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ABSTRACT OF DISSERTATION

ENERGY-AWARE OPTIMIZATION FOR EMBEDDED SYSTEMS WITH CHIP
MULTIPROCESSOR AND PHASE-CHANGE MEMORY

Over the last two decades, functions of the embedded systemshave evolved from sim-
ple real-time control and monitoring to more complicated services. Embedded systems
equipped with powerful chips can provide the performance that computationally demand-
ing information processing applications need. However, due to the power issue, the easy
way to gain increasing performance by scaling up chip frequencies is no longer feasible.
Recently, low-power architecture designs have been the maintrend in embedded system
designs.

In this dissertation, we present our approaches to attack the energy-related issues in
embedded system designs, such as thermal issues in the 3Dchip multiprocessor(CMP),
the endurance issue in thephase-change memory(PCM), the battery issue in the embedded
system designs, the impact of inaccurate information in embedded system, and the cloud
computing to move the workload to remote cloud computing facilities.

We propose a real-time constrained task scheduling method to reduce peak temperature
on a 3D CMP, including an online 3D CMP temperature prediction model and a set of algo-
rithm for scheduling tasks to different cores in order to minimize the peak temperature on
chip. To address the challenging issues in applying PCM in embedded systems, we propose
a PCM main memory optimization mechanism through the utilization of thescratch pad
memory(SPM). Furthermore, we propose an MLC/SLC configuration optimization algo-
rithm to enhance the efficiency of the hybrid DRAM + PCM memory. We also propose an
energy-aware task scheduling algorithm for parallel computing in mobile systems powered
by batteries.

When scheduling tasks in embedded systems, we make the scheduling decisions based
on information, such as estimated execution time of tasks. Therefore, we design an evalua-
tion method for impacts of inaccurate information on the resource allocation in embedded
systems. Finally, in order to move workload from embedded systems to remote cloud com-
puting facility, we present a resource optimization mechanism in heterogeneous federated
multi-cloud systems. And we also propose two online dynamicalgorithms for resource
allocation and task scheduling. We consider the resource contention in the task scheduling.

KEYWORDS: Embedded system, CMP, memory, battery, cloud computing
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Chapter 1 Introduction

Over the last two decades, functions of embedded systems have evolved from simple real-

time control and monitoring to more complicated services running on smartphones, such

as multi-media streaming, on-line shopping, and banking. Embedded systems have high

influence on both the system industry and our daily life. Embedded systems equipped with

powerful chips, such as multi-core processors, high-capacity memories, and high-speed

I/O interfaces, can provide the performance that computationally demanding information

processing application need. Designs from Nvidia already have demonstrated the power of

a quad-core processor for smartphones.

Meanwhile, computer architectures have been evolved rapidly in the last five decades,

in terms of computational power and architecture complexity, thanks to the fast develop-

ment of semiconductor fabrication techniques. The transistor density doubles every eigh-

teen months. However, due to the power issue, the easy way to gain increasing performance

by scaling up chip frequencies is no longer feasible. Recently, low-power architecture de-

signs have been the main trend in computer architecture research, especially in embedded

system designs.

The major energy consuming components in embedded systems are the processor and

the memory. Therefore, extra research efforts should be focused on the energy-aware opti-

mization in processors and memory architectures in embedded systems. Meanwhile, since

most of the embedded systems, such as wireless sensors and mobile devices, are powered

by batteries, the battery-aware optimization is another method in low-power embedded

system designs.
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1.1 Power related issues in the embedded system architecture

Chip multiprocessors(CMP) have been widely used in Embedded Systems due to tremen-

dous computation requirements in the modern embedded processing. The primary goals

for microprocessor designers are to increase the integration density and achieve higher

performance without correspondingly increases in frequency. However, traditionaltwo di-

mensional(2D) planar CMOS fabrication processes are poor at communication latency and

integration density. Thethree dimensional(3D) CMOS fabrication technology is one of the

solutions for faster communication and more functionalities on chip. More functional units

can be implemented while stacking two or more silicon layersin a CMP. Meanwhile, the

vertical distance is shorter than the horizontal distance in a multi-layer chip [1, 2], which

makes the systems more tight. The concern with regard to the on-chip temperature is in-

creasing in CMP design. Higher power consumption leads to higher on-chip temperature.

Meanwhile, high on-chip temperature impacts circuit reliability, energy consumption, and

system cost. Research shows that a 10 to 15∘C increase of operation temperature reduces

the lifetime of the chip by half [3].

Memory architecture is another key track in low-power embedded system designs. In

the last three decades, dynamic RAM (DRAM), as the major technique of the main mem-

ory, has become one of the primary energy consuming parts of the embedded systems [4,5].

For example, 2GB of DRAM consumes 3W to 6W, which is equivalentto the total power

consumption of the Atom processor [6]. Meanwhile, it has also been reaching its scalabil-

ity limits [7]. As the memory demands of applications keep increasing, the size of DRAM

equipped in a system needs to be larger and larger. However, DRAM requires some spe-

cific architecture solutions to address some drawback issues [6]. These specific architecture

solutions cause extra costs that are the major reason of the scalability limit in DRAM.

Phase-change memory (PCM) is emerging as a promising DRAM alternative technique,

featuring many attractive advantages, such as high density, non-volatility, positive response

to increasing temperature, zero standby leakage, and excellent scalability [5, 8–11]. PCM

2



switches its chalcogenide material between the amorphous and the crystalline states. De-

tecting the resistances of different states, data is storedin PCM devices. The application of

heat that is required by the switch between states can be provided by using the electrical

pulses. Researchers have stated that PCM has more robust scalability beyond 40 nm than

DRAM does [12]. And a 32-nm device prototype has been demonstrated [13].

Even though PCM is alternative to DRAM as the main memory, largeefforts are needed

to surmount the disadvantage of PCM. PCM access latencies, especially in writes, are

slower than those of DRAM. In the read access, PCM is 2x-4x slower than DRAM. More-

over, PCM displays asymmetric timings for reads/writes, which means writes in PCM need

5x-10x more time than reads do. Due to the fact that phase changes in PCM are induced

by injecting current into the chalcogenide material and heating it, writes are the primary

wear mechanism and the most energy-consuming mechanism in the PCM. The number of

writes performed before the cell is not able to perform reliably ranges from108 to 109.

Writes in PCM limits both the performance and the lifetime of PCM. Therefore, reducing

the number of writes can both increase the lifetime of the PCM and decrease the energy

consumption in the memory architecture.

Another attracting property of PCM is that multiple bits can be stored in one single

PCM cell, calledMulti-Level Cell(MLC). PCM can provide four times more density than

DRAM [10]. Recently, several studies [8,14–16] have advocated for the MLC PCM mem-

ory architecture. The difference of resistance between thetwo states of the chalcogenide

material is usually 3 orders of magnitude [16]. By precisely dividing this gap into several

levels, one PCM cell can store more than one bit data. Therefore, the scalability of the

PCM memory is four times higher than that of DRAM.

When the MLC technique can enhance the scalability of the PCM memory, this im-

provement comes at a high price. The degradation of performance and endurance of the

PCM memory as well as the increase in energy consumption are the major drawbacks of

the MLC techniques [16]. As the number of bits stored a singlePCM cell increases, the
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number of levels divided in this cell increases exponentially. For example, a 4 bits/cell

MLC has total sixteen levels of resistance values. In this case, due to the 8 times smaller

resistance difference between two consecutive levels, a more precise resistance detection

method is required in this MLC, compared to the one used in thesingle-level cell(SLC). In

the write operation in the MLC, the “program and verify” procedure is applied repeatedly

until the resistance is programmed correctively in the target level [4, 14]. The repeated

programming current pulses in the “program and verify” cause high power consumption

in the PCM memory. In addition, these repeated pulses appliedin the MLC make the al-

ready poor endurance of the PCM memory even worse [16]. Thus, the SLC PCM provides

higher performance with less power consumption and longer lifetime, while the MLC PCM

enhances the memory capacity without increasing the numberof PCM cells.

Due to the increasingly energy consuming processor and memory in the embedded sys-

tem, the lifetime of battery in the embedded system has also become a significant challenge

in the embedded system design. In the recent two decades, theincrease of processor speed

is much bigger than the increase of energy density of battery. At the distributed embedded

system point of view, scheduling tasks across different embedded devices with the consid-

eration of battery behaviors can provide the balance between the performance of the whole

system and the lifetime of the battery in different embeddeddevices.

When scheduling tasks in embedded systems, we make the scheduling decisions based

on information, such as estimated execution time of tasks. However, when estimated task

execution time is calculated by using inaccurate information, estimated tasks execution

times may be different from actual ones. Therefore, decisions generated by estimated task

execution times may not be robust and the resource allocation is not able to guarantee

the given level ofQuality of ServiceQoS. Therefore, we need to measure the impacts of

inaccurate information on the robustness of the system.

Another approach to reduce the energy consumption of embedded systems is to move

computation tasks to remote computing facilities. Cloud computing is a promising method,

4



in which energy constrained embedded systems rent virtual machines from cloud providers

or data centers. The energy constrained embedded system simply works as a terminal, and

virtual machines in the remote cloud provider are rented to actually execute tasks. In this

case, the embedded system, as a terminal, does not require a significant amount of energy.

And a number of virtual machines can be rented based on the computational demand of

tasks. As embedded systems are widely used in various fields,the demand of cloud com-

puting for embedded systems may increase exponentially. Therefore, the resource capacity

of a single cloud provider may not be enough when a number of embedded system clients

submit their tasks to the cloud. Thus, to collaborate more than one cloud in a cloud plat-

form, we need to investigate the resource allocation mechanism in multi-cloud platform

and provide optimization methods for the cloud services.

1.2 Contributions

In this dissertation, we present our approaches to attack energy-related issues in embedded

system designs, such as thermal issues in the 3D CMP chip, endurance issues in PCM, the

battery issue in the embedded system design, the impact of inaccurate information in em-

bedded system, and the cloud computing to move the workload to remote cloud computing

facilities. The contributions are listed as the following:

∙ We propose a real-time constrained task scheduling method to reduce peak tempera-

ture on a 3D CMP. First of all, we develop an online 3D CMP temperature prediction

model. Based on this model, we further design a set of algorithms for scheduling

tasks to different cores in order to minimize the peak temperature on chip.

∙ We propose a PCM main memory optimization mechanism through the utilization of

theScratch Pad memory(SPM). The SPM is a small size on-chip memory mapped

into the memory address space disjoint from the off-chip memory, such as the PCM

main memory. We design anInteger Linear Programming(ILP) algorithm for schedul-
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ing memory activities among the SPMs and the PCM main memory. In our ILP algo-

rithm, unnecessary writes are eliminated. Instead, the data copies are shared among

the SPMs.

∙ We propose an MLC/SLC configuration optimization algorithm to enhance the ef-

ficiency of the hybrid DRAM + PCM memory. Embedded systems are designed to

execute specific applications. Optimizing the PCM configuration based on the char-

acteristics of applications can further enhance the efficiency of the main memory in

embedded CMP systems. We present a set of algorithms for both task scheduling

and MLC/SLC PCM mode configuration.

∙ We further propose a energy-aware task scheduling algorithm for parallel computing

in mobile systems powered by batteries. With a model of battery behaviors, we

develop a energy-aware task scheduling algorithm to optimize the performance while

satisfying the lifetime constraint of batteries.

∙ We design an evaluation method for impacts of inaccurate information on resource

allocation in embedded systems. We propose a systematic wayof measuring the

robustness degradation and evaluate how inaccurate probability parameters affect

the robustness of resource allocations. Furthermore, we compare the performance

of three widely used greedy heuristics when using the inaccurate information with

simulations.

∙ We present a resource optimization mechanism in heterogeneous federated multi-

cloud systems. And we also propose two online dynamic algorithms for resource

allocation and task scheduling. We consider the resource contention in the task

scheduling.
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1.3 Outline

The rest of the dissertation is organized as follows: Chapter2 propose an online ther-

mal prediction model for 3D chips. Novel task scheduling algorithms based on rotation

scheduling is proposed to reduce the peak temperature on chip. In Chapter 3, we present

the SPM based memory mechanism and an ILP memory activities scheduling algorithm to

prolong the lifetime of the PCM memory in embedded systems. Wealso design four opti-

mization algorithms for embedded systems equipped with theMLC/SLC PCM + DRAM

hybrid memory in Chapter 4. In our proposed algorithms, we notonly schedule and assign

tasks to cores in the CMP system, but also provide a hybrid memory configuration that bal-

ances the hybrid memory performance as well as the efficiency. Chapter 5 discusses battery

behaviors in embedded systems. We present a systematic system model for task schedul-

ing in embedded system equipped with Dynamic Voltage Scaling (DVS) processors and

energy harvesting techniques. We propose the three-phase algorithms to obtain task sched-

ules giving shorter total execution time while satisfying the lifetime constraints. Chapter 7

proposed a resource optimization mechanism in heterogeneous federated multi-cloud sys-

tems and two online dynamic algorithms for resource allocation and task scheduling. We

discuss how inaccurate probability parameters affect the robustness of resource allocations

in the distributed embedded system network in Chapter 6. We propose a systematic way

of measuring the robustness degradation and comparing the performance of three widely

used greedy heuristics when using the inaccurate information with simulations. We con-

clude this dissertation in Chapter 8.
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Chapter 2 Thermal-Aware Task Scheduling in CMP

Chip multiprocessor (CMP) techniques have been implemented in embedded systems due

to tremendous computation requirements. The three-dimension (3D) CMP architecture

has been studied recently for integrating more functionalities and providing higher perfor-

mance. The high temperature on chip is a critical issue for the 3D architecture. In this

chapter, we propose an online thermal prediction model for 3D chips. Using this model,

we propose novel task scheduling algorithms based on the rotation scheduling to reduce the

peak temperature on chip. We consider data dependencies, especially inter-iteration depen-

dencies that are not well considered in most of the current thermal-aware task scheduling

algorithms. Our simulation results show that our algorithms can efficiently reduce the peak

temperature up to 8.1∘C.

2.1 Introduction

Chip multiprocessors(CMP) have been widely used inEmbedded Systems for Interactive

Multimedia Services(ES-IMS) due to tremendous computation requirements in modern

embedded processing. The primary goals for microprocessordesigners are to increase the

integration density and achieve higher performance without correspondingly increases in

frequency. However, traditionaltwo dimensional(2D) planar CMOS fabrication processes

are poor at communication latency and integration density.The three dimensional(3D)

CMOS fabrication technology is one of the solutions for faster communication and more

functionalities on chip. More functional units can be implemented while stacking two or

more silicon layers in a CMP. Meanwhile, the vertical distance is shorter than the horizontal

distance in a multi-layer chip [1,2], which makes the systems more tight.

In CMPs, high on-chip temperature impacts circuit reliability, energy consumption, and

system cost. Research shows that a 10 to 15∘C increase of operation temperature reduces
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the lifetime of the chip by half [3]. The increasing temperature causes the leakage current

of a chip to increase exponentially. Also, the cooling cost increases significantly, which

amounts to a considerable portion of the total cost of the computer system. The 3D CMP

architecture magnifies the thermal problem, due to the fact that the cross-sectional power

density increases linearly with the number of stacked silicon layers, causing more serious

thermal problems.

To mitigate the thermal problem,Dynamic Thermal Management(DTM) techniques,

such asDynamic Voltage and Frequency Scaling(DVFS), have been developed at the ar-

chitecture level. When the temperature of the processor is higher than a threshold, DTM

can reduce the processor power and control the temperature of the processor. With DTM,

the system performance is degraded inevitably. Another wayto alleviate the thermal prob-

lem of the processor is to use the operation system level taskscheduling mechanism.

They either arrange the task execution order in a designatedmanner, or migrate “hot”

threads across cores to achieve thermal balance. However, most of these thermal-aware

task scheduling methods focus on independent tasks or taskswithout inter-iteration de-

pendencies. Applications in modern ES-IMS often consist ofa number of tasks with data

dependencies, including inter-iteration dependencies. Therefore, it is important to consider

the data dependencies in the thermal-aware task scheduling.

In this chapter, we propose real-time constrained task scheduling algorithms to reduce

the peak temperature in the 3D CMP. The proposed algorithms are based on the rotation

scheduling [17], which optimizes the execution order of dependent tasks in a loop. The

main contributions of this chapter include:

1. We present an online 3D CMP temperature prediction model.

2. We also propose task scheduling algorithms to reduce the peak temperature. The

data dependencies, especially inter-iteration dependencies in the application are well

considered in our proposed algorithms.
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The organization of this chapter is as follows. In Section 2.2, we discuss works related

to this topic. Then, models for task scheduling in 3D CMPs are presented in Section 2.3.

A motivational example is given in Section 2.4. We propose our algorithms in Section 2.5,

followed by experimental results in Section 2.6. Finally, Section 2.7 conclude the chapter.

2.2 Related work

Energy-aware task scheduling has been widely studied in theliterature. Weiser et al. first

discussed the problem of task scheduling to reduce the processor energy consumption in

[18]. An off-line scheduling algorithm for task schedulingwith variable processor speeds

was proposed in [19]. But tasks considered in these papers areindependent tasks. Authors

in [20] proposed several schemes to dynamically adjust the processor speed with slack

reclamation based on the DVS technique. A scheme for the processor speed management

at branches was presented in [21] based on the ratio of the longest path to the taken paths for

the branch statement to the end of the program. However, the studies above only consider

the uniprocessor system.

Recently, energy reduction has become an important issue in parallel systems. Re-

search in [22, 23] focused on heterogeneous mobile ad hoc grid environments. Authors in

those works studied the static resource allocation for the application composed of commu-

nicating subtasks in an ad-hoc grid. However, the goal of theallocation in those works is to

minimize the average percentage of energy consumed by the application to execute across

the machines, while meeting an application execution time constraint. This goal may lead

to some cases in which some machines may consume much more energy than the others,

even though the average consumption is minimized. Therefore, approaches proposed in

those works cannot guarantee the satisfaction of the temperature constraint.

Authors in [24] proposed two task scheduling algorithms forembedded system with

heterogeneous functional units. One of them is optimal and the other is near-optimal

heuristic. The task execution time information was stochastically modeled. In [25], the
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authors proposed a loop scheduling algorithm for voltage assignment problem in embed-

ded system. The research in [26] focused on modeling task execution time as a probabilistic

random variable. Two optimal algorithms, one for uniprocessor and one for multiprocessor

system, were presented to solve the voltage assignment withprobability problem. The goal

of these algorithms is to minimize the expected total energyconsumption while satisfying

the timing constraint. However, none of them consider thermal issues on processors.

In chip design stage, several techniques are implemented for thermal-aware optimiza-

tion. Authors in [27, 28] proposed different thermal-awarefloorplanning algorithms. For

floorplanning on 3D chips, several other approaches are proposed recently [29–32]. The

authors in [33] proposed the controllingThin-Film Thermoeletric cooling(TFTECs) from

the microarchitecture for an enhanced DTM in multi-core architectures. Research in [34]

focuses in improving the efficiency of heat removal.

Job allocation and scheduling is another approach to reducetemperature on-chip. Sev-

eral temperature-aware algorithms were presented in [35–42] recently. The Adapt3D ap-

proach in [37] assigns the upcoming job to the coolest core toachieve thermal balance.

The method in [41] is to wrap up aligned cores into super core.Then the hottest job is

assigned to the coolest super core. The power and thermal management framework is pro-

posed in [38] for memory subsystem. In [39], a thermal management scheme incorporates

temperature prediction information and runtime workload characterization to perform effi-

cient thermally aware scheduling. A scheduling scheme based on mathematic analysis is

proposed on [40]. Authors in [42] present a slack selection algorithm for thermal-aware

dynamic frequency scaling. But none of these approaches considers data dependencies in

an application.
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(a) (b)

(c) (d)

Figure 2.1: Thermal model for the 3D chip. (a) A Fourier thermal model of a single block.
(b) The cross sectional view of a 3D chip. (c) The horizontal and vertical heat model, where
theCa1 toCb3 are the IDs of the six cores in this example, theRa toRc are the vertical heat
conductances, andR1 to R3 are the horizontal heat conductances. (d) The corresponding
Fourier thermal model.
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2.3 Model and Background

Thermal model

The Fourier heat flow analysis is the standard method of modeling heat conduction for

circuit-level and architecture-level IC chip thermal analysis [40]. It is analogous to George

Simon Ohm’s method of modeling electrical current. A basic Fourier model of heat con-

duction in a single block on a chip is shown in Fig. 2.1(a). In this model, the power

dissipation is similar to the current source and the ambienttemperature is analogous to the

voltage source. The heat conductance of this block is a linear function of conductivity of its

material and its cross-sectional area divided by its length. It is equivalent to the electrical

conductance. And the heat capacitance of this block is analogous to the electrical capaci-

tance. Assuming there is a block on a chip with heat parameters as shown in Fig. 2.1(a).

The Fourier heat flow analysis model is

C
d(T (t)− Tamb)

dt
= P −

T (t)− Tamb

R
(2.1)

C is the heat conductance of this block.T (t) is the temperature of that block at timet.

Tamb is the ambient temperature,P is the power dissipation, andR is the heat resistance.

By solving this differential equation, we get the temperature of that block as follows:

T (t) = P × R + Tamb − (P ×R + Tamb − Tinit)e
−t/RC (2.2)

Tinit is the initial temperature of that block.

Considering there is a taska running on this block and the corresponding power con-

sumption isPa, we can predict the temperature of the block by equation (2.2). Assuming

that the execution time ofa is ta, we get the temperature of the block whena is finished:

T (ta) = Pa × R + Tamb − (Pa ×R + Tamb − Tinit)e
−ta/RC (2.3)

When the execution of taska goes infinite, the temperature of this block reaches a stable
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state,Tss, which is shown as follows:

Tss = Pa ×R + Tamb (2.4)

Substituting equation (2.4) in equation (2.3), we can get analternative way of predicting

the finish temperature of taska running on that block:

T (ta) = (Tss − Tinit)(1− e−ta/RC) + Tinit (2.5)

We can further simplify equation (2.5) as follows:

T (ta) = (Tss − Tinit)(1− e−bta) + Tinit (2.6)

whereb = 1/RC.

The 3D CMP and the core stack

A 3D CMP consists of multiple layers of active silicon. On eachlayer, there exist one

or more processing units, which we call cores. Fig. 2.1(b) shows a basic multi-layer 3D

chip structure. A heat sink is attached to the top of the chip to remove the heat from the

chip more efficiently. The horizontal lateral heat conductance is approximately 0.4 W/K

(i.e. “Ra” in Fig. 2.1(c)), much less the conductance between two vertically aligned cores

(approximately 6.67 W/K, i.e. “R2” in Fig. 2.1(c)) [40]. The temperature values of verti-

cally aligned cores are highly correlated, compared with the temperatures of horizontally

adjacent cores.

Therefore, for the online temperature prediction model used in our scheduling algo-

rithms, we ignore the horizontal lateral heat conductance.Note that, even though we ignore

this heat conductance in our model, the simulator used in ourexperiment is a general ther-

mal simulator that considers both the horizontal lateral heat conductance and the vertical

conductance. The efficiency of our low-computation model istested through this general

thermal simulator in our experiment. We call a set of vertically aligned cores as acore

stack. Cores in a core stack are highly thermal correlated. The hightemperature of a core
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caused by heavy loading will also increase the temperaturesof other cores in the core stack.

For cores in a core stack, the distances from them to the heat sink are different. Considering

a numberk of cores in a core stack, where corek is the furthest from the heat sink and core

1 is the closest to the heat sink; the stable state temperature of the corej (j ≤ k) can be

calculated as,

Tss(j) =

j∑

i=1

(
k∑

l=i

Pl ×Ri) + Tamb (2.7)

wherePl is the power consumption of the corel andRi is the inter-layer thermal conduc-

tance between coresi− 1 andi (see Fig. 2.1(d)).

In order to predict the finish temperature of taska running on corej online, we ap-

proximate this finish temperatureTj(ta) by substituting equation (2.7) in equation (2.5)

as

Tj(ta) = (

j∑

i=1

(
k∑

l=i

Pl ×Ri) + Tamb − Tinit j)

×(1− e−ta/RjCj) + Tinit j (2.8)

Application model

A Data-Flow Graph(DFG) is used to model an embedded system application. A DFG

typically consists of a set of verticesV , each of which represents a task in the application,

and a set of edgesE, showing the dependencies among the tasks. The edge setE contains

edgeseij for each taskvi ∈ V that taskvj ∈ V depends on. The weight of a vertexvi

represents the task type of taski. In our model, the number of tasks may be larger than the

number of task types. And the tasks with the same task type have the same execution time.

Also the weight of an edgeeij means the size of data which is produced byvi and required

by vj.

We use a cyclic DFG to represent a loop of an application in this chapter. In a cyclic

DFG, a delay functiond(eij) defines the number of delays for edgeeij. For example,
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assumingd(eab) = 1 is the delay function of the edge from taska to b, which means the

taskb in the itℎ iteration depends on the taska in the(i − 1)tℎ iteration. In a cyclic DFG,

edges without delay represent the intra-iteration data dependencies, while the edges with

delays represent the inter-iteration dependencies. An example of a cyclic DFG is shown in

Fig. 2.2(a) where one delay is denoted as a bar. There is a real-time constraintL, which

is the deadline of finishing one period of the application. Togenerate a schedule of tasks

in a loop, we use the staticdirect acyclic graph(DAG). A static DAG is a repeated pattern

of an execution of the corresponding loop. For a given cyclicDFG, a static DAG can be

obtained by removing all edges with delays.

