by a DAG,different coresE - of tasks
Output: A schedule generated by Min-Min

1: Form a mappable task sgfT

2: while SetMT is not emptydo

3:
4:
5

10:

11:

12:
13:

14:
15:
16:

for i: taski € [0,7 — 1] do
for j: corej € [0,C — 1] do
Find the earliest possible timépg; ; that all the require pages oére available,
based on dependencies
Calculate the earliest possible task finished tififén; ; = T'pg; ; + Ec (i)
end for
Find the core’,,,;,(7) giving the earliest finish time d&f fin,; ;, Vj € [0,C —1]
end for
Find the pair(k, i (k)) with the earliest finish timel fin, ¢, .., V i €
[0, T — 1] among the task-core pairs generated in for-loop
Schedule the required pages of task?,,(k), to the SPM of cor€’,,,;,,(k) as soon
as possible
Assign taskk to coreC,,;,, (k)
Schedule the modification of the resulting pagég,,(k), in the SPM of core
Schedule the write back process of the resulting pages
Removek from M'T
Update the mappable task setr’

17: end while
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ILP formatting

Table 3.1: Symbols and acronyms used in the ILP formatting

Symbol Description
Taskt
c Corec
s Clock cycles
D Memory pagep
T Number of tasks
C Number of cores
S Total number of clock cycles
P Number of pages
ASM; . Task assignment matrix
Sties Task start time matrix
WL Core workload matrix
Mem,, . Required memory matrix
Ry (t) | A setof page required by tagk
Ry..s Read matrix
M, s Modify matrix
Wes Write matrix
Evpes Evict matrix
Sipes SPM input matrix
Sopc.s SPM output matrix
OCp.c.s SPM occupation matrix
PM, s SPM page available matrix
Moy c.s Move out matrix
Miy, s Move in matrix
Mih, . s Move in indicator matrix
Mry s SPM page modified matrix

To input the baseline schedule to the later memory actv/geheduling algorithm, we
define several 0-1 matrixes to indicate the task executindstee SPM memory activities.
The values in these matrixes are either O or 1. For the coemeaiof the reader, we list

the symbols used in the ILP formatting in Tablel3.1. We givedbfinitions of twelve 0-1

matrixes as follows:

1. Task assignment matritSN . ASM,. = 1 means that taskis assigned to core
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The matrixASM has the characteristic as follows:

c-1
> ASM,.=1 ¥V te[0,T—1] (3.1)
c=0

. Task start time matriXt. WhensSt, . s = 1, it means that the execution of the task

starts at clock cycle on corec.

. Core workload matrix L. WL,., = 1 means that core is executing task at
clock cycles. The relationship betweestt andW L is:
Whies= Y Stei ¥V t€[0,T=1], cel0,C—1] (3.2)
i=s—FE .—1

whereFE, . is the execution time of taskon corec.

. Required memory matrix/em. Mem, ., = 1 means pagg is required by core at
clock cycles.

Memy.s=WLis vV p € ReqMen(t) (3.3)

whereReqMen(t) is a set of pages that are required by task

. Read matrixe®, R, andR. R, .s = 1 means pagg is read from the PCM memory
and loaded into the SPM of coféat clock cycles. Note that the matrix? indicates
the start time of the read process, the maRiindicates the end of the read process,
and the matrix? represents the whole read process. The relationships aﬁ’],ofig

andR are as follws:

Rpcs= Y Rye (3.4)
i=s—len,+1
Rp,c,s = Rp,c,(sflenr) (35)

wherelen,. is the length of the read process.

. Modify matrixesi/, M, and . M, . = 1 means pagg is modified by the coré&’

and loaded into the SPM of cote at clock cycles. Here, we assume that the page
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including the modified variables should be first stored in 8®M before written
back. M is the start time of the modify process and the end of the pguiifcess is

indicated asV/, while the whole modify process is represented\Aﬁy

Mp,C,S - Z Mpvcvi (3'6)
i=s—lenm+1
Mp,c,s = Mp,c,(sflenm) (37)

wherelen,, Is the length of the modify process.

. SPM input matrixesSi and Si. Si, ., = 1 means page is loaded into the SPM of
corec at clock cycles. This page can be either read from the PCM memory or store

back from the core after it is modified by that core. Thus:

Sip,c,s = Rp,c,s + Mp,c,s (38)

S_ip,c,s = Rp,c,s + Mp,c,s (39)

. Write matrixesW, W, and W, W,.s = 1 means pagé’ is written back into the
PCM memory from cor€’' at clock cycles. Here, we also assume the page will be
evicted at the same. The differences angW, andW are similar to the ones

amongR, R, andR.
Whes = W.ei (3.10)
Whes = Whe(s—tenw) (3.11)
wherelen,, is the length of the write process.

. Evict matrixesEv, Ev, andEw. Ev, ., =1 means page’ is evicted from cor&’ at
clock cycles. This matrix only records the evict without write back. Thifetences

amongEv, Ev, andEw are similar to the ones amoifgy R, and .

Evpes= Y FEupe (3.12)
i=s—len,+1
E_Up,c,s = E’Up,c,(sflenm,) (313)
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wherelen,, is the length of the evict process.

10. SPM output matrixe§'o andSo. So, ., = 1 means page is evicted from the SPM
of corec at clock cycles. This page could be modified by the core or evicted after

read. Thus:

SOp,C,S = p,c,s —I_ Evp7c78 (3- 14)

S0pcs = Wyes + Evpes (3.15)

11. SPM occupation matrix)C. OC, ., = 1 means page is occupying a part of the
SPM of corer at clock cycles. The SPM occupation matrixC' holds the following
equation:

OChes =0C) s 1+ Sipes— S0pcs (3.16)

12. SPM page available matriR M, PM, ., = 1 means page is residing in the SPM
of coreC at clock cycles. Note that wher®C), . . = 1, corec may not be able to use
the pagep at clock cycles, due to the fact that it may still be in the memory transfer
process. AndP}M, ., = 1 means that core can surely use pageat clock cycles.

The SPM page matri®¥ M holds the following equation:

PMp7c75 = PMp7c7,g—]_ + S_ip,C,S - SOp,C,S (317)

We will use these 0-1 matrixes represent the baseline sthedthe following ILP-

based memory activities scheduling algorithm.

ILP-based memory activities scheduling algorithm

With the baseline schedule, we will use our ILP approach td fire optimal memory
activities schedule and minimize the number of the PCM daiii In some cases, a page
that is needed by a task is residing in the SPM of a remote twtead of loading the page

from the PCM memory, we can transfer the page from the SPM aktimete memory.
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Additional ILP formatting for data transferring in SPMs

To represent the memory activities among the SPMs, we ddfnee tadditional 0-1 ma-

trixes as follows:

1. Move out matrix\o, Mo, andMo. Mo, .s = 1 means pagé’ is moved from the
SPM of coreC' to the SPM of another core at clock cyeléWe assume that the SPM
of this core will evict this page right after. Th&o represents the whole moving

process and th&/o indicates the end of the moving.

Mopes = Y. Moy, (3.18)
i=s—lenmi+1
MOp,C,S = Mop,c,(s—lenmi) (319)

wherelen,,i is the length of the SPM data sharing process. Remind that ithese
rule in our baseline scheduling: when a page is modified byangcore, all the

copies in the SPMs of the rest cores should be evicted. The@conflict data exist
in SPMs. To avoid the case that more than one different ctstd#rthe same page

are copied at the same time, we still need to set a constramirilLP model as:

-1 pel0,P—1]
Y Mope.=1 v (3.20)
c=0 s € 0,5 —1]

2. Move in matrixMi, ]\7@', andMi. Mi,.s =1 means pagé’ is moved into the SPM

of coreC' from the SPM of another core at clock cycle The Mi represents the

whole moving process and théi indicates the end of the moving.

Mipes= > Miy, (3.21)
i=s—lenm,;+1
Mip,c,s = Mip,c,(s—lenmq;) (322)
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. Move in indicator matrix\/ih. Mih, , = 1 means pagé is moved into the SPMs

of at least one core at clock cycie

. S, . peE [07 P — 1]
Mihys <Y Mipeo VY (3.23)
=0 s€ 0,5 —1]

When a page move out process is initiated, there also showdtllbast one move in
process initiated for this page. In some cases, maybe reuttipes require this page
simultaneously. Then multiple move in processes are teiiaSo we can express

this constraint as:
D € [07 P — 1]

Cc-1
Mihy =Y Mope, V (3.24)
c=0 S € [O, S — 1]

In the previous “ILP formatting” subsection, we define thevVBiRput/output matrixes

Sip sy S*ip,c,s, SOp.c.s1 and§()p7(;,S to determine whether a page is available in the SPM of

a give core at clock cycle. Now, we further modify these definitions by including the

consideration of thé/i, Mo, Mi, andMo, i.e. transferring data among SPMs. The new

definition of Si, Si, So, andSo as follows:

Sipes = Rpes+ Mpes+ Miys (3.25)
Stpes = Rpeys + My s + Miye s (3.26)
Sopes =Wpes+ Evpes+ Moy,s (3.27)
gop,c,s = Wp,c,s + Evp@s + ]\/ffop,c,s (3.28)

We use these new definitions of SPM input/output matrixesatoutate the SPM occupa-

tion matrix OC and the SPM page matriR M in Equation [(3.16) and (3.17).

ILP constraints for memory activities optimization

One of the most critical requirements of the memory actsiis that when a task is exe-

cuted by a given core, all the required memory pages shoujddoed in the SPM of that
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core no later than the start time of the execution. This reguént can be expressed as:

(
pE [07 P — 1]
PMp,c,s Z Memp,c,s v S [O, C - 1] (329)
s € (0,8 —1]
\

Other important requirement is that no matter how the pagesransferred, the total

amount of pages in the SPM of a core at every clock cycle shoailde larger than the

capacity of this SPM.
pP-1 ce0,C—1]
> 0Cpes < SPM(c) ¥ (3.30)
p=0 s€ 0,5 —1]

where SPM(c) is the capacity of the cafe SPM.
For an eligible data sharing in SPMs, the source SPM showiel i@ copy of the target

page available when the sharing is initiated.
PM,.s> Mo, (3.31)

Another constraint we need to set is that only one memoryiictian be performed at
a clock cycle, due to the arbitration of the data bus acro$gsSkhd the PCM controller.

Thus

v
L
T

(EP,C,S + ]/—\\4/]),6,5 + Mip,c,s

3
I
o
(v}
Il
o

+/—va,€,8 + E\_{)p,c,s + mp,c,s) S 1

vV se€[0,5—1]

To address the memory coherence problems, we set the rtileliba a core modifies
a given page in its SPM, we will evict all the “dirty” copies thfis page in the SPMs of
other cores.

Evyes > Mye s V a#c (3.32)
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The goal of the memory activities optimization is to redulce humber of memory
writes. In the baseline scheduling, we do not consider tissipte moving of the modified
memory. After the page is modified, it will be written back iradately. In this case, we
can get the relationship between the SPM modify matirand the SPM write matrikXl/

as the following:

S—1 S—1

Y Mpei=> Wpes (3.33)

=0 =0

The reason why SPM data sharing can reduce the memory waitlkeatiby moving the
copy of a given page among SPMs of cores, different tasks calified this page in serial.
And the write back may be initiated after multiple modificais. In this case, EqU._(3)33)
is not necessary. However, even though the number of modifiethe number of writes
of a given page may not be equal, at least one write back sleuttheduled for a page
that had modified previously. Here, we define a 0-1 matfix to indicate whether a page
has been modified in the schedule before a give clock cydle, ; = 1 means page has
been modified at least once before the clock cydbeit not written back yet.
Cc-1
My =Mrypo 1+ Y (Mpio— W) (3.34)

1=0
In the case that a page has been modified by a given core, bwritteih back yet, the

following tasks that require a copy of this page can only atigrthem from the SPM of
that core. In other words, the following tasks cannot obtagopy of this page by reading

from the PCM main memory.

Ryes < Mr,, Y c€[0,C—1] (3.35)

And for every page, it should have a newest copy in the PCM maimaony at the end

of the schedule. Thus

Mh,s.y=0 ¥ pel0,P—1] (3.36)
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Finally, our objective of the memory activities schedulisgo minimize the times of

write process.

Minimize: ZZZka (3.37)

Post ILP procedure

In our baseline scheduling, we schedule all writes withausedering SPM data sharing.
Based on this schedule, we optimize the memory activitiesumlloP algorithm. Even
though the number of writes in the schedule generated byléualgorithm is minimized,
the start time of each task remains the same as the one inselim@ascheduling. Since the
data sharing in SPMs is much less time consuming than the inrihe PCM memory, there
are a lot of idle slots in which all cores have neither taskcaken nor memory activities.
To improve the system performance, we further eliminatsdhdle slots in the schedule
generated by our ILP algorithm. To remain the data depenegnee find out these idle
slots and push the whole schedule of all cores forward, ag&smo data dependency is

violated.

3.6 Experimental results

Experiment setup

In this section, our proposed ILP algorithm is evaluatedunyning the DSPstone bench-
marks [75] and the MiBench [76]. In our custom simulator, the ZE8§stem has multiple
cores, each of which has the similar performance as thaea@tdbDeL DSPI[77]. We com-
pare two different sizes of SPM, which is similar to the SPNtisg in [71]. The PCM
main memory parameters are set as in [63]. We use the Lindospf8vare to solve the
ILP problem.

Since most of the DSPstone benchmarks are embarrassinglifehawhich means

there are few data dependencies among tasks, we group leiX§Pstone benchmarks
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Table 3.2: The grouping of benchmarks

Set No. Benchmarks
Setl Convolution, IRBIQUAD _N
Set 2 FIR2D, LMS
Set 3 N_REAL_UPDATE, NCOMPLESUPDATE
Set4 | DOT_PRODUCT, MATRIX 1x3, IIR.BIQUAD _ONE
Set5 CRC32
Set 6 FFT
Set 7 Blowfish enc
Set 8 Mad
Set9 PGP sign
Set 10 GSM

into four benchmark sets. In each set, we create data deperdey sharing variables
among different benchmarks. We also use another six Mibbaobhmarks in our experi-

ment, one benchmark per set. The grouping of benchmarksvershs in Tablé 3]2.
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Figure 3.4: The execution time on a four-core CMP system.tidhEch. (M-M)” is the
baseline scheduling with the Min-Min algorithm; “HAFF” ike High Access Frequency
First algorithm; “ILP 512K” is our ILP-based algorithm witbtal 512KB SPMs; and “ILP
1M” is our ILP-based algorithm with total 1IMB SPM. All colurarare normalized by
the corresponding execution time generated by the basstimeduling with the Min-Min
algorithm.
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Figure 3.5: The numbers of writes on a four-core CMP systenitiél Sch. (M-M)” is the
baseline scheduling with the Min-Min algorithm; “HAFF” ieé High Access Frequency
First algorithm; “ILP 512K” is our ILP-based algorithm witbtal 512KB SPMs; and “ILP
1M” is our ILP-based algorithm with total 1LMB SPM. All colurarare normalized by the
corresponding numbers of writes generated by the baseaihmedsling with the Min-Min
algorithm.
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Figure 3.6: The execution time on a eight-core CMP systemitidlrSch. (M-M)” is the
baseline scheduling with the Min-Min algorithm; “HAFF” ike High Access Frequency
First algorithm; “ILP 512K” is our ILP-based algorithm witbtal 512KB SPMs; and “ILP
1M” is our ILP-based algorithm with total 1IMB SPM. All colurarare normalized by
the corresponding execution time generated by the basstimeduling with the Min-Min
algorithm.

63



Initial Sch. (M-M) B HAFF ILP 512k B ILP 1M

1 TF A g / s ;
b 7/ V] / /] Yy
E 09 7 [/
5 / / ’ / /
: /" 17
B 99 / A . ’ A
7 ’ ] : ’ A
S
8.7 1 . ¢ /

% . v . : Vi ;

+VE 2 N
4 ‘ § S N
5 A N AN AN
T 0.5 AN N N N N
S N R N ANT AN
o R N N1 AN AN

+VEN = N N N
c 04 N N N N N
E N 3 N AN AN
S 03 + R ~ERNED | EX% RGEN N

Setl Set2 Set3 Set4 Set5 Set6 Set7 Set8 Set9 Setl0
Benchmarks

Figure 3.7: The numbers of writes on a eight-core CMP systémiti&l Sch. (M-M)” is the
baseline scheduling with the Min-Min algorithm; “HAFF” ieé High Access Frequency
First algorithm; “ILP 512K” is our ILP-based algorithm witbtal 512KB SPMs; and “ILP
1M” is our ILP-based algorithm with total 1LMB SPM. All colurarare normalized by the
corresponding numbers of writes generated by the baseihedsling with the Min-Min
algorithm.
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Figure 3.8: The execution time on a twelve-core CMP systenitiél Sch. (M-M)” is the
baseline scheduling with the Min-Min algorithm; “HAFF” iee High Access Frequency
First algorithm; “ILP 512K” is our ILP-based algorithm withtal 512KB SPMs; and “ILP
1M” is our ILP-based algorithm with total 1IMB SPM. All colurarare normalized by
the corresponding execution time generated by the basstimeduling with the Min-Min
algorithm.
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Figure 3.9: The numbers of writes on a twelve-core CMP systénitial Sch. (M-M)”

is the baseline scheduling with the Min-Min algorithm; “HRFis the High Access Fre-
guency First algorithm; “ILP 512K” is our ILP-based algbr with total 512KB SPMs;

and “ILP 1M” is our ILP-based algorithm with total 1IMB SPM. |Adolumns are normal-
ized by the corresponding numbers of writes generated blgakeline scheduling with the
Min-Min algorithm.

In Fig.[3.4, we compare the performance of our proposed IgBrahm with that of the
HAFF (High Access Frequency First) algorithm [72]. The tiai Sch. (M-M)” columns
represent the execution time of the benchmark sets by usenbaseline scheduling algo-
rithm, i.e., Min-Min, in our ILP algorithm. The “HAFF” colums demonstrate the execu-
tion time using the HAFF algorithm. The “ILP 512K” columnscsi the execution time
optimized by our ILP algorithm with a total 512KB SPM. And theP 1M” columns pro-
vide the execution time optimized by our ILP algorithm wittotal 1MB SPM. In Fig[3.5,
we also compare the numbers of writes in a four-core CMP syst@m HAFF has less
numbers of writes than that of our baseline scheduling délgar although its objective
Is not reduce the numbers of write. Thus, the HAFF outpersoonr baseline scheduling
algorithm in terms of total execution time. Since our ILPalthm targets on minimizing
the number of writes in the PCM main memory, it outperforms H#g=F algorithm in

reducing the numbers of writes. Due to the fact that the vajiteration in the PCM main
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memory is the major time consuming operation in the exeouticdasks, our algorithm in
a four-core CMP system with 512KB SPM reduces the executior tf benchmark set
by the percentages from 4.3% to 20.8%, compared to the HAg®ritim. The perfor-
mance of CMP with 1MB SPM is slightly better than the one witl2&B SPM, edging
by about 5%. Since the DSPstone benchmarks have smallls&zgize of SPMs makes no
difference when running these DSPstone benchmarks.

In the eight-core and the twelve-core CMP systems, our ILPréalgn has better
speedups, compared to the ones in the four-core CMP systeshpas in Fig[3.4] 316,
and[3.8. In an eight-core CMP system with 1IMB SPMs, our ILP r@lgm can shorten
the execution time by 14.9% on average, compared to the HAgefithm, while our ILP
algorithm has 25.6% improvement on average in a twelve-GW# system. Our ILP
algorithm has smaller improvement in the four-core systaout 13.8% over that of the
HAFF algorithm. The major reason of these differences isttiere are more opportunities
for data sharing among the SPMs in a system with more corasthia in a system with
fewer cores.

We show the number of writes in Fig._B85, 3.7, 3.9. Therookirepresent the
normalized numbers of writes in the corresponding schaddance reducing writes in the
main memory is not an objective in the HAFF algorithm, it doesreduce the numbers of
writes as many as our ILP-based algorithm does. In a twedve-system with 1MB SPM
it reduces the writes by 61.3% on average, while in an eight-and a four-core system
with 1MB SPM it reduces by 58.4% and 52.3% on average, relspéct

Systems with 1IMB SPM perform better than that of systems &1PkB SPM. Due to
the long access time of the write operation in the PCM main nmgnitas aligned with the
performance improvements we analyzed above. More SPM spatenore data copies
on-chip lead to more opportunities of sharing copies withwriting back the PCM main
memory. The increasing of cores has more significant impnowae performance than

that of the increasing in SPM size. The reason is that thegtmbty, of which a data copy

66



exists when a remote core requires it, is higher when therenare cores inside the CMP

system.

3.7 Conclusions

In this chapter, we presented an ILP-based memory acivijimization algorithm for
the PCM main memory. In order to increase the lifetime of the RG&Mory, we schedule
and share the data in SPMs, reducing the redundant writdeet® €M memory in this
algorithm. Our experimental results show that our ILP atban can significantly reduce
the number of write by 61% on average. In addition, the peréorce of the system is also

improved due to less writes that are time-consuming.

Copyright©® Jiayin Li, 2012.
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Chapter 4 Hyper Memory Optimization and Task Scheduling

The Dynamic RAM (DRAM)as the major technique for current main memory architec-
tures, encounters its physical limit in scalability. Tpiease-change memofl CM) is one
of the most promising alternative techniques to the DRAM. ferg research trend has
focused on themulti-level cell(MLC) of the PCM. By precisely arranging multiple lev-
els of resistance inside a PCM cell, more than one bit of datébeastored in this PCM
cell. However, the MLC PCM suffers from the performance ddgtamn compared to the
single-level cel(SLC) PCM, due to the longer memory access time. In this chapter
present four optimization algorithms for embeddsdp multiprocesso{CMP) systems
equipped with the MLC/SLC PCM + DRAM hybrid memory. In our propdsalgorithms,
we not only schedule and assign tasks to cores in the CMP sybtgralso provide a hy-
brid memory configuration that balances the hybrid memoryopmance as well as the
efficiency. Our experimental results show that our genegised algorithm generates the
best solutions. It significantly reduces the maximum menusgge by 76.8%, compared
to the DRAM+ uniform SLC configuration, and improves the effiriy of memory usage
by 155.6%, compared to the DRAM + uniform 4 bits/cell MLC configtion. In addition,
the performance of the system, in terms of total executioe tis also improved by 101%,

compared to the uniform 4 bits/cell MLC configuration.

4.1 Introduction

In the last three decades, tdgnamic RAMDRAM) as the major technique of the main
memory has been reaching its scalability limits/ [63]. As neyrdemands of applications
keep increasing, the size of DRAM equipped in a system neeble targer and larger.

However, DRAM requires some specific architecture solutisash as the refresh control

and the write after read operation, to address some drawbsioks, like destructive reads

68



and low retention time_[6]. These specific architecture tsmhs cause extra costs that are
the major reason of the scalability limit in DRAM. Scaling DRAb&yond 40 nm sizes
would be questionable in the futuiie [63]. Thkease-change memo(?CM) is emerging
as a promising DRAM alternative technique, featured mampetive advantages, such as
high density, non-volatility, positive response to in@ieg temperature, zero standby leak-
age, and excellent scalability/[8,9]. A 32-nm device prgpethas been demonstrated|[13],
showing the promising future of the PCM technique.

Recently, several studies|[8)14-+-16] have advocated fanthig-level celMLC) PCM
memory architecture. The difference of resistance betvileerwo states of the chalco-
genide material is usually 3 orders of magnitude [16]. By sy dividing this gap into
several levels, one PCM cell can store more than one bit of degalting in higher mem-
ory capacity density than that of tlsengle-level cel(SLC) memory. However, the MLC
technique enhances the scalability of the PCM memory witlgh price. The degradation
of the performance and the endurance of the PCM memory as svéieaincrease in the
power consumption are the major drawbacks of the MLC tealesd16]. As the number
of bits stored a single PCM cell increases, the number ofsedigided in this cell increases
exponentially. A more precise resistance detection methoequired in the MLC mem-
ory, compared to the one used in the SLC memory. The currsistaace detection method
implemented in the MLC adopts multiple verify proceduresjch leads to a significant
degradation of the performance. Similarly, in the write rapien in the MLC, thegorogram
and verifyprocedure is applied repeatedly until the resistance igraromed correctively
in the target level [14], which causes high power consunmpitothe PCM memory. In
addition, these repeated pulses applied in the MLC makeithady poor endurance of the
PCM memory even worse [16].