Retiming is a scheduling technique for cyclic DFGs considering inter-iteration depen-

dencies [17]. Retiming can optimize the cycle period of a cyclic DFG by distributing

the delays evenly. For a given cyclic DFGG, the retiming functionr(G) is a function

from the vertices setV to integers. For a vertexui of G, r(ui) defines the number of

delays drawn from each of the incoming edges of nodeui and pushed to all of the outgo-

ing edges. Let a cyclic DFGGr be the cyclic DFG retimed byr(G), then for a edgeeij,

dr(eij) = d(eij) + r(vi) − r(vj), wheredr(e) is the new delay function of edgeeij after

retiming andd(eij) is the original delay function.

Energy model

We consider the CMP in which each core is featuring the DVFS technique. In order to

reduce the energy consumption, the DVFS technique jointly decreases the processor speed

and the supply voltage. Research in [43] shows that the decrease in processor voltage

causes nearly linear increase in execution time and approximately quadratic decrease in

energy consumption. Without loss of generality, we assume that each core has three DVFS

modes, denoted asL1, L2 andL3, respectively.L1 has the slowest frequency and the lowest

supply voltage, while theL3 has the fastest frequency and the highest supply voltage. Note

that our approach is general enough for the number of DVFS modes larger than four. Our
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algorithms are not limited by the assumption of the DVFS modes numbers in the system.

Assume we know the power consumption and the execution time of different tasks run-

ning on different cores. We use a two-dimensional matrixEP to represent this information.

We assume the CMP system has heterogeneous cores, which is a more general assumption

compared to the homogeneous CMP. When applying our approach inthe homogeneous

CMP system, we only need to set execution time of a given task onevery core as the same.

There are two values in each entry of theEP matrix, one is execution time and the other

is power consumption. For example,epij = {eij, pij} is one entry of theEP matrix. eij is

the execution time of taski running on corej, while pij is the power consumption.

2.4 Motivational Example

An example of task scheduling in CMP

We first give an example of task scheduling in a multi-core chip. We schedule an applica-

tion (see Fig. 2.2(c)) in a two-core embedded system. A DFG representing this application

is shown in Fig. 2.2(a). There are two different cores in one layer. The execution times (t)

and the stable state temperatures (Tss) of each task in this application running on different

cores are shown in Fig. 2.2(b). For simplicity, we provide the stable state temperatures in-

stead of power consumptions in this example, and we assume the value of b (see equation

(2.6)) in each core is the same: 0.025. We also assume the initial temperatures and the

ambient temperatures are 50∘C.

List scheduling solution

We first generate a schedule through the list-scheduling algorithm. Fig. 2.3(b) shows a

static DAG, which is transformed from the DFG (see Fig. 2.3(a)) by removing the delay

edge. For the DAG of this example, we can get the assigning order as{A, B, C, D, E}. For

a task, we can calculate the peak temperatures when it is executed on different cores based

on equation (2.5). Then tasks are assigned in a specific orderto the core that can finish it
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(a) (b) (c)

Figure 2.2: An example of task scheduling in a multi-core chip. (a) The DFG of an appli-
cation. (b) The characteristics of the tasks. (c) The pseudocode of this application.

at the coolest temperature. In the list scheduling, a task assigning order is generated based

on the node information in the DAG, and the tasks are assignedto the “coolest” cores in

that order. A schedule is generated as Fig. 2.3(c). With the equation (2.5), we can get the

peak temperature of each task as Fig. 2.3(d). Task A has the highest peak temperatures in

the first two iterations. In the first iteration, task A startsat the temperature of 50∘C and

ends at the temperature of 80.84∘C. In the second iteration, task A starts immediately after

the first iteration of task E finishes, which means it starts atthe temperature of 67.89∘C.

Since it has a higher initial temperature, the peak temperature (82.50∘C) in this iteration is

higher.

Our solution

Our proposed algorithm uses rotation scheduling to furtherreduce peak temperature. From

the schedule in Fig. 2.3(c), we can find that Task A is the first tasks executed in core P0,

and Task A has inter-iteration data dependency with Task E. In this case, we can implement

the rotation scheduling and Task A is the proper candidate for rotation. In Fig. 2.4(a), we

transform the original DFG into a new DFG by moving a delay from edgeeEA to edges

eAB andeAC . The new corresponding static DAG is shown in Fig. 2.4(b). Inthis new

DAG, there are two parts: node A and the rest nodes. There is nodependency between

node A and the rest nodes. The new pseudo code of this new DFG isshown in Fig. 2.4(c),
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(a) (b)

(c) (d)

Figure 2.3: List Scheduling in a multi-core chip. (a) The DFG. (b) The static DAG. (c) The
schedule generated by list scheduling. (d) The peak temperature (∘C) of each task.

where the operation “A[i+1]=TaskA(E[i-1]);” can be placedanywhere in the loop, due to

its independence. More details of the rotation scheduling are shown in Algorithm 2.7 of

Section 2.5.

In this case, we can first assign the dependent nodes (B to E) tocores with the same

policy used in the list scheduling. Tasks B, C and D are assigned to core P1 at the time

slot of [0, 205]. And task E is scheduled to run on core P0 at [205, 255]. In this partial

schedule, we discover that there are three time slots at which we can schedule task A. One

is the idle gap of core P0 at [0, 205], another is the time slot after task E is done (time

255) on P0, and the last one is time slot after task D (time 205)on P1. Because the peak

temperature of task A is the lowest when running in the idle gap of core P0 at [0, 205], this

time slot is selected. Task A runs after the last iteration oftask E, so the longer the idle gap
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between them, the cooler the initial temperature at which task A starts. Thus, we schedule

task A’s starting time at 110. A schedule is shown in Fig. 2.4(d). In this schedule, the peak

temperature is 81∘C when task A is running in the second iteration (see Fig. 2.4(e)). Our

approach reduces the peak temperature by 1.5∘C. Moreover, the total execution time of one

iteration is only 255, while the total execution time generate by list scheduling is 350.

(a) (b) (c)

(d) (e)

Figure 2.4: Rotation Scheduling in a multi-core chip. (a) Theretimed DFG. (b) The new
static DAG. (c) The pseudo code of the retimed DFG. (d) The schedule generated by our
proposed algorithm. (e) The peak temperature (∘C) of each task.

In the next section, we will discuss our thermal-aware task scheduling algorithm with

more details.

2.5 Thermal-aware task scheduling algorithm

In this section, we propose an algorithm, TARS (Thermal-Aware Rotation Scheduling), to

solvethe minimum peak temperature without violating real-time constraints problem. By
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repeatedly rotating down delays in DFG, more flexible staticDAGs are generated. For each

static DAG, a greedy heuristic approach is used to generate aschedule with minimum peak

temperature. Then the best schedule is selected among the schedules generated previously.

The TARS Algorithm

Algorithm 2.1 The TARS algorithm
Input: A DFG, the rotation times R.
Output: A scheduleS, the retiming functionr.

1: rot cnt← 0 /*Rotation counter.*/
2: Initial Smin, rmin, PTmin, rcur /*The optimal schedule, the according retiming func-

tion, the according peak temperature and the current retiming function*/
3: while rot cnt< R do
4: Transform the current DFG to a static DAG
5: Schedule tasks with dependencies. /* using the PTMM algorithm or PTLS algorithm

*/
6: Schedule independent tasks, using the MPTSS algorithm
7: Scale the frequencies, using the PPS algorithm /* A scheduleScur for the current

DFG is generated */
8: Get the peak temperaturePTcur of the current schedule
9: if PTcur < PTmin andScur meets the real-time constraintthen

10: Smin ← Scur, rmin ← rcur, PTmin ← PTcur

11: end if
12: Use RS algorithm to get a new retiming functionrcur
13: Get the new DFG based onrcur
14: R← R + 1
15: end while
16: Output theSmin, rcur

In the TARS algorithm shown in Algorithm 2.1, we will try to rotate the original DFG

by R times. In each rotation, we get the static DAG from the rotated DFG by deleting

the delay edges in DFG. A static DAG usually consists of two kinds of tasks. One kind

of tasks are the tasks with dependencies, like the tasks B, C, D,and E in Fig. 2.4(b).

The other kind of tasks are the independent tasks, like the task A in Fig. 2.4(b). The

independent tasks do not have any intra-iteration relationwith other tasks. Below, we first

present two algorithms, the PTMM algorithm and the PTLS algorithm, to assign tasks with

dependencies.
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The PTMM algorithm

ThePeak Temperature Min-Min(PTMM) algorithm is designed to schedule the tasks with

dependencies. Min-Min is a popular greedy algorithm [44]. The original Min-Min algo-

rithm does not consider the dependencies among tasks. Therefore, in the Min-Min baseline

algorithm used in this chapter, we need to update the assignable task set in every step to

maintain the task dependencies. We definethe assignable taskas the unassigned task

whose predecessors all have been assigned. Since the temperatures of the cores in a core

stack are highly correlated in 3D CMP, we need to schedule tasks with consideration of

vertical thermal impacts. When we consider assigning a taskTi to coreCj, we calculate

the peak temperatures of cores in the core stack ofCj during theTi running onCj, based

on the equation (2.8).

Let Tmax(i, j) be the maximum value of the peak temperatures in the core stack. When

we decide the assigning ofTi, we calculate all theTmax(i, j), for j = every core. Due

to the fact that the available times and the power characteristics of different cores in the

same core stack may not be identical, the peak temperatures of the given core stack may

be various when assigning the same task to different cores ofthis core stack respectively.

LetCmin be the core with minimumTmax(i, j). In each step in PTMM, we first find all the

assignable tasks. Then we will form a pair<Ti, Cmin> for every assignable task. Only the

<Ti, Cmin> pair which gives the minimumTmax(i, j) will be assigned accordingly. And

we also schedule the start execution time ofTi as the time when the predecessors ofTi are

done and coreCmin is ready. The PTMM is shown as Algorithm 2.2.

The PTLS algorithm

ThePeak Temperature List Scheduling(PTLS) algorithm is another algorithm that we use

to schedule the tasks with dependencies. In the PTLS, we firstlist the tasks in a priority

list considering the data dependencies (see the Algorithm 2.3). Some definition used in

the Task Listing(TL) algorithm is provided as following. TheEarliest Start Time(EST)
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Algorithm 2.2 The PTMM algorithm
Input: A static DAGG, m different cores,EP matrix.
Output: A schedule generated by PTMM.

1: Form a set of assignable tasksP
2: while P is not emptydo
3: for t = every task inP do
4: for j = 1 tom do
5: Calculate the peak temperatures of cores in the core stack ofCj, assumingt is

running onCj. And find the minimum peak temperatureTmax(t, j)
6: end for
7: Find the coreCmin(t) giving the minimum peak temperatureTmax(t, j)
8: Form a task-core pair as<t, Cmin(t)>
9: end for

10: Choose the task-core pair<tmin, Cmin(tmin)> which gives the minimum
Tmax(t, Cmin(t))

11: Assign tasktmin to coreCmin(tmin)
12: Schedule the start time oftmin as the time when all the predecessors oftmin are

finished andCmin(tmin) is ready
13: Update the assignable task setP
14: Update time slot table of coreCmin(tmin) and the expected finish time oftmin

15: end while

and theLatest Start Time(LST) of a task are shown as in equation (2.9) and (2.10). The

entry-tasks have EST equals to 0. And the LST of the exit-tasks equal to their EST.

EST (i) = max
m∈pred(i)

{EST (m) + AT (m)} (2.9)

LST (i) = min
m∈succ(i)

{LST (m)} − AT (i) (2.10)

whereAT (i) is the average execution time of taski. The critical node (CN) is a set of

vertices in the DAG of which EST and LST are equal.

After a priority list is generated, we assign the tasks, in the order of the priority list, to

the core with the minimum peak temperature (see the Algorithm 2.4).

The MPTSS algorithm

Using one of the PTMM and the PTLS algorithm, we can get a partial schedule, in which

the tasks with dependencies are assigned and scheduled. We need to further assign the
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Algorithm 2.3 The TL algorithm
Input: A static DAG, Average execution timeAT of every task in the DAG.
Output: An assigning order of tasksP .

1: /*List tasks with dependencies*/
2: Calculate the EST and the LST of every task which has dependencies
3: Empty listP and stackS, and pull all tasks with dependencies in the list of taskU
4: Push the CN task into stackS in the decreasing order of their LST, and remove them

from U
5: while The stackS is not emptydo
6: if top(S) has immediate predecessors inU then
7: S ←the immediate predecessor with least LST
8: Remove this immediate predecessor fromU
9: else

10: P ← top(S)
11: Poptop(S)
12: end if
13: end while
14: /*List independent tasks*/
15: Push independent tasks inP in the decreasing order of their power consumptions.

Algorithm 2.4 The PTLS algorithm
Input: An priority list of tasks with dependenciesP , m different cores,EP matrix.
Output: A schedule generated by MPT.

1: while The listP is not emptydo
2: t = top(P )
3: for j = 1 tom do
4: Calculate the peak temperatures of cores in the core stack ofCj, assumingt is

running onCj. And find the minimum peak temperatureTmax(t, j)
5: end for
6: Find the coreCmin giving the minimum peak temperatureTmax(t, j)
7: Assign taskt to coreCmin

8: Schedule the start time oft as the time when all the predecessors oft are finished
andCmin is ready

9: Removet from P
10: Update time slot table of coreCmin and the expected finish time oft
11: end while
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independent tasks in the static DAG. Since the independent tasks do not have any intra-

iteration relations with others, they can be scheduled to any possible time slots of the cores.

In theMinimum Peak Temperature Slot Selection(MPTSS) algorithm, we assign the in-

dependent tasks in the decreasing order of their power consumption. Tasks with larger

power consumption likely generate higher temperatures. The higher assigning orders of

these tasks, the better fitting cores these tasks will be assigned to, and probably the lower

resulting peak temperature of the finial schedule.

Figure 2.5: An example of time slot set for an independent task

Before we assign an independent taskA, as shown in Fig. 2.5, we first find all the idle

slots among all cores, forming a time slot setTS. In the example shown in Fig. 2.5, there

are four time slots indicated with circled numbers for taskA. Two of them, i.e., time slot 1

and 2, are among the previously scheduled tasks. And the other two, i.e., time slot 3 and 4,

are at the end of cores’ schedules of one iteration. The time slots that are not long enough

for the execution ofA will be removed fromTS. Then we calculate the peak temperature

of the according core stackTmax(A, core), which is defined in the PTMM algorithm, for

every time slot. One problem arise here: since the remain time slots are long enough for

the execution ofA, we need to decide when to start the execution.
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We use two different schemes here. The first one is theAs Early As Possible(AEAP),

which means the taskTi should be scheduled to start at the beginning of that time slot.

The other one isAs Late As Possible(ALAP), which means we should schedule the start

execution time of the taskTi at a certain time so thatTi will finish at the end of the time

slot. These two schemes result in different impacts on peak temperature.

(a) (b) (c)

Figure 2.6: An example of the AEAP scheme and the ALAP scheme.(a) The task X is
scheduled in a time slot in core i, (b) The task X is scheduled by the AEAP scheme, (c)
The task X is scheduled by the ALAP scheme.

Let us assume we are considering scheduling taskX to corei in the time slot, which is

shown as a shadowed rectangle in Fig. 2.6(a), and tasksA andB are previously scheduled

on the beginning and the end of this time slot on corei. The AEAP scheme generates a

time gap betweenX andB, as shown in Fig. 2.6(b). The temperature of corei can be

cooled down during this time gap, i.e., 160 to 220. The ALAP scheme schedulesX right

beforeB without any time gap, as shown in Fig. 2.6(c). So the initial temperature ofB is

lower with the AEAP scheme, i.e. the schedule in Fig. 2.6(b),than with the ALAP scheme,
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i.e. the schedule in Fig. 2.6(c), due to the cooling time gap (160 to 220) between the tasks

X andB.

Given a certain execution time ofB, lower initial temperature leads to lower peak tem-

perature. In addition, if the power consumption ofB is higher than the power consumption

of X, the peak temperature ofB is likely higher than the one ofX, which means we should

try to cool downB rather thanX in this case. Implementing the AEAP in schedulingX

can cool down theX at most here. On the other hand, the ALAP can create a time gap

betweenX and the taskA that is previously scheduled right before the time slot. This time

gap, e.g., the time gap 120 to 180, can reduce the initial temperature ofX. So in the case

where the power consumption ofX is higher than the one ofB, using ALAP can reduce

the peak temperature ofX. Thus, when we consider scheduling a task to a time slot, we

will compare the power consumption of this task and the task previously scheduled right

after this time slot. If the task being scheduled has more power consumption, we will use

the ALAP scheme. Otherwise, the AEAP scheme will be implemented.

When we try to schedule tasks to the time slots which locates atthe end of cores’

schedules, we will determine which scheme, either AEAP or ALAP, will be used based on

the power consumption comparison of this task and the task that will start first in the next

iteration. For example, in Fig. 2.5, when we try to schedule taskA to time slot 4, we will

compare the power consumptions of taskA andB. We will schedule a large enough time

slot for cooling down the task that needs more concern, i.e.,the more power consuming

one between the task to be scheduled and the task starting first in the next iteration.

Another question arises: how large the cool time slot shouldbe scheduled? We will pre-

determine a threshold cooling temperatureTc. Then we will create a cooling time slot large

enough to let the more power consuming task cooling down to the thresholdTc, without

violating the real-time constraint. The reason that we set the threshold temperature is that

when the temperature of a core is cooling down, it drops dramatically at the beginning, as

shown in Fig. 2.7. However, it becomes stable as the core continues to cool down. Hence, if
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Figure 2.7: Examples of cooling temperature on-chip. All three cooling temperatures start
from the initial temperature of 85∘C to the stable temperature of 50∘C. We can observe
that the cooling speeds in these three scenarios are slowingdown dramatically near the
threshold temperatureTC .

we try to cool down the core completely, it will take a significantly long time. As shown in

Fig. 2.7, if we just need to reduce the core’s temperature to the threshold, i.e., the horizontal

dot line, it will be more time-efficient. We present our MPTSSalgorithm in Algorithm 2.5.

The PPS algorithm

Once we get a full schedule from the previous steps, we can further reduce the peak temper-

ature by dynamic frequency assignment. We assume that the frequencies of different cores

can be different and there are several frequencies options available for each core. From a

given schedule, we can predict the task which causes the peaktemperature. We can further

decrease the peak temperature by changing the frequency assignment of the corresponding
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Algorithm 2.5 The MPTSS algorithm
Input: A partial schedule generated by PTMM, a set of independent tasks,m different

cores,EP matrix.
Output: A schedule generated by MPTSS.

1: List independent tasks in a listP in the decreasing order of their power consumption
2: while The listP is not emptydo
3: t = top(P )
4: Collect all the time slots which is long enough fort across all cores, form a time slot

setTS.
5: for Every time slottsi in TS do
6: j ← the according core oftsi
7: Find the tasktnext which is schedule to start right aftertsi on the coreCj.
8: if Power(t) < Power(tnext) then
9: Find the start time with the AEAP scheme

10: else
11: Find the start time with the ALAP scheme
12: end if
13: Get theTmax(t, j) /*similar to the one in PTMM*/
14: end for
15: Find the time slottsmin giving the minimum peak temperatureTmax(t, j)
16: Assign taskt to coreCmin /*Cmin is the core of time slottsmin*/
17: Schedule the start time oft in time slottsmin based on the scheme selected in the if

statement (line 8)
18: Removet from P
19: Update time slot table of coreCmin

20: end while

core when that task is running.

We propose our dynamic frequency assignment algorithm, called thePeak Point Scal-

ing (PPS), in Algorithm 2.6. Given a schedule, we first find the task with the highest peak

temperature over all the tasks. Then the core frequency whenrunning this task is set to

one slower level. We calculate the period of this new schedule. If it meets the real-time

constraint, this new schedule is acceptable. Otherwise, dynamic frequency scaling cannot

reduce the peak temperature. If the new schedule is acceptable, then we find the task with

the highest peak temperature in the new schedule, and repeatthe frequency scaling again.

This frequency scaling repeats until a schedule which violates the real-time constraint is

generated. We output the last version of the acceptable schedules.
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Algorithm 2.6 The PPS algorithm
Input: An initial scheduleSinit, EP matrix, a real-time constraintTC
Output: A schedule generated by PPS.

1: Stemp ← Sinit

2: while Period(Stemp) ≤ TC do
3: S ← Stemp

4: Find the tasktmax generating the highest peak temperature inStemp, and the core
Cmax which runstmax

5: if frequency ofCmax when runningtmax is the slowest levelthen
6: Break
7: end if
8: Set the frequency ofCmax when runningtmax to one slower level
9: UpdateStemp

10: end while
11: OutputS

The RS algorithm

At the end of each iteration of the TARS algorithm, we create a new DFG by rotating

the current DFG. First, we need to form a set of rotation tasks. If a task is the first task

scheduled on a core and there is at least one delay in each of its incoming edge, this task is

a rotation task. TheRotation Scheduling(RS) algorithm is shown in Algorithm 2.7.

Fig. 2.8 shows an example of our RS algorithm. Assuming an initial DFG shown in

Fig. 2.8(a), we can transform the DFG into DAG by removing theedges with delays. Then

a schedule is generated by the algorithms presented in the previous subsections.

In the first rotation, we can find the taskA andC are the first tasks executed in two

cores. So the rotation task set includes these two tasks. Since there is none delay on the

incoming edge and the outgoing edge of taskC, we keep the edges of taskC unchanged.

For taskA, there are three delays on its incoming edge, i.e. edgeeEA. Thus, in this rotation,

we reduce one delay on edgeeEA, and increase the delays of all three outgoing edges of

taskA by one, respectively, as shown in Fig. 2.8(b). We can find thattaskA now becomes

independent in the corresponding DAG. A new schedule is generated based on this new

DAG. In this schedule, taskB andC are the first tasks in two cores. These two tasks form

the set of rotation tasks in the next rotation.
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(a)

(b)

(c)

Figure 2.8: An example of the rotation scheduling. (a) The initial DFG, the corresponding
DAG and schedule. (b) The rotated DFG in the first rotation, the corresponding DAG
and schedule. (c) The rotated DFG in the second rotation, thecorresponding DAG and
schedule.
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In the second rotation, the delays of the incoming edges of task B andC, i.e., eAB,

eAC , are all reduced by one. The outgoing edges of taskB andC, i.e.,eBD, eBE, andeCE,

increase their delays by one, as shown in Fig. 2.8(c). According to this new DFG, taskD

andE become independent. The third schedule is created in this rotation.

As shown in this example, the RS algorithm can redistribute the delays in the DFG.

Therefore, various DAGs can be reached. In these various DAGs, different tasks become

independent, which leads to diverse scheduling orders of tasks and different schedules. As

we implement the RS algorithm at the end of each iteration of our TARS algorithm, and

we repeat the TARS algorithm for a pre-determined number of iterations, we can select

the rotations with the best schedule among a number of schedules in the sense of reducing

peak temperature.

Algorithm 2.7 The RS algorithm
Input: An input DFGDin and a scheduleS based onDin, a retiming functionr.
Output: An output DFGDout generated by rotation scheduling, a new retiming function

rnew.
1: Form the set of rotation tasksRT based onDin andS
2: for Every taskti in RT do
3: Reduce one delay from every incoming edges of taskti in Din

4: Increase one delay from every outgoing edges of taskti in Din

5: r(ti)← r(ti) + 1
6: end for
7: Dout ← Din andrnew ← r

2.6 Experimental results

In this section, we present the experimental results of our algorithms. We develop our

experiments as follows: we first use a precise microprocessor simulator, Wattch 1.0.2 [45],

to get the execution and power characteristics of a set of benchmarks. Then we generate a

number of random DFGs consisting of this set of benchmarks. Task schedules and power

traces are created by our algorithm. We input these schedules and power traces into a

thermal analysis simulator, called Hotspot 4.1 [46]. Finally, we evaluate our algorithms
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with the comprehensive thermal analysis generated by Hotspot 4.1. All experiments are

conducted on Linux machine equipped with an Intel Core 2 Duo E8400 CPU and 3GB of

RAM.

Experiment setup

The 3D CMP architecture simulated in our experiments is a two-layer front-to-back archi-

tecture. There are eight Alpha 21264 (EV6) microprocessor cores in each layer with con-

figuration as Table 2.1. We use per core DFVS in our simulationwith three DVFS levels

(3.88GHz, 4.5GHz, and 5 GHz) configured based on the parameters of Alpha 21264 [47].

Table 2.1: Configuration of Alpha cores

Processor core Alpha 21264
Core technology 65nm

Nominal frequency 5GHz
L1 data cache 64K, 2-way

L1 instruction cache 64K, 2-way
L2 cache 2M

We choose the SPEC CPU 2000 benchmark suite and the MiBench benchmark suite

in our experiment. The execution time and the power consumption of each benchmark on

Alpha core are tested through the Wattch 1.0.2 simulator with the above configuration. For

each benchmark, we run it under those three DFVS levels via out-of-order mode to get

the task characteristic of this benchmark. We generate 10 random DFG-based applications.

The tasks in these applications are randomly selected from the SPEC2000 and the MiBench

benchmarks. For each application, we set the real-time constraint TC (i.e., deadline) as

follows:

TC =

∑N
i=1 ti
P

× c (2.11)

whereN is the number of tasks in this application,ti is the execution of time of taski

under the highest frequency,P is the total number of cores, i.e., 16 in our simulation, and
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c is a constant which is set to 5, generating neither too tight nor too loose constraints.

Table 2.2: Thermal parameter for Hotspot

Layer Conductivity Capacitance per unit volumn
Silicon 100W/(m ⋅K) 1.75× 106 J/(m3 ⋅K)
TIM 4W/(m ⋅K) 4.0× 106 J/(m3 ⋅K)

Copper 400W/(m ⋅K) 3.55× 106 J/(m3 ⋅K)

The thermal simulation is conducted in the Hotspot 4.1 simulator by using the power

consumption traces created by our program. In the Hotspot 4.1 simulator, the lateral and

vertical thermal interactions among adjacent core are all carefully considered and modeled.

As we mentioned above, the architecture model used in the Hotspot simulator is a two-

layer architecture, in which the thickness of the top layer (the one far from the heat sink) is

50�m, and the thickness of the bottom (the one close to the heat sink) is 300�m. There is a

Thermal Interface Material(TIM) layer between these two layers. The core size is 4mm×

8mm. Some other parameters is listed in Table 2.2. We also setthe temperature parameters

as shown in Table 2.3 [48].

Table 2.3: Temperature parameter setting

Temperature parameterValue
Ambient temperature 35∘C
Initial temperature 55∘C

Critical temperature 85∘C

Peak temperature

As our algorithms are to reduce the peak temperature in 3D CMP architectures, we show

the average peak temperature of all 16 cores over 10 applications in Fig. 2.9. By comparing

the result of list scheduling, we find that both of our algorithms can reduce the peak tem-

peratures. The PTLS based TARS reduces up to 7∘C. And the PTMM based TARS is even
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Figure 2.9: Core peak temperatures comparison. The “Core #” inthe x-axle represents the
IDs of the sixteen cores, where cores 1 to 8 are in the upper layer and the cores 9 to 16 are
in the lower layer.

better, reducing up to 8.1∘C. Both the peak reductions happen on the cores in the upper

layer. For the cores in the top layer (core 1 to 8), the peak temperatures are consistently

higher than the ones in bottom layer (core 9 to 16). This result is aligned to our online ther-

mal prediction model. The peak temperatures of top layer cores is around 83∘C with our

PTMM based TARS algorithm, about 84.5∘C with our PTLS based TARS algorithm, and

about 90∘C with the list scheduling. With the two phases consideration in the PTMM, i.e.,

the Min-Min initial scheduling algorithm, more global information is used in making the

assigning decisions. Thus it generates better initial schedules leading to better performance

than our PTLS based TARS algorithm does.

Larger improvements are made in the top layer cores. The reason is that in our proposed

algorithm, more effort is made in reducing the temperature of the hottest core, which is
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usually located in the top layer. Even though the improvements for cores in the bottom

layer are not as significant as the ones in top layer, lower peak temperatures are achieved,

due to the more flexible execution order explored in our algorithm and less impact from

the aligned cores on the top layer. The reduction of peak temperature in the bottom layer

is about 4.5∘C with our PTMM based TARS algorithm, about 3.1∘C with our PTLS based

TARS algorithm.
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Figure 2.10: Core temperature violations comparison. The “Core #”s in the x-axle repre-
sent the IDs of the sixteen cores, where cores 1 to 8 are in the upper layer and the cores 9 -
16 are in the lower layer. Out of the 10 runs in the experiment,the temperature violations
are number of runs in which the corresponding core has the peak temperature higher than
the temperature constraint.
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Temperature violations

In this section, we compare the schedules in the sense of avoiding or minimizing the num-

ber of temperature violations, which is shown in Fig. 2.10. We define the temperature

violation as the situation where the core’s temperature is higher than the critical tempera-

ture. The differences of temperature violations of cores depend on a few factors, such as the

workloads of cores, the location relationship with other cores. The cores 5, 6, and 7 have

more temperature violations than that of cores 10-13. The reason is that the cores 5, 6, and

7 is on the upper layer of the 3D CMP. The cores in the top layer are more likely to have

higher temperature than the critical temperature. Since more efforts are made to reduce

the temperature of the hottest core in our TARS algorithms, our TARS algorithms can dra-

matically reduce the number of times of temperature violations in the top layer cores. Up

to 80% temperature violations in the list scheduling are avoided in the top layer. Aligned

to the result of the above subsection, the PTMM based TARS algorithm outperforms the

PTLS based TARS algorithm.

For the cores in the bottom layer, only a small number of of violations occur. In both

TARS algorithms, there is one core that never has temperaturehigher than the critical cores.

No more than two violations happen in any core in the bottom layer. In summary, both our

TARS algorithms can reduce the temperature violations in both the top layer and the bottom

layer.

2.7 Conclusion

In this chapter, we presented an online 3D CMP temperature prediction model for mul-

timedia embedded systems. We also proposed our real-time constrained task scheduling

algorithms, the TARS algorithms, to reduce peak temperaturein a 3D CMP. By consid-

ering the the inter-iteration data dependencies and frequencies assignment collaboratively,

our proposed TARS algorithms can significantly reduce the peak temperature on chip and

avoid most of the temperature violations. Our simulation results showed that our TARS
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algorithms can reduce peak temperature by 8.1∘C, and avoid up to 80% violations in the

top layer and up to 100% violations in the bottom layer.

Our future works are two-fold: 1) we will investigate the implementation of stochastic

approaches in our CMP temperature prediction models; and 2) we will also further consider

the priorities of tasks in our task scheduling algorithms.

Copyrightc⃝ Jiayin Li, 2012.
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Chapter 3 ILP memory activities optimization algorithm

Phase Change Memory(PCM) is emerging as one of the most promising alternative tech-

nology to theDynamic RAM(DRAM) when building large-scale main memory systems.

Even though the PCM is easy to scale, it encounters serious endurance problems. Writes

are the primary wear mechanism in the PCM. The PCM can perform108 to 109 times

of writes before it cannot be programmed reliably. In addition, the PCM has high write

latency. To prolong the lifetime of the PCM as the main memory and enhance the per-

formance, we propose aScratch Pad Memory(SPM) based memory mechanism and an

Integer Linear Programming(ILP) memory activity scheduling algorithm to reduce the

redundant write operations in the PCM. The idea of our approach is to share data copies

among the SPMs, instead of writing back to the PCM main memory each time when a

modify occurs. Our experimental results show that the ILP scheduling algorithm can gen-

erate the optimal schedule of memory activities with minimum write operations, reducing

the number of write operations by 58% on average.

3.1 Introduction

Dynamic RAM(DRAM) has been the most widely used technology of the main memory

for over three decades. However, the main memory that consists of entirely DRAM is

already reaching the power and scalability limits [7]. As memory demands increase, the

main memory has now become quite large. It has become one of the primary energy

consuming parts of the embedded system [4, 5]. For example, 2GB of DRAM consumes

3W to 6W, which is equivalent to the total power consumption of the Atom processor [?].

Besides, DRAM also has the scalability issue. Due to some properties of DRAM, such

as destructive reads and low retention time, some specific architecture solutions, such as,

write after read operations and the refresh control, are implemented [6]. These extra costs
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limit the scalability of DRAM.

New techniques, such asPhase-Change Memory(PCM) [10] and Magnetic RAM

(MRAM) [49], have been studied for the replacement of the DRAM main memory [5].

PCM is a potential alterative of the DRAM main memory, due to itsmany desirable prop-

erties [6]. PCM is a non-volatile memory that switches its chalcogenide material between

the amorphous and the crystalline states. By detecting the resistances of different states,

data is stored in PCM devices. The application of heat that is required by the switch be-

tween states can be provided by using electrical pulses.

In the PCM write, it relies on analog currents and thermal effects, which means it does

not require control over discrete electrons [12]. In addition, another attracting property of

PCM is that multiple bits can be stored in one single PCM cell, called Multi-Level Cell

(MLC). PCM can provide four times more density than DRAM [10]. Researchers have

stated that PCM has more robust scalability beyond 40 nm than DRAM does [12]. In

addition, a 32-nm device prototype has been demonstrated [13].

Even though PCM is alternative to DRAM as main memory, large efforts are needed to

surmount the disadvantage of PCM, compared to DRAM. PCM access latencies, especially

in writes, are much slower than those of DRAM. In the read access, PCM is 2x-4x slower

than DRAM. Moreover, PCM displays asymmetric timings for reads/writes, which means

writes in PCM need 5x-10x more time than reads do. Due to the fact that phase changes

in PCM are induced by injecting current into the chalcogenidematerial and heating it,

thermal expansion and contraction in the chalcogenide material make the programming

current injection no longer reliable [12]. Writes are the primary wear mechanism in PCM.

The number of writes performed before the cell is not able to perform reliably ranges from

108 to 109. Therefore, writes in PCM limits both the performance and thelifetime of PCM.

In the embedded system design field, more and more processorsare equipped with the

Scratch Pad memory(SPM), such as Motorola Mcore [50], Texas Instruments TMS370Cx [51],

Motorola 68HC12 [52], etc. The SPM is a small size on-chip memory mapped into the
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memory address space disjoint from the off-chip memory, such as the PCM main mem-

ory. The SPM memory is managed by the application software orautomated compiler

support [53]. Compared to a hardware-managed cache memory, the SPM of the same ca-

pacity are 34% smaller in term of size, and 40% lower power consumption [53]. From the

memory activities optimization point of view, the SPM memory has two attracting advan-

tages: 1) it is easier to manage without hardware modification, compared to cache memory;

and 2) it guarantees the single-cycle access latency, much shorter than that of the off-chip

memory.

In this chapter, we propose a PCM main memory optimization mechanism through the

utilization of SPM. The major contributions of this chapterinclude:

∙ We propose a PCM main memory architecture with the SPM. Each core in thechip

multiprocessors(CMP) is equipped with an SPM memory. All SPMs are connected

to the PCM main memory controller via on-chip data buses. Datacopies are shared

among SPMs via on-chip data buses. The sharing copies of datacan benefit the

endurance of the PCM main memory by eliminating unnecessary writes

∙ An Integer Linear Programming(ILP) memory activities scheduling algorithm is

proposed to minimize the number of writes in PCM. There are three major parts in

our algorithm: the baseline scheduling, the ILP-based memory activities scheduling,

and the post ILP procedure. The baseline scheduling generates a baseline schedule

for both task executions and SPM assignments. Then, the ILP-based memory ac-

tivities scheduling will find the optimal memory activitiesstrategy to minimize the

memory writes based on the baseline scheduling. Finally, the post ILP procedure

will further reduce total execution time by eliminating idle slots in the schedule. Our

ILP memory activities scheduling algorithm reduces the writes by 58% on average.

Memory activities optimization through the utilization ofthe SPM is a challenging

problem. First of all, to minimize the number of write operations, data need to be shared
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among SPMs by data migrations. In some cases, multi-hop datamigrations, which are

necessary for optimal memory activities optimization, cannot be well scheduled by greedy

scheduling algorithms. Compared to greedy scheduling algorithms, our ILP method is

more promising, because it explores a larger solution space. However, modeling the mem-

ory activities scheduling problem through the utilizationof the SPM is more sophisticated

than the existing ILP-based memory optimization problems [54, 55]. The size of the SPM

is much less than the size of the main memory, resulting in thestricter SPM size constraint

in the problem. Since the SPM space is limited, the optimization method should decide not

only which copies of data should be kept, but also how long theSPM should keep these

copies. Moreover, due to data sharing operations among SPMs, there are more kinds of

memory activities to schedule than that in the existing ILP memory optimization methods.

For example, to have a copy of data in a given SPM, there are three ways: loading the

data from the PCM main memory to the SPM; outputting the data from the core to the

SPM; and copying the data from a remote SPM via the data migration, which is either for

the input requirement of the next task, or just temporary stored for future data migrations.

Since copies of data are sharing among SPM via the on-chip network, data migration ac-

tivities are also subject to the bandwidth of the network. Data dependencies across tasks

further complicate the memory activities scheduling. Memory activities should not vio-

late any data dependency. In this chapter, we present a comprehensive ILP format that

covers different kinds of PCM memory activities when utilizing the SPMs. System and

application constraints, such as the size of SPM, the on-chip network bandwidth, and data

dependencies, are formulated in our ILP algorithm.

In Section 3.2, we discuss works related to this topic. In Section 3.3, the background

knowledge of phase change memory is presented. An illustrating example is given in

Section 3.4. We propose our algorithms in Section 3.5, followed by experimental results in

Section 3.6. Finally, we conclude in Section 3.7.
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3.2 Related work

For CMPs, the problem of scheduling tasks represented by a DAGis NP-complete. A

number of heuristics were compared in [56]. An unbalanced thread scheduling method

was proposed to fully utilize the advantage of CMP architecture, which allocates the right

amount of resources to each thread [57]. Dhiman et al. presented power-aware scheduling

mechanisms and policies for CMP at the operating system level, to improve the system

performance per watt [58]. Another scheduling approach wasintroduced in [59], based on

the execution phases of simultaneous threads. An operatingsystem scheduler design was

presented for CMPs, especially the network-on-chip architecture [60], which is based on

the on-chip data traffic calculation of applications. Teodorescu et al. proposed a power-

aware scheduling mechanism for CMP with the consideration ofvariation effects on the

static power consumption and the maximum supported frequency [61]. However, the re-

lated works above mainly focused on the scheduling in CMP. Theactivity optimization in

memory was not studied in these papers. In this chapter, we combine the task schedul-

ing and the memory activity optimization for the CMP system, improving not only the

performance of the system, but also the lifetime of the PCM memory.

The PCM incorporated in the memory hierarchy was studied in [62]. A DRAM based

page cachewas implemented for a large PCM memory. This page cache not only enhances

the performance by buffering frequently used pages, but also improves endurance by re-

ducing writes. Enhancement approaches, such as read-before-write, row-level rotation and

segment swapping, were proposed to improve the lifetime of the PCM [9]. By rotating the

cache line, the row-level rotation can distribute the row level wear evenly. In the segment

swapping, the contents of the least-frequently-written page and the page being written are

swapped. Lee et al. presented a PCM storage device with a bit level read-before-write

loop [63]. Ferreira et al. described three lifetime enhancement methods for PCM: N-

Chance victim selection replacement policy, bit level writes, and a swap management on

page cache writebacks [6]. Although techniques introducedin these papers improve the en-
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durance of the PCM, all of them require significant modifications in the hardware design.

In this chapter, by utilizing the SPM in CMP, our optimizationapproach does not require

hardware modifications.

A recent trend in PCM techniques has been focused on the MLC technique [8,14–16].

In [14], multi-level programming algorithms were proposedbased on the control of the

tail-end of the programming pulse. A 2 bits/cell MLC PCM design was proposed in [15].

Authors in [15] also presented a programming algorithm suitable for their MLC design.

A morphable memory system(MMS) was proposed in [16]. This MMS can switch the

PCM cell between the SLC and the MLC with small hardware overheads. The adjust-

ment is based on the statistic information of memory traffic in the running time. Another

MLC/SLC PCM architecture was presented in [8]. The PCM configuration in [8] is also

based on device capacity utilization in the running time. However, these MLC techniques

have inherently negative impacts on the endurance of PCM, dueto the iterative program-

and-verify procedure applied in the MLC PCM [16].

Another major trend of techniques of improving the lifetimeof non-volatile memories

is the application level design. An application-specific flash memory was used as the main

memory [64]. Xu et al. proposed an application-specific approach to minimize the con-

nections by finding the minimal communication between coresin CMP [65]. The memory

latency can also be hidden by optimizing the loops in the application [66]. However, these

works do not consider the capacity constraint of memory, which may cause serious prob-

lems in SPM due to its limited capacity. Koc and Kandemir et al. used the recomputation in

the SPM to reduce communications among different cores on chip [67], as well as between

the cores and off-chip memory [68], which can reduce the number of reads in the main

memory. But these recomputation techniques cannot reduce communication significantly

when the application does not consist of many loops and multi-dimemsion arrays. A CMP

cache management approach was presented with the idea of data migration [69]. This ap-

proach tries to keep as many pages as possible in the cache forlater use. Hu et al. modeled

44



the data migration problem as a shortest path program and decided the best route for a given

data to migrate from the source core to the destination core [70]. Nevertheless, the on-chip

data traffic was not considered, which may lead to performance drawback when sharing a

large amount of data simultaneously. Two different optimization approaches for memory

activities in CMP were proposed [71,72]. These two optimization approaches cannot han-

dle the data sharing among SPMs. In our ILP-based optimization approach, we take the

capacity constraint in memory, on-chip data bus bandwidth,as well as data dependencies

into account. Memory operations such as load, store, and share are well scheduled in the

optimal solution generated by our ILP-based optimization.

3.3 Model and Background

Phase-change memory

As one type of non-volatile memory, PCM exploits the unique characteristic of the chalco-

genide to store bits. A typical PCM cell consists of a chalcogenide layer and two electrodes

on both sides. Two stable states of the chalcogenide, i.e., the crystalline and the amorphous,

can be switched between when different amount of heat is applied in the chalcogenide. This

procedure is done by injecting current into the PCM cell. When writing the PCM cell, the

SET operation heats the chalcogenide layer to temperature between the crystallization tem-

perature (300oC) and the melting temperature (600oC). By this operation, the chalcogenide

is in the low-resistance crystalline state, which corresponds to the logic “1”. On the other

hand, the RESET operation heats the chalcogenide layer abovethe melting temperature.

The corresponding state of the high resistance is amorphousstate, i.e., the logic “0”. The

read operation of the PCM is basically sensing the resistancelevel of the PCM cell. It is

non-destructive and involves much less heat stress, compared to that of the write operation.

Since both the SET and the RESET write operations apply dramatic heat stress into

the phase change material, write is the major wear mechanismfor the PCM. A PCM cell

can perform stably within108 to 109 times of writes. Compared to the1015-time-write
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endurance of the DRAM, the lifetime of the PCM becomes the majorissue in implementing

the PCM as the main memory.

The memory banking and memory controller

In the PCM cell array, there are several peripheral logics, such as decoders, sense ampli-

fiers, and write drivers, to form the memory structure, whichis similar to that of DRAM.

The cells in the array are organized in the similar way as thatof the DRAM, grouped into

sub-blocks, blocks, and banks.

Among the peripheral logics, the memory controller is one ofthe crucial parts in the

PCM. When operating a memory request, the memory controller sends a sequence of mi-

cro commands to the memory banks. In the traditional DRAM architecture, a precharge

command to write back a row buffer should be issued before a new row is loaded, when the

read miss occurs in the row buffer. However, this precharge is not necessary in the PCM

architecture. Instead, the PCM memory controller bypasses the row buffer and writes to

cells directly, in a write operation. In addition, we use theSPM as buffers, reducing the

unnecessary write to the PCM memory in this chapter.

In the read operation, the controller first checks the row buffer. If the target is in the

buffer, the memory controller obtains the entry without accessing the memory bank. Oth-

erwise, the memory controller will issue an activate command to move the data to an empty

row in the buffer, and a read command to get the data. In the write operation, the memory

controller issues the write command and sends the data directly to the memory bank.

The multi-entry row buffer is also implemented in the PCM cellarray. Replacement

policies, such asLeast Recently Used(LRU), are used to manage the entries in the row

buffer. When a miss happens in the row buffer, the selected entry does not need to send

back to the bank, since every write is directed to the memory bank.
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Figure 3.1: The CMP architecture with SPMs and the PCM main memory

Scratch pad memory

The SPM is an on-chip memory that can be accessed directly by processors with very low

latency. The major difference between the SPM and the cache is that the data storage in the

SPM is controlled by the system software, while the cache is automatically controlled by

the hardware [72]. Due to the existence of the controllability on data storage in the SPM,

we are able to optimize memory activities based on the characteristics of the application

running in the system.

In this chapter, we focus on a CMP architecture as shown in Fig.3.1. In this architec-

ture, each core is connected to an SPM array. All SPMs are networked with the memory

controller, which is also attached to the PCM main memory. Data are loaded or stored

between the SPMs and the PCM main memory, via the memory controller. In addition,

copies of data are transferred among the SPMs. When a core is executing a task, it can load

data from its own SPM. The resulting data of a task can be written back to the SPM.

47



Application model

We model the application in this chapter as a graphG = ⟨T,E, P,RM ,WM , EC⟩. T =

⟨t1, t2, t3, ..., tn⟩ is the set of n tasks.E ⊆ T × T is the set of edges where(u, v) ∈ E

means that tasku must be scheduled before taskv. P = ⟨p1, p2, p3, . . . , pm⟩ is the set of

m pages that are accessed by the tasks.RM : T → P is the function whereRM(t) is the

set of pages that taskt reads from.WM : T → P is the function whereWM(t) is the set

of pages that taskt writes to. EC(t) represents the execution time of taskt while all the

required data are in the SPM.

3.4 Illustrating Example

An example of an application and a system

(a) (b)

Figure 3.2: An example of memory activities in the PCM. (a) TheDAG of the application
in the example, (b) Read pages and write pages of tasks in the application.

First we give an example that reduces the number of writes in the PCM by sharing

copies across the SPM. Considering a schedule of an application represented by the DAG

in Fig. 3.2(a) in a three-core system, each task in the application requires up to 2 pages

that should be in the SPM before the core executes it. The required pagesRM of each task

are shown in the “Read page” column of Fig. 3.2(b). Moreover, tasks also need to output
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and modify up to 2 pages, i.e.,WM . The write pagesWM of each task are shown in the

“Write page” column. For example, task A requests two pages,<page 1 and 2>, before its

execution, and writes its result in one page,<page 3>.

Using the list scheduling, we have a baseline schedule as follows: task A, D, and G are

assigned to core 0; task B, E, H, and I are assigned to core 1; andtask C and F are assigned

to core 2. A detailed schedule with memory activities is shown in Fig. 3.3(a). The Y axis

represents the clock cycles. We assume the execution time ofeach task is 8 clock cycles.

A core needs 2 cycles to access its own SPM, 5 cycles to a remoteSPM. We also assume a

read from the PCM main memory takes 80 cycles, while a write takes 800 cycles [70]. The

memory activities, i.e., the shaded boxes in Fig. 3.3(a), are the major time consuming part

in this schedule.

We observe that before core 0 reads page 5 in its SPM1, page 5 has been modified by

the core 1, which is the output of task B. In this case, transferring pages across the SPMs

reduces the write, since it is not necessary to write back page 5 before loading it again in

the SPM. In addition, the time of sharing across SPMs should be much shorter than the

time of writing and reading in PCM.

We modify the schedule as shown in Fig. 3.3(b). In this example, instead of writing

back page 5 right after the executions of task B, we move the copy of page 5 from the SPM

of core1 to the SPM of core0 before the execution of task D, which is represented as a red

dotted arrow. The move occurs before the execution of task E on core1, due to the need of

space in the SPM of core1 for storing theRM of task E. After the move, a copy of page 5 is

kept in the SPM of core0, until task D is executed by core0. By doing this, an unnecessary

write is eliminated. Similarly, we move the copy of page 9 from the SPM of core0 to the

SPM of core1 after the execution of task D, which is required by the later executed task I.

In the next section, we will discuss our ILP-based optimization algorithms with more

details.
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(a) (b)

Figure 3.3: The schedules for the application in Fig. 3.2 running a three-core CMP system
with two SPM blocks per core. The schedule in (a) is without data sharing in SPMs. The
schedule in (b) is with data sharing in SPMs. The vertical axis represents the clock cycles.
Each core has two SPM blocks, represented as the “B0” and “B1” columns. The blank box
with numberi in the “Bx (0 or 1)” column indicates that pagei resides in SPM block “Bx”
at the corresponding cycles. Since the write operation time(800 cycles) is 400 times longer
than the core execution time (2 cycles), the scale of these figures does not strictly represent
accurate clock cycles, only demonstrating the orders of these schedules.
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3.5 ILP memory activities optimization algorithm

In this section, we present our ILP memory activities optimization algorithm. There are

three major parts in our algorithm: the baseline scheduling, the ILP-based memory activi-

ties scheduling, and the post ILP procedure. The baseline scheduling generates an baseline

schedule for both the task executions and the SPM assignments. Then, the ILP-based

memory activities scheduling will find the optimal memory activities strategy to minimize

the memory writes based on the baseline scheduling. Finally, the post ILP procedure will

further reduce total execution time by eliminating the idleslots in the schedule.

Baseline scheduling

The Min-Min is a popular greedy scheduling algorithm [44, 73]. The Min-Min algorithm

generates near-optimal schedule with comparatively low computational complexity [74].

In the Min-Min baseline algorithm used in this chapter, we need to update the mappable

task set in every step to maintain the task dependencies. Tasks in the mappable task set

are the tasks of which all the predecessor tasks are finished.Algorithm 3.1 shows the

procedure of the Min-Min algorithm. Before we schedule a given task executed on a given

core, we should schedule the required memory pages allocated in the SPM of the core in

advance. We assume that the time of reading a memory page fromthe SPM is included

in the execution time of this given task. We also assume that for some tasks, the output

may be stored in the memory page that is different from the required pages. For example, a

task may require pagep0 andp1 as the input, and output the result in pagep2. In this case,

the modified page should be loaded in the SPM before it is written back to the PCM main

memory. In the case where multiple tasks on different cores need to store their results in

the same page, we will schedule the SPM modifying process at different clock cycles, even

though these tasks may be finished at the same time. Complicated policies for memory

coherence are out of the scope of this chapter. We apply some simple policies to keep the

memory content among SPMs and the PCM main memory coherent:
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∙ Where a core initiates an SPM modifying process of a given pagep, other cores that

have a copy of this page in their SPM should initiates an SPM evicting process of

this page. By doing this, there is no “dirty” copy of this page exists in the SPMs.