In order to avoid performance degradation caused by memasges, a traditional
computing system usually takes the larger memory capauity the maximum capacity

required by applications. However, this scheme is so pestsinthat a large portion of the
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memory is not used during most of running time. As a resuét ShC/MLC PCM memory
architecture is suggested in [8,)16] to improve the efficgepicthe main memory, which
switches the mode of PCM cells between the SLC and the MLC motless, the SLC
PCM provides higher performance with less power consumgti@mhlonger lifetime, while
the MLC PCM enhances the memory capacity without increasiegtimber of PCM cells.
These existing SLC/MLC memory methods adjust the configumdiased on the statistics
information obtained at runtime. However, since embedtl@d multiprocesso(CMP)
systems are designed to execute specific applicationsniaptg the PCM configuration
based on the characteristics of applications can furthearmee the efficiency of the main
memory in embedded CMP systems. Furthermore, even the SLC RSthé longer ac-
cess latency, compared to that of the DRAM, especially in theng operation. In terms
of 1/0 performance in the embedded system, the DRAM is stikidp option rather than
the PCM memory. Therefore, in this research work, in ordeadisieve a good balance
between the memory capacity and the performaweesuggest a hybrid memory architec-
ture, whichintegrates the DRAM and the SLC/MLC PCM mema#jith this motivation,
four algorithms are presented and evaluated in this chapléch considering both the task
scheduling and the memory mode configuration. To the bestrdfmowledge, this chapter
is the first work on the synthesis issue on PCM based embeddedsgaéms.

The major contributions of this chapter can be summarizeddliasvs:

e \We propose a chromosome representation for both the taskislong and the hybrid
memory mode configuration. Our proposed chromosome repedsmn includes
three strings: the scheduling string that indicates thedaling order; the assigning
string that represents task-core assignments; and the menmae configuration
string that shows where and in which mode pages are stordueihytbrid mem-
ory. A chromosome represents a complete solution of thedels&duling with data

dependencies, as well as the hybrid memory configuratiomaattion.
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e To improve the hybrid memory efficiency, we design four aldons for the opti-
mization of the MLC/SLC PCM + DRAM hybrid memory. To take advayeeof
both the high memory capacity of the PCM memory and the fagtsactme in the
DRAM memory, we explore solution spaces of the task schegalimd the memory
configuration, and find the solution that balances the perdoice and the efficiency

of the PCM memory utilization.

e Our experimental results show that our genetic-based iligoigenerates the best
solutions. It significantly reduces the maximum memory edag 76.8% compared
to the DRAM+ uniform SLC configuration, and improves the eéfiray of memory
usage by 155.6% compared to the DRAM + uniform 4 bits/cell Mlc@fguration.
In addition, the performance of the system, in terms of texacution time, is also

improved by 101% compared to the uniform 4 bits/cell MLC cgufation.

In Section[4.2, we discuss works related to this researctk.wbr Section 4.B, the
background knowledge of the hybrid memory is presented. Avatonal example is
given in Sectiof 4]4. We propose our algorithms in Sedtidh féllowed by experimental

results in Section 416. Finally, we conclude this chapte3éatior 4.17.

4.2 Related work

The PCM incorporated in the memory hierarchy has been wdlliextuin [6,9/ 10, 63].
A DRAM based page cache was implemented for a large PCM mem®6ity This page
cache not only improves the performance by buffering fraetjyeused pages, but also
helps endurance by reducing writes. Enhancement appreasineh as read-before-write,
row-level rotation and segment swapping, were proposethpwave the life time of the
PCM [9]. By rotating the cache line, the row-level rotationtdisites the row level wear
evenly. In the segment swapping, the contents of the leagti&ntly-written page and the

page being written are swapped. Lee et al. presented a PCa@istdevice with a bit level
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read-before-write loop [63]. They verified the PCM bufferamgation and proposed that
partial writes are able to tolerate long latency of writecHieiques on both the hardware
level and the operating system level were proposed to retthécprogramming power of
PCM by 50%, as well as to provide a significant improvement eretidurance over con-
ventional designs [79]. Ferreira et al. also describecethi@time enhancements for PCM:
N-Chance victim selection replacement policy, bit leveltasj and a swap management on
page cache writebacks! [6]. The above works focus on devies #ad require hardware
modifications. The hybrid memory combining the non-votatihemory and the DRAM
was studied in[[10, 80-82]. A combination of PCM and DRAM waspaged as an al-
ternative architecture for the future main memaryi [10]. Ay efficient hybrid memory
architecture, PDRAM, was proposed in [80]. An operatingeyssupporting mechanism
was designed for the NOR-flash + DRAM hybrid memary! [80]. And ktwal. proposed
power-aware memory partitioning algorithms for the PCM + DRAbrid memory/([82].
However, these papers didn’t consider the SLC/MLC configomah the hybrid memory,
which limits the scalability of the PCM memory as the main memo

Multi-level cell techniques have been widely studied inmas memory platforms. An
MLC Spin-Transfer Torque Random Access Men(8iyT-RAM) implementation was pro-
vided in [83]. Chen et al. designed an access scheme for the MIIGRAM, at the circuit
level as well as the architectural level [84]. Three différerite schemes were provided
based on physical principles of the resistance state tramsif the MLC STT-RAM. The
MLC technique has also been implemented in the flash-basemeaystem([85]. A multi-
level address translation mechanism was proposed to aateetbe translation process in
MLC flash memory storage systems [86]. Chang et al. designetiadole memory tech-
nology device to improve the reliability of the MLC flash memeystem at the device
driver layer [87]. Another approach to improve the religpibf MLC flash memory, an
error correcting solution concatenatitmgllis coded modulatioTCM) with an outer BCH

code, was proposed by Li et al. [88]. Jung et al. presenteatiiigns to reduce unneces-
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sary write and erase operations in the MLC flash with a buifegnhance the performance
of the MLC flash memory [89]. Nevertheless, the above appresafocused on either im-
proving the reliability or enhancing the performance of MieC memory. They did not
consider the efficiency of utilizing the MLC memory.

A recent trend in PCM techniques has been focused on the MU@igpee [8] 14—
16,90/ 91]. A number of papers focused on write techniquestfelLC PCM to obtain
the tight resistance levels, by reducing the margin betvweerresistance levels. In[14],
multi-level programming algorithms were proposed basedamtrol of the tail-end of the
programming pulse. It showed that iterative writes to panga PCM cell can provide bet-
ter accuracy. A drift-tolerant MLC mechanism was proposadlie PCM memory [90].
This drift-tolerant mechanism uses the modulation codingfter high resilience to drift.
A 2 bits/cell MLC PCM cell design was proposed in [15]. An optation design was
presented for the write programming operation in the MLC P©@Mriprove the speed of
the write [92]. A preemptable read mechanism was implentetagpause and resume it-
erative writes in the MLC PCM, reducing the waiting time of adeequest [4]. Authors
in [15] also presented a programming algorithm suitabletlieir MLC design. Amor-
phable memory syste(WMMS) was proposed ir [16]. This MMS switches the PCM cell
between the SLC and the MLC with small hardware overhead.a@liesstment is based on
the statistic information of memory traffic in runtime. Ahetr MLC/SLC PCM architec-
ture was presented inl[8]. The PCM configuratiori in [8] was hssed on device capacity
utilization in the running time. The Mercury architecturasvpresented to address the
high-write latency and the process variation issues in th€ N CM, by adapting differ-
ent programming schemes [93]. Zhang et al. proposed the édelmohitecture to reduce
the readout error rate [94]. Jagmohan et al. proposed amaton-theoretic Channel
Coding with Side-Information at Transmitter (CSIT) paradigpmmaximize the memory
capacity of the MLC PCM memory [91]. However, none of thesegpgygonsidered the

memory-related characteristics of applications runnimthe system.
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4.3 Background and Model

The PCM memory

As one of non-volatile memory techniques, PCM stores datadiyrpmming the resistance
of the chalcogenide, i.e., the phase-change material. Wiffenetht amounts of heat are
applied in the chalcogenide layer of a PCM cell, the chalcmgematerial can be switched
between two different states, the crystalline state anditih@phous state. Since resistances
of the chalcogenide in these states are not identical, ttzestiared in the PCM cell can be
read by simply sensing the resistance of the chalcogenyee la

An increasing trend of research interest has been showm iNLC operation in PCM
cells. The earlier PCM techniques have been focused on thke $iit operation. However,
the large resistance contrast between those two stateb@anecent “program-and-verify”
(P&V) technique enable multiple bits storing in one singdl.cAssuming the resistance
range of a MLC PCM device is fromk,,,;,, t0 R,,..., we can equally divide this range into

4 or 16 resistance sub-ranges for 2 bits/cell or 4 bits/oedpectively, as shown in Fig 4.1.

0 ; 1
[ )| )
R Rmax
(a)
00 : 01 ; 10 : 11
D G G D
Rmin Rmax

(b)

0000,0001,0010,0011, ,1100,1101,1110,1111

RM\N RMAX
(©)

Figure 4.1: The resistance levels of a PCM cell, assumingas$istance range of the PCM
cell is from R,,;,, 10 R,,... (@) The SLC PCM cell, (b) the 2-bit MLC PCM cell, and (c)
the 4-bit MLC PCM.
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The P&V technique is widely used for the multi-bit writing Flash memories [8].
Since the resistance distributions of multiple bit levels mon-overlapping, the P&V iter-
atively applies set pulse and check whether the resistaamsedached the required range
precisely. In details, the P&V first uses a SET-sweep pulbgmimmediately followed by
a RESET pulse, to program the MLC to a totally RESET state. Theegaence of partial
SET pulses is applied to the MLC, under a feedback-loop cbfitkh. By this approach,
the MLC can be programmed to the required tight resistanogeraDue to this iterative
program-and-verify procedure, the write operation in MIsGriore time-consuming than

that in SLC [8]. Moreover, the write operation also leadstorser endurance of the MLC.

The morphable PCM device

The advantage in the scalability of MLC has been increagiatgtacting research attentions
[14,15]. However, the disadvantage in the life time and teggsmance has limited the
implementation of MLC techniques in PCM devices[[8, 16]. $itice major difference
between the SLC and the MLC is the resistance ranging, thes&éll MLC can be used
as a SLC or a 2 bits/cell MLC without major changes in sensinguit. The morphable
PCM cell is one of the mechanisms that can switch operationenbetween SLC and
MLC, based on the workload [116].

The memory capacity requirement is widely different fromeito time when various
applications are running. For example, the worst-caseagipn in the SPEC CPU 2006
requires close to 1GB memory. However, most of applicationthe SPEC CPU 2006
need much less memory than 1GB|[16]. Thus systems with metassythan 1GB can
execute most of the SPEC CPU 2006 efficiently, while they mag &erious performance
degradation when running the worst-case application. ®wotier hand, systems equipped
with more than 1GB memory are not efficient at most cases. l@séake of reliability,
systems are typically provisioned with more memory capaétian the required capacity

for efficient executions of applications in worst-case sciErs.
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The morphable PCM device can morph the memory on-the-fly Bgldoing this, the
memory runs efficiently in a low density mode, such as the Slddlen in the common
case; and switch to a high density mode, such as the 2 bitdit€l mode or even 4
bits/cell mode, in the worst-case scenario. The morphalgsony system consists of a
high-density high-latency region and a low-density loweiey region. The ratio of these
two parts can be adjusted dynamically. The dynamic adjustisedecided based on the

memory traffic observed by the memory monitoring circuit.

PCM + DRAM hybrid main memory

In this chapter, we focus on the optimization of the memorydeneelection for system
equipped with a hybrid memory architecture. This hybridh@ecture consists of two
parts: a DRAM array as well as a PCM memory architecture, whsckimilar to the
morphable PCM device. The addition of the DRAM in the hybrid neeyncan provide
better performance than that from the PCM memory. Thus, itasemealistic than the
PCM-based memory architecture. We assume there are thfeeedtfkinds of modes in
the PCM memory: a) the SLC mode; b) the 2 bits/cell MLC mode; @nithe 4 bits/cell
MLC mode.

A memory controller is the critical component to manage tP+ DRAM hybrid
main memory, as shown in Fig 4.2. In the traditional DRAM, wingrerating a memory
request, the memory controller sends a sequence of micrmeoiais to the memory banks.
When a read miss happens in in the row buffer, a precharge cothtoavrite back a row
buffer is issued before a new row is loaded. However, for iG&Pthe controller always
bypasses the row buffer and writes to cells directly in aswjperation. Thus, the controller
directly loads a row without writing back the victim row. line PCM + DRAM hybrid main
memory, we propose a memory controller with two separatecfetata and control buses,
connected to the PCM and the DRAM, respectively. A multi-rowfdrus equipped in the

controller, loading pages from either the PCM or the DRAM. |la tkad operation, the
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controller first checks the row buffer. If the target is in thgfer, the memory controller
obtains the entry without accessing the memory bank. Oikerthe memory controller
will first decide the victim row, check whether it needs to betten back in the DRAM

or it is already in the PCM. Then it will issue an activate comohé move the data to an
empty row in the buffer, and a read command to get the datshemtite operation, the
memory controller issues the write command and sends tlzedilactly to the memory

bank, if the data address is in the PCM.
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Figure 4.2: The architecture of the CMP system with PCM + DRAMrig/main memory

Application model and problem statement

We use thedata-flow graph with pageéDFGP) to model an application of embedded
systems. A DFGRY = (T, E, P, Rp,Wp, E¢) is adirect acyclic graph(DAG). T =
(t1,t2,t3, ..., t,) iS the set ofn tasks. F C T x T'is the set of edges whefe,v) € E
means that task must be scheduled before taskP = (P, P, P, . .., P,,) is the set of

m pages that are required by taskg. : T — P* is the function where?p(t) is the set of
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pages that taskreads.Wp : T' — P* is the function wheréV(¢) is the set of pages that
taskt writes. E-(t) represents the execution time of task

We consider the PCM + DRAM hybrid memory optimization for a DF&Pthe com-
bination of two parts: the task-core scheduling and the idyimemory configuration. A
task-core schedul§; ; is a matrix that indicates task-core assignment pairs améxbcu-
tion order of tasks on each core. Whgn # 0, it represents that tagks assigned to core
j, and the value is the scheduled start time of tasknly one element in each row has a
non-zero value, because each task will only be executed émoen the standpoint of the
task execution, the task-core schedule tells on which cgreea task will be executed and
the exact start time of the execution. From the standpoiatatire, the task-core schedule
indicates the task execution order of a given core and thet efart time of each task in this
order. The task execution order can be obtained by sortingzeoo elements in a column
of the task-core schedule. The hybrid memory configuratioR =< R, W > is a pair
of matrixes. iz; jthat shows in which memory mode that pagead by task is stored in
memory. IW; ;that shows in which memory mode that pageritten by taskj is stored in
memory. In those matrixes, “0.5”, “1”, “2”, and “4” indicathat the page is stored in the
DRAM, the PCM of the SLC mode, the PCM of the 2 bit/cell MLC mode&] &me PCM of
the 4 bit/cell MLC mode, respectively.

Because of the parallel processing of an application, onlytaith memory configura-
tion is not enough for the hybrid memory optimization. Difat task-core schedules lead
to different memory usages at a certain time period. Withséme hybrid memory con-
figuration, some schedules may exceed the memory capadtityy 8ome others may not.
Therefore, the output of our hybrid memory optimizationliries a task-core schedule
and a hybrid memory configuratidd. The problem statement is given as the following:

Input: ADFGP(T, E, P, Rp, Wp, E¢), and the capacity of the DRAM and the PCM.

Output: A task-core schedul®& and a hybrid memory configuratiaf, which subject

to the following objectives:
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Objective 1: The memory usage should not exceed the mempacitg at any time.

Objective 2: The memory usage should be the most efficient.

The idea behind the first objective is that the exceeding nmgmsage results in ac-
cesses to the hard drive, which are far slower than accesgsae PCM memory, not to
mention the access speed of the DRAM. And the second objastitie basic objective of
our optimization. An efficient memory usage should avoid lm@mory usages. It should
also favor the DRAM + SLC PCM mode the most, because of the lowsacttme and the
low energy consumption in this mode. And the 4 bits/cell MLGdwa should be least fa-
vored, due to its long access time and high energy consumghdhe best case scenario,
all pages should be stored in the DRAM all the time, which lgadbe best performance
and the lowest energy consumption. However, it may conflittt the first objective, where
the memory capacity is not large enough for storing all pagesher DRAM or the SLC
mode PCM all the time. Therefore, generating a task-coredsdd® and a hybrid mem-
ory configurationP subjecting to these objectives is the key to efficientlyizgithe hybrid
memory. In our proposed iterative algorithms, we check tleenory capacity objective
for every new solution in each iteration, and only solutitimst meet the memory capac-
ity objective may be accepted. Thus, the output of our pregaterative algorithms will
satisfy the first objective, unless storing all pages in 4/béll MLC mode configuration
cannot meet the first objective. In addition, by evaluatiolgitsons by our proposed fitness
function, the output of our proposed algorithm favors he DRANSLC PCM mode the

most, and configures the 4 bits/cell MLC mode as few as passibl

4.4 Motivational Example

In this section, we first give an example to show that configuthe hybrid memory can
improve the performance of the CMP system and the efficiendphetybrid memory.
Considering a schedule for an application represented by#@P in Fig.[4.B(a) in a

three-core CMP system, each task in the application needsatb pages from a shared
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Task READ WRITE
A P1~P5 P6~P16
B | P3,P4,P6,P11,P14 [ P11
C | P4,pP7,P8,P12,P15 [ P12
D |P3,P9,P10,rP13,P16| P13 READ | WRITE
E P11,P14 P14 DRAM 250 250
| [Fomisia) [ 500 o
H |P2,P7,P11,P13,P16| P16 PCM(4-MLC) | 1000 | 4000
| P2,P14 P14 PCM(4-MLC) 2000 8000
J P14,P15,P16 P16 SSD 10000 | 10000
(b) (©)

Figure 4.3: An example of configuring the hybrid memory. (ag DFGP of the applica-
tion in the example, (b) read pages and write pages of tagke iapplication, (c) read and
write latency of the hybrid memory and the SSD

hybrid memory and write pages in the hybrid memory, as shovig.[4.3(b). The system
Is also equipped with a SSD as the secondary storage. Thstdegd in the hybrid memory
are mainly from the SSD or write operations of previous tadken a required page is

not in the hybrid memory, it is read from the SSD.

STEP Core 0 Core 1l Core 2 DRAM PCM
0 SSD P1~P5
1 R P1~P5 P3,P4 P1,P2,P5
2 EXE A P3,P4 P1,P2,P5
3 W P6~P16 P3,P4 P6~P16
4 |RP3,P4,P6,P11,P14|R P4,P7,P8,P12,P15 (R P3,P9,P10,P13,P16| P3,P4 P6~P16
5 EXE B EXE C EXE D P3,P4 P6~P16
6 Move P3 P3,P4 P3,P6~P16
7 W P11 W P12 W P13 P11,P12 P3,P6,P7,P13~P16
8 R P11,P14 R P3,P11,P12 R P6,P7,P12,P13,P15|P11,P12 P3,P6,P7,P13~P16
9 EXE E EXE F EXE G P11,P12 P3,P6,P7,P13~P16
10 W P14 W P2 W P15 p2,p14 | P3,P6,P7,P13,P15,P16
11 R P2,P14 R P2,P7,P11,P13,P16 p2,p14 | P7,P11,P13,P15,P16
12 EXE | EXE H p2,p14 | P7,P11,P13,P15,P16
13 W P14 W P16 P14,P16 P15
14 R P14,P15,P16 P14,P16 P15
15 EXEJ P14,P16 P15
16 W P16 P14,P16 P15

Figure 4.4: A task-core schedule for the applicant in thisnegle. “SSD P1 P5” means
that the content of pages P1 P5 is stored in the hybrid mennony the SSD. “R P1 P5”
shows that the core reads pages P1 P5 from the hybrid mentoX§e A” indicates that the
core executes task A. “W P6 P16” represents the write ogerat pages P6 P16. “Move
P3” is the operation that copy the content of page P3 from DRANEM in the hybrid
memory. The “DRAM” and “PCM” columns show pages that need torbée hybrid
memory in each step.
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In this example, we refer the number of SLC cells for storing page as a page block,
while one page block in the 4 bits/cell MLC mode can store ujptw pages. The DRAM
in the hybrid memory is enough for two page blocks. The sgiton the memory capacity
and the number of cores in this example are small, for the sb&mnplicity. The settings
in our experiments are highly related to the real system,eawilt mention in Sectiofn 416.
We assume that all tasks in this application require the samaeution time, 1000 cycles.
Reading a page from the PCM requires 500 cycles in the SLC m@@é, dycles in the 2
bits/cell mode, and 2000 cycles in the 4 bits/cell mode, eetyely [82]. The read/write
latencies of the hybrid memory and the SSD are shown i EBfc).

Using a simple list-scheduling algorithm, we can get a tasle schedule shown in
Fig.[4.4. Note that, even though we show the schedule inwisg- three cores do not
necessarily start and end the same step at the same time. iemi®ned in the previous
section, if the required page are not in the PCM memory, thiesyseeds to request the
page block back from the SSD. In this case, the SSD requigedisant access overheads
compared to the PCM memory accesses. Therefore, to avoiccesseay performance
degradation, the system should be equipped with the largegénsize of PCM memory
for the maximum memory requirement. As shown Fig| 4.4, higtmory requirement
occurs in step 6, where twelve page blocks are needed to he PGM memory.

Since memory accesses in the DRAM are both significantly shdnan that of the
PCM, all DRAM blocks are used in every step in this schedule. @anfig all PCM
cells in the SLC mode, the number of required page blocksawshn the second column
of Fig.[4.5. Thus, the system should have at least 12 pag&dlaicthe PCM memory.
However, we observe that the memory requirement is no mare 6% of the maximum
memory requirement in 13 out of 17 steps. We show the requineel of each task in
Fig.[4.6. The critical path of this schedule{id, D, G, J}. And the total execution times
of this schedule are 87000, 119750, and 183750 cycles fori8tde, 2 bits/cell MLC,

and 4 bits/cell MLC, respectively.
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Required page in PCM

STEP SLC | 2-MLC [4-MLC Sch.
0 0 0 0 0
1 3 2 1 3(SLC)
2 3 2 1 3(SLC)
3 11 6 3 3(4MLC)
4 11 6 3 3(4MLC)
5 11 6 3 3(4MLC)
6 12 6 3 3(4MLC)
7 6 3 2 3(2MLC)
8 6 3 2 3(2MLC)
9 6 3 2 3(2MLC)
10 5 3 2 3(2MLC)
11 5 3 2 3(2MLC)
12 5 3 2 3(2MLC)
13 1 1 1 1(SLC)
14 1 1 1 1(SLC)
15 1 1 1 1(SLC)
16 1 1 1 1(SLC)

Peak 12 6 3 3

Figure 4.5: The number of page blocks required in the PCM @edif the hybrid mem-
ory in each step. The “SLC” columns, the “2-MLC” columns and theMLC” columns
indicate that all PCM cell are configured in the SLC mode, thé<dell MLC mode, and
the 4 bits/cell MLC mode, respectively. The “Sch” columndigate the hybrid memory
configuration generated by our genetic-algorithm.

Using our genetic-based algorithm presented in the nexioseto explore the hybrid
PCM configuration space, we can find a hybrid configuration agehuired page of A,
J} are stored in the DRAM and SLC PCM mode, the required pagg/pfd} in the
DRAM and 2 bits/cell MLC PCM mode, and the required pagé Bf C, D, E, F, G} in
the DRAM and 4 bits/cell MLC PCM mode. This schedule has a sicgniti improvement
in the memory utilization and performance. Our scheduly arkeds three PCM memory
blocks, which is 75% less than the SLC mode, 50% less than ties/2ell MLC mode.
And in 12 out of 17 steps, all three PCM blocks are used. Anddtad éxecution time is
163500, which is 11% shorter than that of the 4 bits/cell MLGde.
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Total exe. time (cycles)

SLC | 2-MLC | 4-MLC | Sch.
74250 98500 | 145500(141000
4000 ( 6000 | 10000 | 10000
3500 | 5500 9500 | 9500
5250 | 9250 | 17250 | 13250
2000 | 2500 3500 | 2500
2250 | 2750 3750 | 2750
5250 | 9250 | 17250 | 7000
3500 | 5500 9500 | 5500
1750 | 1750 1750 | 1750

J 2250 | 2750 3750 | 2250
Total| 87000{119750| 183750163500

Task

>

—|lT|O]lnIm|Oolo|wm

Figure 4.6: The execution time of each task, including threetof loading pages from the
SSD to the hybrid memory, reading pages from the hybrid mgmexecuting the task,
and writing pages to the hybrid memory. The red rows reptessks in the critical path,
which includes taskl, D, G, and/J.

4.5 Scheduling Algorithms for Hybrid Memory

In this section, we propose four different scheduling atars for the hybrid memory.
The Genetic AlgorithmgGA), the Stimulated Annealin¢SA), and theTabualgorithm are
three iterative algorithms. In addition, we also designariséic algorithm to schedule the

hybrid memory.