∙ In the baseline scheduling process, we don’t consider the data sharing in SPMs. We

will write back the modified page right after the modificationis finished.

∙ In some cases, some tasks may require the page that is modifiedby another task

previously. The read process can only be initiated after themodification is finished.

∙ We implement theLeast Recently Used(LRU) replacement policy in the SPM man-

agement.

Algorithm 3.1 Min-Min algorithm
Input: A set ofT tasks represented by a DAG,C different cores,EC of tasks
Output: A schedule generated by Min-Min

1: Form a mappable task setMT
2: while SetMT is not emptydo
3: for i: taski ∈ [0, T − 1] do
4: for j: corej ∈ [0, C − 1] do
5: Find the earliest possible timeTpgi,j that all the require pages ofi are available,

based on dependencies
6: Calculate the earliest possible task finished timeTfini,j = Tpgi,j + EC(i)
7: end for
8: Find the coreCmin(i) giving the earliest finish time ofTfini,j , ∀j ∈ [0, C − 1]
9: end for

10: Find the pair(k, Cmin(k)) with the earliest finish timeTfini,Cmin(i), ∀ i ∈
[0, T − 1] among the task-core pairs generated in for-loop

11: Schedule the required pages of taskk, RM(k), to the SPM of coreCmin(k) as soon
as possible

12: Assign taskk to coreCmin(k)
13: Schedule the modification of the resulting pages,WM(k), in the SPM of core

Cmin(k)
14: Schedule the write back process of the resulting pages
15: Removek fromMT
16: Update the mappable task setMT
17: end while
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ILP formatting

Table 3.1: Symbols and acronyms used in the ILP formatting

Symbol Description
t Taskt
c Corec
s Clock cycles
p Memory pagep
T Number of tasks
C Number of cores
S Total number of clock cycles
P Number of pages

ASMt,c Task assignment matrix
Stt,c,s Task start time matrix
WLt,c,s Core workload matrix
Memp,c,s Required memory matrix
RM(t) A set of page required by taskt
Rp,c,s Read matrix
Mp,c,s Modify matrix
Wp,c,s Write matrix
Evp,c,s Evict matrix
Sip,c,s SPM input matrix
Sop,c,s SPM output matrix
OCp,c,s SPM occupation matrix
PMp,c,s SPM page available matrix
Mop,c,s Move out matrix
Mip,c,s Move in matrix
Miℎp,c,s Move in indicator matrix
Mrp,cs SPM page modified matrix

To input the baseline schedule to the later memory activities scheduling algorithm, we

define several 0-1 matrixes to indicate the task executions and the SPM memory activities.

The values in these matrixes are either 0 or 1. For the convenience of the reader, we list

the symbols used in the ILP formatting in Table 3.1. We give the definitions of twelve 0-1

matrixes as follows:

1. Task assignment matrixASM . ASMt,c = 1 means that taskt is assigned to corec.
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The matrixASM has the characteristic as follows:

C−1∑

c=0

ASMt,c = 1 ∀ t ∈ [0, T − 1] (3.1)

2. Task start time matrixSt. WhenStt,c,s = 1, it means that the execution of the taskt

starts at clock cycles on corec.

3. Core workload matrixWL. WLt,c,s = 1 means that corec is executing taskt at

clock cycles. The relationship betweenSt andWL is:

WLt,c,s =
s∑

i=s−Et,c−1

Stt,c,i ∀ t ∈ [0, T − 1], c ∈ [0, C − 1] (3.2)

whereEt,c is the execution time of taskt on corec.

4. Required memory matrixMem. Memp,c,s = 1 means pagep is required by corec at

clock cycles.

Memp,c,s = WLt,c,s ∀ p ∈ ReqMen(t) (3.3)

whereReqMen(t) is a set of pages that are required by taskt.

5. Read matrixesR, R̃, andR̄. Rp,c,s = 1 means pagep is read from the PCM memory

and loaded into the SPM of coreC at clock cycles. Note that the matrixR indicates

the start time of the read process, the matrixR̄ indicates the end of the read process,

and the matrixR̃ represents the whole read process. The relationships amongR, R̃,

andR̄ are as follws:

R̃p,c,s =
s∑

i=s−lenr+1

Rp,c,i (3.4)

R̄p,c,s = Rp,c,(s−lenr) (3.5)

wherelenr is the length of the read process.

6. Modify matrixesM , M̃ , andM̄ . Mp,c,s = 1 means pagep is modified by the coreC

and loaded into the SPM of coreC at clock cycles. Here, we assume that the page
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including the modified variables should be first stored in theSPM before written

back.M is the start time of the modify process and the end of the modify process is

indicated asM̄ , while the whole modify process is represented byM̃ .

M̃p,c,s =
s∑

i=s−lenm+1

Mp,c,i (3.6)

M̄p,c,s = Mp,c,(s−lenm) (3.7)

wherelenm is the length of the modify process.

7. SPM input matrixesSi andS̄i. Sip,c,s = 1 means pagep is loaded into the SPM of

corec at clock cycles. This page can be either read from the PCM memory or store

back from the core after it is modified by that core. Thus:

Sip,c,s = Rp,c,s +Mp,c,s (3.8)

S̄ip,c,s = R̄p,c,s + M̄p,c,s (3.9)

8. Write matrixesW , W̃ , andW̄ , Wp,c,s = 1 means pageP is written back into the

PCM memory from coreC at clock cycles. Here, we also assume the page will be

evicted at the same. The differences amongW , W̃ , andW̄ are similar to the ones

amongR, R̃, andR̄.

W̃p,c,s =
s∑

i=s−lenw+1

Wp,c,i (3.10)

W̄p,c,s = Wp,c,(s−lenw) (3.11)

wherelenw is the length of the write process.

9. Evict matrixesEv, Ẽv, andĒv. Evp,c,s = 1 means pageP is evicted from coreC at

clock cycles. This matrix only records the evict without write back. The differences

amongEv, Ẽv, andĒv are similar to the ones amongR, R̃, andR̄.

Ẽvp,c,s =
s∑

i=s−lenw+1

Evp,c,i (3.12)

Ēvp,c,s = Evp,c,(s−lenev) (3.13)
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wherelenev is the length of the evict process.

10. SPM output matrixesSo andS̄o. Sop,c,s = 1 means pagep is evicted from the SPM

of corec at clock cycles. This page could be modified by the core or evicted after

read. Thus :

Sop,c,s = Wp,c,s + Evp,c,s (3.14)

S̄op,c,s = W̄p,c,s + Ēvp,c,s (3.15)

11. SPM occupation matrixOC. OCp,c,s = 1 means pagep is occupying a part of the

SPM of corec at clock cycles. The SPM occupation matrixOC holds the following

equation:

OCp,c,s = OCp,c,s−1 + Sip,c,s − S̄op,c,s (3.16)

12. SPM page available matrixPM , PMp,c,s = 1 means pagep is residing in the SPM

of coreC at clock cycles. Note that whenOCp,c,s = 1, corec may not be able to use

the pagep at clock cycles, due to the fact that it may still be in the memory transfer

process. AndPMp,c,s = 1 means that corec can surely use pagep at clock cycles.

The SPM page matrixPM holds the following equation:

PMp,c,s = PMp,c,s−1 + S̄ip,c,s − Sop,c,s (3.17)

We will use these 0-1 matrixes represent the baseline schedule in the following ILP-

based memory activities scheduling algorithm.

ILP-based memory activities scheduling algorithm

With the baseline schedule, we will use our ILP approach to find the optimal memory

activities schedule and minimize the number of the PCM activities. In some cases, a page

that is needed by a task is residing in the SPM of a remote core.Instead of loading the page

from the PCM memory, we can transfer the page from the SPM of theremote memory.
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Additional ILP formatting for data transferring in SPMs

To represent the memory activities among the SPMs, we define three additional 0-1 ma-

trixes as follows:

1. Move out matrixMo, M̃o, andM̄o. Mop,c,s = 1 means pageP is moved from the

SPM of coreC to the SPM of another core at clock cycles. We assume that the SPM

of this core will evict this page right after. ThẽMo represents the whole moving

process and thēMo indicates the end of the moving.

M̃op,c,s =
s∑

i=s−lenmi+1

Mop,c,i (3.18)

M̄op,c,s = Mop,c,(s−lenmi) (3.19)

wherelenmi is the length of the SPM data sharing process. Remind that we set the

rule in our baseline scheduling: when a page is modified by a given core, all the

copies in the SPMs of the rest cores should be evicted. There is no conflict data exist

in SPMs. To avoid the case that more than one different contents of the same page

are copied at the same time, we still need to set a constraint in our ILP model as:

C−1∑

c=0

Mop,c,s = 1 ∀

⎧
⎨
⎩

p ∈ [0, P − 1]

s ∈ [0, S − 1]

(3.20)

2. Move in matrixMi, M̃i, andM̄i. Mip,c,s = 1 means pageP is moved into the SPM

of coreC from the SPM of another core at clock cycles. The M̃i represents the

whole moving process and thēMi indicates the end of the moving.

M̃ip,c,s =
s∑

i=s−lenmi+1

Mip,c,i (3.21)

M̄ip,c,s = Mip,c,(s−lenmi) (3.22)
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3. Move in indicator matrixMiℎ. Miℎp,s = 1 means pageP is moved into the SPMs

of at least one core at clock cycles.

Miℎp,s ≤
C−1∑

c=0

Mip,c,s ∀

⎧
⎨
⎩

p ∈ [0, P − 1]

s ∈ [0, S − 1]

(3.23)

When a page move out process is initiated, there also should beat least one move in

process initiated for this page. In some cases, maybe multiple cores require this page

simultaneously. Then multiple move in processes are initiated. So we can express

this constraint as:

Miℎp,s =
C−1∑

c=0

Mop,c,s ∀

⎧
⎨
⎩

p ∈ [0, P − 1]

s ∈ [0, S − 1]

(3.24)

In the previous “ILP formatting” subsection, we define the SPM input/output matrixes

Sip,c,s, S̄ip,c,s, Sop,c,s, andS̄op,c,s to determine whether a page is available in the SPM of

a give core at clock cycles. Now, we further modify these definitions by including the

consideration of theMi, Mo, M̄i, andM̄o, i.e. transferring data among SPMs. The new

definition ofSi, S̄i, So, andS̄o as follows:

Sip,c,s = Rp,c,s +Mp,c,s +Mip,c,s (3.25)

S̄ip,c,s = R̄p,c,s + M̄p,c,s + M̄ip,c,s (3.26)

Sop,c,s = Wp,c,s + Evp,c,s +Mop,c,s (3.27)

S̄op,c,s = W̄p,c,s + Ēvp,c,s + M̄op,c,s (3.28)

We use these new definitions of SPM input/output matrixes to calculate the SPM occupa-

tion matrixOC and the SPM page matrixPM in Equation (3.16) and (3.17).

ILP constraints for memory activities optimization

One of the most critical requirements of the memory activities is that when a task is exe-

cuted by a given core, all the required memory pages should beplaced in the SPM of that
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core no later than the start time of the execution. This requirement can be expressed as:

PMp,c,s ≥Memp,c,s ∀

⎧
⎨
⎩

p ∈ [0, P − 1]

c ∈ [0, C − 1]

s ∈ [0, S − 1]

(3.29)

Other important requirement is that no matter how the pages are transferred, the total

amount of pages in the SPM of a core at every clock cycle shouldnot be larger than the

capacity of this SPM.

P−1∑

p=0

OCp,c,s ≤ SPM(c) ∀

⎧
⎨
⎩

c ∈ [0, C − 1]

s ∈ [0, S − 1]

(3.30)

where SPM(c) is the capacity of the corec’s SPM.

For an eligible data sharing in SPMs, the source SPM should have the copy of the target

page available when the sharing is initiated.

PMp,c,s ≥Mop,c,s (3.31)

Another constraint we need to set is that only one memory activity can be performed at

a clock cycle, due to the arbitration of the data bus across SPMs and the PCM controller.

Thus

P−1∑

p=0

C−1∑

c=0

(R̃p,c,s + M̃p,c,s + M̃ip,c,s

+W̃p,c,s + Ẽvp,c,s + M̃op,c,s) ≤ 1

∀ s ∈ [0, S − 1]

To address the memory coherence problems, we set the rule that when a core modifies

a given page in its SPM, we will evict all the “dirty” copies ofthis page in the SPMs of

other cores.

Evp,c,s ≥Mp,c1,s ∀ c1 ∕= c (3.32)
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The goal of the memory activities optimization is to reduce the number of memory

writes. In the baseline scheduling, we do not consider the possible moving of the modified

memory. After the page is modified, it will be written back immediately. In this case, we

can get the relationship between the SPM modify matrixM and the SPM write matrixW

as the following:
S−1∑

i=0

Mp,c,i =
S−1∑

i=0

Wp,c,i (3.33)

The reason why SPM data sharing can reduce the memory writes is that by moving the

copy of a given page among SPMs of cores, different tasks can modified this page in serial.

And the write back may be initiated after multiple modifications. In this case, Equ. (3.33)

is not necessary. However, even though the number of modifiesand the number of writes

of a given page may not be equal, at least one write back shouldbe scheduled for a page

that had modified previously. Here, we define a 0-1 matrixMr to indicate whether a page

has been modified in the schedule before a give clock cycle.Mrp,s = 1 means pagep has

been modified at least once before the clock cycles but not written back yet.

Mrp,s = Mrp,s−1 +
C−1∑

i=0

(Mp,i,s −Wp,i,s) (3.34)

In the case that a page has been modified by a given core, but notwritten back yet, the

following tasks that require a copy of this page can only migrate them from the SPM of

that core. In other words, the following tasks cannot obtaina copy of this page by reading

from the PCM main memory.

Rp,c,s ≤Mrp,s ∀ c ∈ [0, C − 1] (3.35)

And for every page, it should have a newest copy in the PCM main memory at the end

of the schedule. Thus

Mℎp,(S−1) = 0 ∀ p ∈ [0, P − 1] (3.36)
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Finally, our objective of the memory activities schedulingis to minimize the times of

write process.

Minimize:
P−1∑

i=0

C−1∑

j=0

S−1∑

k=0

Wi,j,k (3.37)

Post ILP procedure

In our baseline scheduling, we schedule all writes without considering SPM data sharing.

Based on this schedule, we optimize the memory activities in our ILP algorithm. Even

though the number of writes in the schedule generated by our ILP algorithm is minimized,

the start time of each task remains the same as the one in our baseline scheduling. Since the

data sharing in SPMs is much less time consuming than the write in the PCM memory, there

are a lot of idle slots in which all cores have neither task execution nor memory activities.

To improve the system performance, we further eliminate these idle slots in the schedule

generated by our ILP algorithm. To remain the data dependencies, we find out these idle

slots and push the whole schedule of all cores forward, as long as no data dependency is

violated.

3.6 Experimental results

Experiment setup

In this section, our proposed ILP algorithm is evaluated by running the DSPstone bench-

marks [75] and the MiBench [76]. In our custom simulator, the CMP system has multiple

cores, each of which has the similar performance as that of the CoDeL DSP [77]. We com-

pare two different sizes of SPM, which is similar to the SPM setting in [71]. The PCM

main memory parameters are set as in [63]. We use the Lingo [78] software to solve the

ILP problem.

Since most of the DSPstone benchmarks are embarrassingly parallel, which means

there are few data dependencies among tasks, we group multiple DSPstone benchmarks
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Table 3.2: The grouping of benchmarks

Set No. Benchmarks
Set 1 Convolution, IIRBIQUAD N
Set 2 FIR2D, LMS
Set 3 N REAL UPDATE, N COMPLESUPDATE
Set 4 DOT PRODUCT, MATRIX 1x3, IIR BIQUAD ONE
Set 5 CRC32
Set 6 FFT
Set 7 Blowfish enc
Set 8 Mad
Set 9 PGP sign
Set 10 GSM

into four benchmark sets. In each set, we create data dependencies by sharing variables

among different benchmarks. We also use another six Mibenchbenchmarks in our experi-

ment, one benchmark per set. The grouping of benchmarks is shown as in Table 3.2.

Figure 3.4: The execution time on a four-core CMP system. “Initial Sch. (M-M)” is the
baseline scheduling with the Min-Min algorithm; “HAFF” is the High Access Frequency
First algorithm; “ILP 512K” is our ILP-based algorithm withtotal 512KB SPMs; and “ILP
1M” is our ILP-based algorithm with total 1MB SPM. All columns are normalized by
the corresponding execution time generated by the baselinescheduling with the Min-Min
algorithm.
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Figure 3.5: The numbers of writes on a four-core CMP system. “Initial Sch. (M-M)” is the
baseline scheduling with the Min-Min algorithm; “HAFF” is the High Access Frequency
First algorithm; “ILP 512K” is our ILP-based algorithm withtotal 512KB SPMs; and “ILP
1M” is our ILP-based algorithm with total 1MB SPM. All columns are normalized by the
corresponding numbers of writes generated by the baseline scheduling with the Min-Min
algorithm.

Figure 3.6: The execution time on a eight-core CMP system. “Initial Sch. (M-M)” is the
baseline scheduling with the Min-Min algorithm; “HAFF” is the High Access Frequency
First algorithm; “ILP 512K” is our ILP-based algorithm withtotal 512KB SPMs; and “ILP
1M” is our ILP-based algorithm with total 1MB SPM. All columns are normalized by
the corresponding execution time generated by the baselinescheduling with the Min-Min
algorithm.
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Figure 3.7: The numbers of writes on a eight-core CMP system. “Initial Sch. (M-M)” is the
baseline scheduling with the Min-Min algorithm; “HAFF” is the High Access Frequency
First algorithm; “ILP 512K” is our ILP-based algorithm withtotal 512KB SPMs; and “ILP
1M” is our ILP-based algorithm with total 1MB SPM. All columns are normalized by the
corresponding numbers of writes generated by the baseline scheduling with the Min-Min
algorithm.

Figure 3.8: The execution time on a twelve-core CMP system. “Initial Sch. (M-M)” is the
baseline scheduling with the Min-Min algorithm; “HAFF” is the High Access Frequency
First algorithm; “ILP 512K” is our ILP-based algorithm withtotal 512KB SPMs; and “ILP
1M” is our ILP-based algorithm with total 1MB SPM. All columns are normalized by
the corresponding execution time generated by the baselinescheduling with the Min-Min
algorithm.
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Figure 3.9: The numbers of writes on a twelve-core CMP system.“Initial Sch. (M-M)”
is the baseline scheduling with the Min-Min algorithm; “HAFF” is the High Access Fre-
quency First algorithm; “ILP 512K” is our ILP-based algorithm with total 512KB SPMs;
and “ILP 1M” is our ILP-based algorithm with total 1MB SPM. All columns are normal-
ized by the corresponding numbers of writes generated by thebaseline scheduling with the
Min-Min algorithm.

In Fig. 3.4, we compare the performance of our proposed ILP algorithm with that of the

HAFF (High Access Frequency First) algorithm [72]. The “Initial Sch. (M-M)” columns

represent the execution time of the benchmark sets by using the baseline scheduling algo-

rithm, i.e., Min-Min, in our ILP algorithm. The “HAFF” columns demonstrate the execu-

tion time using the HAFF algorithm. The “ILP 512K” columns show the execution time

optimized by our ILP algorithm with a total 512KB SPM. And the“ILP 1M” columns pro-

vide the execution time optimized by our ILP algorithm with atotal 1MB SPM. In Fig. 3.5,

we also compare the numbers of writes in a four-core CMP system. The HAFF has less

numbers of writes than that of our baseline scheduling algorithm, although its objective

is not reduce the numbers of write. Thus, the HAFF outperforms our baseline scheduling

algorithm in terms of total execution time. Since our ILP algorithm targets on minimizing

the number of writes in the PCM main memory, it outperforms theHAFF algorithm in

reducing the numbers of writes. Due to the fact that the writeoperation in the PCM main
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memory is the major time consuming operation in the execution of tasks, our algorithm in

a four-core CMP system with 512KB SPM reduces the execution time of benchmark set

by the percentages from 4.3% to 20.8%, compared to the HAFF algorithm. The perfor-

mance of CMP with 1MB SPM is slightly better than the one with 512KB SPM, edging

by about 5%. Since the DSPstone benchmarks have small size, the size of SPMs makes no

difference when running these DSPstone benchmarks.

In the eight-core and the twelve-core CMP systems, our ILP algorithm has better

speedups, compared to the ones in the four-core CMP system, asshown in Fig. 3.4, 3.6,

and 3.8. In an eight-core CMP system with 1MB SPMs, our ILP algorithm can shorten

the execution time by 14.9% on average, compared to the HAFF algorithm, while our ILP

algorithm has 25.6% improvement on average in a twelve-coreCMP system. Our ILP

algorithm has smaller improvement in the four-core system,about 13.8% over that of the

HAFF algorithm. The major reason of these differences is that there are more opportunities

for data sharing among the SPMs in a system with more cores than that in a system with

fewer cores.

We show the number of writes in Fig. 3.5, 3.7, and 3.9. The columns represent the

normalized numbers of writes in the corresponding schedules. Since reducing writes in the

main memory is not an objective in the HAFF algorithm, it doesnot reduce the numbers of

writes as many as our ILP-based algorithm does. In a twelve-core system with 1MB SPM

it reduces the writes by 61.3% on average, while in an eight-core and a four-core system

with 1MB SPM it reduces by 58.4% and 52.3% on average, respectively.

Systems with 1MB SPM perform better than that of systems with512kB SPM. Due to

the long access time of the write operation in the PCM main memory, it is aligned with the

performance improvements we analyzed above. More SPM spaceand more data copies

on-chip lead to more opportunities of sharing copies without writing back the PCM main

memory. The increasing of cores has more significant improvein the performance than

that of the increasing in SPM size. The reason is that the probability, of which a data copy

66



exists when a remote core requires it, is higher when there are more cores inside the CMP

system.

3.7 Conclusions

In this chapter, we presented an ILP-based memory activities optimization algorithm for

the PCM main memory. In order to increase the lifetime of the PCMmemory, we schedule

and share the data in SPMs, reducing the redundant writes to the PCM memory in this

algorithm. Our experimental results show that our ILP algorithm can significantly reduce

the number of write by 61% on average. In addition, the performance of the system is also

improved due to less writes that are time-consuming.

Copyrightc⃝ Jiayin Li, 2012.
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Chapter 4 Hyper Memory Optimization and Task Scheduling

The Dynamic RAM (DRAM), as the major technique for current main memory architec-

tures, encounters its physical limit in scalability. Thephase-change memory(PCM) is one

of the most promising alternative techniques to the DRAM. A recent research trend has

focused on themulti-level cell(MLC) of the PCM. By precisely arranging multiple lev-

els of resistance inside a PCM cell, more than one bit of data can be stored in this PCM

cell. However, the MLC PCM suffers from the performance degradation compared to the

single-level cell(SLC) PCM, due to the longer memory access time. In this chapter, we

present four optimization algorithms for embeddedchip multiprocessor(CMP) systems

equipped with the MLC/SLC PCM + DRAM hybrid memory. In our proposed algorithms,

we not only schedule and assign tasks to cores in the CMP system, but also provide a hy-

brid memory configuration that balances the hybrid memory performance as well as the

efficiency. Our experimental results show that our genetic-based algorithm generates the

best solutions. It significantly reduces the maximum memoryusage by 76.8%, compared

to the DRAM+ uniform SLC configuration, and improves the efficiency of memory usage

by 155.6%, compared to the DRAM + uniform 4 bits/cell MLC configuration. In addition,

the performance of the system, in terms of total execution time, is also improved by 101%,

compared to the uniform 4 bits/cell MLC configuration.

4.1 Introduction

In the last three decades, thedynamic RAM(DRAM) as the major technique of the main

memory has been reaching its scalability limits [63]. As memory demands of applications

keep increasing, the size of DRAM equipped in a system needs tobe larger and larger.

However, DRAM requires some specific architecture solutions, such as the refresh control

and the write after read operation, to address some drawbackissues, like destructive reads
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and low retention time [6]. These specific architecture solutions cause extra costs that are

the major reason of the scalability limit in DRAM. Scaling DRAMbeyond 40 nm sizes

would be questionable in the future [63]. Thephase-change memory(PCM) is emerging

as a promising DRAM alternative technique, featured many attractive advantages, such as

high density, non-volatility, positive response to increasing temperature, zero standby leak-

age, and excellent scalability [8,9]. A 32-nm device prototype has been demonstrated [13],

showing the promising future of the PCM technique.

Recently, several studies [8,14–16] have advocated for themulti-level cell(MLC) PCM

memory architecture. The difference of resistance betweenthe two states of the chalco-

genide material is usually 3 orders of magnitude [16]. By precisely dividing this gap into

several levels, one PCM cell can store more than one bit of data, resulting in higher mem-

ory capacity density than that of thesingle-level cell(SLC) memory. However, the MLC

technique enhances the scalability of the PCM memory with a high price. The degradation

of the performance and the endurance of the PCM memory as well as the increase in the

power consumption are the major drawbacks of the MLC techniques [16]. As the number

of bits stored a single PCM cell increases, the number of levels divided in this cell increases

exponentially. A more precise resistance detection methodis required in the MLC mem-

ory, compared to the one used in the SLC memory. The current resistance detection method

implemented in the MLC adopts multiple verify procedures, which leads to a significant

degradation of the performance. Similarly, in the write operation in the MLC, theprogram

and verifyprocedure is applied repeatedly until the resistance is programmed correctively

in the target level [14], which causes high power consumption in the PCM memory. In

addition, these repeated pulses applied in the MLC make the already poor endurance of the

PCM memory even worse [16].

In order to avoid performance degradation caused by memory misses, a traditional

computing system usually takes the larger memory capacity than the maximum capacity

required by applications. However, this scheme is so pessimistic that a large portion of the
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memory is not used during most of running time. As a result, the SLC/MLC PCM memory

architecture is suggested in [8, 16] to improve the efficiency of the main memory, which

switches the mode of PCM cells between the SLC and the MLC modes. Thus, the SLC

PCM provides higher performance with less power consumptionand longer lifetime, while

the MLC PCM enhances the memory capacity without increasing the number of PCM cells.

These existing SLC/MLC memory methods adjust the configuration based on the statistics

information obtained at runtime. However, since embeddedchip multiprocessor(CMP)

systems are designed to execute specific applications, optimizing the PCM configuration

based on the characteristics of applications can further enhance the efficiency of the main

memory in embedded CMP systems. Furthermore, even the SLC PCM has the longer ac-

cess latency, compared to that of the DRAM, especially in the writing operation. In terms

of I/O performance in the embedded system, the DRAM is still a better option rather than

the PCM memory. Therefore, in this research work, in order toachieve a good balance

between the memory capacity and the performance, we suggest a hybrid memory architec-

ture, whichintegrates the DRAM and the SLC/MLC PCM memory. With this motivation,

four algorithms are presented and evaluated in this chapter, which considering both the task

scheduling and the memory mode configuration. To the best of our knowledge, this chapter

is the first work on the synthesis issue on PCM based embedded CMPsystems.

The major contributions of this chapter can be summarized asfollows:

∙ We propose a chromosome representation for both the task scheduling and the hybrid

memory mode configuration. Our proposed chromosome representation includes

three strings: the scheduling string that indicates the scheduling order; the assigning

string that represents task-core assignments; and the memory mode configuration

string that shows where and in which mode pages are stored in the hybrid mem-

ory. A chromosome represents a complete solution of the taskscheduling with data

dependencies, as well as the hybrid memory configuration optimization.
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∙ To improve the hybrid memory efficiency, we design four algorithms for the opti-

mization of the MLC/SLC PCM + DRAM hybrid memory. To take advantage of

both the high memory capacity of the PCM memory and the fast access time in the

DRAM memory, we explore solution spaces of the task scheduling and the memory

configuration, and find the solution that balances the performance and the efficiency

of the PCM memory utilization.

∙ Our experimental results show that our genetic-based algorithm generates the best

solutions. It significantly reduces the maximum memory usage by 76.8% compared

to the DRAM+ uniform SLC configuration, and improves the efficiency of memory

usage by 155.6% compared to the DRAM + uniform 4 bits/cell MLC configuration.

In addition, the performance of the system, in terms of totalexecution time, is also

improved by 101% compared to the uniform 4 bits/cell MLC configuration.

In Section 4.2, we discuss works related to this research work. In Section 4.3, the

background knowledge of the hybrid memory is presented. A motivational example is

given in Section 4.4. We propose our algorithms in Section 4.5, followed by experimental

results in Section 4.6. Finally, we conclude this chapter inSection 4.7.

4.2 Related work

The PCM incorporated in the memory hierarchy has been well studied in [6, 9, 10, 63].

A DRAM based page cache was implemented for a large PCM memory [10]. This page

cache not only improves the performance by buffering frequently used pages, but also

helps endurance by reducing writes. Enhancement approaches, such as read-before-write,

row-level rotation and segment swapping, were proposed to improve the life time of the

PCM [9]. By rotating the cache line, the row-level rotation distributes the row level wear

evenly. In the segment swapping, the contents of the least-frequently-written page and the

page being written are swapped. Lee et al. presented a PCM storage device with a bit level
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read-before-write loop [63]. They verified the PCM buffer organization and proposed that

partial writes are able to tolerate long latency of write. Techniques on both the hardware

level and the operating system level were proposed to reducethe programming power of

PCM by 50%, as well as to provide a significant improvement on the endurance over con-

ventional designs [79]. Ferreira et al. also described three life time enhancements for PCM:

N-Chance victim selection replacement policy, bit level writes, and a swap management on

page cache writebacks [6]. The above works focus on device level and require hardware

modifications. The hybrid memory combining the non-volatile memory and the DRAM

was studied in [10, 80–82]. A combination of PCM and DRAM was proposed as an al-

ternative architecture for the future main memory [10]. A energy efficient hybrid memory

architecture, PDRAM, was proposed in [80]. An operating system supporting mechanism

was designed for the NOR-flash + DRAM hybrid memory [80]. And Liuet al. proposed

power-aware memory partitioning algorithms for the PCM + DRAMhybrid memory [82].

However, these papers didn’t consider the SLC/MLC configuration in the hybrid memory,

which limits the scalability of the PCM memory as the main memory.

Multi-level cell techniques have been widely studied in various memory platforms. An

MLC Spin-Transfer Torque Random Access Memory(STT-RAM) implementation was pro-

vided in [83]. Chen et al. designed an access scheme for the MLCSTT-RAM, at the circuit

level as well as the architectural level [84]. Three different write schemes were provided

based on physical principles of the resistance state transition of the MLC STT-RAM. The

MLC technique has also been implemented in the flash-base memory system [85]. A multi-

level address translation mechanism was proposed to accelerate the translation process in

MLC flash memory storage systems [86]. Chang et al. designed a reliable memory tech-

nology device to improve the reliability of the MLC flash memory system at the device

driver layer [87]. Another approach to improve the reliability of MLC flash memory, an

error correcting solution concatenatingtrellis coded modulation(TCM) with an outer BCH

code, was proposed by Li et al. [88]. Jung et al. presented algorithms to reduce unneces-
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sary write and erase operations in the MLC flash with a buffer,to enhance the performance

of the MLC flash memory [89]. Nevertheless, the above approaches focused on either im-

proving the reliability or enhancing the performance of theMLC memory. They did not

consider the efficiency of utilizing the MLC memory.

A recent trend in PCM techniques has been focused on the MLC technique [8, 14–

16, 90, 91]. A number of papers focused on write techniques for a MLC PCM to obtain

the tight resistance levels, by reducing the margin betweentwo resistance levels. In [14],

multi-level programming algorithms were proposed based oncontrol of the tail-end of the

programming pulse. It showed that iterative writes to program a PCM cell can provide bet-

ter accuracy. A drift-tolerant MLC mechanism was proposed for the PCM memory [90].

This drift-tolerant mechanism uses the modulation coding to offer high resilience to drift.

A 2 bits/cell MLC PCM cell design was proposed in [15]. An optimization design was

presented for the write programming operation in the MLC PCM to improve the speed of

the write [92]. A preemptable read mechanism was implemented to pause and resume it-

erative writes in the MLC PCM, reducing the waiting time of a read request [4]. Authors

in [15] also presented a programming algorithm suitable fortheir MLC design. Amor-

phable memory system(MMS) was proposed in [16]. This MMS switches the PCM cell

between the SLC and the MLC with small hardware overhead. Theadjustment is based on

the statistic information of memory traffic in runtime. Another MLC/SLC PCM architec-

ture was presented in [8]. The PCM configuration in [8] was alsobased on device capacity

utilization in the running time. The Mercury architecture was presented to address the

high-write latency and the process variation issues in the MLC PCM, by adapting differ-

ent programming schemes [93]. Zhang et al. proposed the Helmet architecture to reduce

the readout error rate [94]. Jagmohan et al. proposed an information-theoretic Channel

Coding with Side-Information at Transmitter (CSIT) paradigmto maximize the memory

capacity of the MLC PCM memory [91]. However, none of these papers considered the

memory-related characteristics of applications running in the system.
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4.3 Background and Model

The PCM memory

As one of non-volatile memory techniques, PCM stores data by programming the resistance

of the chalcogenide, i.e., the phase-change material. When different amounts of heat are

applied in the chalcogenide layer of a PCM cell, the chalcogenide material can be switched

between two different states, the crystalline state and theamorphous state. Since resistances

of the chalcogenide in these states are not identical, the data stored in the PCM cell can be

read by simply sensing the resistance of the chalcogenide layer.

An increasing trend of research interest has been shown in the MLC operation in PCM

cells. The earlier PCM techniques have been focused on the single bit operation. However,

the large resistance contrast between those two states and the recent “program-and-verify”

(P&V) technique enable multiple bits storing in one single cell. Assuming the resistance

range of a MLC PCM device is fromRmin to Rmax, we can equally divide this range into

4 or 16 resistance sub-ranges for 2 bits/cell or 4 bits/cell,respectively, as shown in Fig 4.1.

(a)

(b)

(c)

Figure 4.1: The resistance levels of a PCM cell, assuming the resistance range of the PCM
cell is fromRmin to Rmax. (a) The SLC PCM cell, (b) the 2-bit MLC PCM cell, and (c)
the 4-bit MLC PCM.
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The P&V technique is widely used for the multi-bit writing inFlash memories [8].

Since the resistance distributions of multiple bit levels are non-overlapping, the P&V iter-

atively applies set pulse and check whether the resistance has reached the required range

precisely. In details, the P&V first uses a SET-sweep pulse, which immediately followed by

a RESET pulse, to program the MLC to a totally RESET state. Then asequence of partial

SET pulses is applied to the MLC, under a feedback-loop control [15]. By this approach,

the MLC can be programmed to the required tight resistance range. Due to this iterative

program-and-verify procedure, the write operation in MLC is more time-consuming than

that in SLC [8]. Moreover, the write operation also leads to shorter endurance of the MLC.

The morphable PCM device

The advantage in the scalability of MLC has been increasingly attracting research attentions

[14, 15]. However, the disadvantage in the life time and the performance has limited the

implementation of MLC techniques in PCM devices [8, 16]. Since the major difference

between the SLC and the MLC is the resistance ranging, the 4 bits/cell MLC can be used

as a SLC or a 2 bits/cell MLC without major changes in sensing circuit. The morphable

PCM cell is one of the mechanisms that can switch operation mode between SLC and

MLC, based on the workload [16].

The memory capacity requirement is widely different from time to time when various

applications are running. For example, the worst-case application in the SPEC CPU 2006

requires close to 1GB memory. However, most of applicationsin the SPEC CPU 2006

need much less memory than 1GB [16]. Thus systems with memoryless than 1GB can

execute most of the SPEC CPU 2006 efficiently, while they may face serious performance

degradation when running the worst-case application. On the other hand, systems equipped

with more than 1GB memory are not efficient at most cases. For the sake of reliability,

systems are typically provisioned with more memory capacity than the required capacity

for efficient executions of applications in worst-case scenarios.
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The morphable PCM device can morph the memory on-the-fly [16].By doing this, the

memory runs efficiently in a low density mode, such as the SLC mode, in the common

case; and switch to a high density mode, such as the 2 bits/cell MLC mode or even 4

bits/cell mode, in the worst-case scenario. The morphable memory system consists of a

high-density high-latency region and a low-density low-latency region. The ratio of these

two parts can be adjusted dynamically. The dynamic adjustment is decided based on the

memory traffic observed by the memory monitoring circuit.

PCM + DRAM hybrid main memory

In this chapter, we focus on the optimization of the memory mode selection for system

equipped with a hybrid memory architecture. This hybrid architecture consists of two

parts: a DRAM array as well as a PCM memory architecture, which is similar to the

morphable PCM device. The addition of the DRAM in the hybrid memory can provide

better performance than that from the PCM memory. Thus, it is more realistic than the

PCM-based memory architecture. We assume there are three different kinds of modes in

the PCM memory: a) the SLC mode; b) the 2 bits/cell MLC mode; andc) the 4 bits/cell

MLC mode.

A memory controller is the critical component to manage the PCM + DRAM hybrid

main memory, as shown in Fig 4.2. In the traditional DRAM, whenoperating a memory

request, the memory controller sends a sequence of micro commands to the memory banks.

When a read miss happens in in the row buffer, a precharge command to write back a row

buffer is issued before a new row is loaded. However, for the PCM, the controller always

bypasses the row buffer and writes to cells directly in a write operation. Thus, the controller

directly loads a row without writing back the victim row. In the PCM + DRAM hybrid main

memory, we propose a memory controller with two separate sets of data and control buses,

connected to the PCM and the DRAM, respectively. A multi-row buffer is equipped in the

controller, loading pages from either the PCM or the DRAM. In the read operation, the
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controller first checks the row buffer. If the target is in thebuffer, the memory controller

obtains the entry without accessing the memory bank. Otherwise, the memory controller

will first decide the victim row, check whether it needs to be written back in the DRAM

or it is already in the PCM. Then it will issue an activate command to move the data to an

empty row in the buffer, and a read command to get the data. In the write operation, the

memory controller issues the write command and sends the data directly to the memory

bank, if the data address is in the PCM.

Figure 4.2: The architecture of the CMP system with PCM + DRAM hybrid main memory

Application model and problem statement

We use thedata-flow graph with pages(DFGP) to model an application of embedded

systems. A DFGPG = ⟨T,E, P,RP ,WP , EC⟩ is a direct acyclic graph(DAG). T =

⟨t1, t2, t3, ..., tn⟩ is the set ofn tasks.E ⊆ T × T is the set of edges where(u, v) ∈ E

means that tasku must be scheduled before taskv. P = ⟨P1, P2, P3, . . . , Pm⟩ is the set of

m pages that are required by tasks.RP : T → P ∗ is the function whereRP (t) is the set of
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pages that taskt reads.WP : T → P ∗ is the function whereWP (t) is the set of pages that

taskt writes.EC(t) represents the execution time of taskt.

We consider the PCM + DRAM hybrid memory optimization for a DFGPas the com-

bination of two parts: the task-core scheduling and the hybrid memory configuration. A

task-core scheduleSi,j is a matrix that indicates task-core assignment pairs and the execu-

tion order of tasks on each core. WhenSi,j ∕= 0, it represents that taski is assigned to core

j, and the value is the scheduled start time of taski. Only one element in each row has a

non-zero value, because each task will only be executed once. From the standpoint of the

task execution, the task-core schedule tells on which core agiven task will be executed and

the exact start time of the execution. From the standpoint ofa core, the task-core schedule

indicates the task execution order of a given core and the exact start time of each task in this

order. The task execution order can be obtained by sorting non-zero elements in a column

of the task-core scheduleS. The hybrid memory configurationP =< R,W > is a pair

of matrixes.Ri,jthat shows in which memory mode that pagei read by taskj is stored in

memory.Wi,jthat shows in which memory mode that pagei written by taskj is stored in

memory. In those matrixes, “0.5”, “1”, “2”, and “4” indicatethat the page is stored in the

DRAM, the PCM of the SLC mode, the PCM of the 2 bit/cell MLC mode, and the PCM of

the 4 bit/cell MLC mode, respectively.

Because of the parallel processing of an application, only a hybrid memory configura-

tion is not enough for the hybrid memory optimization. Different task-core schedules lead

to different memory usages at a certain time period. With thesame hybrid memory con-

figuration, some schedules may exceed the memory capacity, while some others may not.

Therefore, the output of our hybrid memory optimization includes a task-core scheduleS

and a hybrid memory configurationP . The problem statement is given as the following:

Input : A DFGP⟨T,E, P,RP ,WP , EC⟩, and the capacity of the DRAM and the PCM.

Output : A task-core scheduleS and a hybrid memory configurationP , which subject

to the following objectives:
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Objective 1: The memory usage should not exceed the memory capacity at any time.

Objective 2: The memory usage should be the most efficient.

The idea behind the first objective is that the exceeding memory usage results in ac-

cesses to the hard drive, which are far slower than accesses to the PCM memory, not to

mention the access speed of the DRAM. And the second objectiveis the basic objective of

our optimization. An efficient memory usage should avoid lowmemory usages. It should

also favor the DRAM + SLC PCM mode the most, because of the low access time and the

low energy consumption in this mode. And the 4 bits/cell MLC mode should be least fa-

vored, due to its long access time and high energy consumption. In the best case scenario,

all pages should be stored in the DRAM all the time, which leadsto the best performance

and the lowest energy consumption. However, it may conflict with the first objective, where

the memory capacity is not large enough for storing all pagesin either DRAM or the SLC

mode PCM all the time. Therefore, generating a task-core scheduleS and a hybrid mem-

ory configurationP subjecting to these objectives is the key to efficiently utilize the hybrid

memory. In our proposed iterative algorithms, we check the memory capacity objective

for every new solution in each iteration, and only solutionsthat meet the memory capac-

ity objective may be accepted. Thus, the output of our proposed iterative algorithms will

satisfy the first objective, unless storing all pages in 4 bits/cell MLC mode configuration

cannot meet the first objective. In addition, by evaluating solutions by our proposed fitness

function, the output of our proposed algorithm favors he DRAM+ SLC PCM mode the

most, and configures the 4 bits/cell MLC mode as few as possible.

4.4 Motivational Example

In this section, we first give an example to show that configuring the hybrid memory can

improve the performance of the CMP system and the efficiency ofthe hybrid memory.

Considering a schedule for an application represented by theDFGP in Fig. 4.3(a) in a

three-core CMP system, each task in the application needs to read pages from a shared
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(a) (b) (c)

Figure 4.3: An example of configuring the hybrid memory. (a) The DFGP of the applica-
tion in the example, (b) read pages and write pages of tasks inthe application, (c) read and
write latency of the hybrid memory and the SSD

hybrid memory and write pages in the hybrid memory, as shown in Fig. 4.3(b). The system

is also equipped with a SSD as the secondary storage. The datastored in the hybrid memory

are mainly from the SSD or write operations of previous tasks. When a required page is

not in the hybrid memory, it is read from the SSD.

Figure 4.4: A task-core schedule for the applicant in this example. “SSD P1 P5” means
that the content of pages P1 P5 is stored in the hybrid memory from the SSD. “R P1 P5”
shows that the core reads pages P1 P5 from the hybrid memory. “EXE A” indicates that the
core executes task A. “W P6 P16” represents the write operation on pages P6 P16. “Move
P3” is the operation that copy the content of page P3 from DRAM to PCM in the hybrid
memory. The “DRAM” and “PCM” columns show pages that need to be in the hybrid
memory in each step.

80



In this example, we refer the number of SLC cells for storing one page as a page block,

while one page block in the 4 bits/cell MLC mode can store up tofour pages. The DRAM

in the hybrid memory is enough for two page blocks. The settings on the memory capacity

and the number of cores in this example are small, for the sakeof simplicity. The settings

in our experiments are highly related to the real system, as we will mention in Section 4.6.

We assume that all tasks in this application require the sameexecution time, 1000 cycles.

Reading a page from the PCM requires 500 cycles in the SLC mode, 1000 cycles in the 2

bits/cell mode, and 2000 cycles in the 4 bits/cell mode, respectively [82]. The read/write

latencies of the hybrid memory and the SSD are shown in Fig. 4.3(c).

Using a simple list-scheduling algorithm, we can get a task-core schedule shown in

Fig. 4.4. Note that, even though we show the schedule in step-wise, three cores do not

necessarily start and end the same step at the same time. As wementioned in the previous

section, if the required page are not in the PCM memory, the system needs to request the

page block back from the SSD. In this case, the SSD requires significant access overheads

compared to the PCM memory accesses. Therefore, to avoid unnecessary performance

degradation, the system should be equipped with the large enough size of PCM memory

for the maximum memory requirement. As shown Fig. 4.4, high memory requirement

occurs in step 6, where twelve page blocks are needed to be in the PCM memory.

Since memory accesses in the DRAM are both significantly shorter than that of the

PCM, all DRAM blocks are used in every step in this schedule. Configuring all PCM

cells in the SLC mode, the number of required page blocks is shown in the second column

of Fig. 4.5. Thus, the system should have at least 12 page blocks of the PCM memory.

However, we observe that the memory requirement is no more than 50% of the maximum

memory requirement in 13 out of 17 steps. We show the requiredtime of each task in

Fig. 4.6. The critical path of this schedule is{A, D, G, J}. And the total execution times

of this schedule are 87000, 119750, and 183750 cycles for SLCmode, 2 bits/cell MLC,

and 4 bits/cell MLC, respectively.
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Figure 4.5: The number of page blocks required in the PCM section of the hybrid mem-
ory in each step. The “SLC” columns, the “2-MLC” columns and the“4-MLC” columns
indicate that all PCM cell are configured in the SLC mode, the 2 bits/cell MLC mode, and
the 4 bits/cell MLC mode, respectively. The “Sch” columns indicate the hybrid memory
configuration generated by our genetic-algorithm.

Using our genetic-based algorithm presented in the next section to explore the hybrid

PCM configuration space, we can find a hybrid configuration as the required page of{A,

J} are stored in the DRAM and SLC PCM mode, the required page of{I, H} in the

DRAM and 2 bits/cell MLC PCM mode, and the required page of{B, C, D, E, F , G} in

the DRAM and 4 bits/cell MLC PCM mode. This schedule has a significant improvement

in the memory utilization and performance. Our schedule only needs three PCM memory

blocks, which is 75% less than the SLC mode, 50% less than the 2bits/cell MLC mode.

And in 12 out of 17 steps, all three PCM blocks are used. And the total execution time is

163500, which is 11% shorter than that of the 4 bits/cell MLC mode.
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Figure 4.6: The execution time of each task, including the time of loading pages from the
SSD to the hybrid memory, reading pages from the hybrid memory, executing the task,
and writing pages to the hybrid memory. The red rows represent tasks in the critical path,
which includes taskA, D, G, andJ .

4.5 Scheduling Algorithms for Hybrid Memory

In this section, we propose four different scheduling algorithms for the hybrid memory.

TheGenetic Algorithms(GA), theStimulated Annealing(SA), and theTabualgorithm are

three iterative algorithms. In addition, we also design a heuristic algorithm to schedule the

hybrid memory.

The Genetic Algorithm

The GA is a heuristic method to find the near-optimal solutionin a large solution space.

The GA is inspired by the process of natural evolution. In theGA, a solution is represented

as a chromosome. A population, i.e., a large number of chromosomes, is generated by

some low computational approaches, such as random generation or greedy heuristics. Each

chromosome in the population is associated with afitness value. A predefined number of

iterations of evolution follow the initial population generation. In each iteration, some

pairs of chromosomes are selected by a biased random selection approach. Chromosomes
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with the higher fitness values are more likely selected from the population. A crossover

approach is implemented on each pair of selected chromosomes to generate some new

chromosomes. Some other chromosomes are also selected fromthe population, followed

by a mutation procedure that also generates some other new chromosomes. In each iteration

of the GA, the fitness values of all chromosomes in the population are evaluated, and the

best chromosome is recorded. After a large number of iterations, the best chromosome

in the population is translated as the selected solution. Weshow the genetic algorithm in

Alg. 4.1. The detailed description of each step in Alg. 4.1 will be provided in the following

part of this subsection.

Algorithm 4.1 The genetic algorithm
Input: A set of tasks,m different cores, PCM memory capacityMC, and DRAM memory capacity

DC, predefined parameters: population sizeP , the number of chromosomes pairs for crossover
R, the number of chromosomes for mutationQ, two threshold numbers of iterationsI andGtℎ

Output: A schedule generated by the genetic algorithm
1: Form the initial population with the size ofP
2: for i: 1 to I do
3: SelectingR pairs of chromosomes fromPcur

4: Create2R new chromosomes by crossovering theR pairs of chromosomes selected above
5: SelectingQ chromosomes fromPcur

6: CreateQ new chromosomes by mutating theQ chromosomes selected above
7: Include the2R+Q chromosomes inPcur

8: SelectingP chromosomes fromPcur for next iteration
9: if The best chromosome has not been changed in the lastGtℎ iterationthen

10: Break
11: end if
12: end for

Representation of chromosome

In our genetic-based algorithm, we consider both the task-core scheduling and the hybrid

memory configuration. We use three strings to represent a complete solution: the schedul-

ing string, the assigning string, and the memory mode string. For a solution, these strings

have the same lengthn, which represents the number of tasks in the application.

The scheduling string is a one dimensional representation of the DFGP. We can trans-

form the DFGP into a string by the topological sort [95]. The scheduling string indicates
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: A chromosome representation of an application.(a) is the DFGP of the appli-
cation. (b) the read/write pages of each task. (c)and (d) aretwo valid scheduling strings for
the application. (e) is an assigning string for the application. (f) is a memory mode string
for the application.

the scheduling order of tasks. Each task only appears once inthe scheduling string. For

instance,ti placed in the fourth element of the string means that taskti is the fourth task to

be scheduled. Note that valid scheduling string representations of a given DFGP may not

be unique, as long as the data dependencies are held. For example, Fig. 4.7(c) shows one

valid scheduling string of the DFGP in Fig. 4.7(a). Since task A is the predecessor of tasks

B, C, D, and E, task A should be placed before task B, C, D, and E in thescheduling string.

In this schedule, task A is the first task to be scheduled, followed by task C, D, B, and so

on. Fig. 4.7(d) shows another valid scheduling string.