The Genetic Algorithm

The GA is a heuristic method to find the near-optimal solutioa large solution space.
The GAis inspired by the process of natural evolution. In@#e a solution is represented
as a chromosome. A population, i.e., a large number of chsomes, is generated by
some low computational approaches, such as random gemeoatjreedy heuristics. Each
chromosome in the population is associated wittirgess value A predefined number of
iterations of evolution follow the initial population gemion. In each iteration, some

pairs of chromosomes are selected by a biased random salegfproach. Chromosomes
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with the higher fithess values are more likely selected froengopulation. A crossover
approach is implemented on each pair of selected chromastongenerate some new
chromosomes. Some other chromosomes are also selectethigquopulation, followed

by a mutation procedure that also generates some other memoblomes. In each iteration
of the GA, the fitness values of all chromosomes in the pojulatre evaluated, and the
best chromosome is recorded. After a large number of iteratithe best chromosome
in the population is translated as the selected solutionshdev the genetic algorithm in
Alg.4.1. The detailed description of each step in Algl 4.1 @ provided in the following

part of this subsection.

Algorithm 4.1 The genetic algorithm
Input: A set of tasksyn different cores, PCM memory capacityC, and DRAM memory capacity
DC, predefined parameters: population sizghe number of chromosomes pairs for crossover
R, the number of chromosomes for mutati@ntwo threshold numbers of iteratiodsand Gy,
Output: A schedule generated by the genetic algorithm
1: Form the initial population with the size @t
2: fori: 1toldo
3:  SelectingR pairs of chromosomes frof.,,;-
Create2 R new chromosomes by crossovering fR@airs of chromosomes selected above
Selecting) chromosomes front,,,,
Create) new chromosomes by mutating tilechromosomes selected above
Include the2R + Q chromosomes i,
SelectingP chromosomes fron¥,,,,- for next iteration
if The best chromosome has not been changed in thé&gsterationthen
10: Break
11:  endif
12: end for

©o N g

Representation of chromosome

In our genetic-based algorithm, we consider both the task&-scheduling and the hybrid
memory configuration. We use three strings to represent gledensolution: the schedul-
ing string, the assigning string, and the memory mode stiffiy a solution, these strings
have the same lengihy which represents the number of tasks in the application.

The scheduling string is a one dimensional representafitimedDFGP. We can trans-

form the DFGP into a string by the topological sortl[95]. Tleeduling string indicates
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Task READ WRITE
A PO,P1,P2 P2
B P1,P2 P2
C | P1,P3,P4,P5 P7
D | P1,P3,P6,P7 P12
E | P1,P4,P6,P8 P5
F P2,P7,P9,P10 | P11
G P5,P11,P12 P11
H P5,P10,P12 P12
I P2,P4,P5,P12 P2

(@) (b)
SETTThess «TREEEEHL
() (d)

- | 4| 22| 4 | 2- DRA| 4-
RIS I vie | meL | e | meL [ mie € v vt

DRA 4- 1 4T 4 DRA | 2-
oOl2p1)p110p1 121210 Wim |3 e mie [ mee | € v vie | €

(e) ®
Figure 4.7: A chromosome representation of an applicatiahis the DFGP of the appli-
cation. (b) the read/write pages of each task. (c)and (dharealid scheduling strings for

the application. (e) is an assigning string for the applicat(f) is a memory mode string
for the application.

the scheduling order of tasks. Each task only appears ontte ischeduling string. For
instancet; placed in the fourth element of the string means that taskthe fourth task to
be scheduled. Note that valid scheduling string repreientaof a given DFGP may not
be unique, as long as the data dependencies are held. Foplexdig.[4.7(c) shows one
valid scheduling string of the DFGP in Flg. 4.7(a). Sinc&tass the predecessor of tasks
B, C, D, and E, task A should be placed before task B, C, D, and E isctieduling string.
In this schedule, task A is the first task to be scheduledyviat by task C, D, B, and so
on. Fig[4.7(d) shows another valid scheduling string.

The assigning string is a vector indicating task-core assgnts. The value of the i-th

element demonstrates the core where taskassigned to in this solution. Fig. #.7(e) is a

85



valid assigning string. Note that order of associated tes&lphabetical. It is not the order
indicated in the scheduling string. In Fig. 1.7(e), the falement is associated with task
A, and the second element is associated with task B. Tasksakd, are assigned to core
0; tasks C, D, and F are assigned to core 1; and tasks B, G, andadsageed to core 2.

The combination of one valid scheduling string and one agsigstring can be trans-
lated into a complete task-core schedtllby assigning tasks to the corresponding core in
the order indicated in the scheduling string. Given a sclieglstring and an assigning
string, when we decide the start time of a task on a core, wiessgtrt time as the earliest
time when the core is available as well as all its predecdas&s are finished.

The last part of the chromosome is the memory mode stringgiwinicludes strings
for read and write operation. This string is also associat#id tasks in alphabetical order.
The value of each element represents where and in what menuatg the required pages
of the corresponding task are stored. Fig] 4.7(f) shows amele of the memory mode
string for the application in Fi¢. 4.7(a) and (b). This sirindicates that the required pages
of task A, i.e.,{P0, P1, P2}, are stored in the SLC mode of PCM when they are read,
and the written pages of task A, that/g, is stored in the DRAM. In some cases, multiple
tasks, which share same pages and are executed concuireatlgiven schedule, may
conflict in the mode string. The shared pages are stored imtte configuration of the
task appearing the earliest in the scheduling string. Taerein the mode configuration,
pages read by the same task may not be identical. In additieralso set a criteria for
placing pages in DRAM. In the case where pages of a task arelgigtketo be placed in
the DRAM when the DRAM is full, we define this chromosome is nategtable, which
we will discuss later in this chapter. However, in some cagesDRAM has some spaces
available, but not enough for all pages required by the tasierefore, we set different
priorities for pages: 1) pages that are or will be written hig ttask, and will be read
by some tasks later, have the highest priority; 2) pagesatteaor will be written by this

task have the second highest priority; 3) pages that willdael by some tasks later have
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the second lowest priority; and 4) other pages have the kopvewity. With this priority,
pages with higher priorities are selected to place into tRAM. The rest pages are placed
in the PCM with the SLC mode. Based on these criteria, we caslana memory mode
string into a hybrid memory configuratidn. Combining the hybrid memory configuration
string and the task-core schedule, we can get a completegosofar optimizing the hybrid

memory.

Initial population

In the first step of our genetic algorithm, we need to randogéperate a pre-defined
number of chromosomes in the population. For the assigrimgsand the memory mode
string, any randomly generated string is valid, as long ak eeement of the string is within
the valid range of value. However, for the scheduling striwg have to check the data
dependencies inside the string. For each task representbd scheduling string, all its
predecessor tasks should be placed before this task, anaeis successor tasks should
be placed after it. Due to data dependencies, the numbelidfseneduling strings may
be smaller than the size of population. In this case, we caargée multiple chromosomes
by combining one scheduling string with multiple pairs o$igging string and memory
mode string. To ensure that there are chromosomes in thdgtimouin some extremely
low memory capacity, we generate some chromosomes whiglagéls are stored in the
DRAM + 4 bits/cell MLC mode configuration. The lowest memorags chromosomes
are the ones that schedule all tasks in one core and storg@spn the DRAM + 4 bits/cell
mode, since there is only one task that requires data in tineamyeat a time and all data are
stored in the least space-requiring mode. Thus we alsodadliese chromosomes in the
population. Finally, we need to remove multiple identidalamosomes in the population,
so that every chromosome is unique. The population ire@ilbn procedure is shown in

Alg. 4.2.

87



Algorithm 4.2 Generating initial population
Input: A set of tasks, the population size
Output: An initial population
1: Initial an empty populatiod;,,;
2: while size(P;,¢) < P or no new valid assigning string can be created

Put all tasks in task séf
Initial an empty scheduling string
while U is not emptydo

Put all assignable tasks in task set

Randomly select a tagkin A

Remove task from U

Pushi into S
10:  end while
11: Randomly form a assigning stringsS
12: Randomly form a memory mode stridd M
13:  Form the chromosomé@ by combiningS, AS, andM M
14: AddC into P;,;
15: end while
16: while size(Pj,¢) < P do
17:  Randomly selecP — size(P;,;) chromosomes ik,
18:  Modify assigning string and memory mode strings of these chromosomes
19:  Add them intoP;,,;
20:  Remove identical chromosomes fraf,;
21: end while

w

© N g

Selection

In the genetic algorithm, a small portion of chromosomessatected from the population
for the further evolution, modeling the nature’s surviafthe-fittest mechanism [96]. A
proper selection procedure in a genetic algorithm showe ha&o basic characters. First,
fitter solutions should have better chances to survive evaker ones tend to perish. This
character helps the convergence in the evolution. The ctiemacter is that the selection
should be a random process. A less random selection praekids to small search space
explored.

In our genetic-based algorithm, the first step of the selagbrocedure is to evaluate
fitness functions of all chromosomes. The fitness functidhaskey to evaluate chromo-
somes. As we have mentioned in the previous subsection, lonenosome represents a

complete task-core schedule as well as a hybrid mode coafigar Based on the schedule
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and the mode configuration, we define fiteess functioras follows:

2ic ZPj €Rp(t)UWp (1) S12€(F))

D - , 4.1)
Dici ZPjGRp(ti)UWp(ti)(]V[ODE(Z) x size(Pj) x I; ;)

Fitness =

In the above fitness functiod/ O D E(i) relates to theé'™ element of the memory mode
string in the chromosome, where “0.5”, “1”, “2”, and “4” reggent “DRAM”, “SLC", “2
bits/cell MLC”, and “4 bits/cell MLC”, respectivelysize(P;) is the size of page’;. I, ;
indicates whether page; is stored in the hybrid memory with the mode explicated in the
i*" element of the memory mode string. For example, assumirkg tasndt; share the
same pagé’s at the same time, ang is listed before; in the scheduling string, we store
P; in the mode indicated in the* element of the memory mode string, and welsgt= 1
as well asl; 5 = 0.

This fitness function represents the average hybrid memenfpimance of the appli-
cation, in terms of bits/cell. Since we set the definition ebéd chromosome as the one
without exceeding the pre-defined maximum memory capabigyhigher the fitness func-
tion is, the less average “bits/cell” the memory is configuie the chromosome. Less
average “bits/cell” in the memory leads to a better memorjopmance. In addition, more
pages shared in the hybrid can improve the memory perforenapegeducing reads and
writes in the memory, which is also reflected in the fithessfiom. Thanks to the use
of “I; ;” indicators, only one memory access is counted in the denator of the fitness
function, when there is a page shared among multiple taske.niore pages shared, the
higher the fitness function is.

After fitness functions of all chromosomes in the populattwa evaluated, we sort
these chromosomes in the descending order of their fitnessidns. The chromosomes
with identical values of fitness functions are sorted aabity among themselves. Then
we use aank-based roulette wheel selection schemselect chromosomes [96]. In this

selection procedure, the P different chromosomes arerdieted as the next population.

89



Considering the whole sorted chromosome population as attewheel, each chro-
mosome is located in a sector of this roulette wheel, baséd Gitness function. To realize
the “survival-of-the-fittest” of the nature evolution, warfition the roulette wheel into sec-
tors based on fitness functions. Chromosomes with a highee lfitness function have
larger sectors in the roulette wheel. Ll2tlenotes the population size and $yelenote the
angle of the sector representing therank chromosome. We also define a constant ratio

C = S;/S;_1 < 1. Thus the following equations hold:

S; =S, (4.2)

P

1-CP
E = — 4,
i:1Sz 1_051 (3)

Normalizing the whole360° of the wheel, i.e.,Zf:l S; in Equ (4.3), as to 1, we can

have the sector angles of the first chromosome and a gi¥ehromosome as follows:

1-C

Si=1—¢cp

(4.4)

_1-C
S 1-CF
In order to keep the population size in each iteration of tledugion, we need to select

S; x ¢ (4.5)

P chromosomes from the population, which is usually largantthe default population
due to the crossover and the mutation procedures in thet&stion. In our genetic-
based algorithm, we select P random pages from the range ®@flO Each of these P
random pages falls in a sector mentioned above. The comdspmp chromosomes are
selected. Since pages are selected randomly, some of thgnfathen the same sector,
leading to the case that multiple identical chromosomest @éxithe population. Multiple
identical chromosomes do not help in improving the perforoeeof the genetic algorithm.
To avoid this, we check the P pages, and re-select any of thémy are related to the

same sector. In this selection procedure, the P differemnebhsomes are determined as

the next population.
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Crossover
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Figure 4.8: Steps of the crossover procedure on schedulimgs. (a) Two scheduling
stringsC A, C'B, and a cutting point of 4; (b) Four stringsA,, C'A;, CBy, andCB;
after cutting; (c) Forming two new scheduling strings, byyiag C A, as the upper part
of C'A,...,, and copyingC B, as the lower part of’'B,,..,; (d) Completing these two new
scheduling strings by re-ordering the rest.

The traditional crossover procedure generates new chrames by truncating two
chromosomes and jointing one part of each. Our chromosopregentation consists of
three strings, one of which, the scheduling string, inctuithe data dependencies. Hence,
the crossover procedure operates differently for thoseethirings in a given chromosome.
In the first step of the crossover procedure, we randomlycs@leairs of chromosome.

The pair selection is similar to the selection presentedipusly, by using the rank-based
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roulette wheel scheme. The major difference is that therabsmmes in the population
selection must be unique, while a chromosome can be selectedltiple pairs in the
crossover selection, as long as no multiple pairs are id&ntlThe implementation of the
rank-based roulette wheel scheme in this selection mirhiesatural fact that better in-
dividuals have better chance in reproducing offspring.hHaair of chromosomes creates
two new chromosomes.

For the scheduling strings of a pair of chromosomes, we firstiomly pick a cutting
point, truncating each of the chromosomes into two parts. (¢ and C'B denote the
scheduling string of these two chromosomes,@nd, C' A, C' By, andC B, represent four
truncated parts of these two scheduling strings. In thergéina of two new chromosomes,
we copy theC' A, as the upper part of a new chromosome, and’thk as the lower part of
another new chromosome. For the tasks represented iAh@andC B, we will re-order
them based on the tasks order(i3 andC' A, respectively. In this crossover method, we
keep the upper part of a string and the lower part of anothigigstinchanged, instead of
keeping the upper parts of two strings unchanged. The readbat keeping the upper
parts of two strings in crossover leads to fast convergendepaor solutions, since the
upper parts of strings in the population are less likely t@hanged via crossover in this
case.

For example, let the scheduling string in Hig.14.7(a)(é, the scheduling string in
Fig. [4.7(b) beCB, and the cutting is 4, as shown in F[g.14.8(a). By truncatingséh
scheduling strings, we haveA, ={A,C, D, B}, CA, ={E,F,G, 1, H},CBy={A, B,

D, E},CAy={F,C,G, H, I}, as shown in Fid. 418(a). To create the first new scheduling
string, we copy the&’ A, as the first 4 bit of the new string, as shown in [Eig] 4.8(c).rrhe
for the tasks| E, F, G, I, H} in C'A,, we observe that their order in stridgB is { £, F,

G, H, I}. We place these five tasks in the last five bits of the new strirtge order of
{E, F, G, H, I}. Thus the first new scheduling stridgA,..., is {A, C, D, B, E, F, G,

H, I}, as shown in Fid._418(d). We can also get the second new siting,, as{A, D,
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B, E, F, C, G, H, I}. By this truncate and joint procedure, we can crossover tle ta
scheduling orders of two scheduling strings without violgidata dependencies, based on

Theoreni 4.5]1.

Theorem 4.5.1 Let scheduling stringst = { Ay, A;} and B = { By, B1} be truncated by
the same cutting point. Also let; = reorder(A;, B), and B, = reorder(By, A). The
reorder functionreorder(z,y) re-orders stringz based on the order of same characters
appearing in stringy. If A and B maintain data dependencies, thg#,, A} } and{ B}, B, }

also maintain data dependencies.

Proof: Assume{A,, A}} violates the data dependencies, which means at least asg of
and A} strings violates data dependenciesA{fviolates dependencies, then it contradicts
to the assumption 4 maintains data dependencies” in Theollem 4.5.1 Ajlfdoes not
satisfy the dependencies, some tasks!jnare scheduled before their predecessor tasks.
Since the order i} follows the order ofB, the scheduling order if¥ does not satisfy
the dependencies, which contradicts to the assumpfiomaintains data dependencies” in
Theoren{4.5]1. Proofing by contradiction, the new schedudinng{ Ay, A} } definitely
maintain data dependencies. Similar proof can be applisttitw { B;, B }.

Since there is no data dependency in the assigning strinthandemory mode string,
the crossovers in these two strings are simpler than thateis¢heduling string. For two
assigning strings, we randomly select a cutting point, amitch lower parts to generate

new strings. The same procedure is applied to a pair of memode strings.

Mutation

While the crossover procedure creates two new chromosormestivo parent chromo-
somes, the mutation generates a new chromosome from sengletghromosome. Similar
to the crossover procedure, the mutation procedure wofleseltly on those three strings

in the chromosome representation. For the assigning siritige memory mode string, we
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randomly select a bit for mutation. The selected bit is cleaintg another randomly picked

value. By switching the selected bit, a new string is gendrate

RO®BEESDH 4

The flexible zone (g
of task D

(@) (b)
Figure 4.9: Steps of the mutation procedure on the scheglstiing of the application in
Fig.[4.3(a), assuming that task D will be the target of theatioh. (a) The flexible zone

of taks D, and a random pick of replacing spot (between E anddp)A new scheduling
string after the mutation procedure.

//7'\‘ /E\‘ /D\I /F\ /G\‘ /I\ |

-\ /\/\/\

However, when we mutate the scheduling string, we need tsidentwo characteris-
tics of the scheduling string: 1) each value (i.e. the taBRsshould only appear once; 2)
the order of the value should maintain the data dependentlass, in the mutation pro-
cedure on the scheduling string, we randomly relocate tleetsal bit, instead of changing
its value. For a given bit in the scheduling string, we defime flexible zone of this bit
(corresponding to task as the area ranging from the corresponding bit of the |asdgsr
cessor task of, to the corresponding bit of the first successor task dio maintain data
dependencies, a randomly relocating spot is selected hgtfiexible zone of the selected
bit. Then we insert this bit at the relocating spot and pushdnd the bits between the orig-
inal spot of the selected bit and the relocating spot forw#m example of the mutation

procedure is shown in Flg 4.9.

Iterative evolution

In each generation of our genetic-based algorithm, we sélgmairs of chromosomes for
crossover, generating? new chromosomes() chromosomes are then picked for muta-
tion, resulting inQQ chromosomes. Therefore, there &te- 2R + Q chromosomes in the
population at the beginning of next generation. The selagirocedure keeps the pop-

ulation asP. This iterative evolution stops either when the total gatien reaches the
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pre-defined number, or when there is no improvement in thedgsgenerations, where

Gy, is also a pre-defined parameter.

Stimulated annealing algorithm

The SA is also an iterative optimization algorithm[97]. lmrgroposed SA algorithm, we
use the same representation of the application as the ckmn®in the GA. The basic idea
of the SA is that some new generated poor chromosomes wilt¢epéed probabilistically
based on how the average “temperature” of the current gemeran order to obtain a
better search of the solution space. The temperature isr@croéthe population, which
generally decreases in each generation. As the tempeiatttine populations becomes
lower, the probability of accepting a poor chromosome isdowT hus, in the beginning
of the SA, poor chromosomes are more likely to be acceptedirig to a wider search
in the solution space. In addition, at the end of the SA, pboomosomes are hard to be
accepted, which helps in the convergence of the search.

The initial population is created in the same way as that of@4. The initial temper-
ature used in our SA algorithm is the reciprocal of the avenague of fithess functions,
which are computed by Equatién 4.1, of all chromosomes inrtti@l population. In an
iteration, we selecfz pairs of chromosomes for crossover, generafiiignew chromo-
somes.() chromosomes are then picked for mutation, resultin@ iobhromosomes. For
a new chromosomé€’,,.,, generated by the mutation of chromosofiig;, we compute
Rep(Crew) = 1/ Fitness(Crew) and Rep(Cy,;) = 1/ Fitness(C,,;). A uniform random
valuer € [0, 1) is selected foC,,.,,. If r > threshold(C,.,,) andC,.,, meets the memory
capacity constraint(’,,.,, will be accepted and’,,; will be discarded. Otherwise,,,..,
will be discarded and’,,; will be kept. And the definition ofhreshold(C,..,) is as Equa-
tion (4.6). For two new chromosomes generated by the cressdiwo original chromo-
somes, we randomly pick one new chromosome and one origimaimosome as a pair,

and the rest as another pair. The same probabilistic aoggptocedure is applied to both
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pairs of chromosomes. After each iteration, the tempegatudecreased by a pre-defined

cooling rate, which is 90% in our design.

1

Rep(Cori) —Rep(Cnew)
]_ _|_ e temperature

threshold(Crew) = (4.6)

Tabu algorithm

The Tabu algorithm is a iterative solution search that kesgktof already-searched regions
so that it does not search a local space repeatedly [98, @@linAwe use the chromosome
represents a solution.

In our proposed Tabu algorithm, we randomly generate a pfieéet numberhop;,,g,
of chromosomes. Since we will start the local search witthedt¢hese chromosomes, we
need to make sure that they are different from each othenwengiven chromosomes;
and C,, we define a long hop metricii f f(C1,C3) = 1 — R, (C1,Cy) x Rs(Ch, Cy) X
R..(C1,C5), whereR,(C1, C5) is the percentage of identical values in assigning strings
of C; and C; (0.5 means half of strings are identical between theR\),C;, C,) and
R,.(C1, Cy) are the percentages of different values in schedulingggtmd memory mode
strings, respectively. When generating initial chromosame accept a new initial chro-
mosomes”; only whendif f(C;, C;) > 0.5, V5 € [0, — 1]. With this condition, we can
make sure these initial chromosomes have long distanceeaith other in the solution
space.

Starting from each initial chromosome, we conduct a locatadein the solution space
near this initial chromosome, which we call a region. Thal®zarch is shown in Algo-
rithm.[4.3. At the end of the local search of a region, the besimosome is selected. The

output of this Tabu algorithm is the best chromosome amoesgtiselected chromosomes.
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Algorithm 4.3 Local search in a region
Input: ¢ tasks,m different cores, PCM memory capacity C, DRAM memory capacityDC, a
pre-defined threshold number of short hép®,..:, and an initial chromosom@
Output: A best schedule in the local search
1. Select random integer numbersg [0,t), n € [0,m).
2: sUChop = 0
3: fori=0tot-1do

4:  ti= (T +i)mod
5 [ta,ts] < —flexible zone ofi
6: forje[0,m)do
7 mi = (n+ j)modmn
8: for tk € [tq, tp] do
9: for p € {0.5,1,2,4} do
10: for ¢ € {0.5,1,2,4} do
11: Modify chromosome”' by assigning taski to corems, insectingt: right before
tk, and changing its read modegpand write mode tq
12: Evaluate the new chromosome with Equationl(4.1)
13: if The new is better and it meets the memory capacity constiant
14: UpdateC as the new one, discard the old one
15: SUCHop = SUChop + 1
16: else
17: Keep the old one, discard the new one
18: end if
19: if suchop > hopshore then
20: BREAK
21: end if
22: end for
23: end for
24: end for
25:  end for
26: end for

Hybrid memory task scheduling heuristic

To evaluate the performance of our genetic-based algorithendesign a task schedul-
ing heuristic for comparisons. This task scheduling héaris based on the Min-Min
algorithm to generate task execution orders of all carek [Bde Min-Min algorithm gen-
erates high performance schedules with comparatively towputational complexity [74].
The Min-Min algorithm schedules and assigns tasks to coyemimparing task-core pairs
twice, as shown in Algorithmh 4l4. A mappable task set is a $d¢tgks of which all

predecessor tasks have been assigned. After the Min-Minstageduling, we have task
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execution orders of all cores. After scheduling a task, wears off-line hybrid memory
utilization estimator to estimate the trace of hybrid meynatilization, based on the task
execution orders generated in previous steps. We define thilezation conditions: 1)
the DRAM is not full; 2) the PCM utilization estimator is lowdran 50% and the DRAM
is full; 3) the PCM utilization estimator is between 50% ands/and the DRAM is full;
and 4) the PCM utilization estimator is higher than 75% andDR&M is full, which is
similar to the setting of the performance-aware manageimdB]. When a given task is
executed and it is under condition 1, all read or write padehis task are placed in the
DRAM. When DRAM is full, and condition 2 is met, all read or writages are placed in
the PCM in the SLC mode, unless the page has been loaded intihid hyemory by any
predecessor task. When it is under condition 3, pages aredoadmodified in the 2-bit
MLC mode. When it is under condition 4 pages are loaded or neztifi the 4-bit MLC
mode. The use of the PCM utilization estimator helps in makimggPCM configuration

decision off-line.

4.6 Experimental results

Experiment setup

In this section, our proposed algorithms are evaluatediying benchmarks from Mibench [76]
and Mediabench [100], Eight selected benchmarkssasen, dijkstra, gsm, blow fish,
mpeg2dec, mpegddec, h264dec, and h264enc. We use the Simics [101] to collect the
memory traces of these benchmarks, and implement them inaméd based simulator that
simulates both CPU executions and memory operations. Inowtator, the CMP system

has 8 cores. The details of the target CMP system is shown $s[Zdb[63, 102, 103]. To
generate applications, we create 10 groups of DAGs usingFT[G84]. Each group has 64
unique applications represented by DAGPs, and each apptida composed of up to 16
tasks. We generate 32 types of tasks by scaling the memoegsot eight benchmarks by

1X, 2X, 4X and 8X.
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Algorithm 4.4 Hybrid Memory Task Scheduling Heuristic
Input: A set of tasksyn different cores, PCM memory capacityC, and DRAM memory capacity
DC
Output: A schedule generated by hybrid memory task scheduling heuristic
1: Form a mappable task st
2: PCM utilization estimatof = 0
3: while SetP is not emptydo
4:  for ¢: taski € P do

5: Find the core’,,,;,(7) giving the earliest finish time of/*The first comparison.*/

6: endfor

7:  Find the paitk, C,.:n (k)) with the earliest finish time among the task-core pairs generated
in for-loop /*The second comparison.*/

8:  Assign taskk to deviceC,, (k)

9:  Removek from P
10:  Update the mappable task getthe earliest available time of co€&,,;,, (k)
11:  if DRAM s not full then

12: Configure the read and write pagekoin the DRAM,

13:  elseif(EF/MC) < 50% then

14: Configure the read and write pagekoin the SLC mod, updat&

15:  else if50% < (E/MC) < 75% then

16: Configure the read and write pagekoin the 2 bits/cell MLC mod, updat&
17:  else

18: Configure the read and write pagekoin the 4 bits/cell MLC mod, updat&
19:  endif

20: end while

To evaluate the performance of our proposed algorithms,ongpare them with three
different approaches. In the following part of this chaptee use abbreviations listed in
Table[4.2. In our iterative algorithms, include 1000 iditaromosomed [105], of which,
10 pairs are selected for the crossover and 10 individuaglssealected for the mutation
in the GA and the SA. In the GA, it ends as soon as one of thewollp two stopping
criteria is met: 1) 1000 generations have been computede2hést chromosomes have
not been changed for 150 generations [106]. In the SA, it eviten the temperature is
below 10~2%°, or the best chromosomes have not been changed for 150 tiensraln
the Tabu, each local search ends when the threshold numbbodfhops is met, or the
for-loop is finished.

In Fig [4.10, we show the performance of different approachreserms of total ex-

ecution time. TheList SLCalways has the lowest total execution time, whilst MLC
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Table 4.1: Details of the target CMP system

System

8-core CMP, 4GHz

1 GB DRAM memory
120 GB SSD

3 GB morphable PCM memory (MLC/SLQ)

DRAM: 55 ns
PCM SLC: 300 ns

Memory / SSD write PCM 2 bits/cell MLC: 600 ns

PCM 4 bits/cell MLC: 1200 ns
SSD (NAND-SLC): 20Qus

DRAM: 55 ns
PCM SLC: 80 ns

Memory / SSD read PCM 2 bits/cell MLC: 160 ns

PCM 4 bits/cell MLC: 320 ns
SSD (NAND-SLC): 25us

Table 4.2: Table of Abbreviations

Abbreviation

Description

List SLC

The list-scheduling and the DRAM +
uniform SLC PCM configuration

List2 MLC

The list-scheduling and the DRAM +
uniform 2 bit/cells MLC PCM configuration

List 4 MLC

The list-scheduling and the DRAM +
uniform 4 bit/cells MLC PCM configuration

Heuristic

The hybrid memory task scheduling heuris

ki

c

GA

The genetic algorithm

SA

The stimulated annealing algorithm

Tabu

The Tabu algorithm

has the highest total execution time. Our proposed gebased algorithm has the second

best performance in terms of total execution time. Sincariemory access time is much

longer than the task execution timest SLChas the fastest speed due to the fact that it

always uses the shortest access time mode.Lidtel MLC has the worst performance in

terms of total execution time, since it always has the longesmory access time in the

4 bits/cell MLC mode. Our genetic-based algorithm redubestbtal execution time by

24.5%, 101%, 10.4%, 44.0%, and 61.1%, compared to the tadalion times oList 2
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Figure 4.10: Normalized total execution times of ten groofpplications. All executions
times are normalized with that of thest SLC

MLC, List 4 MLC, Heuristicrespectively.
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Figure 4.11: Peak memory capacity usages of ten groups titappns. The pre-defined
maximum PCM memory capacity is 4 GB.

Even thoughList SLChas the fastest speed, it cannot guarantee the satisfattiba
memory capacity constraint. In our simulation, we set tke sf memory as 4 GB, which
is a large memory in the embedded system. For every one gf@appbications, as shown

in Fig[4.11, "List SLC” needs more than 4 GB memory space, edioggrom 13% to 70%.

101



List 4 MLC does not exceed the maximum memory capacity in all ten grodpsiristic
cannot guarantee that the memory capacity constraint is hekceeds the limit in two
out of ten benchmark groups. Since we set the definition ofid @aromosome as the one
without exceeding the pre-defined maximum hybird memonrgacay our three algorithms
all have less than 4 GB peak memory usage in all ten groupsGRechieves 76.8% and
2% average reduction of peak memory, compardd4bSLCandHeuristic

In addition, we compare the average memory usages of diffatgorithms, as shown
in Fig[4.12. Sincelist 4 MLC always uses the high-density mode, the average usage is
from 0.53 GB to 1.1 GB, averaging 19.8% of memory capaditguristic uses 41.3% of
memory capacity on average. The average memory usage oépetigtbased algorithm is
from 1.6 GB to 1.96 GB, averaging 46% of memory capacity. Theaye memory usage
of SAis from 1.1 GB to 2.2 GB, averaging 35% of the memory capacityd fheTabuis
from 0.9 GB to 1.8 GB, averaging 29.5%. Thus our genetic-bakgutithm is 12.2% more
efficient thanHeuristic, 31.4% tharSA 58.6% tharTaby and 155.6% thahist 4 MLC.
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Figure 4.12: Average memory capacity usages of ten grouppications.

To test the performance of our proposed algorithms, we coertham with the DRAM

+ uniform PCM mode list scheduling as well as the heuristiglifferent settings of the
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memory capacities. In this comparison, we set the hybrid angroapacity from 8 GB
to 128 MB, where the ratio of PCM/DRAM is 3:1, as shown in Tdblé 4[Be memory
capacity constraint has the most severe impact ohit<SLC Even in the largest memory
capacity setting (i.e., 8 GB), the solution from this algumtexceeds the memory capacity
in one out of ten benchmark groups. Thist 2 MLCis slightly better than théist SLC
However, it still fails in any benchmark group in memory ceaipasettings smaller than
4 GB. ThelList 4 MLC and the heuristic have similar performance in memory capaci
settings smaller than 4 GB.The reason is that as the capatiilygsgets smaller, pages of
some single tasks require larger portions of memory. ThnesPICM utilization estimator
in the heuristic is more likely to have a value larger than 7586ulting in more pages
are stored in the DRAM + 4 bits/cell MLC mode PCM. As we set theeptiag criteria
as satisfying the memory capacity constraint, our thremtiiee algorithms successfully
finds the solution that meets this constraint, in capacityrggs larger than 512 MB. Our
genetic-based algorithm can even successfully schedblE2NB and 256MB. In the 128
MB setting, even the solution that sequentially executskstan single core and stores
pages in the 4 bits/cell MLC mode, exceeds the capacity @nst In the 8 GB, 4 GB,
and 2 GB settings, theist 4 MLC, the heuristic, and our genetic-based algorithm can
generate solutions meeting the capacity constraint in f@sthmark groups. However,
our genetic-based algorithm has the highest average mamage, which is 37.2% higher
than that of theList 4 MLC, 23.8% higher than thdeuristic 18.9% higher than th&buy
11.9% higher than that of th8A in the 8 GB setting. It means that our genetic-based

algorithm generates solutions that utilize the hybrid mgnmaore efficiently.

4.7 Conclusions

We present four optimization algorithms for embedded CMResys equipped with the
MLC/SLC PCM + DRAM hybrid memory. In our proposed algorithms, mgg only sched-

ule and assign tasks to cores in the CMP system, but also pravigdemory configuration
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Table 4.3: Comparisons of algorithms in different hybrid nogyncapacity settings. The
“E #” columns represents numbers of solutions that exceediiorid memory capacity
constraint. The “U %” columns indicate the average memoggas normalized by the
memory capacity. It is an average value over solutions fobdfichmark groups. In the
hybrid memory, the ratio of PCM/DRAM is 3:1.

Hybrid memory List SLC List2 MLC List4 MLC Heuristic GA SA Tabu
capacity E # U % E#] U% | E#| U% | E# U % E# U % E # U % E # U %
8 GB 1 37.95 0 19.25| O 9.11 0 42.21 0 52.71 0 46.47 0 43.75
4GB 10 75.9 1 38.5 0 1823 | 1 38.02 0 46.17 0 28.11 0 38.25
2GB 10 151.8 | 10 77 1 3645 | 1 51.69 0 55.97 0 43.73 0 64.02
1GB 10 | 303.6 | 10 154 3 72.9 5 88.72 0 62.87 0 75.68 0 79.84
512 MB 10 | 607.2 | 10 308 5 1458 | 8 141.71| O 58.64 2 68.16 3 86.75
256 MB 10 | 1214.4| 10 616 10 | 2916 | 10 | 30896 | O 52.19 5 126.82 | 7 230.63
128 MB 10 | 24288 | 10 | 1232 | 10 | 583.2 | 10 | 589.19| 10 | 131.87| 10 | 259.76 | 10 | 315.58

that balances the hybrid memory performance as well as flogeaety. Our experiments
show that our genetic-based algorithm generates the Hesoss. It significantly reduces
the maximum memory usage by 76.8%, compared to the DRAM+ imif&LC configu-
ration, and improves the efficiency of memory usage by 155@&¥hpared to the DRAM
+ uniform 4 bits/cell MLC configuration. In addition, the pe@mance of the system, in
terms of total execution, is also improved by 101%, compaoeithe uniform 4 bits/cell

MLC configuration.

Copyright©® Jiayin Li, 2012.
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Chapter 5 Battery-Aware Task Scheduling in Embedded Systems

A distributed mobile DSP system consists of a group of mobédeices with different

computing powers. These devices are connected by wiretds®rk. Parallel processing
in the distributed mobile DSP system can provide high comgygerformance. Due to the
fact that most of mobile devices are battery based, thenitebf the mobile DSP system
depends on both the battery behavior and the energy consumagbiaracteristics of tasks.
In this chapter, we present a systematic system model fersiaseduling in mobile DSP

system equipped with Dynamic Voltage Scaling (DVS) prooessnd energy harvesting
techniques. We propose a set of three-phase algorithmstaindlask schedules giving
shorter total execution time while satisfying the lifetim@nstraints. The simulations with
randomly generatedirected acyclic graph¢DAG) show that our proposed algorithms

generate optimal schedules which can satisfy lifetime tcaimgs.

5.1 Introduction

The mobile computing system, which is an embedded systesmghantly received tremen-
dous attention. The interest is growing due to the benefitsilmeomputing brings and
large number of unexplored applications. However, wheryapgp in digital signal pro-
cessing(DSP) area, mobile computing faces challenges which lingtrtusability. One
of the most notable is the energy limit. Mobile devices ulyuaite equipped with batter-
ies. Some of them may also apply energy harvesting techsidoeexample, solar cells.
But in the recent two decades, the increase of processor gpeeeh bigger than the in-
crease of energy density of battery. In the battery basedlensystem, the loss of some
mobile devices may have great impacts on the system perfmendt not only leads to
the loss of computation power, but also causes significaath@ad of network topolog-

ical re-organization. Therefore, energy consumption ipdrtant for the mobile system
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application. Another limit is the computation power. Man$P applications require con-
siderable computation demands. Parallel processing inlenoiimputing system can be a
solution to intensive computation requirement.

Some problems need to be solved when we apply parallel gioces mobile DSP
systems: 1) how to assign tasks to the devices; 2) in what thdedevices should execute
the tasks assigned to them; and 3) how to schedule commiamiGganhong the network.
Task scheduling can solve these three problems. Task dafgetias been studied in high
performance computing [107, 108]. However, a useful scheglalgorithm strongly de-
pends on the accuracy of the model it based on. Applying tels&diling in distributed
mobile DSP system, we need to develop a model for this king/stesns. Besides, task
scheduling in mobile computing system should subject toesbmitations, for instance,
power consumption, lifetime requirement and so on.

The two major contributions of this chapter are:

e We present a complete model for task scheduling in diseibutobile DSP system,

which includes application model, system model as well @sgnmodel.

e We propose three-phase scheduling algorithms for schegltdsks. They can gen-
erate schedules with shorter total execution time thanah@aditional greedy algo-

rithms while subject to the battery lifetime constraint.

In section 5.2, we discuss works related to this topic. Inise&.3, models for task
scheduling in distributed mobile DSP system are presenfedhotivational example is
given in sectiom 5}4. We propose our algorithms in sedfi®h followed by experimental

results in section 516. Finally, we give the conclusion ictiem[5.7.

5.2 Related work

Task scheduling in mobile multiprocessors has been studitee literature recently. Re-

searches in [22, 23] focused on heterogeneous mobile adrltberyironments. Authors
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in those works studied the static resource allocation feragbplication composed of com-
municating subtasks in an ad hoc grid. However, the goaleftlocation in those works
is to minimize the average percentage of energy consumebebggplication to execute
across the machines, while meeting an application exectitioe constraint. This goal
may lead to some cases in which some machines may consumemoueenergy than the
others, even though the average consumption is minimizedh&approaches proposed
in those works cannot guarantee satisfaction of the lifetbonstraint in mobile DSP sys-
tem. Authors in[[109] proposed an energy-aware task schdoiechanism, EcoMapS.
EcoMapS incorporates channel modeling, concurrent taggpimg as well as communi-
cation and computation scheduling. The scheduling algoriln EcoMaps is based on
list-scheduling, which is similar to our approach. But the W&Mcerned in EcoMaps is
homogenous sensor network, which means that the proposethmiem cannot be used
in the heterogeneous systems. The proposed schedulingamsiechdoes not consider the
lifetime constraint either. I [110], the authors propoaadethod of predicting the execu-
tion time of tasks based on statistics gathered from thequevwnstances of the same task.
Authors in [24] proposed two task scheduling algorithmsedoredded system with het-
erogeneous functional units. One of them is optimal andrearos near-optimal heuristic.
The task execution time information was stochastically eted!.

Weiser et al. first discussed the problem of task schedubngduce the processor
energy consumption in_[18]. An off-line scheduling algbnit for task scheduling with
variable processor speed was proposed_ in [19]. But the tasi®dered in this research
are independent tasks. Authors n/[20] proposed severansel to dynamically adjust
processor speed with slack reclamation based on DVS taaohinfy scheme for processor
speed management at branches was presented in [21] badedratid of the longest path
to the taken paths for the branch statement to the end of tgggn. Chandrakasan et al.
showed that few voltage/speed levels can achieve almosathe energy saving as infinite

levels for periodic tasks in [111]. [112] also proposed salvecheduling algorithms for
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periodic task. But the researches above only consider tlpgaggssor system. An analyt-
ical expression to determine the optimal supply voltagesuadyiven clock frequency was
presented in [113]. In[114,115], power constrained resdunanagement in DVS-enable
heterogeneous multiprocessors is studied. Dynamic poweagement in [114] used the
static slack based on the degree of parallelism in the sébeduay idle period of the pro-
cessors is explored by the dynamic management. Yu et aliesttite static allocation of
independent tasks in a heterogeneous system with DVS ehiamb|&15]. They proposed
a LR-heuristic for this assignment problem. They also predithe upper bound analy-
sis. In [116] 11F], the voltage selection problem was foated as integer programming
problem. A slack allocation scheme was employed based ongitamal task graphs and
resource constraints in [118]. In [25], the authors prodasdéoop scheduling algorithm
for voltage assignment problem in embedded system. Resenfgf] focused on mod-
eling task execution time as a probabilistic random vaealivo optimal algorithms, one
for uniprocessor and one for multiprocessor DSP systene messented to solve the volt-
age assignment with probability problem. The goal of thégerdthms is to minimize the
expected total energy consumption while satisfying theéntinconstraint.

Experiment conducted by Rakhmatov and Vrudhula[119] shah&ithe energy dissi-
pated in the device is not equivalent to the energy consumedd battery. When discharg-
ing, the energy consumed in battery is more than neededldimnde, the over-consumed
energy is recovered. Several analytical models on batischdrging behavior have been
developed recently [119-121]. 10 [120], Panigrahi prodidemodel based on a nega-
tive exponential function. The discharging and recoveryenepresented as a transient
stochastic process. Rakhmatov and Vrudhulal[119] proposethalytical battery model
based on one-dimensional model of diffusion in a finite regldowever, these two models
are not suitable for task scheduling in mobile DSP systemtaltieeir high computational
complexity. Ma presented an online computable battery mrad&21]]. The relatively low

computational complexity makes it suitable for task schiedu
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5.3 Model and Background

Table 5.1: Symbols and acronyms used in Chdgter 5

Name Description
DAG Directed Acyclic Graphs
U; The vertex representing the task a DAG
€ij The edge connecting the verticgsandv;
W (ei;) The weight of the edge;;
T; (i) The initial communication time of the tagk
Tere() The execution time of the tagk
Thes() The time of sending the result data of tadkack to the manager node
D(i) The device executing the taskn a given schedule
BW, The network bandwidth of devicé
SP;; The speed of devicgexecuting task
M, (i) The size of processing data of the task
M, (i) The size of result data of the task
i Theith power-on period in the battery behavior model
T; Theith power-off period in the battery behavior model
t; The beginning time of period,
T The entire lifetime of the battery when used in greedy mode
A« The dissipated energy
I6] A constant in battery behavior model
Gi(t) The residual discharging loss at time t in perigd
E; The initial capacity of the battery in the devige
CUR;; The discharge current of the devigevhen running the task
CUR_T; | The discharge current of the device&vhen communicating with others
Ch The lifetime constraint
EST The earliest start time of a task in a DAG
LST The latest start time of a task in a DAG
CN The critical node in a DAG
DAT The device available time
TAT The task available time
LPFT The latest predecessor-finish time
ESST The earliest successor-start time
BITS The backward independent task set
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Application model

In this chapter, we use thBirected Acyclic Graph$DAG) to represent the DSP applica-
tions. ADAGT = (V, E) consists of a set of verticds, each of which represents a task in
the application, and a set of edgésshowing the dependencies among the tasks. The edge
setE contains edges;; for each task; € V that taskv; € V' depends on. The weight of
a vertexv; represents the task type of the tasldlso the weight of an edge; means the
size of data which is produced byand required by;. For the convenience of the reader,
we list the symbols and the acronyms used in the rest of tlziptehin Tablé 511.

Given an edge;;, v; is the immediate predecessorgf andv; is called the immediate
successor of;. A task only starts after all its immediate predecessorstinrasks with no
immediate predecessor are entry-tasks, and tasks withonediate successors are exit-

tasks.

System model

In this study, we assume that a number of mobile devices glykd in a certain area
of space. All these devices and an extra task manager nodmanected by a wireless
network. The task manager node assigns tasks to the mohiieedeand monitors the
executions of those tasks. Different mobile devices havewsa computation power and
characteristics. The network bandwidths are also diffeiemm device to device. The

following assumptions are made:
e A device can compute and communicate with others simuliagigo

e Data communications are point to point. Routing is beyondsttope of this chap-
ter. A device can only communicate with one other device ama.t The energy

consumption during communication cannot be ignored.

Here is an example of how the system assigns, executes tagkHects the result.

First of all, the task manager node assigns tagka deviced. Meanwhile, the devices
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where the immediate predecessors afe executed send the required data to the dekice
This initial communication tim&’; . can be computed as follow:

= Y gl 5

kepred(i) | Pk).d

D(k) is the device which runs the tagk BWp, 4 is the network bandwidth between
D(k) andd, i.e., the smaller bandwidth of these two devicé&B(e,;) means the size of
data which is required by and produced by. Only when the predecessor task and the
current task are executed on the same device, the commonitahot required because of
the already existing data. Once deviteeceives all the predecessors result data, it begins
the execution of the task. The execution tiffie. depends on the speed of executing task

i on the devicel, SP;,;, and the size of the processing dafg(i):
Tewe(i) = SPig x My(1). (5.2)

After computing the result data, device sends its resulk ladhe task manager node
if the current task is the exit-task. The time of sending tb&ult to task manager node
Tsuir 1deally should be proportional to the product of the sizeesiult datal/,.(i) and the

network bandwidth of the assigned devit&W;:

M, (i)
-~ BW,’

Tres(7) (5.3)

When a non-exit-task is done, the device will communicaté wévice which needs data

from it and start the procedure of the next task assigned to it

Battery behavior

Nickel-cadmium and lithium-ion batteries are the most camiy used batteries in mo-
bile devices. These kinds of batteries consist of an anodeaarathode, separated by an
electrolyte. When a battery is connected to a load, a reductkidation reaction transfers
electrons from the anode to the cathode. Active speciesomr®imed at the electrode sur-

face and replenished by diffusion from the bulk of the elggte. However this diffusion
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process cannot keep up with the consumption. A concentrgtiadient builds up across
the electrolyte. When this concentration falls, the batt@iyage drops. When the voltage
IS below a certain cutoff threshold, the electrochemicattien cannot be sustained at the
electrode surface anymore, so the battery stops working.irBifatct, the active species
which has not yet reached the electrode are not used. Thsedrzharge is called dis-
charging loss. Discharging loss is not physically lost sy unavailable. If the battery
current is reduced to a low value or even zero before thergatteps working, the con-
centration gradient flattens out after a sufficiently lomgeti The remaining active species
reach the electrode again. Then the discharging loss iablafor extraction. This pro-
cedure is called the battery recovery [121]. Experimentsvstinat this discharging loss
might take up to 30% of the total battery capacity [121].

Precise battery behavior model is essential for optimiapstem performance. The
battery behavior model used in this chapter is based on Nd@soach([121]. Consider the
scenario where a battery is turned on dptime, and turned off for; time ¢ = 1,2,...).
This on-off period is repeated until the battery dies. Weiassthat the discharging current
of the battery in epochy; is I;, and the beginning time of this epochtis The energy

dissipated by the battery in epoghis:
6*52m2(T*(ti+6i)) o 6,/52m2(T7ti)

62m2

] (5.4)

AO[ZLX(L—FQIZXZ[

m=1

The model is interpreted as follows. The first term in the trigand side of[(54) is
simply the energy consumption during the epéchAnd the second term is the discharging
loss during thé); epoch. T is the entire lifetime of the battery when the bgitteon until
it dies (greedy mode)5 is a positive constant, which is determined in experimert an
may vary from battery to battery. An idle periogfollows the epochy;. The battery is
turned off when the device has finished the current task amdhisng for the next task.

The residual discharging loss when itisme after epocld; can be computed as:

—B2m2(T+t—(t;+6;)) _ e—BQmQ(T-&-t—ti)

Gi(t) = 21, x mzl[e o ] (5.5)
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¢;(0) equals to the discharging loss &f Note that this residual discharging loss is just a
potential energy in the sense that it only makes sense wieebadittery is alive. Once the
battery dies, this residual energy will not be recovered. Wvine battery is alive during

ther; period, the energy recovered at the end ofithgeriod is:

Aay(7i) = Gi(0) = Gi(7) (5.6)

Energy model
Energy harvesting

In mobile computing, the CPU speed increases exponentralily £0s. However, the in-
crease of energy density in battery is much smaller thamitrease of CPU speed [122].
Energy consumption becomes one of the bottlenecks of théenaimputing. New tech-
nologies such as micro fuel cells can recharge handheldeewith power plants the size
of candy bar. But these technologies are only powerful enéaigtievices with low energy
consumption, such as the wireless sensor nodes [122]. h&@ed handheld devices are
too big to be powered by this kind of microcells. Meanwhileeryy harvesting is another
approach to solve this problem. In energy harvesting, méfgrent techniques can trans-
fer various kinds of ambient energy to power electronicsm&a@ommon techniques in-
clude using background radio signals as power reservaigdwasting RF energy to power
remote devices, collecting energy from ambient light orthaad harvesting energy from
vibrational excitation. Table 5.2 shows performances oiouws energy harvesting oppor-
tunities.