The assigning string is a vector indicating task-core assignments. The value of the i-th

element demonstrates the core where taskti is assigned to in this solution. Fig. 4.7(e) is a
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valid assigning string. Note that order of associated tasksis alphabetical. It is not the order

indicated in the scheduling string. In Fig. 4.7(e), the firstelement is associated with task

A, and the second element is associated with task B. Tasks A, E,and I are assigned to core

0; tasks C, D, and F are assigned to core 1; and tasks B, G, and H areassigned to core 2.

The combination of one valid scheduling string and one assigning string can be trans-

lated into a complete task-core scheduleS by assigning tasks to the corresponding core in

the order indicated in the scheduling string. Given a scheduling string and an assigning

string, when we decide the start time of a task on a core, we setits start time as the earliest

time when the core is available as well as all its predecessortasks are finished.

The last part of the chromosome is the memory mode string, which includes strings

for read and write operation. This string is also associatedwith tasks in alphabetical order.

The value of each element represents where and in what memorymode the required pages

of the corresponding task are stored. Fig. 4.7(f) shows an example of the memory mode

string for the application in Fig. 4.7(a) and (b). This string indicates that the required pages

of task A, i.e.,{P0, P1, P2}, are stored in the SLC mode of PCM when they are read,

and the written pages of task A, that isP2, is stored in the DRAM. In some cases, multiple

tasks, which share same pages and are executed concurrentlyin a given schedule, may

conflict in the mode string. The shared pages are stored in themode configuration of the

task appearing the earliest in the scheduling string. Therefore, in the mode configuration,

pages read by the same task may not be identical. In addition,we also set a criteria for

placing pages in DRAM. In the case where pages of a task are scheduled to be placed in

the DRAM when the DRAM is full, we define this chromosome is not acceptable, which

we will discuss later in this chapter. However, in some cases, the DRAM has some spaces

available, but not enough for all pages required by the task.Therefore, we set different

priorities for pages: 1) pages that are or will be written by this task, and will be read

by some tasks later, have the highest priority; 2) pages thatare or will be written by this

task have the second highest priority; 3) pages that will be read by some tasks later have

86



the second lowest priority; and 4) other pages have the lowest priority. With this priority,

pages with higher priorities are selected to place into the DRAM. The rest pages are placed

in the PCM with the SLC mode. Based on these criteria, we can translate a memory mode

string into a hybrid memory configurationP . Combining the hybrid memory configuration

string and the task-core schedule, we can get a complete solution for optimizing the hybrid

memory.

Initial population

In the first step of our genetic algorithm, we need to randomlygenerate a pre-defined

number of chromosomes in the population. For the assigning string and the memory mode

string, any randomly generated string is valid, as long as each element of the string is within

the valid range of value. However, for the scheduling string, we have to check the data

dependencies inside the string. For each task represented in the scheduling string, all its

predecessor tasks should be placed before this task, and each of its successor tasks should

be placed after it. Due to data dependencies, the number of valid scheduling strings may

be smaller than the size of population. In this case, we can generate multiple chromosomes

by combining one scheduling string with multiple pairs of assigning string and memory

mode string. To ensure that there are chromosomes in the population in some extremely

low memory capacity, we generate some chromosomes which allpages are stored in the

DRAM + 4 bits/cell MLC mode configuration. The lowest memory usage chromosomes

are the ones that schedule all tasks in one core and store all pages in the DRAM + 4 bits/cell

mode, since there is only one task that requires data in the memory at a time and all data are

stored in the least space-requiring mode. Thus we also include these chromosomes in the

population. Finally, we need to remove multiple identical chromosomes in the population,

so that every chromosome is unique. The population initialization procedure is shown in

Alg. 4.2.
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Algorithm 4.2 Generating initial population
Input: A set of tasks, the population sizeP
Output: An initial population

1: Initial an empty populationPint

2: while size(Pint) < P or no new valid assigning string can be createddo
3: Put all tasks in task setU
4: Initial an empty scheduling stringS
5: while U is not emptydo
6: Put all assignable tasks in task setA
7: Randomly select a taski in A
8: Remove taski fromU
9: Pushi into S

10: end while
11: Randomly form a assigning stringAS
12: Randomly form a memory mode stringMM
13: Form the chromosomeC by combiningS, AS, andMM
14: AddC into Pint

15: end while
16: while size(Pint) < P do
17: Randomly selectP − size(Pint) chromosomes inPint

18: Modify assigning string and memory mode strings of these chromosomes
19: Add them intoPint

20: Remove identical chromosomes fromPint

21: end while

Selection

In the genetic algorithm, a small portion of chromosomes areselected from the population

for the further evolution, modeling the nature’s survival-of-the-fittest mechanism [96]. A

proper selection procedure in a genetic algorithm should have two basic characters. First,

fitter solutions should have better chances to survive, while weaker ones tend to perish. This

character helps the convergence in the evolution. The othercharacter is that the selection

should be a random process. A less random selection procedure leads to small search space

explored.

In our genetic-based algorithm, the first step of the selection procedure is to evaluate

fitness functions of all chromosomes. The fitness function isthe key to evaluate chromo-

somes. As we have mentioned in the previous subsection, one chromosome represents a

complete task-core schedule as well as a hybrid mode configuration. Based on the schedule
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and the mode configuration, we define thefitness functionas follows:

Fitness =

∑n

i=1

∑
Pj∈RP (ti)∪WP (ti)

size(Pj)∑n

i=1

∑
Pj∈RP (ti)∪WP (ti)

(MODE(i)× size(Pj)× Ii,j)
(4.1)

In the above fitness function,MODE(i) relates to theitℎ element of the memory mode

string in the chromosome, where “0.5”, “1”, “2”, and “4” represent “DRAM”, “SLC”, “2

bits/cell MLC”, and “4 bits/cell MLC”, respectively.size(Pj) is the size of pagePj. Ii,j

indicates whether pagePj is stored in the hybrid memory with the mode explicated in the

itℎ element of the memory mode string. For example, assuming tasks t1 andt3 share the

same pageP5 at the same time, andt1 is listed beforet3 in the scheduling string, we store

P5 in the mode indicated in the1st element of the memory mode string, and we setI1,5 = 1

as well asI3,5 = 0.

This fitness function represents the average hybrid memory performance of the appli-

cation, in terms of bits/cell. Since we set the definition of avalid chromosome as the one

without exceeding the pre-defined maximum memory capacity,the higher the fitness func-

tion is, the less average “bits/cell” the memory is configured in the chromosome. Less

average “bits/cell” in the memory leads to a better memory performance. In addition, more

pages shared in the hybrid can improve the memory performance by reducing reads and

writes in the memory, which is also reflected in the fitness function. Thanks to the use

of “Ii,j” indicators, only one memory access is counted in the denominator of the fitness

function, when there is a page shared among multiple tasks. The more pages shared, the

higher the fitness function is.

After fitness functions of all chromosomes in the populationare evaluated, we sort

these chromosomes in the descending order of their fitness functions. The chromosomes

with identical values of fitness functions are sorted arbitrarily among themselves. Then

we use arank-based roulette wheel selection schemeto select chromosomes [96]. In this

selection procedure, the P different chromosomes are determined as the next population.
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Considering the whole sorted chromosome population as a roulette wheel, each chro-

mosome is located in a sector of this roulette wheel, based onits fitness function. To realize

the “survival-of-the-fittest” of the nature evolution, we partition the roulette wheel into sec-

tors based on fitness functions. Chromosomes with a higher value of fitness function have

larger sectors in the roulette wheel. LetP denotes the population size and theSi denote the

angle of the sector representing theitℎ rank chromosome. We also define a constant ratio

C = Si/Si−1 < 1. Thus the following equations hold:

Si = C i−1S1 (4.2)

P∑

i=1

Si =
1− CP

1− C
S1 (4.3)

Normalizing the whole360∘ of the wheel, i.e.,
∑P

i=1 Si in Equ (4.3), as to 1, we can

have the sector angles of the first chromosome and a givenitℎ chromosome as follows:

S1 =
1− C

1− CP
(4.4)

Si =
1− C

1− CP
× C i−1 (4.5)

In order to keep the population size in each iteration of the evolution, we need to select

P chromosomes from the population, which is usually larger than the default population

due to the crossover and the mutation procedures in the last iteration. In our genetic-

based algorithm, we select P random pages from the range of 0 to 1. Each of these P

random pages falls in a sector mentioned above. The corresponding chromosomes are

selected. Since pages are selected randomly, some of them may fall in the same sector,

leading to the case that multiple identical chromosomes exist in the population. Multiple

identical chromosomes do not help in improving the performance of the genetic algorithm.

To avoid this, we check the P pages, and re-select any of them if they are related to the

same sector. In this selection procedure, the P different chromosomes are determined as

the next population.
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Crossover

(a)

(b)

(c)

(d)

Figure 4.8: Steps of the crossover procedure on scheduling strings. (a) Two scheduling
stringsCA, CB, and a cutting point of 4; (b) Four stringsCA0, CA1, CB0, andCB1

after cutting; (c) Forming two new scheduling strings, by copyingCA0 as the upper part
of CAnew, and copyingCB1 as the lower part ofCBnew; (d) Completing these two new
scheduling strings by re-ordering the rest.

The traditional crossover procedure generates new chromosomes by truncating two

chromosomes and jointing one part of each. Our chromosome representation consists of

three strings, one of which, the scheduling string, includes the data dependencies. Hence,

the crossover procedure operates differently for those three strings in a given chromosome.

In the first step of the crossover procedure, we randomly select R pairs of chromosome.

The pair selection is similar to the selection presented previously, by using the rank-based
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roulette wheel scheme. The major difference is that the chromosomes in the population

selection must be unique, while a chromosome can be selectedin multiple pairs in the

crossover selection, as long as no multiple pairs are identical. The implementation of the

rank-based roulette wheel scheme in this selection mimics the natural fact that better in-

dividuals have better chance in reproducing offspring. Each pair of chromosomes creates

two new chromosomes.

For the scheduling strings of a pair of chromosomes, we first randomly pick a cutting

point, truncating each of the chromosomes into two parts. Let CA andCB denote the

scheduling string of these two chromosomes, andCA0,CA1,CB0, andCB1 represent four

truncated parts of these two scheduling strings. In the generation of two new chromosomes,

we copy theCA0 as the upper part of a new chromosome, and theCB1 as the lower part of

another new chromosome. For the tasks represented in theCA1 andCB0, we will re-order

them based on the tasks order inCB andCA, respectively. In this crossover method, we

keep the upper part of a string and the lower part of another string unchanged, instead of

keeping the upper parts of two strings unchanged. The reasonis that keeping the upper

parts of two strings in crossover leads to fast convergence and poor solutions, since the

upper parts of strings in the population are less likely to bechanged via crossover in this

case.

For example, let the scheduling string in Fig. 4.7(a) beCA, the scheduling string in

Fig. 4.7(b) beCB, and the cutting is 4, as shown in Fig. 4.8(a). By truncating these

scheduling strings, we haveCA0 = {A, C, D, B}, CA1 = {E, F , G, I, H}, CB0 = {A, B,

D, E}, CA0 = {F , C, G, H, I}, as shown in Fig. 4.8(a). To create the first new scheduling

string, we copy theCA0 as the first 4 bit of the new string, as shown in Fig. 4.8(c). Then

for the tasks{E, F , G, I, H} in CA1, we observe that their order in stringCB is {E, F ,

G, H, I}. We place these five tasks in the last five bits of the new stringin the order of

{E, F , G, H, I}. Thus the first new scheduling stringCAnew is {A, C, D, B, E, F , G,

H, I}, as shown in Fig. 4.8(d). We can also get the second new stringCBnew as{A, D,
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B, E, F , C, G, H, I}. By this truncate and joint procedure, we can crossover the task

scheduling orders of two scheduling strings without violating data dependencies, based on

Theorem 4.5.1.

Theorem 4.5.1 Let scheduling stringsA = {A0, A1} andB = {B0, B1} be truncated by

the same cutting point. Also letA′
1 = reorder(A1, B), andB′

0 = reorder(B0, A). The

reorder functionreorder(x, y) re-orders stringx based on the order of same characters

appearing in stringy. If A andB maintain data dependencies, then{A0, A
′
1} and{B′

0, B1}

also maintain data dependencies.

Proof: Assume{A0, A
′
1} violates the data dependencies, which means at least one ofA0

andA′
1 strings violates data dependencies. IfA0 violates dependencies, then it contradicts

to the assumption “A maintains data dependencies” in Theorem 4.5.1. IfA′
1 does not

satisfy the dependencies, some tasks inA′
1 are scheduled before their predecessor tasks.

Since the order inA′
1 follows the order ofB, the scheduling order inB does not satisfy

the dependencies, which contradicts to the assumption “B maintains data dependencies” in

Theorem 4.5.1. Proofing by contradiction, the new scheduling string{A0, A
′
1} definitely

maintain data dependencies. Similar proof can be applied tostring{B′
0, B1}.

Since there is no data dependency in the assigning string andthe memory mode string,

the crossovers in these two strings are simpler than that in the scheduling string. For two

assigning strings, we randomly select a cutting point, and switch lower parts to generate

new strings. The same procedure is applied to a pair of memorymode strings.

Mutation

While the crossover procedure creates two new chromosomes from two parent chromo-

somes, the mutation generates a new chromosome from single parent chromosome. Similar

to the crossover procedure, the mutation procedure works differently on those three strings

in the chromosome representation. For the assigning stringor the memory mode string, we
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randomly select a bit for mutation. The selected bit is changed to another randomly picked

value. By switching the selected bit, a new string is generated.

(a) (b)

Figure 4.9: Steps of the mutation procedure on the scheduling string of the application in
Fig. 4.3(a), assuming that task D will be the target of the mutation. (a) The flexible zone
of taks D, and a random pick of replacing spot (between E and G); (b) A new scheduling
string after the mutation procedure.

However, when we mutate the scheduling string, we need to consider two characteris-

tics of the scheduling string: 1) each value (i.e. the tasks ID) should only appear once; 2)

the order of the value should maintain the data dependencies. Thus, in the mutation pro-

cedure on the scheduling string, we randomly relocate the selected bit, instead of changing

its value. For a given bit in the scheduling string, we define the flexible zone of this bit

(corresponding to taski) as the area ranging from the corresponding bit of the last prede-

cessor task ofi, to the corresponding bit of the first successor task ofi. To maintain data

dependencies, a randomly relocating spot is selected with the flexible zone of the selected

bit. Then we insert this bit at the relocating spot and push forward the bits between the orig-

inal spot of the selected bit and the relocating spot forward. An example of the mutation

procedure is shown in Fig 4.9.

Iterative evolution

In each generation of our genetic-based algorithm, we select R pairs of chromosomes for

crossover, generating2R new chromosomes.Q chromosomes are then picked for muta-

tion, resulting inQ chromosomes. Therefore, there areP + 2R + Q chromosomes in the

population at the beginning of next generation. The selection procedure keeps the pop-

ulation asP . This iterative evolution stops either when the total generation reaches the
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pre-defined number, or when there is no improvement in the last Gtℎ generations, where

Gtℎ is also a pre-defined parameter.

Stimulated annealing algorithm

The SA is also an iterative optimization algorithm [97]. In our proposed SA algorithm, we

use the same representation of the application as the chromosome in the GA. The basic idea

of the SA is that some new generated poor chromosomes will be accepted probabilistically

based on how the average “temperature” of the current generation, in order to obtain a

better search of the solution space. The temperature is a metric of the population, which

generally decreases in each generation. As the temperatureof the populations becomes

lower, the probability of accepting a poor chromosome is lower. Thus, in the beginning

of the SA, poor chromosomes are more likely to be accepted, leading to a wider search

in the solution space. In addition, at the end of the SA, poor chromosomes are hard to be

accepted, which helps in the convergence of the search.

The initial population is created in the same way as that of our GA. The initial temper-

ature used in our SA algorithm is the reciprocal of the average value of fitness functions,

which are computed by Equation 4.1, of all chromosomes in theinitial population. In an

iteration, we selectR pairs of chromosomes for crossover, generating2R new chromo-

somes.Q chromosomes are then picked for mutation, resulting inQ chromosomes. For

a new chromosomeCnew generated by the mutation of chromosomeCori, we compute

Rcp(Cnew) = 1/F itness(Cnew) andRcp(Cori) = 1/F itness(Cori). A uniform random

valuer ∈ [0, 1) is selected forCnew. If r > tℎresℎold(Cnew) andCnew meets the memory

capacity constraint,Cnew will be accepted andCori will be discarded. Otherwise,Cnew

will be discarded andCori will be kept. And the definition oftℎresℎold(Cnew) is as Equa-

tion (4.6). For two new chromosomes generated by the crossover of two original chromo-

somes, we randomly pick one new chromosome and one original chromosome as a pair,

and the rest as another pair. The same probabilistic accepting procedure is applied to both

95



pairs of chromosomes. After each iteration, the temperature is decreased by a pre-defined

cooling rate, which is 90% in our design.

tℎresℎold(Cnew) =
1

1 + e
Rcp(Cori)−Rcp(Cnew)

temperature

(4.6)

Tabu algorithm

The Tabu algorithm is a iterative solution search that keep track of already-searched regions

so that it does not search a local space repeatedly [98,99]. Again, we use the chromosome

represents a solution.

In our proposed Tabu algorithm, we randomly generate a pre-defined number,ℎoplong,

of chromosomes. Since we will start the local search with each of these chromosomes, we

need to make sure that they are different from each other. Fortwo given chromosomesC1

andC2, we define a long hop metric,diff(C1, C2) = 1 − Ra(C1, C2) × Rs(C1, C2) ×

Rm(C1, C2), whereRa(C1, C2) is the percentage of identical values in assigning strings

of C1 andC2 (0.5 means half of strings are identical between them),Rs(C1, C2) and

Rm(C1, C2) are the percentages of different values in scheduling strings and memory mode

strings, respectively. When generating initial chromosomes, we accept a new initial chro-

mosomesCi only whendiff(Ci, Cj) > 0.5, ∀j ∈ [0, i − 1]. With this condition, we can

make sure these initial chromosomes have long distance witheach other in the solution

space.

Starting from each initial chromosome, we conduct a local search in the solution space

near this initial chromosome, which we call a region. The local search is shown in Algo-

rithm. 4.3. At the end of the local search of a region, the bestchromosome is selected. The

output of this Tabu algorithm is the best chromosome among these selected chromosomes.
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Algorithm 4.3 Local search in a region
Input: t tasks,m different cores, PCM memory capacityMC, DRAM memory capacityDC, a

pre-defined threshold number of short hopsℎopsℎort, and an initial chromosomeC
Output: A best schedule in the local search

1: Select random integer numbers,� ∈ [0, t), � ∈ [0,m).
2: sucℎop = 0
3: for i = 0 to t-1do
4: ti = (� + i)modt
5: [ta, tb] < −flexible zone ofti
6: for j ∈ [0,m) do
7: mi = (� + j)modm
8: for tk ∈ [ta, tb] do
9: for p ∈ {0.5, 1, 2, 4} do

10: for q ∈ {0.5, 1, 2, 4} do
11: Modify chromosomeC by assigning taskti to coremi, insectingti right before

tk, and changing its read mode top, and write mode toq
12: Evaluate the new chromosome with Equation (4.1)
13: if The new is better and it meets the memory capacity constraintthen
14: UpdateC as the new one, discard the old one
15: sucℎop = sucℎop + 1
16: else
17: Keep the old one, discard the new one
18: end if
19: if sucℎop ≥ ℎopsℎort then
20: BREAK
21: end if
22: end for
23: end for
24: end for
25: end for
26: end for

Hybrid memory task scheduling heuristic

To evaluate the performance of our genetic-based algorithm, we design a task schedul-

ing heuristic for comparisons. This task scheduling heuristic is based on the Min-Min

algorithm to generate task execution orders of all cores [44]. The Min-Min algorithm gen-

erates high performance schedules with comparatively low computational complexity [74].

The Min-Min algorithm schedules and assigns tasks to cores by comparing task-core pairs

twice, as shown in Algorithm 4.4. A mappable task set is a set of tasks of which all

predecessor tasks have been assigned. After the Min-Min task scheduling, we have task
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execution orders of all cores. After scheduling a task, we use an off-line hybrid memory

utilization estimator to estimate the trace of hybrid memory utilization, based on the task

execution orders generated in previous steps. We define three utilization conditions: 1)

the DRAM is not full; 2) the PCM utilization estimator is lower than 50% and the DRAM

is full; 3) the PCM utilization estimator is between 50% and 75% and the DRAM is full;

and 4) the PCM utilization estimator is higher than 75% and theDRAM is full, which is

similar to the setting of the performance-aware managementin [8]. When a given task is

executed and it is under condition 1, all read or write pages of this task are placed in the

DRAM. When DRAM is full, and condition 2 is met, all read or write pages are placed in

the PCM in the SLC mode, unless the page has been loaded in the hybrid memory by any

predecessor task. When it is under condition 3, pages are loaded or modified in the 2-bit

MLC mode. When it is under condition 4 pages are loaded or modified in the 4-bit MLC

mode. The use of the PCM utilization estimator helps in makingthe PCM configuration

decision off-line.

4.6 Experimental results

Experiment setup

In this section, our proposed algorithms are evaluated by running benchmarks from Mibench [76]

and Mediabench [100], Eight selected benchmarks aresusan, dijkstra, gsm, blowfisℎ,

mpeg2dec, mpeg4dec, ℎ264dec, andℎ264enc. We use the Simics [101] to collect the

memory traces of these benchmarks, and implement them in ourtraced based simulator that

simulates both CPU executions and memory operations. In our simulator, the CMP system

has 8 cores. The details of the target CMP system is shown as Table 4.1 [63,102,103]. To

generate applications, we create 10 groups of DAGs using TGFF [104]. Each group has 64

unique applications represented by DAGPs, and each application is composed of up to 16

tasks. We generate 32 types of tasks by scaling the memory access of eight benchmarks by

1X, 2X, 4X and 8X.
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Algorithm 4.4 Hybrid Memory Task Scheduling Heuristic
Input: A set of tasks,m different cores, PCM memory capacityMC, and DRAM memory capacity

DC
Output: A schedule generated by hybrid memory task scheduling heuristic

1: Form a mappable task setP
2: PCM utilization estimatorE = 0
3: while SetP is not emptydo
4: for i: taski ∈ P do
5: Find the coreCmin(i) giving the earliest finish time ofi /*The first comparison.*/
6: end for
7: Find the pair(k, Cmin(k)) with the earliest finish time among the task-core pairs generated

in for-loop /*The second comparison.*/
8: Assign taskk to deviceCmin(k)
9: Removek from P

10: Update the mappable task setP , the earliest available time of coreCmin(k)
11: if DRAM is not full then
12: Configure the read and write page ofk in the DRAM,
13: else if(E/MC) ≤ 50% then
14: Configure the read and write page ofk in the SLC mod, updateE
15: else if50% < (E/MC) ≤ 75% then
16: Configure the read and write page ofk in the 2 bits/cell MLC mod, updateE
17: else
18: Configure the read and write page ofk in the 4 bits/cell MLC mod, updateE
19: end if
20: end while

To evaluate the performance of our proposed algorithms, we compare them with three

different approaches. In the following part of this chapter, we use abbreviations listed in

Table 4.2. In our iterative algorithms, include 1000 initial chromosomes [105], of which,

10 pairs are selected for the crossover and 10 individuals are selected for the mutation

in the GA and the SA. In the GA, it ends as soon as one of the following two stopping

criteria is met: 1) 1000 generations have been computed, 2) the best chromosomes have

not been changed for 150 generations [106]. In the SA, it endswhen the temperature is

below 10−200, or the best chromosomes have not been changed for 150 generations. In

the Tabu, each local search ends when the threshold number ofshort hops is met, or thei

for-loop is finished.

In Fig 4.10, we show the performance of different approaches, in terms of total ex-

ecution time. TheList SLCalways has the lowest total execution time, whileList MLC
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Table 4.1: Details of the target CMP system

System

8-core CMP, 4GHz
3 GB morphable PCM memory (MLC/SLC)

1 GB DRAM memory
120 GB SSD

Memory / SSD write

DRAM: 55 ns
PCM SLC: 300 ns

PCM 2 bits/cell MLC: 600 ns
PCM 4 bits/cell MLC: 1200 ns

SSD (NAND-SLC): 200�s

Memory / SSD read

DRAM: 55 ns
PCM SLC: 80 ns

PCM 2 bits/cell MLC: 160 ns
PCM 4 bits/cell MLC: 320 ns

SSD (NAND-SLC): 25�s

Table 4.2: Table of Abbreviations

Abbreviation Description

List SLC
The list-scheduling and the DRAM +

uniform SLC PCM configuration

List 2 MLC
The list-scheduling and the DRAM +

uniform 2 bit/cells MLC PCM configuration

List 4 MLC
The list-scheduling and the DRAM +

uniform 4 bit/cells MLC PCM configuration
Heuristic The hybrid memory task scheduling heuristic

GA The genetic algorithm
SA The stimulated annealing algorithm

Tabu The Tabu algorithm

has the highest total execution time. Our proposed genetic-based algorithm has the second

best performance in terms of total execution time. Since thememory access time is much

longer than the task execution time,List SLChas the fastest speed due to the fact that it

always uses the shortest access time mode. TheList 4 MLChas the worst performance in

terms of total execution time, since it always has the longest memory access time in the

4 bits/cell MLC mode. Our genetic-based algorithm reduces the total execution time by

24.5%, 101%, 10.4%, 44.0%, and 61.1%, compared to the total execution times ofList 2
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Figure 4.10: Normalized total execution times of ten groupsof applications. All executions
times are normalized with that of theList SLC.