In this chapter, we assume that every mobile device in theesyss equipped with a
rechargeable battery connected to an energy harvesteisdva@ssume there are three types
of energy harvesters: “fast”, like the solar cell directediard bright sun; “slow”, like the
RF energy broadcasting; and “disable”, i.e., no energy lséingg Table.[ 5.3 shows the

details of energy harvesters.
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Table 5.2: Harvesting performance of various energy s@urce

Energy source Performance
Background radio signals less than JuW/cn? [123]
RF energy 1 to 100pW [122]
L 100 mW/cnt(under bright sun)
Ambient light 100 yW/cn?(illuminated room)[[122]
Ambient heat 60 uW/cn? [124]

Vibrational excitation

800 uW/cm?(machines-kHz) [125]

Table 5.3: Harvesting power and recharge current from fagtséow harvesters

Harvesting Powe

' Recharge current (voltage = 1.2V)

Fast

500 mwW

4

16.7mA

Slow

10 mw

8.3mA

Dynamic voltage scaling modes and lifetime constraint

We consider the distributed mobile DSP system in which thbilealevices are equipped

with Dynamic Voltage Scaling (DVS) processors. In orderegduce the energy consump-

tion, DVS technique jointly decreases the processor spadtha supply voltage. Research

in [43] shows that the decrease in processor voltage cagsel/dinear increase in exe-

cution time and approximately quadratic decrease in enssggumption. Without loss of

generality, we assume that each processor has three DVSsimbeleoted ag., Lo, Ls.

The supply voltage of; is half of the supply voltage of;_,. Table[5.4 shows the rela-

tionships among the DVS modes when taskexecuted by devicg

Table 5.4: Parameters in DVS modes

DVS mode | Supply voltages, Processor speedsBattery discharge curren
L1 Uj SP” CUR”
L2 50%x UJ 66%x SPLJ 50%x CURU
Lj 25%x U, 57%x SP;; 25%xCUR;;

—

Devices in the mobile DSP system are powered by batteriedisgassed above, some

of these batteries can re-gain energy from the harvestaiopigues. Some definitions used
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in the rest of the chapter are given as follow, is the maximum and initial capacity of
the battery in devicg. CUR;; is the discharge current of devigewhen running task.
When devicgj is transmitting data, the discharge currentiSs R_7;. When the remaining
energy of a battery is lower than a threshold value (we assuim&% of the maximum
capacity), device cannot finish the rest assigned taske didtharge current is larger than
the harvesting current. We say the device dies at that pbtithe. Given a task schedule,
we can calculate the energy consumption and the dead tinteeafdvices with equation
(5.4), (5.6) as well as the recharge current of their enermgydsters. The lifetime of the
whole system is the time when the earliest device dies.

In this chapter, the objective of our schedule method is tamize the total execution
time of tasks when the system lifetime is larger than a pterdened lifetime constraint
Cy. Note that if all the devices can finish the assigned tasksseteéhe lifetime of the

whole system as infinite.

5.4 Motivational Example

Example of application and mobile system

First we give an example for task scheduling in distributemzbite DSP system. In this
chapter, we assume that applications have already beeropesged. We already know
how tasks in the applications are represented in the formAg& O-or example, a DAG of
an application is shown in Figure 5.1(a).

In Figurel5.1(a), there are 7 different tasks, each of whashaweight value indicating
the type of that task. For example, the task A is a task of typ@l@ere are 4 different
types of tasks in our example. The weights of edges meanzbs sf required data for the
successors. The weight 10 of the edge between task A and Bsrtieatithe size of data
which are required by B and generated by A is 10. More detéitagks in our example
are provided in Figure[_5.1(b). Also, we assume that theee2amobile devices in our

example. Figurel_511(d) shows the characteristics of theds. As discussed previously
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Type | Size of task data Size of result data
0 20 10
1 40 30
2 80 20
3 60 15
(b)
Type of DO D1
task speed current speed Current
0 20 20 35 25
1 10 100 20 30
2 40 40 15 55
3 30 20 25 60
(c)
Devices | Bandwidth Current when Mode of energy | Battery capacity Lifetime
communication harvesting constraint
DO 1 100 slow 100000 4500
D1 2 150 disable 200000 4500

(d)
Figure 5.1: An example of application and mobile system.a(@AG, (b) data sizes of

task types, (c) heterogeneous characteristics of mohiieeeand (d) details of two mobile
devices.

in this chapter, when running a task, different devices Hdifferent speeds and require

different energy consumptions (in the form of current). \Wews the differences in Figure.
5.3(c).

Table 5.5: EST and LST of tasks in the DAG

Task| A B C D E F G
EST| O |550| 550 | 2750| 2750 | 1150 | 4950
LST | O |550| 3800| 2750| 2750 | 4400 | 4950
CN |yes|yes| no | yes | yes | no | yes

Based the list-scheduling algorithm (discussed in seCii)y &e compute the EST and
the LST of each task in the DAG, shown in Talle.15.5. A priotégk list of the example
DAG is generated as [A, B, D, E, C, F, G]. Then we select tasks ftwriop of the list to
bottom and assign them to devices which can finish them atatiest time. A schedule

generated by list-scheduling is shown in Figure 5.2. Usiqgation[(5.14),[(5]6) as well
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as the energy harvesting currents, we can calculate thigrids of these two devices. We

find out that at time 4037 (mins), the battery of device D1 diesthis case, device D1

cannot satisfy the lifetime constraint (4500). Also the ehapplication is not executed

completely.
A->B F->G
Communication m Ll o
400 410 1200 1215 ,'
DO Time
Computation A C F
/0 400 800 1200 " Time
A->B F->G D result G result
Communication m W mTime
400 410 1200 1215 3110 3118 5310 5320
D1
Computation
B D E G
/ 410 1610 3110 4037 4310 5310 Time
Out of battery >

Figure 5.2: A schedule generated by list-scheduling.

Our solution
A->B F->G B->D D result
Communication m W rﬂ rﬂ w
400 410 1200 1215 1610 1630 3430 3445 i
DO Time
C tati
omputation [, C E D
p-
/0 400 800 1200 1630 3430 Time
A >B F>G B->D G result
Communication rﬂ ﬂ] ﬂ| rﬂ -
400 410 1200 12151610 1630 4030 4040 =
D1 Time
Computation ~
B E G
/ 410 1610 2810 4030 Time

Figure 5.3: A modified schedule.
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Since the list-scheduling does not consider the energyuropsons and the batteries’
lifetimes, tasks are likely assigned to some machines waietgenerally faster and con-
sume more energy. In our example, the schedule generatestsgteduling assigns more
tasks in device D1 than in device DO. While the D1 is out of lgttdhe battery of DO
still has 514205 (mAmin) left. So in this case, a proper wafjitd a schedule which satis-
fies the lifetime constraint is moving some tasks in the qaimgtviolating devices to some
other devices with redundant energy. In our example, we rtivenost energy-consuming
task in the device D1, the task D, to the device DO, shown asgur€.[5.3. After calcu-
lating the energy consumptions and the lifetimes of thesedevices, we find out that in
this new schedule both two devices can finish their tasksowithunning out of batteries,
which means the lifetime constraint is met. What's more, ttaltexecution time in this
schedule is surprisingly shorter than the one in the originbhedule. The former is 4040
mins and the latter is 5320 mins (without considering thédis’ lifetimes). Since in this
new schedule, the devices are able to finish all tasks in thikspeeds, DVS adjustment
is not needed in this cast. In the case where re-assignmkimasinot find the suitable
schedule, DVS adjustment may generate a schedule meetitifetime constraints.

In the next section, we will discuss our three-phase algost which deeply explore

the solution space to find the optimal meeting the lifetimest@ints.

5.5 Three-phase constraint-aware algorithm

In our proposed algorithm, a baseline algorithm generatesital schedule without con-
sidering energy consumption and lifetime constraint. Taea-scheduling algorithm ad-
justs the schedule so that the lifetime constraints are fMbis re-scheduling algorithm
jointly considers both re-assigning task-device pairs snidching of DVS mode of the
device. Finally, in the phase three, we further explore tilet®n space and find a better

schedule satisfying the lifetime constraint.
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Phase I: Baseline scheduling

In phase I, we try to find a simple baseline schedule withonsittering the constraint. The
greedy algorithms can solve this problem with low compotai complexity. We use two
kinds of baseline greedy algorithms in this chapter: Idtexiuling and Min-Min algorithm.
Two definitions used in rest of this section are provided dsvio Device available time
(DAT) is the time when the device finishes all the tasks whigh@eviously assigned to
this device.Task available tim€TAT) is the time when all the predecessors of this task are
finished. These two definitions are based on the schedulitigides made in the previous

steps of the algorithm.

list-scheduling

The list scheduling used in phase | is similar to CPNT [108]m8alefinitions used in
listing the task are provided as follow. Tlarliest start timéEST) and thdatest start time
(LST) of a task are shown as in (5.7) ahd {5.8).The entrysthsive EST equals to 0. And

the LST of the exit-tasks equal to their EST.

EST(i) = méﬂg};ﬁ){EST(m) + AT (m)} (5.7)
LST(i) = min '){LST(m)} — AT (7) (5.8)

mesucc(i

CPNT in [108] targets homogeneous system. The system cattérrthis chapter is
heterogeneous. The execution times of a task on differafteeare not the samel7'(7)
is the average execution time of taskThe critical node (CN) is a set of vertices in the
DAG of which EST and LST are equal. AlgoritHm 5.1 shows a fioxcforming a task list
based on the priorities.

Once the list of task is formed, we can assign tasks to devmncéee order of this list.

The task on the top of the list is assigned to the device whachfmish it at the earliest
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Algorithm 5.1 Forming a task list based on the priorities
Input: A DAG, Average execution timeél7" of every task in the DAG
Output: A list of tasksP based on priorities.
1: Calculate the EST of every task.
Calculate the LST of every task.
Empty list P and stackS, and pull all tasks in the list of tagk
Push the CN task into stackin the decreasing order of their LST, and remove them
fromU
5. while The stackS is not emptydo
6: if top(S) has immediate predecessordirthen
7: S <the immediate predecessor with least LST
8
9

AW

Remove this immediate predecessor from
else
10: P « top(S)
11 Poptop(S)
122 endif
13: end while

time. Then this task is removed from the list. The procedepeats until the list is empty.

A schedule is obtained after this assigning procedure wikishown in Algorithni 5.P.

Algorithm 5.2 The assigning procedure
Input: A priority-based list of task$’, m different devicesS Py.,;.. matrix
Output: A schedule generated by list-scheduling.
1: while The list P is not emptydo
2. T =top(P)
3: Find the deviceD,,;, giving the earliest finish time of T
4: Assigntask T to devic®,,;,
5.  Remove T fromP
6
7.

: Update DAT of deviceD,,,;,, and TAT of successors of T
end while

Min-Min algorithm

Min-Min is another popular algorithm_[44]. The original MMin algorithm does not
consider the dependencies among tasks. So in the Min-Mielibasalgorithm used in
this chapter, we need to update the mappable task set in stegyto maintain the task
dependencies. Tasks in the mappable task set are the tasksobf all the predecessor

tasks are finished. Algorithin 5.3 shows the pseudo codesdflth-Min algorithm.
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Algorithm 5.3 Min-Min algorithm
Input: A set of tasksin different devicesS Py..;.. matrix
Output: A schedule generated by Min-Min.

1: Form a mappable task set

2: while SetP is not emptydo

3: for ¢ taski € P do

Find the deviceD,,;, (i) giving the earliest finish time af

end for
Find the paitk, D,..,(k)) with the earliest finish time among the task-device pairs
generated in for-loop
Assign taskk to deviceD,,;, (k)
. Removek from P

9:  Update the mappable task g&t DAT of deviceD,,,;,(k) and TAT of successors of

k

10: end while

S

Phase IlI: constraint-aware rescheduling

To satisfy the lifetime constraint, we need to conduct adteeduling if the schedule ob-
tained in the previous phase violates the lifetime constrékrirst of all, we examine the
battery lifetimes of all devices. Devices violating theetime constraint, which are called
urgent devices, will be pushed into a list. This phase Il apph includes three part: DVS
adjusting, task re-assigning and execution re-orderirgmesdefinitions are used in fol-
lows. Given a schedule, the latest predecessor-finish tiragask: LPFT() is the latest
time when all its predecessors are finished and have all theresl data sent to the device
executingi. LPFT() is the earliest start time afwithout violating the task dependencies.
The earliest successor-start time of a tagkSST() is the earliest time when any of its
successors is scheduled to start the data communicatibri.wihe execution zone afis
the time between LPETYand ESST4). Obviously, as long asstarts and completes in its
execution zone, no matter how long the execution time istablk dependencies are hold
and the successor tasks:gfare not delayed. A target task is the task to be re-scheduled.
A target device is the device to which the target task is stgagd.

The DVS adjusting in Phase Il try to reduce the energy consiompvhile maintain the

original baseline schedule. In order to avoid any impacttherexecutions of other tasks,
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we change the DVS mode of the device so that the device isibtdito complete the target

task in the task’s execution zone. Algorithm|5.4 shows timetion of DVS adjusting.

Algorithm 5.4 DVS(S,C'S,D,,), a function of adjusting the DVS modes
Input: A scheduleS, battery lifetime constrainf’S, an urgent devicé,,.
Output: A DVS adjusted schedule
1. Generate a list of task$ in the order of decreasing energy consumption. These tasks
was assigned t®,, in the original schedule.
2: while U is not empty and devic®, violates the lifetime constrairto
32 T=topl)
4: if T can be finished in its execution zone assuming DVS modP pois set toL3

then

5: Set DVS mode of), asL; when running T

6: else if T can be finished in its execution zone assuming DVS mode,ofs set to
L, then

7: Set DVS mode oD, asL; when running T

8: else

9: Keep original DVS mode

10:  end if

11:  Compute the lifetime of devide,.
12: end while

If the DVS adjusting cannot provide a new schedule satigffire lifetime constraints,
the task re-assigning will reassign tasks in urgent dei@nbther device (target device).

Several criteria are used to determine target devices fuea garget task:

1. Target device should not be the urgent device.
2. Target device should be idle in the execution zone of tigetdask.

3. The devices with predecessors and/or successors oftjet task are preferred.

The idea behinf]2) is that when re-assigning the target taaldevice which is idle in
the execution zone, the successors of target task and tbwifod) tasks in the task list of
target device won'’t be delay. So the total finish time of tlégide is the same as the original
one. When choosing the target devicélin 3), the total finistimg may be shorter, due to
the fewer data to communicate. So when we fill the target dewet, we first choose the

devices satisfying all three conditions. Then we selecbties satisfying conditidd 1) and
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one of the other two. Last we choose the non-urgent devicks.ufgent devices can not
be the target devices. A Function of re-assigning a givegetdask is shown in Algorithm

5.3.

Algorithm 5.5 reassign{,C'S,D,,), A Function of reassigning tasks from an urgent device

to other device
Input: A scheduleS, battery lifetime constraint’s, an urgent devic®,,.

Output: A reassigning schedule
1. Generate a list of taskg in the order of decreasing energy consumption. These tasks
was assigned t®,, in the original schedule.
2. while U is not empty and devic®,, violates the lifetime constraimto
3: T=topU)
4:  Find a set of target device3 of T
5. while P is not emptydo
6: Stemp = reassign T to toff)
7.
8
9

Add S, into SS, SS is a set of schedules.
Remove topP) from P

- end while
10:  Find the best schedulg,..; in S'S which has the longest system lifetime.
11: S =Spea
12:  Remove T fromJ
13:  EmptySS
14: end while

If the urgent device still violate the lifetime constrairaer reassigning, we will re-
order the task execution orders. Let's assume when dévgeunning task,, the battery
runs out of the energy. This devidewill either complete task;, with the energy from
harvester if the recharge current from harvester is ladgen €U R4, or just stop if the
recharge current is not large enough.

In the latter case, as discussed in sedtioh 5.3, this deigse dowever, if there is some
tasks satisfying conditions listed below, we can re-ortieréxecution order as shown in
Algorithm [5.8, so that devicé can execute these tasks befeje In this way, we can
further prolong the lifetime of devicé. The whole re-scheduling algorithm is provided as

Algorithm[5.7.

1. The tasks are assigned the same machine agtagind they are scheduled to run
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Algorithm 5.6 re-order(,D,,), a function of re-ordering the execution order in the utgen

device
Input: A baseline schedulg, an urgent devic®,,

Output: A re-ordering schedule
1: Find the taskl’ which deviceD,, is executing when it dies.
2: In the task list of device),,, find tasks which satisfy the conditions of re-ordering and
push them in a set of tagk
3: Move all the tasks i/ beforeT in the execution order.
4. Update schedul®

Algorithm 5.7 The constraint-aware rescheduling procedure
Input: A baseline schedulg, battery lifetime constraint’s
Output: A schedule generated by The constraint-aware rescheduling
1: Alist of urgent Deviced/ is generated.
2: while The listU is not emptydo
D, = top(U)
DVS(s,CS,D,)
if D, violates the constrain®'S then
Reassign§,C'S,D,)
end if
if D, still violates the constrain®'S then
Re-orderf,D,,)
10: endif
11: end while

after taskvy in the original schedule.
2. The tasks are independent with tagk
3. The tasks are ready to run at the time when task scheduled to start.

4. The discharge currents of deviéeunning these tasks are lower than the recharge

current from harvester.

Phase IlI: Push-Pull algorithm

In most of the cases, the schedules generated in Phase twddrager total execution
times than the baseline schedules do. So, we try to find arlssttedule satisfying the
lifetime constraint based on the schedule we get in phas@dlimplement the Push-pull

algorithm [126] in this phase Ill. The Push-pull algorithsrain iterative algorithm as shown
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in Algorithm[5.8. It improves the schedule by repeating thshpoperation and the pull

operation.

Algorithm 5.8 The push-pull algorithm
Input: A baseline schedul& generated in phase Il, battery lifetime constrairtt
Output: A schedule generated by The push-pull algorithm.

1: count=0

2: while count less than 500 AND improvements exist in last 5 iteredio

3. count++

4:  Spusn = PUSHE,CS)
5: Spull = PULL(S,CS)
6
7:

S = the one with the shortest total execution time amsng,.,.., and.S,,;
end while

Two definitions are used in the Push-pull algorithm. Theaaittasks path is a path of
tasks which has the biggest impact on the total executioa tma given schedule. We can
find the critical tasks path by traversing the DAG. Among tkie-tasks, the one finishing
at the latest time is pushed into a statkThen the predecessor afp(S) with the latest
finishing time is pushed int§. This process repeats until an entry-task is foutids the
critical tasks path of this given schedule. The length ofdhtcal tasks path is the total
execution time of the given schedule. The backward indepettdsk set (BITS) of a task
¢ in a given schedule is a set of tasks meeting the followingltmms: 1) scheduled to the
same device as b 2) scheduled to execute priorp3)independent with.

The Algorithm[5.9 an@5.10 show the details of push operadimhthe pull operation.
Target devices for re-assigning in push operation are &lan the same method as the
reassigning target conditions in phase two. The “accegtalndition in these two opera-
tions is that the new schedule should satisfy the lifetimest@int and have a shorter total

execution time than the original one.
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Algorithm 5.9 PUSH(S,C'S), The push operation

Input: A baseline schedul® generated in phase Il, battery lifetime constrdiit
Output: A schedule generated by The push operation.

1: Find the critical tasks patG'P of S

2: while C'P is not emptydo

3. trigger = Pop(CP)

4:  Find the BITS{rigger)
5. while BITS(trigger) is not emptydo
6: target_task = top(BITS¢rigger))
7 P =taget devices for re-assigning
8: while P is not emptydo
o: Stemp = re-assigrtarget to top(P)
10: if Siemp IS acceptabléhen
11 Spush = Stemp
12: Re-assigrtarget_task to top(P)
13: end if
14: Remove topP) from P
15: end while
16: Removetarget task from BITS(trigger)

17:  end while
18: Removelrigger from C'P
19: end while

Algorithm 5.10 PULL(.S,C'S), The pull operation

Input: A baseline schedulg, battery lifetime constraint's
Output: A schedule generated by The pull operation.
1: Find the devicel which finishes its task list in the earliest time
2. FormT, a list of tasks executed ih
3: while T" is not emptydo
4:  trigger =top(l)
5.  Form P, alist predecessors o6figger, which are not executed ih
6: while P is not emptydo
7 target_task =top(P)
8 Stemp = re-assigrtarget to d
9 if Siemp IS acceptabléhen

10: Spush = Stemp

11: Re-assigrtarget_task to d
12: end if

13: Removetarget _task from P

14:  end while
15. Removetrigger fromT
16: end while
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5.6 Experimental results

Experiment setup

We evaluate the performance of the three-phase constaite algorithms through simu-
lations. Each simulation run (total 10 runs) has 64 uniqueiegtions, and each application
is composed of up to 16 tasks. For each task, the maximummfand fan-out are both 3.
There are 32 devices in the mobile DSP system. We set pananiretbe model randomly
between the maximum and minimum values shown in Table &d.all batteries are set

to 0.1. Lifetime constraint for all devices is set to 500.

Table 5.6: Ranges of model parameters

parameter Minimum Maximum

SP;; 10 40
CUR;; 20 100
M, (i) 20 148
BWjy 2 10

E;(mAmin) 1.0 x 10° 8.0 x 10°
CURT, 20 400

Result

Figurel5.4 shows the average total execution time over 1€ Nve find out that the sched-
ules from the Min-Min based three-phase algorithm havehloetgest total execution times.
Those two three-phase algorithms all generate schedutesharter total execution time
than the ones from the original baseline schedule. As showreiFiguré 5.4, the push-pull
algorithm in phase Il reduces the total execution time iagghll to a lower level than the
original baseline schedule.

In the aspect of satisfying lifetime constraint, our pragmbglgorithms do much better
than original baseline scheduling. The original baselofeedules have the average 7.3 out

of 32 devices violating the constraint. As shown in Figurg, $he minimum lifetime of

127



950

-©-Phase | with list scheduling
o900l = Phase Il with list scheduling ]
—>-Phase Il with list scheduling
650 -$-Phase | with Min—Min |
-A-Phase Il with Min—-Min
-¥Phase Il with Min—Min
800
Q
=
c %
8
§ 704
x
(0]
T 650- B
(o]
'_
2 3 5 6 7 8 9 10
Trial #
Figure 5.4: Total execution time
%]
[}
k2!
g -©-Phase | with list scheduling
%5 400 -B-Phase Il with list scheduling
g —%Phase Il with list scheduling
= -%-Phase | with Min—Min
= 0 -A-Phase Il with Min—-Min
5 —#-Phase Il with Min-Min
€
£
= 200 4
¢
10q(
1 2 3 5 6 7 8 9 10
Trial #
Figure 5.5: Minimum lifetime among all devices

128



0.941 -©-Phase | with list scheduling
-5-Phase Il with list scheduling
—>-Phase Il with list scheduling |
-$-Phase | with Min—Min

-A-Phase Il with Min—-Min
—¥-Phase Il with Min-Min

OISKW)
0.841 q

0.82

54
©
N

o
©
T

Complete ratio

o
@
B

. . . . . .
1 2 3 4 5 6 7 8 9 10
Trial #

Figure 5.6: Complete ratio

the original baseline schedules are just around 100, mshtthe@n the lifetime constraint
500. The schedules generated in phase Il avoid all therntigetionstraint violations. Since
we set the “acceptable” condition in phase Ill as improviolt execution time without
violating the constraint, the schedules further developeghase |1l satisfy the lifetime
constraint in all 10 runs.

In the simulations, we set the parameters in the way thatharsl for the system to
complete all the tasks given the energy setting. So in mostiokimulations, the system
cannot finish all the tasks. The three-phase algorithm baseMlin-Min has the best
performance here. It completes three of the ten runs. Wealtdfancomplete ratio as the
ratio of the number of complete task over the total numbeask in a run. As shown in
Figurel5.6, our proposed algorithms have higher compleigsrehan the original baseline

algorithms.
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5.7 Conclusion

In this chapter, we present a complete model for task scheginl distributed mobile DSP
system, which includes application model, network modetek as energy model. Using
this model, we propose our battery-aware three-phase skhgdlgorithms. We show
that these algorithms can generate optimal schedules adtiisfying lifetime constraint,
especially the one based on Min-Min algorithm. These algors can also improve the

complete ratio of the system.

Copyright® Jiayin Li, 2012.
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Chapter 6 Resource Allocation Robustness with Inaccuratenformation

Multi-core technologies are widely used in embedded systeBtochastic resource al-
locations can guarantee the certain quality of the ser\i@esS). In the heterogeneous
embedded system resource allocation, execution timahiistns of different tasks on

cores are predicted before scheduling. The differencedstvthe actual execution time
and the estimated execution time may lead to allocatiortsatiganot robust. In this chap-
ter, we present an evaluation of impacts of inaccurate iinédion on resource allocation.
We propose a systematic way of measuring the robustnesad#gigm and evaluating how
inaccurate probability parameters affect the robustnésesmurce allocations. Further-
more, we compare the performance of three widely used greedlystics when using the

inaccurate information with simulations.

6.1 Introduction

Embedded multi-core technologies are represented mayrtlywd categories of multi-core
processors [127]: 1) processors with dual, quad, and eggbesdased on symmetric multi-
processing and 2) processors with the combination of hgégieous cores. An example of
the later kind of multi-core is the typical/stem on chifSoC), which has almost unlimited
combination of heterogeneous processors on the chip. Asiinder and the heterogeneity
of cores increase, resource allocation management in theduohed multi-core system can
efficiently improve the QoS.