MLC, List 4 MLC, Heuristicrespectively.

Figure 4.11: Peak memory capacity usages of ten groups of applications. The pre-defined
maximum PCM memory capacity is 4 GB.

Even thoughList SLChas the fastest speed, it cannot guarantee the satisfactionof the

memory capacity constraint. In our simulation, we set the size of memory as 4 GB, which

is a large memory in the embedded system. For every one group of applications, as shown

in Fig 4.11, ”List SLC” needs more than 4 GB memory space, exceeding from 13% to 70%.
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List 4 MLC does not exceed the maximum memory capacity in all ten groups. Heuristic

cannot guarantee that the memory capacity constraint is met. It exceeds the limit in two

out of ten benchmark groups. Since we set the definition of a valid chromosome as the one

without exceeding the pre-defined maximum hybird memory capacity, our three algorithms

all have less than 4 GB peak memory usage in all ten groups. TheGA achieves 76.8% and

2% average reduction of peak memory, compared toList SLCandHeuristic.

In addition, we compare the average memory usages of different algorithms, as shown

in Fig 4.12. SinceList 4 MLC always uses the high-density mode, the average usage is

from 0.53 GB to 1.1 GB, averaging 19.8% of memory capacity.Heuristicuses 41.3% of

memory capacity on average. The average memory usage of our genetic-based algorithm is

from 1.6 GB to 1.96 GB, averaging 46% of memory capacity. The average memory usage

of SAis from 1.1 GB to 2.2 GB, averaging 35% of the memory capacity. And theTabuis

from 0.9 GB to 1.8 GB, averaging 29.5%. Thus our genetic-basedalgorithm is 12.2% more

efficient thanHeuristic, 31.4% thanSA, 58.6% thanTabu, and 155.6% thanList 4 MLC.

Figure 4.12: Average memory capacity usages of ten groups ofapplications.

To test the performance of our proposed algorithms, we compare them with the DRAM

+ uniform PCM mode list scheduling as well as the heuristic, indifferent settings of the
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memory capacities. In this comparison, we set the hybrid memory capacity from 8 GB

to 128 MB, where the ratio of PCM/DRAM is 3:1, as shown in Table 4.3. The memory

capacity constraint has the most severe impact on theList SLC. Even in the largest memory

capacity setting (i.e., 8 GB), the solution from this algorithm exceeds the memory capacity

in one out of ten benchmark groups. TheList 2 MLC is slightly better than theList SLC.

However, it still fails in any benchmark group in memory capacity settings smaller than

4 GB. TheList 4 MLC and the heuristic have similar performance in memory capacity

settings smaller than 4 GB.The reason is that as the capacity setting gets smaller, pages of

some single tasks require larger portions of memory. Thus, the PCM utilization estimator

in the heuristic is more likely to have a value larger than 75%, resulting in more pages

are stored in the DRAM + 4 bits/cell MLC mode PCM. As we set the accepting criteria

as satisfying the memory capacity constraint, our three iterative algorithms successfully

finds the solution that meets this constraint, in capacity settings larger than 512 MB. Our

genetic-based algorithm can even successfully schedule in512MB and 256MB. In the 128

MB setting, even the solution that sequentially executes tasks in single core and stores

pages in the 4 bits/cell MLC mode, exceeds the capacity constraint. In the 8 GB, 4 GB,

and 2 GB settings, theList 4 MLC, the heuristic, and our genetic-based algorithm can

generate solutions meeting the capacity constraint in mostbenchmark groups. However,

our genetic-based algorithm has the highest average memoryusage, which is 37.2% higher

than that of theList 4 MLC, 23.8% higher than theHeuristic, 18.9% higher than theTabu,

11.9% higher than that of theSA, in the 8 GB setting. It means that our genetic-based

algorithm generates solutions that utilize the hybrid memory more efficiently.

4.7 Conclusions

We present four optimization algorithms for embedded CMP systems equipped with the

MLC/SLC PCM + DRAM hybrid memory. In our proposed algorithms, wenot only sched-

ule and assign tasks to cores in the CMP system, but also provide a memory configuration
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Table 4.3: Comparisons of algorithms in different hybrid memory capacity settings. The
“E #” columns represents numbers of solutions that exceed the hybrid memory capacity
constraint. The “U %” columns indicate the average memory usage, normalized by the
memory capacity. It is an average value over solutions for 10benchmark groups. In the
hybrid memory, the ratio of PCM/DRAM is 3:1.

Hybrid memory List SLC List 2 MLC List 4 MLC Heuristic GA SA Tabu
capacity E # U % E # U % E # U % E # U % E # U % E # U % E # U %

8 GB 1 37.95 0 19.25 0 9.11 0 42.21 0 52.71 0 46.47 0 43.75
4 GB 10 75.9 1 38.5 0 18.23 1 38.02 0 46.17 0 28.11 0 38.25
2 GB 10 151.8 10 77 1 36.45 1 51.69 0 55.97 0 43.73 0 64.02
1 GB 10 303.6 10 154 3 72.9 5 88.72 0 62.87 0 75.68 0 79.84

512 MB 10 607.2 10 308 5 145.8 8 141.71 0 58.64 2 68.16 3 86.75
256 MB 10 1214.4 10 616 10 291.6 10 308.96 0 52.19 5 126.82 7 230.63
128 MB 10 2428.8 10 1232 10 583.2 10 589.19 10 131.87 10 259.76 10 315.58

that balances the hybrid memory performance as well as the efficiency. Our experiments

show that our genetic-based algorithm generates the best solutions. It significantly reduces

the maximum memory usage by 76.8%, compared to the DRAM+ uniform SLC configu-

ration, and improves the efficiency of memory usage by 155.6%, compared to the DRAM

+ uniform 4 bits/cell MLC configuration. In addition, the performance of the system, in

terms of total execution, is also improved by 101%, comparedto the uniform 4 bits/cell

MLC configuration.

Copyrightc⃝ Jiayin Li, 2012.
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Chapter 5 Battery-Aware Task Scheduling in Embedded Systems

A distributed mobile DSP system consists of a group of mobiledevices with different

computing powers. These devices are connected by wireless network. Parallel processing

in the distributed mobile DSP system can provide high computing performance. Due to the

fact that most of mobile devices are battery based, the lifetime of the mobile DSP system

depends on both the battery behavior and the energy consumption characteristics of tasks.

In this chapter, we present a systematic system model for task scheduling in mobile DSP

system equipped with Dynamic Voltage Scaling (DVS) processors and energy harvesting

techniques. We propose a set of three-phase algorithms to obtain task schedules giving

shorter total execution time while satisfying the lifetimeconstraints. The simulations with

randomly generateddirected acyclic graphs(DAG) show that our proposed algorithms

generate optimal schedules which can satisfy lifetime constraints.

5.1 Introduction

The mobile computing system, which is an embedded system, has recently received tremen-

dous attention. The interest is growing due to the benefits mobile computing brings and

large number of unexplored applications. However, when applying in digital signal pro-

cessing(DSP) area, mobile computing faces challenges which limit their usability. One

of the most notable is the energy limit. Mobile devices usually are equipped with batter-

ies. Some of them may also apply energy harvesting techniques, for example, solar cells.

But in the recent two decades, the increase of processor speedis much bigger than the in-

crease of energy density of battery. In the battery based mobile system, the loss of some

mobile devices may have great impacts on the system performance. It not only leads to

the loss of computation power, but also causes significant overhead of network topolog-

ical re-organization. Therefore, energy consumption is important for the mobile system
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application. Another limit is the computation power. Many DSP applications require con-

siderable computation demands. Parallel processing in mobile computing system can be a

solution to intensive computation requirement.

Some problems need to be solved when we apply parallel processing in mobile DSP

systems: 1) how to assign tasks to the devices; 2) in what order the devices should execute

the tasks assigned to them; and 3) how to schedule communication among the network.

Task scheduling can solve these three problems. Task scheduling has been studied in high

performance computing [107, 108]. However, a useful scheduling algorithm strongly de-

pends on the accuracy of the model it based on. Applying task scheduling in distributed

mobile DSP system, we need to develop a model for this kind of systems. Besides, task

scheduling in mobile computing system should subject to some limitations, for instance,

power consumption, lifetime requirement and so on.

The two major contributions of this chapter are:

∙ We present a complete model for task scheduling in distributed mobile DSP system,

which includes application model, system model as well as energy model.

∙ We propose three-phase scheduling algorithms for scheduling tasks. They can gen-

erate schedules with shorter total execution time than thatof traditional greedy algo-

rithms while subject to the battery lifetime constraint.

In section 5.2, we discuss works related to this topic. In section 5.3, models for task

scheduling in distributed mobile DSP system are presented.A motivational example is

given in section 5.4. We propose our algorithms in section 5.5, followed by experimental

results in section 5.6. Finally, we give the conclusion in section 5.7.

5.2 Related work

Task scheduling in mobile multiprocessors has been studiedin the literature recently. Re-

searches in [22, 23] focused on heterogeneous mobile ad hoc grid environments. Authors
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in those works studied the static resource allocation for the application composed of com-

municating subtasks in an ad hoc grid. However, the goal of the allocation in those works

is to minimize the average percentage of energy consumed by the application to execute

across the machines, while meeting an application execution time constraint. This goal

may lead to some cases in which some machines may consume muchmore energy than the

others, even though the average consumption is minimized. So the approaches proposed

in those works cannot guarantee satisfaction of the lifetime constraint in mobile DSP sys-

tem. Authors in [109] proposed an energy-aware task scheduling mechanism, EcoMapS.

EcoMapS incorporates channel modeling, concurrent task mapping as well as communi-

cation and computation scheduling. The scheduling algorithm in EcoMaps is based on

list-scheduling, which is similar to our approach. But the WSNconcerned in EcoMapS is

homogenous sensor network, which means that the proposed mechanism cannot be used

in the heterogeneous systems. The proposed scheduling mechanism does not consider the

lifetime constraint either. In [110], the authors proposeda method of predicting the execu-

tion time of tasks based on statistics gathered from the previous instances of the same task.

Authors in [24] proposed two task scheduling algorithms forembedded system with het-

erogeneous functional units. One of them is optimal and another is near-optimal heuristic.

The task execution time information was stochastically modeled.

Weiser et al. first discussed the problem of task scheduling to reduce the processor

energy consumption in [18]. An off-line scheduling algorithm for task scheduling with

variable processor speed was proposed in [19]. But the tasks considered in this research

are independent tasks. Authors in [20] proposed several schemes to dynamically adjust

processor speed with slack reclamation based on DVS technique. A scheme for processor

speed management at branches was presented in [21] based on the ratio of the longest path

to the taken paths for the branch statement to the end of the program. Chandrakasan et al.

showed that few voltage/speed levels can achieve almost thesame energy saving as infinite

levels for periodic tasks in [111]. [112] also proposed several scheduling algorithms for
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periodic task. But the researches above only consider the uniprocessor system. An analyt-

ical expression to determine the optimal supply voltage under a given clock frequency was

presented in [113]. In [114,115], power constrained resource management in DVS-enable

heterogeneous multiprocessors is studied. Dynamic power management in [114] used the

static slack based on the degree of parallelism in the schedule. Any idle period of the pro-

cessors is explored by the dynamic management. Yu et al. studied the static allocation of

independent tasks in a heterogeneous system with DVS enabled in [115]. They proposed

a LR-heuristic for this assignment problem. They also provided the upper bound analy-

sis. In [116, 117], the voltage selection problem was formulated as integer programming

problem. A slack allocation scheme was employed based on a conditional task graphs and

resource constraints in [118]. In [25], the authors proposed a loop scheduling algorithm

for voltage assignment problem in embedded system. Researchin [26] focused on mod-

eling task execution time as a probabilistic random variable. Two optimal algorithms, one

for uniprocessor and one for multiprocessor DSP system, were presented to solve the volt-

age assignment with probability problem. The goal of these algorithms is to minimize the

expected total energy consumption while satisfying the timing constraint.

Experiment conducted by Rakhmatov and Vrudhula [119] showedthat the energy dissi-

pated in the device is not equivalent to the energy consumed from a battery. When discharg-

ing, the energy consumed in battery is more than needed. In idle time, the over-consumed

energy is recovered. Several analytical models on battery discharging behavior have been

developed recently [119–121]. In [120], Panigrahi provided a model based on a nega-

tive exponential function. The discharging and recovery were represented as a transient

stochastic process. Rakhmatov and Vrudhula [119] proposed an analytical battery model

based on one-dimensional model of diffusion in a finite region. However, these two models

are not suitable for task scheduling in mobile DSP system dueto their high computational

complexity. Ma presented an online computable battery model in [121]. The relatively low

computational complexity makes it suitable for task scheduling.
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5.3 Model and Background

Table 5.1: Symbols and acronyms used in Chapter 5

Name Description
DAG Directed Acyclic Graphs
vi The vertex representing the taski in a DAG
eij The edge connecting the verticesvi andvj

W (eij) The weight of the edgeeij
Ti c(i) The initial communication time of the taski
Texe(i) The execution time of the taski
Tres(i) The time of sending the result data of taski back to the manager node
D(i) The device executing the taski in a given schedule
BWd The network bandwidth of deviced
SPij The speed of devicej executing taski
Mp(i) The size of processing data of the taski
Mr(i) The size of result data of the taski
�i Theith power-on period in the battery behavior model
�i Theith power-off period in the battery behavior model
ti The beginning time of period�i
T The entire lifetime of the battery when used in greedy mode
Δ� The dissipated energy
� A constant in battery behavior model

�i(t) The residual discharging loss at time t in period�i
Ej The initial capacity of the battery in the devicej

CURij The discharge current of the devicej when running the taski
CUR Tj The discharge current of the devicej when communicating with others

Clt The lifetime constraint
EST The earliest start time of a task in a DAG
LST The latest start time of a task in a DAG
CN The critical node in a DAG
DAT The device available time
TAT The task available time

LPFT The latest predecessor-finish time
ESST The earliest successor-start time
BITS The backward independent task set
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Application model

In this chapter, we use theDirected Acyclic Graphs(DAG) to represent the DSP applica-

tions. A DAGT = (V,E) consists of a set of verticesV , each of which represents a task in

the application, and a set of edgesE, showing the dependencies among the tasks. The edge

setE contains edgeseij for each taskvi ∈ V that taskvj ∈ V depends on. The weight of

a vertexvi represents the task type of the taski. Also the weight of an edgeeij means the

size of data which is produced byvi and required byvj. For the convenience of the reader,

we list the symbols and the acronyms used in the rest of this chapter in Table 5.1.

Given an edgeeij, vi is the immediate predecessor ofvj, andvj is called the immediate

successor ofvi. A task only starts after all its immediate predecessors finish. Tasks with no

immediate predecessor are entry-tasks, and tasks without immediate successors are exit-

tasks.

System model

In this study, we assume that a number of mobile devices are deployed in a certain area

of space. All these devices and an extra task manager node areconnected by a wireless

network. The task manager node assigns tasks to the mobile devices and monitors the

executions of those tasks. Different mobile devices have various computation power and

characteristics. The network bandwidths are also different from device to device. The

following assumptions are made:

∙ A device can compute and communicate with others simultaneously.

∙ Data communications are point to point. Routing is beyond thescope of this chap-

ter. A device can only communicate with one other device at a time. The energy

consumption during communication cannot be ignored.

Here is an example of how the system assigns, executes tasks and collects the result.

First of all, the task manager node assigns taski to a deviced. Meanwhile, the devices
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where the immediate predecessors ofi are executed send the required data to the deviced.

This initial communication timeTi c can be computed as follow:

Ti c(i) =
∑

k∈pred(i)

W (eki)

BWD(k),d

(5.1)

D(k) is the device which runs the taskk, BWD(k),d is the network bandwidth between

D(k) andd, i.e., the smaller bandwidth of these two devices.W (eki) means the size of

data which is required byi and produced byk. Only when the predecessor task and the

current task are executed on the same device, the communication is not required because of

the already existing data. Once deviced receives all the predecessors result data, it begins

the execution of the task. The execution timeTexe depends on the speed of executing task

i on the deviced, SPid, and the size of the processing dataMp(i):

Texe(i) = SPid ×Mp(i). (5.2)

After computing the result data, device sends its result back to the task manager node

if the current task is the exit-task. The time of sending the result to task manager node

Tresult ideally should be proportional to the product of the size of result dataMr(i) and the

network bandwidth of the assigned deviced BWd:

Tres(i) =
Mr(i)

BWd

. (5.3)

When a non-exit-task is done, the device will communicate with device which needs data

from it and start the procedure of the next task assigned to it.

Battery behavior

Nickel-cadmium and lithium-ion batteries are the most commonly used batteries in mo-

bile devices. These kinds of batteries consist of an anode and a cathode, separated by an

electrolyte. When a battery is connected to a load, a reduction-oxidation reaction transfers

electrons from the anode to the cathode. Active species are consumed at the electrode sur-

face and replenished by diffusion from the bulk of the electrolyte. However this diffusion
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process cannot keep up with the consumption. A concentration gradient builds up across

the electrolyte. When this concentration falls, the batteryvoltage drops. When the voltage

is below a certain cutoff threshold, the electrochemical reaction cannot be sustained at the

electrode surface anymore, so the battery stops working. Butin fact, the active species

which has not yet reached the electrode are not used. This unused charge is called dis-

charging loss. Discharging loss is not physically lost but simply unavailable. If the battery

current is reduced to a low value or even zero before the battery stops working, the con-

centration gradient flattens out after a sufficiently long time. The remaining active species

reach the electrode again. Then the discharging loss is available for extraction. This pro-

cedure is called the battery recovery [121]. Experiments show that this discharging loss

might take up to 30% of the total battery capacity [121].

Precise battery behavior model is essential for optimizingsystem performance. The

battery behavior model used in this chapter is based on Ma’s approach [121]. Consider the

scenario where a battery is turned on for�i time, and turned off for�i time (i = 1, 2, . . .).

This on-off period is repeated until the battery dies. We assume that the discharging current

of the battery in epoch�i is Ii, and the beginning time of this epoch isti. The energy

dissipated by the battery in epoch�i is:

Δ� = Ii × �i + 2Ii ×
∞∑

m=1

[
e−�2m2(T−(ti+�i)) − e−�2m2(T−ti)

�2m2
] (5.4)

The model is interpreted as follows. The first term in the right-hand side of (5.4) is

simply the energy consumption during the epoch�i. And the second term is the discharging

loss during the�i epoch. T is the entire lifetime of the battery when the battery is on until

it dies (greedy mode).� is a positive constant, which is determined in experiment and

may vary from battery to battery. An idle period�i follows the epoch�i. The battery is

turned off when the device has finished the current task and iswaiting for the next task.

The residual discharging loss when it ist time after epoch�i can be computed as:

�i(t) = 2Ii ×
∞∑

m=1

[
e−�2m2(T+t−(ti+�i)) − e−�2m2(T+t−ti)

�2m2
] (5.5)
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�i(0) equals to the discharging loss of�i. Note that this residual discharging loss is just a

potential energy in the sense that it only makes sense when the battery is alive. Once the

battery dies, this residual energy will not be recovered. When the battery is alive during

the�i period, the energy recovered at the end of the�i period is:

Δ�r(�i) = �i(0)− �i(�i) (5.6)

Energy model

Energy harvesting

In mobile computing, the CPU speed increases exponentially from 90s. However, the in-

crease of energy density in battery is much smaller than the increase of CPU speed [122].

Energy consumption becomes one of the bottlenecks of the mobile computing. New tech-

nologies such as micro fuel cells can recharge handheld devices with power plants the size

of candy bar. But these technologies are only powerful enoughfor devices with low energy

consumption, such as the wireless sensor nodes [122]. Laptop-sized handheld devices are

too big to be powered by this kind of microcells. Meanwhile, energy harvesting is another

approach to solve this problem. In energy harvesting, many different techniques can trans-

fer various kinds of ambient energy to power electronics. Some common techniques in-

clude using background radio signals as power reservoir, broadcasting RF energy to power

remote devices, collecting energy from ambient light or heat, and harvesting energy from

vibrational excitation. Table 5.2 shows performances of various energy harvesting oppor-

tunities.

In this chapter, we assume that every mobile device in the system is equipped with a

rechargeable battery connected to an energy harvester. We also assume there are three types

of energy harvesters: “fast”, like the solar cell directed toward bright sun; “slow”, like the

RF energy broadcasting; and “disable”, i.e., no energy harvesting. Table. 5.3 shows the

details of energy harvesters.
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Table 5.2: Harvesting performance of various energy sources

Energy source Performance
Background radio signals less than 1�W/cm2 [123]

RF energy 1 to 100�W [122]

Ambient light
100 mW/cm2(under bright sun)

100�W/cm2(illuminated room) [122]
Ambient heat 60�W/cm2 [124]

Vibrational excitation 800�W/cm2(machines-kHz) [125]

Table 5.3: Harvesting power and recharge current from fast and slow harvesters

Harvesting Power Recharge current (voltage = 1.2v)
Fast 500 mW 416.7mA
Slow 10 mW 8.3mA

Dynamic voltage scaling modes and lifetime constraint

We consider the distributed mobile DSP system in which the mobile devices are equipped

with Dynamic Voltage Scaling (DVS) processors. In order to reduce the energy consump-

tion, DVS technique jointly decreases the processor speed and the supply voltage. Research

in [43] shows that the decrease in processor voltage causes nearly linear increase in exe-

cution time and approximately quadratic decrease in energyconsumption. Without loss of

generality, we assume that each processor has three DVS modes, denoted asL1, L2, L3.

The supply voltage ofLi is half of the supply voltage ofLi−1. Table 5.4 shows the rela-

tionships among the DVS modes when taski is executed by devicej.

Table 5.4: Parameters in DVS modes

DVS mode Supply voltages Processor speedsBattery discharge current
L1 Uj SPij CURij

L2 50%×Uj 66%×SPij 50%×CURij

L3 25%×Uj 57%×SPij 25%×CURij

Devices in the mobile DSP system are powered by batteries. Asdiscussed above, some

of these batteries can re-gain energy from the harvesting techniques. Some definitions used
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in the rest of the chapter are given as follow.Ej is the maximum and initial capacity of

the battery in devicej. CURij is the discharge current of devicej when running taski.

When devicej is transmitting data, the discharge current isCUR Tj. When the remaining

energy of a battery is lower than a threshold value (we assumeit is 5% of the maximum

capacity), device cannot finish the rest assigned tasks if the discharge current is larger than

the harvesting current. We say the device dies at that point of time. Given a task schedule,

we can calculate the energy consumption and the dead time of the devices with equation

(5.4), (5.6) as well as the recharge current of their energy harvesters. The lifetime of the

whole system is the time when the earliest device dies.

In this chapter, the objective of our schedule method is to minimize the total execution

time of tasks when the system lifetime is larger than a pre-determined lifetime constraint

Clt. Note that if all the devices can finish the assigned tasks, weset the lifetime of the

whole system as infinite.

5.4 Motivational Example

Example of application and mobile system

First we give an example for task scheduling in distributed mobile DSP system. In this

chapter, we assume that applications have already been preprocessed. We already know

how tasks in the applications are represented in the form of DAG. For example, a DAG of

an application is shown in Figure 5.1(a).

In Figure 5.1(a), there are 7 different tasks, each of which has a weight value indicating

the type of that task. For example, the task A is a task of type 0. There are 4 different

types of tasks in our example. The weights of edges mean the sizes of required data for the

successors. The weight 10 of the edge between task A and B means that the size of data

which are required by B and generated by A is 10. More details of tasks in our example

are provided in Figure. 5.1(b). Also, we assume that there are 2 mobile devices in our

example. Figure. 5.1(d) shows the characteristics of the devices. As discussed previously
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Type Size of task data Size of result data 

0 20 10 

1 40 30 

2 80 20 

3 60 15 

D0 D1 Type of 

task speed current speed Current

0 20 20 35 25 

1 10 100 20 30 

2 40 40 15 55 

3 30 20 25 60 

Devices Bandwidth Current when 

communication 

Mode of energy 

harvesting 

Battery capacity Lifetime 

constraint 

D0 1 100 slow 100000 4500 

D1 2 150 disable 200000 4500 

0

2

3 2

1

0

2
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20 10
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10

(b)

(c)

(d)

Figure 5.1: An example of application and mobile system. (a)a DAG, (b) data sizes of
task types, (c) heterogeneous characteristics of mobile devices and (d) details of two mobile
devices.

in this chapter, when running a task, different devices havedifferent speeds and require

different energy consumptions (in the form of current). We show the differences in Figure.

5.1(c).

Table 5.5: EST and LST of tasks in the DAG

Task A B C D E F G
EST 0 550 550 2750 2750 1150 4950
LST 0 550 3800 2750 2750 4400 4950
CN yes yes no yes yes no yes

Based the list-scheduling algorithm (discussed in section 5.5), we compute the EST and

the LST of each task in the DAG, shown in Table. 5.5. A prioritytask list of the example

DAG is generated as [A, B, D, E, C, F, G]. Then we select tasks fromthe top of the list to

bottom and assign them to devices which can finish them at the earliest time. A schedule

generated by list-scheduling is shown in Figure. 5.2. Usingequation (5.4), (5.6) as well
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as the energy harvesting currents, we can calculate the lifetimes of these two devices. We

find out that at time 4037 (mins), the battery of device D1 dies. In this case, device D1

cannot satisfy the lifetime constraint (4500). Also the whole application is not executed

completely.