Embedded systems usually operate in environments repligteuwcertainties[24].
Meanwhile, these systems are expected to provide a giveh ¢d8vQoS. Stochastic re-
source allocation can deal with the environment uncertsrdnd satisfy the QoS demand.
In stochastic resource allocation, uncertainties in sygtarameters and their impacts on

system performance are modeled stochastically. This agtichmodel is then used to de-
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rive a quantitative evaluation of the robustness of a giesource allocation. This quantita-
tive evaluation results in a probability that the allocatwill satisfy the given constraints.
A proper approach of stochastic model is using pingbability mass functiofPMF) to
describe the probability distributions of execution tinfi¢asks running on cores.

According to [128], any claim of robustness for a given syst@ust answer three
guestions: (a) what behavior of the system makes it robunt¥vhat uncertainties is the
system robust against? (c) Quantitatively, how robustessystem? For example, some
systems are robust if they are capable of finishing all thiestasthin a given deadline. A
resource allocation deployed in these systems must betragpaisist uncertainty of the task
execution time. The robustness of systems can also be thespak (total execution time)
or the time slackness.

The problem of resource allocation in the field of heterogesemulti-core systems is
NP-complete (e.g.| [129]). Heuristics are used to find ngdinal solutions (e.g., [106,
130+135]). In static resource allocations, decisions aaderbased on estimated PMFs
of execution time of tasks running on different cores. Hosvewhen estimated PMFs of
tasks execution time are based on inaccurate informatsbimated PMFs may be different
from actual PMFs. Therefore, decisions generated by esafaMFs may not be robust
and the resource allocation is not able to guarantee the ggvel of QoS.

For example, in a surveillance sensor network, such as theit@k [136], Cameras
are installed across the target field, and connected to.slals&s of sinks include collecting
data from the cameras, compressing the images, and sehdingsults to the background
server for further processing. After the surveillance semetwork is switched on, tasks
come periodically. To better manage resources of a sinkpgieeating system in each
sink schedules a stochastic static resource allocatiardéie sensors start working. The
estimated PMFs can be obtained by observing previous egasudf the tasks or analyzing
the codes of the tasks. Using the static stochastic resali@eation, certain level of

uncertainties can be tolerated, and the sensor network aartaim a given level of QoS.
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However, the statistical characteristics of a task may ¢eifstantly various from pe-
riod to period. For instance, when the temperature of thgetdield increases, processors
in the sink of a sensor network may be unstable, leading tpdoaxecution time in aver-
age. In this case, the mean of the actual PMF may increaseothex case, the frame size
of the image may be reduced by the administrator in a suavei# system, which means
the data size decreases and the average execution tims tdgkiis shorter. Besides, tasks
may arrive at sinks in a short period of time due to the synuizedgion among cameras. In
this case, a lot of tasks need to wait for execution, queuirthe task buffer of the sinks.
Since the order of the queue is random, the execution timeyveem task may be random.
The deviations of actual PMFs increase.

Some questions arise when estimated PMFs are differentdacioal PMFs: 1) How
does the original static schedule work? Does it still mamtie required level of QoS? 2)
If the performance of the original schedule degrades, hoahnaithe degradation? 3) How
much improvement can re-scheduling provide? Is re-scimeglal practical solution? The
stochastic resource allocation includes a lot of convohgj which are time consuming.
Furthermore, the number of convolutions is proportionahtonumber of processing units,
l.e., cores. The recent many-core technologies providdieais of cores in one processor.
The re-scheduling may become a significant overhead. Owrignent shows that the Min-
min algorithm takes more than an hour to schedule 1024 tashks ieight-core system.
Only when the overhead of re-scheduling is smaller than #gratiation of the original
schedule, the re-scheduling can be considered as a piacticaon.

The major objective of this chapter is to answer above gomestiln the first part of this
work, a stochastic model for resource allocation is presknthe estimated task execution
time information is known as a PMF. For a given task schedbke makespan PMF of a
core is generated by convoluting PMFs of all the tasks ok list. A probability that the
whole system can complete all tasks in a certain time is céaaday convoluting makespan

PMFs of cores. So for a given resource allocation, we findabestness, e.g., makespan,
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that system can provide with a given probability. We alsqpse a measurement metric
for the impacts of differences between estimated PMFs ahchbEMFs. In the second

part of this work, we simulate the environment with inactarraformation and compare

three greedy heuristics when using the inaccurate infoomat

In summary, two major contributions of this work include) {@he development of a
metric for measuring the impact of the inaccurate infororabn stochastic resource allo-
cation. (2) The performance comparison of three greedyisteas when using incorrect
information.

In Section 6.2, we discuss related works. In Sectioh 6.3,eatsofbr stochastic task
scheduling in multi-core embedded systems are presentedld provide the model for
information inaccuracies in this section. A motivationghmple is provided in Section
[6.4. We discuss three algorithms for stochastic task sdimgdn Sectior 6.5, followed by
experimental results in Sectibn b.6. Finally, we give theatasion in Sectioh 617.

6.2 Related works

A framework for robust resource allocation is provided.i24) Authors in[128] give a
robustness definition. Also, a four-step procedure is éstednl for deriving a robustness
metric. In step one, the robustness of system is describadjumantitative way, and the
range of performance parameteér, (., 5,...) 1S given. In step two, all the system and
environmental parameters that may impact the robustnegsgedystem are modeled. In
step three, the relationship between these perturbaticanmeders and the performance
parameters is defined. Finally, the robust range of pertiobgparameter is determined
by substituting the perturbation parameters in the rangeedbrmance parametes,f;,,
Brmaz)-

Previous works have been reported on determining the sttichaehavior of appli-
cation execution times [25, 26, 137-141]. A new approacipfedicting task execution

times is proposed in [142]. In [131], the authors present rivaliion of the makespan
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problem that relies on a stochastic representation of taskution times. In[[143], the
problem of robust static resource allocation for distslitomputing systems under im-
posed QoS constraints is investigated. A stochastic rabastmetric is proposed based
on a stochastic model describing the uncertainty in systegnita impact on system per-
formance. Although the stochastic representation of taskwgion times can describe the
system uncertainty, problems arise when modeling the agtichrepresentation. There are
two conventional ways to model the stochastic represemt#tat is usually PMFs: 1) using
the statistic information from previous runs of the samé& tagyenerate the PMF directly;
2) assuming PMFs of task execution times are Gaussiantdistns, and using the statis-
tic information from previous runs to determine the expgctaand the variance [143].
However when the environment is changed, these stochagtiegentations may not be
accurate. For example, a set of PMFs are generated basedherpsevious runs that oc-
cur in a light-weight contention scenario. When they areiagph other heavy contention
scenarios, these PMFs are not accurate in the sense thakt @ots may have larger vari-
ance due to the heavy contention. So resource allocatidntise inaccurate PMFs may
lead to the violation of QoS requirements. The related wali®/e does not evaluate what
the relationship is between the degree of inaccurate irhasic representation and the

degradation of robustness in the system.

6.3 Model and definition

Stochastic model

In a normal heterogeneous multi-core embedded system|lyusiiare is a set of tasks
to be executed. Also, there are a number of cores with vagougputation power and
characteristics in the system. An estimated probabilegiomated time to compu(ETC)

matrix P is known before scheduling. For the convenience of readezdjst acronyms
used in the rest of this chapter in Table]6.1. We assume tka¢stimated probabilistic

ETC matrix is generated using the second approach as destirssectio 6)2. The entry
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Table 6.1: Acronyms used in Chapiér 6

Name Description
QoS Quality of the service
PMF Probability mass function
ETC Estimated time to compute
CAT Core available time
MCT | Minimum completion time alogrithm
M, Original makespan
M, New makespan
M., Correct makespan
MN, Normalized original makespan
MN,, Normalized new makespan
MN, Normailzed correct makespan
R, New._ratio
R, Correctratio
R; Improve ratio

P, ; of P represents the PMF of execution time of tasin corej. When making mapping
decisions, we use the information to generate probabilgiridutions of task completion
times on different cores. For a given set of tasks and a gicbedle, theestimated
makespardistribution is the probability distribution of total exaton time of the whole
set of tasks based on the ETC matrix. We can calculate thisapility distribution by
convoluting probability distributions of task executiomés. The robustness in this chapter
is the minimum makespan\j while maintaining a pre-determined probabilttythat all
cores will complete their tasks list withif.

As estimated PMFs of task execution times are generatedstattstic information of
previous runs of tasks, any environment or system changgdeand to inaccuracy. As-
suming that we can get the updated information about thateldition by some methods,
we are able to obtain a resource allocation that meets the€@pfement with more con-
fidence. We call these distributions (PMFs) updated PMF®r&lare methods to obtain
updated PMFs, for example, on-line profiling [144,145]. Teeelopment of these meth-

ods is out of the scope of this chapter.
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In the case that we can get updated PMFs of task executios,twiether a new re-
source allocation is necessary becomes another probleimg Bsiew resource allocation
not only requires time to re-run the scheduling algorithuor, dso brings the overhead of
re-arranging resources in the system. However, if we cathigirne degradation of robust-
ness based on the difference between updated PMFs andtestiRidFs, i.e., the degree
of inaccurate information, we can decide whether a new iregaallocation is necessary.
Furthermore, with knowledge of which scheduling algoritherforms the best when us-
ing inaccurate information, we can reduce the probabitigt a new resource allocation is
necessary by using the best scheduling algorithm. We wolige some insights on these

two questions in our evaluation part in the chapter.

Measurement Parameters

Since differences between estimated PMFs and updated PM{Fsause the robustness
degradation, several measurement parameters are intdaaneasure the robustness

degradation.

e Original ScheduleTask Schedule generated by using estimated PMFs

Remapped Schedul@ask Schedule generated by using updated PMFs

Makespan The total time taken for a system to finish all tasks with aegivask

schedule

Original Makespan {/,): The makespan using estimated PMFs and the original

Schedule

New Makespani(/,,): The makespan using updated PMFs and the original Schedule

Correct MakespanX/.): The makespan using updated PMFs and the remapped
Schedule
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e Newratio (R,):

M, — M,
= — A
Fin M, (6.1)
e Corretcratio (R,.):
M, — M
= ——— 6.2
i M, (6.2)
e Improveratio (R;):
M, — M
A 6.3
K M, 6.3)

As discussed in the previous section, the robustness nietifiés chapter is the min-
imum makespan/) while maintaining a pre-determined probabilitythat all cores will
complete their tasks list within. The smaller the makespan)(is, the more robust the
system is. Original makespan gives the robustness of thersyassuming accurate in-
formation is used in the schedule. When inaccurate infoonas used in the original
schedule, new makespan results in the actual robustnels ef$tem without re-running
the scheduling algorithm. Correct makespan indicates tkerobustness when a new
schedule is generated with updated accurate informatien. fidtio shows the degradation
of the robustness when using the inaccurate informatiorprarreratio reveals the im-
provement caused by re-running the scheduling algorithmreCoratio indicates impacts

of changes of environment on the system’s robustness.

6.4 Motivational example

In this section, we will demonstrate how the inaccuraterimi@tion impacts the robustness
of a schedule. Consider a case with five independent taskadledtto be scheduled in a
two cores embedded system. The estimated execution tirtrdodigons of different tasks
running in these two-core are shown in Hig.]6.1(a). We assalhtbese distributions are

normal distributions as shown in Fig._6.1(b).
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PO P1

Task | Mean| Standard |Mean| Standard
(M) |Deviation(g)| (K} |Deviation(a)
A 6 2 4 1
B 10 4 12 7
C 5 3 8 6
D 7 2 7 1
E 10 1 12 2
(@)
0.4 T : r :
—&-Task A running in PO
——Task A running in P1
0.35— —+Task B running in PO||
—6-Task B running in P1
Task C running in PO
03- ~*-Task C running in P1||
-©-Task D running in PO
-%-Task D running in P1
025 -#-Task E running in PO||
’ —e—Task E running in P1

Probability
o
"

0.15

0.1

30

1
Execution time (t)

(b)

Figure 6.1: An example of the impacts of the inaccurate métion. (a) Means and stan-
dard deviations of the task execution time distributiomg; Normal distributions of task
execution time

P1 A D Time
!
/
[ ?
|IllIII . E
PO ‘ C (B Time

Figure 6.2: The schedule without tagk
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In this example, we use the Min-min heuristic, which will begroduced in the next
section, to schedule these independent tasks. Aaskcheduled first in corf1, followed
by taskC' in core PO. Then we schedule task in core P1 right after taskA4, and taskB
in core PO, as shown in Fid._612. After we schedule these four tasksarsyistem, we can
compute the probability distributions of makespans in¢h®@s cores by convoluting task
execution time distributions. Makespan distributions stiewn in Fig[6.8. For each of
these two cores, we can calculate the convolution of the spaltedistribution of the core
and the execution time distribution &f running in the core, which is shown in Fig. 5.4.
By comparing results of these convolutions, we can make algréecision of which core
task £ is scheduled to. If task’ is scheduled inP0, all five tasks can be finished by time
34, with the probability of 90%. Otherwise, If tagkis scheduled inP1, all tasks can be
finished by time 27 with the probability of 90%. We schedulkkt& in P1.

T T T
0.3~

—&—P0 (before scheuling Task E)
—©—P1 (before scheuling Task E)

0.2

Probability
=]
o
\
!

0.1

6
Total excution time

Figure 6.3: Makespan probability distributions of corefobetaskE is scheduled

In some cases, current statistical characteristics ofasle éxecution time may be dif-

ferent from previous estimated ones. The estimated PMFataepresent the actual distri-
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0.18

=~ PMF of total execution if Task E is scheduled to P1
—B-PMF of total execution if Task E is scheduled to P1

0.14—

0.12—

Probability
°
T

o

o

©
I

0.02

25
Total execution time

Figure 6.4: Estimated makespan probability distributiohsores after task is scheduled

bution of the task execution time accurately. Assuming thatactual distribution of task
E is different from the estimated one, the distributionfbin core P0 is a normal distribu-
tion with the mean of 9, and the standard deviation of 1, wifiéedistribution in core”1
Is another normal distribution with the mean of 14 and thad#iad deviation of 6. In this
case, ifE is scheduled inP1, the system will finish tasks by time 34 with 90% guarantee,
about 26% robustness degradationElis scheduled inP0, all tasks will be done by time
33 with 90% guarantee, which results in a different greedysien from the one based on
estimated information as shown in Hig.]6.5.

In this example, the inaccurate information can degradedhestness, i.e., makespan
in this example. Therefore, we will investigate how differelegrees of inaccurate im-
pact the robustness and how different scheduling hewiggecform under an inaccurate

information environment in following sections.
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—©— Actual PMF if task E is shceduled to PO
—8— Actual PMF if task E is shceduled to P1
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Figure 6.5: Actual makespan probability distributions ofes after task is scheduled

6.5 Algorithms

Overview

Three static greedy heuristics are usklihimum completion timé@MCT) [146] is an one-
phase heuristic. The output of this heuristic depends oarther in which tasks are mapped
to cores.Min-min [146/147] andMax-min[146,147] are two-phase heuristics. These two
heuristics are independent from tasks assigning orderers¢imse that for a given set of
tasks and a system with a certain set of cores, outputs anéddeno matter how many
times it runs.

Greedy heuristics are widely used in heterogeneous syseauirce allocation. Com-
pared to global heuristics suchgenetic algorithmandsimulated annealinggreedy heuris-
tics can get a schedule much quicker than global heurifRieszious works show that Min-
min heuristics can get a schedule as optimal as the one deddraa genetic algorithm.

Definitions of these three heuristics are provided beldare available timgCAT) is

the probability distribution of time when the core will fihiall tasks that are assigned to
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this core previously. The PMF of the completion time for a nagkt; on corec;, ct; ;, can
be calculated by convoluting the CAT of cargand the execution time distribution of task

t; on corec;.

MCT

Minimum Completion TiméMCT) [146] assigns tasks in an arbitrary order to cores. For
an unmapped task, MCT maps it on the core that can complet@athkisn the earliest time
while maintaining a certain probability. The idea behind Mi8That it considers both the
execution time of the task on the core as well as the load balgBince MCT assigns tasks
in an arbitrary order, the scheduling results are non-detestic. The MCT algorithm is

shown in Fig[6.6.

Min-min

Min-min[146/147] selects the task-core pair in two phases. In phaee each unmapped
task, the core that can complete it in the earliest time wha@taining a certain probability
is selected to form a pair. In phase 2, among all pairs, thetpai has the minimurat

is selected, and the task in the pair is mapped to the comedgmpcore. The idea behind
Min-min is that it does its best to keep the current load baganith the least change on it.

The Min-min is provided in Fid. 6]7.

Max-min

Max-min[146,147] is similar to Min-min. In phase 1, Max-min does etkathe same as
that of Min-min. Then in phase 2, Max-min finds the task-caggpwith the maximunat,
which is different from Min-min. The idea behind is that taskith larger execution time
will likely increase the penalty if these tasks are not assibto their best cores. Fig. 6.8

shows the Max-min algorithm.
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Input: a set of tasksy: different cores, ETC PMF matrix
Output: A MCT resource allocation schedule

. Alist of unmapped taskE is generated.

: Reorder the list in an arbitrary order.

: while the listU is not emptydo

AW N R

has the minimumt, ; is also selected.

Assign the task to the core.

Remove the task from the lisf.

Update the CAT of the selected core.
end while

Figure 6.6: MCT algorithm

Input: a set of tasksy: different cores, ETC PMF matrix
Output: A Min-min resource allocation schedule
1: A list of unmapped task& is generated.
2. while the listU is not emptydo
3:  Foreachtaskin the ligf, find the core that gives the minimum
4:  Among task-core pairs formed in stelp 3, find the pair with theimum ct.
5. Assign the task in the selected pair to the according core.
6: Remove the task from the list.
7 Update the CAT of the selected core.
8. end while

Figure 6.7: Min-min algorithm

Input: a set of tasksy: different cores, ETC PMF matrix
Output: A Max-min resource allocation schedule.
1: A list of unmapped taskE is generated.
2: while the listU is not emptydo
3:  For each taskin the lidt, find the core that gives the minimum
4:  Among task-core pairs formed in stelp 3, find the pair with tkaximumct.
5. Assign the task in the selected pair to the according core.
6: Remove the task from the ligt.
7. Update the CAT of the selected core.
8: end while

Figure 6.8: Max-min algorithm
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6.6 Simulation

Simulation Setup

To evaluate the robustness degradation caused by the méemformation, the following
approach was used to simulate the stochastic resourcaiidioin a heterogeneous multi-
core embedded system. A set of 1024 independent tasks wasdarandomly. They
consist of 28 task classes, where tasks in the same clasdeantical. There are 8 het-
erogeneous cores in a system. Each of these cores has itsoowputation power and
characteristic. So the estimated probabilistic ETC mafrikas the size 028 x 8. PMF
P, ; is based on Gamma distribution with a meamqof; and a standard deviation sd, ;.

In our simulation, we generate PMFs by sampling phabability density function@DF)
of Gamma distributions with a start point, an end point anckedfistep. Each of the 40
simulation trials has different estimated probabilistiiEmatrix P.

Before generating PMFs of Gamma distributions, values ofnsiead standard de-
viations need to be determined. We randomly genera&& a 8 mean matrix based on
Gamma distribution as well as the standard deviation mattere, we use the COV based
method [148] with the mean of task execution time from 40 tpa8@ both coefficients of
variation of tasks and cores uniformly from 0.35 to 1, as showFig.[6.9. When forming
the PMFP, ;, we can sample the PDF of Gamma distribution with a meamgfand a
standard deviation ofd; ;. The objective of this method to generate PMFs for simutatio
And this method can be implemented easily by a statisticalpedging tool R [149]. In
literature, there are several low-overhead methbds! [159,151] to generate stochastic
profiles with sufficient coverage of variances in practiggdlecations.

To simulate the case in which updated PMFs are different festimated PMFs, pa-
rameters (mean or standard deviation) of updated PMFs aerated by multiplying pa-

rameters of estimated PMFs with a scalar matix
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Input: ¢ different tasksyn different cores, coefficient of variation of task and core
Viasks Veore, mean of tasks” ETGuqsk
Output: A random ETC matrix based on Gamma distribution
1: Compute the shape parameter and the scale parameter of i@ek as the shape
parameter of core
Aigsk = 1/Wask2acore = 1/‘/607‘62
ﬁtask = ,utask/atask
2: forifromOto ¢ — 1) do
3: Q[Z] - G(atask> Btask)
I*q[i] will be used as mean afth row in the ETC matrix*/
4: /8007‘6 [Z] = Q[i]/acore
[*scale parameter farth row*/

1%

5. for jfromOto ¢n — 1) do
6: €[Z,]] = G(Oécorey Bcorem)
7:  end for

8: end for

Figure 6.9: COV based method for generate Gamma random matrix

For example, if mean values are modified,
updated_mean(i, j) = mean(i, j) X S; ; (6.4)

The entry of scalar matrix S is based on a uniform distributigth a range of §,,,:,.,
Smax]-
Simulation Results
Compare impacts on robustness when modifying different paameters

In this part, we compare impacts on robustness when usifegelit scalar matrixes as well
as modifying different parameters.
We simulate two different scenarios in which two differemmds of inaccurate infor-

mation occur:
1. Keep standard deviations unchanged, and multiply me#&hsavgcalar matrix.

2. Keep means unchanged, and multiply standard deviatidghsvgcalar.
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The first scenario usually happens when the embedded systmployed in a physi-
cally inconstant environment. For example, in an enviromimehere temperature changes
rapidly, cores will likely run faster in low temperature ththat in high temperature. As
the temperature increases, means of the probability bligton of execution times may
increase. In this case, the statistic information collégiesviously in low temperature
may not be accurate. The second scenario happens whenaesouatention among tasks
changes. When the resource contention is light, a core Ilfkaghes same tasks in a nar-
row distribution, especially around the mean of the distitn. When the contention is
heavy, the distribution of a task class in a core may be wide,with larger standard devi-
ations. In our simulation, the scalar matrixes are withmithnge of [0.1, 1.9], [0.1, 2.9],
[0.1, 3.9],[0.1, 4.9].

MCT heuristic is used in all these four parameter modificatidrhe result of each trial
is the average value of MCT with 25 different task mapping orde

In Fig. [6.10(a), the increase of newtio is proportional to the increase of the scalar
matrix range with 20% to 70% penalty. Obviously, the inceeaé mean values of the
execution time distribution leads to a longer makspan. Z8% to 70% penalty is caused
by the inaccurate information used in the original schedWle find that the improveatio,
which indicates the improvement of re-scheduling, doeshange as much as the increase
of the scalar matrix range. Note that when we calculate tlgore ratio, we compare the
difference between the nemakespan and the correctakespan. In the convolution of
these two distributions, we use the updated PMFs. The “ingoratio” columns show that
the level of improvement brought from the re-schedulingsdoet mainly depend on the
inaccurate degree of the information, but depends on wleatabk set consists of. The
correctratio is also proportional to the increase of the scalar imaénge. It shows that
the degradation of robustness is a linear function of theedegf how the environment
changes. Comparing Fi§. 6]10(b) with F[g._6.10(a), we find the inaccurate standard

deviations have much less impacts on the robustness thiaof tiiie inaccurate means.
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Figure 6.10: Three ratios with different inaccurate infatian. (a) Newratio, correctratio
and improveratio when changing the mean; (b) nesatio, correctratio and improveratio
when changing the standard deviation
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Figure 6.11: The Original makespan when changing the medhenstandard deviation
with a fixed scale parameter
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Figure 6.12: The normalized new makespan when changing #arand the standard
deviation with a fixed scale parameter
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Figure 6.13: The normalized correct makespan when chartgengnean and the standard

deviation with a fixed scale parameter

Compare the performance of different heuristics

In this part, three different heuristics (Min-min, MCT, Maxin) are compared with their
performance when using inaccurate information. In thig,pae will keep the standard
deviations fixed and change mean values. To compare thepenice of these heuristics,

normalized makespans of MCT and Max-min are introduced.

e Max-min normalized original makespan

M,(Max — min)

MN,(Max — min) = 6.5
(Maz —min) M,(Min — min) (6.5)
e Max-min normalized new makespan
‘ M, (Max — min)
MN,(Max — = 6.6
(Maz —min) M,,(Min — min) (6.6)
e Max-min normalized correct makespan
M.(Mazx — mi
MN . (Max — min) = (Maz — min) (6.7)

M.(Min — min)
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e MCT normalized original makespan

M,(MCT)
MN,(MCT) = :
o(MCT) M,(Min — min) (6:8)
e MCT normalized new makespan
M, (MCT)
MNH(MCT) = M, (Min — min) 69
e MCT normalized correct makespan
M.(MCT
MN.(MCT) = (MCT) (6.10)

M. (Min — min)

2.5

[0.1,1.9] [0.1,2.9] [0.1, 3.9] [0.1, 4.9]

Range of scalar matrix [Smin, Smax]
New_ratio(Minmin) New_ratio(MCT)
B New_ratio(Maxmin)

Figure 6.14: The newatio of three heuristics when changing the mean and thelatedn
deviation with a fixed scale parameter

In the respect of the three ratios (Nneatio, correciratio, and improveatio), Fig.
[6.14,[6.15, and 6.16 show that the Max-min is least impacyeth® inaccurate informa-
tion. However, in Fig[6.11,6.12, ahd 6113, Max-min has tregkest new makespans and
the longest correct makespans among these three heuriliticeans that the Max-min
generates the least robust schedules in the environmembowitithout inaccurate infor-

mation, even though the inaccurate information has smaitgsacts in the Max-min. So
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Figure 6.15: The correafatio of three heuristics when changing the mean and theatdn
deviation with a fixed scale parameter
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Figure 6.16: The improveatio of three heuristics when changing the mean and the stan
dard deviation with a fixed scale parameter
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the Max-min performance is the worst among these three $teasi The performance of
MCT is very close to the performance of Min-min with respectte original makespan.
Furthermore, MCT outperforms the Min-min in the new makespameans that MCT is
less impacted by the inaccurate information and performsedo the Min-min in the orig-
inal makespan, and it performs the best in the new makespamteough the difference

between these two heuristics is not significant.

6.7 Conclusion

We propose a systematic method of measuring the robustaegesdition with a stochastic
approach. We evaluate impacts of inaccurate informatiosystem robustness in two dif-
ferent scenarios. In our simulation, the makespan is thestaless metric. We find that the
makespan with inaccurate information increases propumtito the increase of mean val-
ues of task execution time distribution caused by envirartrokanges. Also, 20% to 70%
penalty is caused by the inaccurate information used in mgegtheduling decisions. The
impact of environment changes on the robustness is linghetdegree of how much inac-
curate information (mainly the shift of means of PMFs) isgrated by these environment
changes. However, the improvement of re-scheduling witthatgrd information mainly
depends on how the task set consists of, not how inaccuratefiormation is. We also
find that the impact of inaccurate means of PMFs is much |atgar inaccurate standard
deviations.

Among these three greedy algorithms, MCT performs the besrunaccurate infor-
mation. It generates schedules that are almost as optimatess from Min-min where
accurate information is used. And inaccurate informatias less impacts on schedules

from MCT than it does on Min-min. Max-min performs the worst.

Copyright® Jiayin Li, 2012.
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Chapter 7 Online Optimization on Cloud systems

In Infrastructure-as-a-ServicdaaS) cloud computing, computational resources are pro-
vided to remote users in the form of leases. For a cloud uséshh can request multiple
cloud services simultaneously. In this case, parallel ggsing in the cloud system can
improve the performance. When applying parallel processingoud computing, it is
necessary to implement a mechanism to allocate resourcechedule the execution order
of tasks. Furthermore, a resource optimization mechanighpreemptable task execu-
tion can increase the utilization of clouds. In this chapier propose two online dynamic
resource allocation algorithm for the laaS cloud systenh wreemptable tasks. Our al-
gorithms adjust the resource allocation dynamically basedhe updated of the actual
task executions. And the experimental results show thatatmarithms can significantly

improve the performance in the situation where resourcéeomion is fierce.

7.1 Introduction

In cloud computing, a cloud is a cluster of distributed cotepsi providing on-demand
computational resources or services to the remote userseometwork [152]. In an
Infrastructure-as-a-Service (laaS) cloud, resourcegmices are provided to users in the
form of leases. The users can control the resources safamksito the free and efficient
virtualization solutions, e.g., the Xen hypervisor [15@ne of the advantages of the laaS
clouds is that the computational capacities providing t-esers are flexible and efficient.
Thevirtual machinegVMs) in Amazon'’s Elastic Compute Cloud are leased to usetseat t
price of ten cents per hour. Each VM offers an approximatepmdational power of a 1.2
GHz Opteron processor, with 1.7 GB memory and 160 GB diskespgaar example, when
a user needs to maintain a database with a certain disk spaaerfonth, he/she can rent

a number of VMs from the cloud, and return them after that fmoi this case, the user
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can minimize the costs. And the user can add or remove res®tnam the cloud to meet
peak or fluctuating service demands and pay only the capasgty.

Cloud computing is emerging with growing popularity and atmp[154]. However,
there is no data center that has unlimited capacity. Thusase of significant client
demands, it may be necessary to overflow some workloads themdata center [155].
These workload sharing can even occur between private dnlctmlouds, or among pri-
vate clouds or public clouds. The workload sharing is abkniarge the resource pool and
provide even more flexible and cheaper resources. To codsdthe execution across mul-
tiple clouds, the monitoring and management mechanism &y @é&mponent and requires
the consideration of provisioning, scheduling, monitgriand failure management [155].
Traditional monitoring and management mechanisms arguedifor enterprise environ-
ments, especially a unified environment. However, the laogée, heterogeneous resource
provisioning places serious challenges for the managearm&hmonitoring mechanism in
multiple data centers. For example, the Open Cirrus, a cloagpating testbed, consists
of 14 geographically distributed data center in differesnistrative domains around the
world. Each data center manages at least 1000 cores indaugn{lLl56]. The overall
testbed is a heterogeneous federated cloud system. It rtiamp for the monitoring and
management mechanism to provide the resource pool, whottides multiple data cen-
ters, to clients without forcing them to handle issues, agctine heterogeneity of resources
and the distribution of the workload. Virtualization in alkb computing, such as VMs, has
been intensively studied recently. However, schedulinglwads across multiple hetero-
geneous clouds/data centers has not been well studied litetfature. To the best of our
knowledge, this is the first chapter to address the scheglidgue in the federated hetero-
geneous multi-cloud system.

A large numbers of applications running on cloud systemdharse compute on large
data corpora [157]. These “big data” applications draw fiaformation source such as

digital media collections, virtual worlds, simulation ¢es, data obtain from scientific in-
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struments, and enterprise business databases. Theseidgtg Applications require scal-
able computational resources. Fortunately, these apipisaexhibit extremely good paral-
lelism [157]. Using a “map/reduce” approach in the cloudlaagion development, large
batch processes can be partitioned into a set of discrdtediprocesses, which we call
tasks. These tasks can be executed in parallel to impropemes time[[158]. In Fedex’s
data center, a four-hour batch process can be succesdfudyin 20 minutes after the
“map/reduce”[158]. When applying parallel processing ir@xing these tasks, we need
to consider the following questions: 1) how to allocate tgses to tasks; 2) in what or-
der the clouds should execute tasks, since tasks have datadincies; and 3) how to
schedule overheads when VMs prepare, terminate or swi&s.t&Resource allocation and
scheduling can solve these three problems. Resource @loeatd task scheduling have
been studied in high performance computing [107,108] ardribedded systemnis [24,159].
However, the autonomic feature and the resource hetertgenthin clouds [152] and the
VM implementation require different algorithms for resoeiallocation and task schedul-
ing in the laaS cloud computing, especially in the federdtetérogeneous multi-cloud
system.

The two major contributions of this chapter are:

e We present a resource optimization mechanism in heterogenkaS federated
multi-cloud systems, which enables preemptable task sdingd This mechanism

is suitable for the autonomic feature within clouds and tivergity feature of VMs.

e We propose two online dynamic algorithms for resource ation and task schedul-

ing. We consider the resource contention in the task schegdul

In sectiol 7.2, we discuss works related to this topic. Itise¥.3, models for resource
allocation and task scheduling in laaS cloud computingesysire presented, followed by
an motivation example in section ¥.4. We propose our algmstin sectiof 715, followed

by experimental result in sectibn ¥.6. Finally, we give tbadusion in section 717.
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7.2 Related works

Cloud system has been drawing intensive research interefts recent years. A number
of public clouds are available for customer and researcBerh as Amazon AWS [160],
GoGrid [161], and Rackspace [162]. Some other companiespataade cloud services,
such as Microsoft [163], IBM[164], Google [165], and HP_[166]o benefit the cloud
research, open source cloud services are under way, suaitalypus([16/7], Open Neb-
ula [168], Tashil[157], RESEVOIR [169], and Open Cirrus [156pen Cirrus is a cloud
testbed consists of 14 distributed data centers among thd.vigssentially, it is a federated
heterogeneous cloud system, which is similar to the tatgaticsystem in this chapter.
Data intensive applications are the major type of appbeetrunning in the cloud com-
puting platform. Most of the data intensive applicationa b@ modeled by MapReduce
programming model[170]. In MapReduce model, user specéyntiap function that can
be executed independently, and the reduce function thaegetsults from the map func-
tion and generate the final result. The runtime system autoatigt parallelizes the map
function and distributes them in the cloud system. Apachdddp is a popular frame-
work, inspired by MapReduce, for running the data-intensigplication in laaS cloud
systems([171]. Both reliability and data motion are transptly provided in Hadoop
framework. MapReduce programming model and Hadoop disétbfile system are im-
plemented in the open-source Hadoop framework. All-paimdhigh level abstraction, was
proposed to allow the easy expression and efficient execuatialata intensive applica-
tions [172]. Liu et al. designed a programming model, Gri¢gBatfor large scale data
intensive batch applications [173]. In GridBatch, user qaatdy the data partitioning and
the computation task distribution, while the complexitypatallel programming is hidden.
A dynamic split model was designed to enhance the resouieation in MapReduce
platforms [174]. A priority-based resource allocation mggeh as well as a resource us-
age pipeline are implemented in this dynamic split modetioes scheduling methods for

data-intensive services were evaluated [175], with botheswd hardservice level agree-
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mentqSLA). However, the problem of scheduling workloads in hegeneous multi-cloud
platform was not considered in the related work mentionexvab

Virtualization is an important part in cloud computing. Eme&er et al. propose an
image caching mechanism to reduce the overhead of loadskgimhage in virtual ma-
chines[[176]. Fallenbeck et al. present a dynamic appraacteate virtual clusters to deal
with the conflict between parallel and serial jobs [177]. histapproach, the job load is
adjusted automatically without running time predictionséspend/resume mechanism is
used to improve utilization of physical resource [178]. Birerhead of suspending/resume
is modeled and scheduled explicitly. But the VM model consden [178] is homoge-
neous, so the scheduling algorithm is not applicable inrbgeneous VMs models.

Computational resource management in cloud computing hers ftedied in the lit-
erature recently. To make resource easy for users to mawdigetively, CloudNet[[179]
provides virtual private clouds from enterprise machined allocates them via public
clouds. Computation-intensive users can reserve resowittesn-demand characteristics
to create their virtual private clouds [180-185]. Howe@nudNet focuses on providing
secure links to cloud for enterprise users, resource dlmta not an objective in Cloud-
Net. Lease-based architecture [185,/186] is widely use@semving resource for cloud
users. In[[185], applications can reserve group of ressuseg leases and tickets from
multiple sites. Haizea [186] supports both the best-efford the advanced reservation
leases. The priorities of these two kinds of leases arerdifte The utilization of the whole
system is improved. The model of job in these two paper isehgab model, which mean
every application is scheduled as independent. Data depei&s are not considered. Thus
this method cannot be “map/reduce” and parallelized amaoulgjpte data centers. In our
proposed resource allocation mechanism, we model the dpndencies among an appli-
cation, and distribute the application among multiple d&taters at the task level, leading
to more flexible and more efficient resource allocation sale=d

Wilde et al. proposed Swift, a scripting language for dstted computing [187]. Swift
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focuses on the concurrent execution, composition, anddawation of large scale inde-
pendent computational tasks. A workload balancing meshamith adaptive scheduling
algorithms is implemented in Swift, based on the availgbtif resources. A dynamic
scoring system is designed to provide an empirically megbastimate of a site’s ability
to bear load, which is similar to the feedback informatiorchranism proposed in our de-
sign. However, the score in the Swift is decreased only whersite fails to execute the
job. Our approach has a different use of the feedback infiblomaThe dynamic estimated
finish time of remote site is based on the previous execuborthis site in our approach.
Therefore, even a “delayed but successful” finish of a joddda a longer estimated finish
time in the next run in our approach. ReSS is used in the Swithi@sesource selection
service [188]. Ress requires a central information repostim gather information from
different nodes or clusters. However, our approach is ardesdezed approach that does
not need any central information repository.

A system that can automatically scale its share of infratiine resources is designed
in [189]. The adaptation manager monitors and autonoryiediticating resources to users
in a dynamic way, which is similar to the manager server inpsaposed mechanism. How-
ever, this centralized approach cannot fit in the future inputivider cloud environment,
since different providers may not want to be controlled bghsa centralized manager.
Another resource sharing system that can trade machinearedt domains without in-
fringing autonomy of them is developed in [190]. A machinekar of a data center is
proposed to trade machines with other data centers, whiehdistributed approach to
share resource among multiple data centers. However, timaingtion of resource allo-
cation is not considered in this paper. Our proposed resaaitocation mechanism is a
distributed approach. A manager server of a cloud commtescaith others, and shares
workloads with our dynamic scheduling algorithm. Our aato can improve federated
heterogeneous cloud systems. Moreover, it can be adaptie ifuture multi-provider

cloud system.

159



7.3 Model and Background

Cloud system

In this chapter, we consider an infrastructure-as-a-serflaaS) cloud system. In this kind
of system, a number of data centers participate in a fedkegiproach. These data centers
deliver basic on-demand storage and compute capacitiedreenet. The provision of
these computational resources is in the form of virtual nreeh(VMs) deployed in the data
center. These resources within a data center form a cloutlaVimachine is an abstract
unit of storage and compute capacities provided in a clouithddrt loss of generality, we
assume that VMs from different clouds are offered in differgypes, each of which has
different characteristics. For example, they may havedsfit numbers of CPUs, amounts
of memory and network bandwidths. As well, the computaticharacteristics of different

CPU may not be the same.
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Figure 7.1: An example of our proposed cloud resource dilmecanechanism. Heteroge-
neous VMs are provided by multiple clouds. And clouds arenected to the Internet via
manager servers.

For a federated cloud system, a centralized managementagbprin which a super
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node schedule tasks among multiple clouds, may be a easyonagydress the schedul-
ing issues in such system. However, as authors in|[155, 1&6 imdicated, the future
cloud computing will consist of multiple cloud providersn this case, the centralized
management approach may be accepted by different clouddersv Thus we propose a
distributed resource allocation mechanism that can be indeath federated cloud system
or the future cloud system with multiple providers.

As shown in Fig.[Z11, in our proposed cloud resource allocathechanism, every
data center has a manager server server that knows the tcstaerses of VMs in it own
cloud. And manager servers communicate with each othernSlgibmit their tasks to
the cloud where the dataset is stored. Once a cloud receisks, tits manager server can
communicate with manager servers of other clouds, andlliggrits tasks across the whole
cloud system by assigning them to other clouds or executiagn oy itself.

When distributing tasks in the cloud system, manager sesleysld be aware of the
resource availabilities in other clouds, since there isammntralized super node in the sys-
tem. Therefore, we need the resource monitoring infragtradn our resource allocation
mechanism. In cloud systems, resource monitoring infuasire involves both producers
and consumers. Producers generate status of monitoragreceso And consumers make
use of the status information [191]. Two basic messagingnaust are used in the resource
monitoring between consumers and producers: the pull moddte push model [192].
Consumers pull information from producers to inquire theustan the pull mode. In the
push mode, when producers update any resource status,ulbyhe information to the
consumers. The advantage of the push mode is that the agesifagher when the thresh-
old of a status update, i.e., trigger condition, is definexpprly. And the advantage of the
pull mode is that the transmission cost is less when the iaguierval is proper [191].

In our proposed cloud system resource allocation mecham&ntombine both com-
munication modes in the resource monitoring infrastruetim our proposed mechanism,

when the manager server of cloddassigns an application to another cloidthe man-
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ager server ofd is the consumer. And the manager serveBak the producer. manager
server ofA needs to know the resource status from the manager seryeinafvo scenar-

ios: 1) when the manager serverAis considering assigning tasks to cloud B, the current
resource status of cloul should be taken into consideration. 2) When there is an task is
assigned to cloud by manager server of, and this task is finished, manager serverof
should be informed.

We combine the pull and the push mode as the following:

e A consumer will pull information about the resource statasf other clouds, when

it is making scheduling decisions.

e After an application is assigned to another cloud, the comswvill no longer pull

information regarding to this application.

e When the application is finished by the producer, the prodwdepush its informa-
tion to the consumer. The producer will not push any inforarato the consumer

before the application is finished.

In a pull operation, the trigger manager server sends a tasgkanquire to manager
servers of other clouds. Since different cloud providerg na be willing to share detailed
information about their resource availability, we proptsat the reply of a task check in-
quire should be as simple as possible. Therefore, in ourgsexp resource monitoring
infrastructure, these target manager servers only resgamish the earliest available time
of required resources, based on its current status of reseuAnd no guarantee or reser-
vation is made. Before target manager servers check theumes availability, they first
check the required dataset locality. If the required dataseot available in their data cen-
ter, the estimated transferring time of the dataset frontrigger cloud will be included
in the estimation of the earliest available time of requiresburces. Assuming the speed
of transferring data between two data centerS.isand the size of the required dataset is

Mg, then the preparation overheadli& /S.. Therefore, when a target cloud already has
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the required in its data center, it is more likely that it caréspond with a sooner earliest
available time of required resources, which may lead to aigasient to this target cloud.
In a push operation, wheAB is the producer and is consumer, the manager serverof

will inform the manager server of the time when the application is finished.

Manager
server

/l i |] eee .’

Execution
order

application

Partitioning

[;' Execution
‘.A‘v . —". . E“ @ Order@
« \ J
4B )l D - r— - (YY) >

Manager
server

Figure 7.2: An application submitted in the cloud system. Wéxeapplication is submitted
to the cloud system, it is partitioned, assigned, schedaled executed in the cloud system

When a client submits his/her workload, typically an apgia to a cloud, the man-
ager server first partitions the application into seversksaas shown in Fig. 4.2. Then
for each task, the manager server decides which cloud velt@e this task based on the
information from all other manager servers and the datartigoecies among tasks. If the
manager server assigns a task to its own cloud, it will stoeddsk in a queue. And when
the resources and the data are ready, this task is exectitlee nhanager server of cloudl
assigns a task to cloudd, the manager server @ first checks whether its resource avail-
abilities can meet the requirement of this task. If so, tis& taill enter a queue waiting for
execution. Otherwise, the manager serveBafill reject the task.

Before a task in the queue of a manager server is about to betegethe manager
server transfers a disk image to all the computing nodetioaide enough VMs for task
execution. We assume that all required disk images aredsioréhe data center and can

be transferred to any clouds as needed. We use the muligdstiransfer the image to

163



all computing nodes within the data center. Assuming the sfzhis disk image i$;, we
model the transfer time a$; /b, whereb is the network bandwidth. When a VM finishes

its part of the task, the disk image is discarded from conmgutiodes.

Resource allocation model

In cloud computing, there are two different modes of rentirgcomputing capacities from

a cloud provider.

e Advance Reservation (AR): Resources are reserved in advanicey should be

available at a specific time;

e Best-effort: Resources are provisioned as soon as possiligieBts are placed in a

queue.

A lease of resource is implemented as a set of VMs. And theatkal resources of a
lease can be described by a tuptem, d, b), wheren is number of CPUsy is memory in
megabytes] is disk space in megabytes, alh the network bandwidth in megabytes per
second. For the AR mode, the lease also includes the recgtmeidime and the required
execution time. For the best-effort and the immediate motteslease has information
about how long the execution lasts, but not the start timexetetion. The best-effort
mode is supported by most of the current cloud computinggiat The Haizea, which
is a resource lease manager for OpenNebula, supports theddle [53]. The “map”
function of “map/reduce” data-intensive applications aseally independent. Therefore,
it naturally fits in the best-effort mode. However, some ¢asgale “reduce” processes of
data-intensive applications may needs multiple reducEws. example, a simple “word-
count” application with tens of PBs of data may need a parakeluce” process, in which
multiple reducers combine the results of multiple mappejysarallel. Assuming there are
N reducers, in the first round of parallel "reduce”, eachNofeducers counts/N results

from the mappers. ThefV/2 reducers receive results from the othér2 reducers, and
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counts2/N results from the last round of reducing. It repelais N + 1 rounds. Between
two rounds, reducers need to communicate with others. Tdrerea AR mode is more
suitable for these data-intensive applications.

When supporting the AR tasks, it may leads to a utilizatiorbfgm, where the average
task waiting time is long, and machine utilization rate is.|€ombining AR and best-effort
in a preemptable fashion can overcome this problems [186hi$ chapter, we assume that
a few of applications submitted in the cloud system are inARemode, while the rest of
the applications are in the best-effort mode. And the appbas in AR mode have higher
priorities, and are able to preempt the executions of thedfést applications.

When an AR taskd needs to preempt a best-effort taBkthe VMs have to suspend
task B and restore the current disk image of taBkin a specific disk space before the
manager server transfers the disk image of tatks the VMs. When the tasHM finishes,
the VMs will resume the execution of tagk We assume that there is a specific disk space
in every node for storing the disk image of suspended task.

There are two kinds of AR tasks: one requires a start timeturdé)which is referred to
as “non-zero advance notice” AR task; and the other on reguar be executed as soon as
possible with higher priority than the best-effort task,jethis referred to as “zero advance
notice” AR task. For a “zero advance notice” AR task, it withit right after the manager
server makes the scheduling decision and assign it a cloutte $ur scheduling algo-
rithms, mentioned in Sectidn 7.5, are heuristic approadhéswaiting time is negligible,

compared to the execution time of task running in the clowdesy.

Local mapping and energy consumption

From the user’s point of view, the resources in the cloudesysdre leased to them in the
term of VMs. Meanwhile, from the cloud administrator’s poof view, the resources in
the cloud system is utilized in the term of servers. A senasr provide the resources

of multiple VMs, and can be utilized by several tasks at thmeséime. One important
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function of the manager server of each cloud is to schedutasks to its server, according
the numbers of required VMs. Assuming there are a set of tAgksschedule on a server
S, we define the remaining workload capacity of a setves C'(S), and the number of

required VM by task; is wl(t;). The server can execute all the task§'ionly if:

C(S) > (wi(t:) (7.1)

t, €T

We assume servers in the cloud system work in two differerdeapthe active mode
and the idle mode. When the server is not executing any taskswitched to the idle
mode. When tasks arrive, the server is switched back to theeattode. The server

consumes much less energy in the idle mode than that in tive acbde.

Application model

In this chapter, we use thRirected Acyclic Graph$DAG) to represent applications. A
DAG T = (V, FE) consists of a set of verticds, each of which represents a task in the
application, and a set of edgés showing the dependencies among tasks. The edge set
E contains edges;; for each task; € V that taskv; € V depends on. The weight of a
task represents the type of this task. Given an eglge; is the immediate predecessor of
vj, andv, is called the immediate successomnafA task only starts after all its immediate
predecessors finish. Tasks with no immediate predecessentay-node, and tasks without
immediate successors are exit-node.

Although the compute nodes from the same cloud may equipdifférent hardware,
the manager server can treat its cloud as a homogeneousdystesing the abstract com-
pute capacity unit and the virtual machine. However, as warasd, the VMs from differ-
ent clouds may have different characteristics. So the wtloled system is a heterogeneous
system. In order to describe the difference between VMs'maational characteristics,
we use anM x N execution time matrix (ETM) to indicate the execution time G/

types of tasks running oV types of VMs. For example, the entey; in £ indicate the
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required execution time of task type i when running on VM typ@/e also assume that a
task requires the same leasem, d, b) no matter on which type of VM the task is about

to run.

7.4 Motivational Example

An example of task scheduling in CMP

First we give an example of resource allocation in a cloudesys We schedule three
applications in a three-cloud system. The DFGs represgthese applications are shown
in Fig.[7.3(a). Application 1 and 3 are best-effort applicas, and Application 2 is AR

applications. For simplicity, we assume that every clouly execute one task at a time,
and that the time to load an image of a task is negligible. Weralax these assumptions
in the later part of this chapter. The execution timg{ each task in these applications

running on different cloud are shown in Fig.17.3(b).

Round-robin vs. list scheduling

The round-robin algorithm is one of the load balancing athaors used in cloud systems,
such as the GoGrid [193]. As shown in the “RR” row of Hig.] 7.3(b¥ tasks are assigned
to the clouds evenly, regardless of the heterogeneousrpefwe across different clouds.
The execution orders of three clouds are presented in Hi¢r)7.In this schedule, task G
preempts task B at time 7, since task G is an AR task. And taslsdheduled as soon as
possible, starting at time 9, pausing at time 15, and resyingiht after previously assigned
tasks, i.e., tasks | and D. The total execution time is 32. Sgeiame the execution time of
a given application starts from the time when the applicaisosubmitted to the time when
the application is done. With this scheduling, the averdgiree application execution
time is 22.67 time unit. By using our CLS algorithm, we genemtgchedule with the
consideration of the heterogeneous performance in thel dpstem. The tasks assignment

is shown in the “Sch” row of Fid._713(c). And the executionerdf three clouds are shown
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Figure 7.3: An example of resource allocation in a cloudeyst (a) The DFG of three
applications, (b) the execution time table, and (c) twoeddht task assignments, where
“RR” is the round-robin approach, and "Sch” is using the ligtestuling

in Fig.[Z.4(b). In this schedule, tasks are likely assigretthé cloud that can execute them
in the shortest time. Task F and G preempt task C and B, regplciThe total execution
time is only 21 time unit, which is 34% faster than the rountin schedule. And the
average execution time is 13.33, 41% faster than the roabi-schedule.

In this motivational example, we show the significant imgoment by simply us-
ing CLS algorithm, even without considering the dynamic aidgpscheduling. We will

present the details of our algorithms in the following seti
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time 10~2|3~719~15[15~19[19~26{ 26~28
Cloud1| A | F| J | D J

time 2~717~15/15~18| 18~27 | 28~31
Cloud 2 B| G B E K

time 2~10 15~21 28~32
Cloud 3 C H L

(@)
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Cloud 1| A H L

time 2~3|3~5[5~7] 9~14 | 14~18 [18~21
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time 2~5 |5~9|9~10[10~15[15~17
Cloud 3 B G| B| D E

(b)

Figure 7.4: Execution orders of three clouds, (a) with thendbrobin schedule, and (b)
with the list-schedule

7.5 Resource allocation and task scheduling algorithm

Since the manager servers neither know when applicatioive anor whether other man-
ager servers receive applications, it is a dynamic scheglydroblem. We propose two
algorithms for the task schedulingtynamic cloud list schedulin(pCLS) anddynamic

cloud min-min schedulin(AMMS).

Static resource allocation

When a manager server receives an application submissiail| first partition this ap-
plication into tasks in the form of a DAG. Then a static reseuallocation is generated
offline. We proposed two greedy algorithms to generate #igcsdllocation: the cloud list

scheduling and the cloud min-min scheduling.

Cloud list scheduling (CLS)

Our proposed CLS is similar to CPNT [108]. Some definitions usdisting the task are

provided as follow. Theearliest start timg¢EST) and thdatest start timgLST) of a task
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are shown as in Equatioh (7.2) afd {7.3). The entry-taske BST equals to 0. And The
LST of exit-tasks equal to their EST.

EST(v;) = vméﬁiﬁvl){EST(vw + AT (vy,)} (7.2)
LST(v;) = min {LST(vy)} — AT (v;) (7.3)

Um ESucCC;

Because the cloud system concerned in this chapter is hetexogs, the execution
times of a task on VMs of different clouds are not the saAig(v;) is the average execution
time of taskv;. The critical node (CN) is a set of vertices in the DAG of whicBTEand

LST are equal. Algorithrh 711 shows a function forming a taskldased on the priorities.

Algorithm 7.1 Forming a task list based on the priorities
Input: A DAG, Average execution timé7T" of every task in the DAG
Output: A list of tasksP based on priorities
. The EST of every tasks is calculated
The LST of every tasks is calculated
Empty list P and stackS, and pull all tasks in the list of tagk
Push the CN task into stackin the decreasing order of their LST
while the stackS is not emptydo
if top(S) has un-stacked immediate predecestues
S «the immediate predecessor with least LST
else
P « top(S)
pop top(S)
end if
: end while

o R A A e

el
N B o

Once the list of tasks is formed, we can allocate resourceasiks in the order of
this list. The task on the top of this list will be assigned he tloud that can finish it
at the earliest time. Note that the task being assigned atribiment will start execution
only when all its predecessor tasks are finished and the ckraiirces allocated to it are
available. After assigned, this task is removed from the The procedure repeats until
the list is empty. An static resource allocation is obtaiaétér this assigning procedure

that is shown in Algorithra 7]2.
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Algorithm 7.2 The assigning procedure of CLS
Input: A priority-based list of task$’, m different clouds,ET M matrix
Output: A static resource allocation generated by CLS
1: while The list P is not emptydo
2. T =top(P)
3:  Pull resource status information from all other managereser
4:  Get the earliest resource available time Tqrwith the consideration of the dataset
transferring time, responsed from all other manager server
5.  Findthe cloud”,,;, giving the earliest estimated finish time of T, assuming ot
task preempts T
6: Assigntask T to cloud”,,;,
7. Remove T fromP
8: end while

Cloud min-min scheduling (CMMS)

Min-min is another popular greedy algorithim [44]. The amigi min-min algorithm does
not consider the dependencies among tasks. So in the dynaimimin algorithm used in
this chapter, we need to update the mappable task set in ssleegluling step to maintain
the task dependencies. Tasks in the mappable task set aaskBaevhose predecessor tasks

are all assigned. Algorithin 7.3 shows the pseudo codes @kh&S algorithm.

Algorithm 7.3 Cloud min-min scheduling (CMMS)
Input: A set of tasksin different clouds ET M matrix
Output: A schedule generated by CMMS
1: Form a mappable task st
2. while there are tasks not assigneal
3: Update mappable task set
4: for i: taskv; € P do
5: Pull resource status information from all other manageressr
6 Get the earliest resource available time, with the conatdsr of the dataset trans-
ferring time, responsed from all other manager servers
Find the cloudC,,;,(v;) giving the earliest finish time of;, assuming no other
task preempts;
8: end for
9:  Find the task-cloud pdivy., C.,.i»(vx)) With the earliest finish time in the pairs gen-
erated in for-loop
10:  Assign taskyy to cloud D,,;,, (v)
11: Removey, from P
12:  Update the mappable task get
13: end while

N
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Energy-aware local mapping

A manager server uses a slot table to record execution sigsedbiall resources, i.e.,
servers, in its cloud. When an AR task is assigned to a cloedmidinager server of this
cloud will first check the resource availability in this cthuSince AR tasks can preempt
best-effort tasks, the only case where an AR task is rejastdtht most of the resources
are reserved by some other AR tasks at the required time,ou@brresources left for this
task. If the AR task is not rejected, which means there aragimoesources for this task, a
set of servers will be reserved by this task, using the algorshown in Alg[’7Z.4. The time
slots for transferring the disk image of the AR task and tls& &xecution are reserved in
the slot tables of those servers. The time slots for stomtraloading the disk image of
the preempted task are also reserved if preemption happens.

When a best-effort task arrives, the manager server willtgntthe execution queue.
Every time when there are enough VMs for the task on the topeofitieue, a set of servers
are selected by the algorithm shown in Alg.]7.5. And the managrver also updates the
time slot table of those servers.

The objectives of Ald. 714 ard 1.5 are to minimize the numierctive servers as well
as the total energy consumption of the cloud. When everyaséwer is fully utilized, the
required number of active servers is minimized. When tas& assigned to cloug, we

define the marginal workload of this task as:

where S; represents the kind server in clogdand C(S;) is the workload capacity of
serverS;. To find the optimal local mapping, we group all the tasks tizat be executed
simultaneously, and sort them in the descending order af tharginal workloads. For
each of the large marginal workload task, we try to find somallsmarginal workload

tasks to fill the gap and schedule them on a server.
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Algorithm 7.4 Energy-aware local mapping for AR tasks
Input: A set of AR tasksl’, which require to start at the same time. A set of sengers
Output: A local mapping

1: for t; € T'do
Calculatewl,, (t;)
if wl(t;) — wln(t:) < D2, cige(C(si)) then

Schedulewl(t;) — wl,,(t;) to the idle servers
else
First schedule a part afi(t;) — wl,,(t;) to the idle servers

Schedule the rest abi(t;) — wl,,(¢;) to the active servers, preempting the best-

effort tasks
end if
. end for
10: Sort tasks ifil” in the descending order of marginal workload, form list
11: Sort tasks ifil” in the ascending order of marginal workload, form list
12: while T is not emptydo
13:  t, =top(Ly)
14:  if there exists a server {2 (j) = wli,,(t,) then
15: Schedule thevl,,(t,) to server j
16:  end if
17: s, = maxg,es(C(sy))
18: Scheduld, to s,, deletet, from T, L;, andL,
19: for k: ¢, € L, do

N

N aRA®

© ®

20: if C(s,) >0andC(s,) > wl,y,(tx) then

21: Schedulgy, to s,, deletet;,, fromT', L;, andL,
22: else

23: Break

24: end if

25: end for

26: end while

Feedback information

In the two static scheduling algorithms presented aboeegtjective function when mak-
ing decision about assigning a certain task is the earlgshated finish time of this task.

The estimated finish time of task i running on cloud,;, is as below:
Tij = ERATZJ + S[/b + ETMZ'J (75)

Sr is the size of this disk image, is the network bandwidthE RAT; ; is the earliest

resource available time based the information from the gudiration. It is also based on
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Algorithm 7.5 Energy-aware local mapping for best-effort task
Input: A set of best-effort task®', which can start at the same time. A set of sengrs
Output: A local mapping

1: for t; € T'do

2:  Calculatewl,,(t;)
3:  Schedulevl(t;) — wl,,(t;) to the idle servers
4: end for
5: Form a set of active serveff thatC/(s;) > 0,Vs; € 5,
6: Sort tasks irf” in the descending order of marginal workload, form ligt
7. Sort tasks irl" in the ascending order of marginal workload, form list
8: while T is not emptydo
9: t,=top(Ly)
10:  if there exists a server jifi;: C(j) = wi,,(t,) then
11: Schedule thevl,,(t,) to server j
12:  endif

13: s, = maxg,eg, (C(si))

14 if C(s,) < wlpy(t,) then

15: Sq = anyidleserver

16:  endif

17:  Scheduld, to s,, deletet, from 1", L;, andL,
18: for k: ¢, € L, do

19: if C(s,) > 0andC(s,) > wl,,(t;) then

20: Schedulgy, to s,, deletet;,, fromT', L;, andL,
21: else

22: Break

23: end if

24: end for

25: end while

the current task queue of cloud j and the schedule of exatotider. But the estimated
finish time from [Z.5) may not be accurate. For example, asvsha Fig. [Z.5(a), we
assume there are three clouds in the system. The manager sémloud A needs to
assign a best-effort task i to a cloud. According to equdfidh cloud C has the smallest
7. S0 manager server A transfers task i to cloud C. Then managesrsof cloud B needs
to assign an AR task j to a cloud. Task j needs to reserve tbemesat 8. Cloud C has the
smallestr again. manager server B transfers task j to cloud C. Sincej tasgds to start
when i is not done, task j preempts task i at time 8, as showigini£&8. In this case, the

actual finish time of task i is not the same as expected.
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Figure 7.5: An example of resource contention. (a) Two taskssubmitted to a het-
erogeneous clouds system. (b)The earliest resource laleaticnes (ERAT), the image
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In order to reduce the impacts of this kind of delays, we useedlfack factor in com-
puting the estimated finish time. As discussed previousthis chapter, we assume once
a task is done, the cloud will push the resource status irdbom to the original cloud.
Again, using our example in Fi§. 7.5, when task i is done aefiiy, ;;, (=14), manager
server C informs manager server A that task i is done. Withitiformation, the manager

server A can compute the actual execution tifvwe ; of task i on cloud j:
ATi,j = lact_fin — ERATi,j (7-6)

And the feedback factofd; of cloud jis :

ATi’j — S[/b — ETML]‘
S1/b+ ETM; ;

fd; = a x (7.7)

ais a constant between 0 and 1. So a feedback estimated efnigls timer;,; ; of task i

running on cloud j is as follows:
dei,j = ERA,TZJ + (1 + fdj) X (S]/b + ETMZJ> (78)

In our proposed dynamic cloud list scheduling (DCLS) and dyicacloud min-min
scheduling (DCMMS), every manager server stores feedbattrtaof all clouds. Once a
manager server is informed that a task originally from itase, it will update the value
of the feedback factor of the task-executing cloud. Foraineg, in the previous example,
when cloud C finishes task i and informs that to the manageesef cloud A, this manager
server will update its copy of feedback factor of cloud C. Whesnrtext task k is considered
for assignment, they,, . is computed with the new feedback factor and used as obgectiv

function.

7.6 Experimental results

Experiment setup

We evaluate the performance of our dynamic algorithms tjincour own written simu-

lation environment that acts like the laaS cloud system. Weilate workloads with job
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Table 7.1: The mapping of job traces to applications

| parameter in our model |
task id
application arrival time Min(job start time)
task execution time job end time - job start time
# of CPU required by a tasklength(node list) * cpu per nod

values in job traces |
job ID

D

Table 7.2: Comparison of three data center. The job trace LURGL was obtained from
a small uBGL, which has the same single core performance asmthshown in this table

Data Peak performance Number normalized
center (TFLOP/s) of CPUs| performance per core
Thunder 23 4096 1
Altas 44.2 9216 0.85
uBGL(big) 229.4 81920 0.50

traces from the Parallel Workloads Archive [194]. We selicee different job traces:
LLNL-Thunder, LLNL-Atlsa, and LLNL-uBGL. For each job trageve extract four val-
ues: the job ID, the job start time, the job end time, and theerist. However, job traces
from the Parallel Workloads Archive do not include inforioatabout data dependencies.
To simulate data dependencies, we first sort jobs by theirtstae. Then we group up to
64 adjacent jobs as one application, represented by a rdpdmmerated DAG. Table 4.1
shows how we translate those values from job traces to trearmer we use in our appli-
cation model. Note that we map the earliest job start timeniagplication as the arrival
time of this application, since there is no record about jolval time in these job traces.
There are three data center in our simulation: 1) 1024 nogster, with 4 Inetl 1A-
64 1.4GHz Itanium processors, 8 GB memory, and 185 GB diskespar node; 2) 1152
node cluster, with 8 AMD Opteron 2.4GHz processors, 16 GB orgprand 185GB disk
space per node; and 3) 2048 processors BlueGene/L systenbidtiviB memory, 80
GB memory. We select these three data center configuratisedban the clusters where

LLNL-Thunder, LLNL-Atlsa, and LLNL-uBGL job traces were abhed.
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Figure 7.7: Average application execution time in the logisgation

Based on the information in [195], we compare the computatipawer of these three
data center in Table 7.2. With the normalized performancecpee, we can get the ex-
ecution time of all tasks on three different data centers.oAmthese applications, 20%
applications are in the AR modes, while the rest are in the d&iésrt modes. We assume
the bandwidth between two data centers are 1Gbps [196],ahdwidth of nodes inside
the data center are 4GBps [195], and the size of every datag@&Bi [197]. We run these
three jobs trace separately in our simulation.

We set the arrival of applications in two different ways. e ffirst way, we use the
earliest start time of a application in the original job &aas the arrival time of this ap-
plication. We also set the required start time of an AR apyili;y as a random start time
no later than 30 minutes after it arrives. In most of the caapglications do not need to
contend resources in this setting. We call this@se situationIn the other way, we set the
arrival time of applications close to each other. In thidgisgt we reduce the arrival time
gap between two adjacent application by 100 time. It meaatsagbplications usually need
to wait for resources in clouds. We call thisight situation In both these two setting, we
tunes the constant to show how the dynamic procedure impacts the average appic
execution time. We define the execution time of an applica®the time elapses from the

application is submitted to the application is finished.
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Result

Fig. [Z.7 shows the average application execution time indbge situation. We compare
our two dynamic algorithms with the First-Come-First-Sefv€FS) algorithm([198]. We
find out that the DCMMS algorithm has the shorter average gxattime. And the dy-
namic procedure with updated information does not impazaipplication execution time
significantly. The reason the dynamic procedure do not hagrafisant impact on the
application execution time is that the resource contengomot significant in the loose
situation. Most of the resource contentions occurs when agication preempts a best-
effort application. So the estimated finish time of an agtian is usually close to the
actual finish time, which limits the effect of the dynamic gedure. And the manager
server does not call the dynamic procedure in most of thescase

Figure[7.8 shows that DCMMS still outperforms DCLS and FCFS. Amdynamic
procedure with updated information works more significamtlthe tight situation than it
does in the loose situation. Because the resource contsrarerfiercer in tight situation,
the actual finish time of a task is often later than estimatadtitime. And the best-effort
task is more likely preempted some AR tasks. The dynamiceghae can avoid tasks
gathering in some fast clouds. We believe that the dynanaicgature works even better in

a homogeneous cloud system, in which every task runs fassame kinds of VMs than
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Table 7.3: Feedback improvements in different cases

Arrical gap| DLS |FDLS|FeedbackMMSFDMMSFeedback
reduce times (o = 1) improv. (a=1) | improv.
1 237.82253.59 -6.63%206.31 223.47| -8.32%
20 309.35286.55 7.37% (262.66 255.44| 2.75%
40 445.74397.1% 10.9% |385.48 336.52| 12.7%
60 525.32420.83 19.89%)448.04 343.60| 23.31%
80 729.5(537.28 26.36%)| 648.37 440.05| 32.13%
100 [981.41680.2230.69%844.33 504.66| 40.23%

Table 7.4: Average application execution time with varipascentages of AR applications
in the loose situationo( = 0.8)

0% | 20% | 50% | 80% | 100%
FCFS 1 1 1 1 1
DCLS | 0.81]| 0.75| 0.61| 0.55| 0.49

DCMMS | 0.77| 0.56 | 0.52| 0.46| 0.44

in some other kinds.

In order to find out the relationship between resource cdimteand feedback improve-
ment, we increase the resource contention by reducing thalaime gap between two
adjacent applications. We reduce this arrival time gap hy420 60, 80, and 100 times,
respectively. In the setting with original arrival time gam application usually come after
the former application is done. Resource contention is .ligimd when arrival time gaps
are reduced by 100 times, it means during the execution opplhcation, there may be
multiple new applications arriving. Resource contentiohaavy in this case. As shown
in Table[7.8, the improvement caused by feedback procedureases as the resource
contention become heavier.

We also test our proposed algorithms in setups with variensgmtages of AR appli-
cations, as shown in Table 7.4 dnd]7.5. The values in the fivétrepresent how many
applications are set as the AR applications. The valuesdarséitond, the third, and the

fourth row are the average application execution time, @dizad by the corresponding
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Table 7.5: Average application execution time with varipascentages of AR applications
in the tight situationd = 0.8)

0% | 20% | 50% | 80% | 100%
FCFS 1 1 1 1 1
DCLS | 0.63]| 0.55| 0.49| 0.43| 0.38

DCMMS | 0.51| 0.38| 0.32| 0.30| 0.27

EFCFS MFCFS(EL) TIDCLS EDCLS(EL) EBDCMMS E DCMMS(EL)
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Figure 7.9: Energy consumption in the loose situation. Colsimithout “(EL)” are sched-
ules without energy-aware local mapping. And columns w{eL)” are schedules with
energy-aware local mapping.

execution time with the FCFS algorithm. From these two tgbhes can observe that
higher percentage of AR applications leads to a better inggnent of the DLS and the
DCMMS algorithm, compared to the FCFS algorithm, in both thesésituation and the

tight situation. The reason is that more AR applicationssedonger delays of the best

effort applications. By using the feedback information, BlwS and DCMMS can reduce
workload unbalance, which is the major drawback of the FCIg8rahm. Furthermore,
we compare the energy consumption of three algorithms, showig.[7.9 and 7.70. Both
DCLS and DCMMS can reduce energy consumption compared to th& R@erithm. In
addition, our energy-aware local mapping further redueeethergy consumption signifi-
cantly, in all three algorithms.

In the future work, we will evaluate our proposed mechanismxisting simulators, so
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Figure 7.10: Energy consumption in the tight situation. @uis without “(EL)” are
schedules without energy-aware local mapping. And coluwitis “(EL)” are schedules
with energy-aware local mapping.

that results can be reproduced easier by other resear¢cherddition, we will investigate
the implementation of our design in the real-world cloud potng platform. A reasonable
way to achieve this goal is to combine our design with the tdadalatform [171]. The
multi-cloud scheduling mechanism and algorithms in ouligtesan be used on the top
of the Hadoop platform, distributing applications in thelédeated multi-cloud platform.
When a give task is assigned to a cloud, the Hadoop will be uselistribute tasks to
multiple nodes. And our proposed energy-aware local mapg@sign can be implemented
in the Hadoop Distributed File System, which enables theK'eavareness” feature for data

locality inside the data center.

7.7 Conclusion

The cloud computing is emerging with rapidly growing cusésrdemands. In case of sig-
nificant client demands, it may be necessary to share watklaemong multiple data cen-
ters, or even multiple cloud providers. The workload st@grgable to enlarge the resource
pool and provide even more flexible and cheaper resourcehidichapter, we present a

resource optimization mechanism for preemptable apphicain federated heterogeneous
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cloud systems. We also propose two novel online dynamicdsdimg algorithms, DCLS
and DCMMS, for this resource allocation mechanism. Expemtadeesults show that the
DCMMS outperforms DCLS and FCFS. And the dynamic procedure wptdtated infor-
mation provides significant improvement in the fierce resewontention situation. The
energy-aware local mapping in our dynamic scheduling &lyoss can significantly reduce

the energy consumptions in the federated cloud system.

Copyright® Jiayin Li, 2012.
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Chapter 8 Conclusions

In this dissertation, we have discussed issues in the emeldesigstem design, including
thermal issues in the 3D CMP chip, the endurance issue in the B@Nattery issue in the
embedded system design, the impact of inaccurate infoomatiembedded system, and
the cloud computing to move the workload to remote cloud astimg facilities. Further-
more, we have presented a comprehensive set of optimizatbniques for energy-aware
embedded systems.

We have presented an online 3D CMP temperature predictiorehfod multimedia
embedded systems. We have also proposed our real-timeaioesttask scheduling algo-
rithms, the TARS algorithms, to reduce peak temperature D @8IP. By considering the
the inter-iteration data dependencies and frequenciégnasent collaboratively, our pro-
posed TARS algorithms can significantly reduce the peak tesynre on chip and avoid
most of the temperature violations. Our simulation ressittswed that our TARS algo-
rithms can reduce peak temperature by’8,land avoid up to 80% violations in the top
layer and up to 100% violations in the bottom layer.

We have designed an ILP-based memory activities optinaizatigorithm for the PCM
main memory. In order to increase the lifetime of the PCM mamee schedule and share
the data in SPMs, reducing the redundant writes to the PCM meimithis algorithm. Our
experimental results show that our ILP algorithm can sigaiftly reduce the number of
write by 61% on average. In addition, the performance of ytséesn is also improved due
to less writes that are time-consuming.

We have proposed four optimization algorithms for embeddedP systems equipped
with the MLC/SLC PCM + DRAM hybrid memory. In our proposed algbms, we not
only schedule and assign tasks to cores in the CMP system]doupeovide a memory

configuration that balances the hybrid memory performasogal as the efficiency. Our
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experiments show that our genetic-based algorithm gessetiaé best solutions. It signifi-
cantly reduces the maximum memory usage by 76.8%, compatbéd DRAM+ uniform
SLC configuration, and improves the efficiency of memory edag155.6%, compared to
the DRAM + uniform 4 bits/cell MLC configuration. In additiothe performance of the
system, in terms of total execution, is also improved by 10d8mpared to the uniform 4
bits/cell MLC configuration.

For the battery issue in the embedded system design, we hesenped a complete
model for task scheduling in distributed mobile DSP systetmich includes application
model, network model as well as energy model. Using this me@depropose our battery-
aware three-phase scheduling algorithms. We show thag thig®rithms can generate
optimal schedules while satisfying lifetime constrairdpecially the one based on Min-
Min algorithm. These algorithms can also improve the cotepiatio of the system.

We have propose a systematic method of measuring the r@ssstiegradation with a
stochastic approach. We evaluate impacts of inaccuratennation on system robustness
in two different scenarios. In our simulation, the makesjgatie robustness metric. We
find that the makespan with inaccurate information increggeportional to the increase
of mean values of task execution time distribution causedrisyronment changes. Also,
20% to 70% penalty is caused by the inaccurate informatiead us making scheduling
decisions. The impact of environment changes on the robsstis linear to the degree
of how much inaccurate information (mainly the shift of mearf PMFSs) is generated
by these environment changes. However, the improvemem-stmeduling with updated
information mainly depends on how the task set consists @fhow inaccurate the in-
formation is. We also find that the impact of inaccurate mezrnBMFs is much larger
than inaccurate standard deviations. Among these threelgedgorithms, MCT performs
the best under inaccurate information. It generates s¢bethat are almost as optimal as
ones from Min-min where accurate information is used. Aratourate information has

less impacts on schedules from MCT than it does on Min-min.
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Finally, we have designed a resource optimization mechafos preemptable appli-
cations in federated heterogeneous cloud systems. We @lpoge two novel online dy-
namic scheduling algorithms, DCLS and DCMMS, for this rese@ltocation mechanism.
Experimental results show that the DCMMS outperforms DCLS BG&S. And the dy-
namic procedure with updated information provides sigaiftamprovement in the fierce
resource contention situation. The energy-aware locapmagpn our dynamic scheduling

algorithms can significantly reduce the energy consumgiiiothe federated cloud system.

Copyright©® Jiayin Li, 2012.
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