D0

Communication

Computation

D1

Communication

Computation

A C F

A >B

A >B

F > G

F > G

B D E G

0 400 800 1200

400 410 1200 1215

400 410 1200 1215

410 1610 3110 4310 53104037

Out of battery

Time

Time

Time

Time

D result G result

3110 3118 5310 5320

Figure 5.2: A schedule generated by list-scheduling.

Our solution

Figure 5.3: A modified schedule.
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Since the list-scheduling does not consider the energy consumptions and the batteries’

lifetimes, tasks are likely assigned to some machines whichare generally faster and con-

sume more energy. In our example, the schedule generated by list-scheduling assigns more

tasks in device D1 than in device D0. While the D1 is out of battery, the battery of D0

still has 514205 (mAmin) left. So in this case, a proper way tofind a schedule which satis-

fies the lifetime constraint is moving some tasks in the constraint-violating devices to some

other devices with redundant energy. In our example, we movethe most energy-consuming

task in the device D1, the task D, to the device D0, shown as in Figure. 5.3. After calcu-

lating the energy consumptions and the lifetimes of these two devices, we find out that in

this new schedule both two devices can finish their tasks without running out of batteries,

which means the lifetime constraint is met. What’s more, the total execution time in this

schedule is surprisingly shorter than the one in the original schedule. The former is 4040

mins and the latter is 5320 mins (without considering the batteries’ lifetimes). Since in this

new schedule, the devices are able to finish all tasks in theirfull speeds, DVS adjustment

is not needed in this cast. In the case where re-assignment still cannot find the suitable

schedule, DVS adjustment may generate a schedule meeting the lifetime constraints.

In the next section, we will discuss our three-phase algorithms which deeply explore

the solution space to find the optimal meeting the lifetime constraints.

5.5 Three-phase constraint-aware algorithm

In our proposed algorithm, a baseline algorithm generates an initial schedule without con-

sidering energy consumption and lifetime constraint. Thena re-scheduling algorithm ad-

justs the schedule so that the lifetime constraints are met.This re-scheduling algorithm

jointly considers both re-assigning task-device pairs andswitching of DVS mode of the

device. Finally, in the phase three, we further explore the solution space and find a better

schedule satisfying the lifetime constraint.
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Phase I: Baseline scheduling

In phase I, we try to find a simple baseline schedule without considering the constraint. The

greedy algorithms can solve this problem with low computational complexity. We use two

kinds of baseline greedy algorithms in this chapter: list-scheduling and Min-Min algorithm.

Two definitions used in rest of this section are provided as follow. Device available time

(DAT) is the time when the device finishes all the tasks which are previously assigned to

this device.Task available time(TAT) is the time when all the predecessors of this task are

finished. These two definitions are based on the scheduling decisions made in the previous

steps of the algorithm.

list-scheduling

The list scheduling used in phase I is similar to CPNT [108]. Some definitions used in

listing the task are provided as follow. Theearliest start time(EST) and thelatest start time

(LST) of a task are shown as in (5.7) and (5.8).The entry-tasks have EST equals to 0. And

the LST of the exit-tasks equal to their EST.

EST (i) = max
m∈pred(i)

{EST (m) + AT (m)} (5.7)

LST (i) = min
m∈succ(i)

{LST (m)} − AT (i) (5.8)

CPNT in [108] targets homogeneous system. The system concerned in this chapter is

heterogeneous. The execution times of a task on different devices are not the same.AT (i)

is the average execution time of taski. The critical node (CN) is a set of vertices in the

DAG of which EST and LST are equal. Algorithm 5.1 shows a function forming a task list

based on the priorities.

Once the list of task is formed, we can assign tasks to devicesin the order of this list.

The task on the top of the list is assigned to the device which can finish it at the earliest
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Algorithm 5.1 Forming a task list based on the priorities
Input: A DAG, Average execution timeAT of every task in the DAG
Output: A list of tasksP based on priorities.

1: Calculate the EST of every task.
2: Calculate the LST of every task.
3: Empty listP and stackS, and pull all tasks in the list of taskU
4: Push the CN task into stackS in the decreasing order of their LST, and remove them

from U
5: while The stackS is not emptydo
6: if top(S) has immediate predecessors inU then
7: S ←the immediate predecessor with least LST
8: Remove this immediate predecessor fromU
9: else

10: P ← top(S)
11: Poptop(S)
12: end if
13: end while

time. Then this task is removed from the list. The procedure repeats until the list is empty.

A schedule is obtained after this assigning procedure whichis shown in Algorithm 5.2.

Algorithm 5.2 The assigning procedure
Input: A priority-based list of tasksP , m different devices,SPdevice matrix
Output: A schedule generated by list-scheduling.

1: while The listP is not emptydo
2: T = top(P )
3: Find the deviceDmin giving the earliest finish time of T
4: Assign task T to deviceDmin

5: Remove T fromP
6: Update DAT of deviceDmin and TAT of successors of T
7: end while

Min-Min algorithm

Min-Min is another popular algorithm [44]. The original Min-Min algorithm does not

consider the dependencies among tasks. So in the Min-Min baseline algorithm used in

this chapter, we need to update the mappable task set in everystep to maintain the task

dependencies. Tasks in the mappable task set are the tasks ofwhich all the predecessor

tasks are finished. Algorithm 5.3 shows the pseudo codes of the Min-Min algorithm.
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Algorithm 5.3 Min-Min algorithm
Input: A set of tasks,m different devices,SPdevice matrix
Output: A schedule generated by Min-Min.

1: Form a mappable task setP
2: while SetP is not emptydo
3: for i: taski ∈ P do
4: Find the deviceDmin(i) giving the earliest finish time ofi
5: end for
6: Find the pair(k,Dmin(k)) with the earliest finish time among the task-device pairs

generated in for-loop
7: Assign taskk to deviceDmin(k)
8: Removek from P
9: Update the mappable task setP , DAT of deviceDmin(k) and TAT of successors of

k
10: end while

Phase II: constraint-aware rescheduling

To satisfy the lifetime constraint, we need to conduct a re-scheduling if the schedule ob-

tained in the previous phase violates the lifetime constraint. First of all, we examine the

battery lifetimes of all devices. Devices violating the lifetime constraint, which are called

urgent devices, will be pushed into a list. This phase II approach includes three part: DVS

adjusting, task re-assigning and execution re-ordering. Some definitions are used in fol-

lows. Given a schedule, the latest predecessor-finish time of a taski LPFT(i) is the latest

time when all its predecessors are finished and have all the required data sent to the device

executingi. LPFT(i) is the earliest start time ofi without violating the task dependencies.

The earliest successor-start time of a taski ESST(i) is the earliest time when any of its

successors is scheduled to start the data communication with i. The execution zone ofi is

the time between LPET(i) and ESST(i). Obviously, as long asi starts and completes in its

execution zone, no matter how long the execution time is, thetask dependencies are hold

and the successor tasks ofvi are not delayed. A target task is the task to be re-scheduled.

A target device is the device to which the target task is re-assigned.

The DVS adjusting in Phase II try to reduce the energy consumption while maintain the

original baseline schedule. In order to avoid any impacts onthe executions of other tasks,
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we change the DVS mode of the device so that the device is stillable to complete the target

task in the task’s execution zone. Algorithm 5.4 shows the function of DVS adjusting.

Algorithm 5.4 DVS(S,CS,Du), a function of adjusting the DVS modes
Input: A scheduleS, battery lifetime constraintCS, an urgent deviceDu.
Output: A DVS adjusted schedule

1: Generate a list of tasksU in the order of decreasing energy consumption. These tasks
was assigned toDu in the original schedule.

2: while U is not empty and deviceDu violates the lifetime constraintdo
3: T = top(U )
4: if T can be finished in its execution zone assuming DVS mode ofDu is set toL3

then
5: Set DVS mode ofDu asL3 when running T
6: else ifT can be finished in its execution zone assuming DVS mode ofDu is set to

L2 then
7: Set DVS mode ofDu asL2 when running T
8: else
9: Keep original DVS mode

10: end if
11: Compute the lifetime of deviceDu.
12: end while

If the DVS adjusting cannot provide a new schedule satisfying the lifetime constraints,

the task re-assigning will reassign tasks in urgent device to another device (target device).

Several criteria are used to determine target devices for a given target task:

1. Target device should not be the urgent device.

2. Target device should be idle in the execution zone of the target task.

3. The devices with predecessors and/or successors of the target task are preferred.

The idea behind 2) is that when re-assigning the target task to a device which is idle in

the execution zone, the successors of target task and the following tasks in the task list of

target device won’t be delay. So the total finish time of this device is the same as the original

one. When choosing the target device in 3), the total finishingtime may be shorter, due to

the fewer data to communicate. So when we fill the target devices set, we first choose the

devices satisfying all three conditions. Then we select theones satisfying condition 1) and
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one of the other two. Last we choose the non-urgent devices. The urgent devices can not

be the target devices. A Function of re-assigning a given target task is shown in Algorithm

5.5.

Algorithm 5.5 reassign(S,CS,Du), A Function of reassigning tasks from an urgent device
to other device
Input: A scheduleS, battery lifetime constraintCS, an urgent deviceDu.
Output: A reassigning schedule

1: Generate a list of tasksU in the order of decreasing energy consumption. These tasks
was assigned toDu in the original schedule.

2: while U is not empty and deviceDu violates the lifetime constraintdo
3: T = top(U )
4: Find a set of target devicesP of T
5: while P is not emptydo
6: Stemp = reassign T to top(P )
7: Add Stemp into SS, SS is a set of schedules.
8: Remove top(P ) from P
9: end while

10: Find the best scheduleSbest in SS which has the longest system lifetime.
11: S = Sbest

12: Remove T fromU
13: EmptySS
14: end while

If the urgent device still violate the lifetime constraintsafter reassigning, we will re-

order the task execution orders. Let’s assume when deviced is running taskvk, the battery

runs out of the energy. This deviced will either complete taskvk with the energy from

harvester if the recharge current from harvester is larger thanCURkd, or just stop if the

recharge current is not large enough.

In the latter case, as discussed in section 5.3, this device dies. However, if there is some

tasks satisfying conditions listed below, we can re-order the execution order as shown in

Algorithm 5.6, so that deviced can execute these tasks beforevk. In this way, we can

further prolong the lifetime of deviced. The whole re-scheduling algorithm is provided as

Algorithm 5.7.

1. The tasks are assigned the same machine as taskvk. And they are scheduled to run
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Algorithm 5.6 re-order(S,Du), a function of re-ordering the execution order in the urgent
device
Input: A baseline scheduleS, an urgent deviceDu

Output: A re-ordering schedule
1: Find the taskT which deviceDu is executing when it dies.
2: In the task list of deviceDu, find tasks which satisfy the conditions of re-ordering and

push them in a set of taskU
3: Move all the tasks inU beforeT in the execution order.
4: Update scheduleS

Algorithm 5.7 The constraint-aware rescheduling procedure
Input: A baseline scheduleS, battery lifetime constraintCS
Output: A schedule generated by The constraint-aware rescheduling.

1: A list of urgent DevicesU is generated.
2: while The listU is not emptydo
3: Du = top(U )
4: DVS(S,CS,Du)
5: if Du violates the constraintCS then
6: Reassign(S,CS,Du)
7: end if
8: if Du still violates the constraintCS then
9: Re-order(S,Du)

10: end if
11: end while

after taskvk in the original schedule.

2. The tasks are independent with taskvk.

3. The tasks are ready to run at the time when taskvk is scheduled to start.

4. The discharge currents of deviced running these tasks are lower than the recharge

current from harvester.

Phase III: Push-Pull algorithm

In most of the cases, the schedules generated in Phase two have longer total execution

times than the baseline schedules do. So, we try to find a better schedule satisfying the

lifetime constraint based on the schedule we get in phase II.We implement the Push-pull

algorithm [126] in this phase III. The Push-pull algorithm is an iterative algorithm as shown
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in Algorithm 5.8. It improves the schedule by repeating the push operation and the pull

operation.

Algorithm 5.8 The push-pull algorithm
Input: A baseline scheduleS generated in phase II, battery lifetime constraintCS
Output: A schedule generated by The push-pull algorithm.

1: count = 0
2: while count less than 500 AND improvements exist in last 5 iteration do
3: count++
4: Spusℎ = PUSH(S,CS)
5: Spull = PULL(S,CS)
6: S = the one with the shortest total execution time amongS, Spusℎ andSpull

7: end while

Two definitions are used in the Push-pull algorithm. The critical tasks path is a path of

tasks which has the biggest impact on the total execution time in a given schedule. We can

find the critical tasks path by traversing the DAG. Among the exit-tasks, the one finishing

at the latest time is pushed into a stackS. Then the predecessor oftop(S) with the latest

finishing time is pushed intoS. This process repeats until an entry-task is found.S is the

critical tasks path of this given schedule. The length of thecritical tasks path is the total

execution time of the given schedule. The backward independent task set (BITS) of a task

i in a given schedule is a set of tasks meeting the following conditions: 1) scheduled to the

same device as D(i); 2) scheduled to execute prior toi; 3)independent withi.

The Algorithm 5.9 and 5.10 show the details of push operationand the pull operation.

Target devices for re-assigning in push operation are selected in the same method as the

reassigning target conditions in phase two. The “acceptable” condition in these two opera-

tions is that the new schedule should satisfy the lifetime constraint and have a shorter total

execution time than the original one.
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Algorithm 5.9 PUSH(S,CS), The push operation
Input: A baseline scheduleS generated in phase II, battery lifetime constraintCS
Output: A schedule generated by The push operation.

1: Find the critical tasks pathCP of S
2: while CP is not emptydo
3: trigger = Pop(CP )
4: Find the BITS(trigger)
5: while BITS(trigger) is not emptydo
6: target task = top(BITS(trigger))
7: P = taget devices for re-assigning
8: while P is not emptydo
9: Stemp = re-assigntarget to top(P )

10: if Stemp is acceptablethen
11: Spusℎ = Stemp

12: Re-assigntarget task to top(P )
13: end if
14: Remove top(P ) from P
15: end while
16: Removetarget task from BITS(trigger)
17: end while
18: Removetrigger from CP
19: end while

Algorithm 5.10 PULL(S,CS), The pull operation
Input: A baseline scheduleS, battery lifetime constraintCS
Output: A schedule generated by The pull operation.

1: Find the deviced which finishes its task list in the earliest time
2: FormT , a list of tasks executed ind
3: while T is not emptydo
4: trigger = top(T )
5: FormP , a list predecessors oftrigger, which are not executed ind
6: while P is not emptydo
7: target task = top(P )
8: Stemp = re-assigntarget to d
9: if Stemp is acceptablethen

10: Spusℎ = Stemp

11: Re-assigntarget task to d
12: end if
13: Removetarget task from P
14: end while
15: Removetrigger from T
16: end while
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5.6 Experimental results

Experiment setup

We evaluate the performance of the three-phase constraint-aware algorithms through simu-

lations. Each simulation run (total 10 runs) has 64 unique applications, and each application

is composed of up to 16 tasks. For each task, the maximum fan-in and fan-out are both 3.

There are 32 devices in the mobile DSP system. We set parameters in the model randomly

between the maximum and minimum values shown in Table 5.6.� of all batteries are set

to 0.1. Lifetime constraint for all devices is set to 500.

Table 5.6: Ranges of model parameters

parameter Minimum Maximum
SPij 10 40
CURij 20 100
Mp(i) 20 148
BWd 2 10

Ei(mAmin) 1.0× 105 8.0× 105

CUR Tj 20 400

Result

Figure 5.4 shows the average total execution time over 10 runs. We find out that the sched-

ules from the Min-Min based three-phase algorithm have the shortest total execution times.

Those two three-phase algorithms all generate schedules with shorter total execution time

than the ones from the original baseline schedule. As shown in the Figure 5.4, the push-pull

algorithm in phase III reduces the total execution time in phase II to a lower level than the

original baseline schedule.

In the aspect of satisfying lifetime constraint, our proposed algorithms do much better

than original baseline scheduling. The original baseline schedules have the average 7.3 out

of 32 devices violating the constraint. As shown in Figure 5.5, the minimum lifetime of

127



1 2 3 4 5 6 7 8 9 10
450

500

550

600

650

700

750

800

850

900

950

Trial #

T
ot

al
 e

xe
cu

tio
n 

tim
e

 

 

Phase I with list scheduling
Phase II with list scheduling
Phase III with list scheduling
Phase I with Min−Min
Phase II with Min−Min
Phase III with Min−Min

Figure 5.4: Total execution time
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Figure 5.5: Minimum lifetime among all devices
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Figure 5.6: Complete ratio

the original baseline schedules are just around 100, much less than the lifetime constraint

500. The schedules generated in phase II avoid all the lifetime constraint violations. Since

we set the “acceptable” condition in phase III as improving total execution time without

violating the constraint, the schedules further developedin phase III satisfy the lifetime

constraint in all 10 runs.

In the simulations, we set the parameters in the way that it ishard for the system to

complete all the tasks given the energy setting. So in most ofour simulations, the system

cannot finish all the tasks. The three-phase algorithm basedon Min-Min has the best

performance here. It completes three of the ten runs. We define the complete ratio as the

ratio of the number of complete task over the total number of task in a run. As shown in

Figure 5.6, our proposed algorithms have higher complete ratios than the original baseline

algorithms.
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5.7 Conclusion

In this chapter, we present a complete model for task scheduling in distributed mobile DSP

system, which includes application model, network model aswell as energy model. Using

this model, we propose our battery-aware three-phase scheduling algorithms. We show

that these algorithms can generate optimal schedules whilesatisfying lifetime constraint,

especially the one based on Min-Min algorithm. These algorithms can also improve the

complete ratio of the system.

Copyrightc⃝ Jiayin Li, 2012.
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Chapter 6 Resource Allocation Robustness with Inaccurate Information

Multi-core technologies are widely used in embedded systems. Stochastic resource al-

locations can guarantee the certain quality of the services(QoS). In the heterogeneous

embedded system resource allocation, execution time distributions of different tasks on

cores are predicted before scheduling. The difference between the actual execution time

and the estimated execution time may lead to allocations that are not robust. In this chap-

ter, we present an evaluation of impacts of inaccurate information on resource allocation.

We propose a systematic way of measuring the robustness degradation and evaluating how

inaccurate probability parameters affect the robustness of resource allocations. Further-

more, we compare the performance of three widely used greedyheuristics when using the

inaccurate information with simulations.

6.1 Introduction

Embedded multi-core technologies are represented mainly by two categories of multi-core

processors [127]: 1) processors with dual, quad, and eight cores based on symmetric multi-

processing and 2) processors with the combination of heterogeneous cores. An example of

the later kind of multi-core is the typicalsystem on chip(SoC), which has almost unlimited

combination of heterogeneous processors on the chip. As thenumber and the heterogeneity

of cores increase, resource allocation management in the embedded multi-core system can

efficiently improve the QoS.

Embedded systems usually operate in environments replete with uncertainties [24].

Meanwhile, these systems are expected to provide a given level of QoS. Stochastic re-

source allocation can deal with the environment uncertainties and satisfy the QoS demand.

In stochastic resource allocation, uncertainties in system parameters and their impacts on

system performance are modeled stochastically. This stochastic model is then used to de-
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rive a quantitative evaluation of the robustness of a given resource allocation. This quantita-

tive evaluation results in a probability that the allocation will satisfy the given constraints.

A proper approach of stochastic model is using theprobability mass function(PMF) to

describe the probability distributions of execution time of tasks running on cores.

According to [128], any claim of robustness for a given system must answer three

questions: (a) what behavior of the system makes it robust? (b) What uncertainties is the

system robust against? (c) Quantitatively, how robust is the system? For example, some

systems are robust if they are capable of finishing all the tasks within a given deadline. A

resource allocation deployed in these systems must be robust against uncertainty of the task

execution time. The robustness of systems can also be the makespan (total execution time)

or the time slackness.

The problem of resource allocation in the field of heterogeneous multi-core systems is

NP-complete (e.g., [129]). Heuristics are used to find near optimal solutions (e.g., [106,

130–135]). In static resource allocations, decisions are made based on estimated PMFs

of execution time of tasks running on different cores. However, when estimated PMFs of

tasks execution time are based on inaccurate information, estimated PMFs may be different

from actual PMFs. Therefore, decisions generated by estimated PMFs may not be robust

and the resource allocation is not able to guarantee the given level of QoS.

For example, in a surveillance sensor network, such as the Omnitrack [136], Cameras

are installed across the target field, and connected to sinks. Tasks of sinks include collecting

data from the cameras, compressing the images, and sending the results to the background

server for further processing. After the surveillance sensor network is switched on, tasks

come periodically. To better manage resources of a sink, theoperating system in each

sink schedules a stochastic static resource allocation before the sensors start working. The

estimated PMFs can be obtained by observing previous executions of the tasks or analyzing

the codes of the tasks. Using the static stochastic resourceallocation, certain level of

uncertainties can be tolerated, and the sensor network can maintain a given level of QoS.
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However, the statistical characteristics of a task may be significantly various from pe-

riod to period. For instance, when the temperature of the target field increases, processors

in the sink of a sensor network may be unstable, leading to longer execution time in aver-

age. In this case, the mean of the actual PMF may increase. In another case, the frame size

of the image may be reduced by the administrator in a surveillance system, which means

the data size decreases and the average execution time of this task is shorter. Besides, tasks

may arrive at sinks in a short period of time due to the synchronization among cameras. In

this case, a lot of tasks need to wait for execution, queuing in the task buffer of the sinks.

Since the order of the queue is random, the execution time of agiven task may be random.

The deviations of actual PMFs increase.

Some questions arise when estimated PMFs are different fromactual PMFs: 1) How

does the original static schedule work? Does it still maintain the required level of QoS? 2)

If the performance of the original schedule degrades, how much is the degradation? 3) How

much improvement can re-scheduling provide? Is re-scheduling a practical solution? The

stochastic resource allocation includes a lot of convolutions, which are time consuming.

Furthermore, the number of convolutions is proportional tothe number of processing units,

i.e., cores. The recent many-core technologies provide hundreds of cores in one processor.

The re-scheduling may become a significant overhead. Our experiment shows that the Min-

min algorithm takes more than an hour to schedule 1024 tasks in an eight-core system.

Only when the overhead of re-scheduling is smaller than the degradation of the original

schedule, the re-scheduling can be considered as a practical solution.

The major objective of this chapter is to answer above questions. In the first part of this

work, a stochastic model for resource allocation is presented. The estimated task execution

time information is known as a PMF. For a given task schedule,the makespan PMF of a

core is generated by convoluting PMFs of all the tasks on its task list. A probability that the

whole system can complete all tasks in a certain time is computed by convoluting makespan

PMFs of cores. So for a given resource allocation, we find the robustness, e.g., makespan,
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that system can provide with a given probability. We also propose a measurement metric

for the impacts of differences between estimated PMFs and actual PMFs. In the second

part of this work, we simulate the environment with inaccurate information and compare

three greedy heuristics when using the inaccurate information.

In summary, two major contributions of this work include: (1) The development of a

metric for measuring the impact of the inaccurate information on stochastic resource allo-

cation. (2) The performance comparison of three greedy heuristics when using incorrect

information.

In Section 6.2, we discuss related works. In Section 6.3, models for stochastic task

scheduling in multi-core embedded systems are presented. We also provide the model for

information inaccuracies in this section. A motivational example is provided in Section

6.4. We discuss three algorithms for stochastic task scheduling in Section 6.5, followed by

experimental results in Section 6.6. Finally, we give the conclusion in Section 6.7.

6.2 Related works

A framework for robust resource allocation is provided in [128]. Authors in [128] give a

robustness definition. Also, a four-step procedure is established for deriving a robustness

metric. In step one, the robustness of system is described ina quantitative way, and the

range of performance parameter (�min, �max) is given. In step two, all the system and

environmental parameters that may impact the robustness ofthe system are modeled. In

step three, the relationship between these perturbation parameters and the performance

parameters is defined. Finally, the robust range of perturbation parameter is determined

by substituting the perturbation parameters in the range ofperformance parameter (�min,

�max).

Previous works have been reported on determining the stochastic behavior of appli-

cation execution times [25, 26, 137–141]. A new approach forpredicting task execution

times is proposed in [142]. In [131], the authors present a derivation of the makespan
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problem that relies on a stochastic representation of task execution times. In [143], the

problem of robust static resource allocation for distributed computing systems under im-

posed QoS constraints is investigated. A stochastic robustness metric is proposed based

on a stochastic model describing the uncertainty in system and its impact on system per-

formance. Although the stochastic representation of task execution times can describe the

system uncertainty, problems arise when modeling the stochastic representation. There are

two conventional ways to model the stochastic representation that is usually PMFs: 1) using

the statistic information from previous runs of the same task to generate the PMF directly;

2) assuming PMFs of task execution times are Gaussian distributions, and using the statis-

tic information from previous runs to determine the expectation and the variance [143].

However when the environment is changed, these stochastic representations may not be

accurate. For example, a set of PMFs are generated based on some previous runs that oc-

cur in a light-weight contention scenario. When they are applied in other heavy contention

scenarios, these PMFs are not accurate in the sense that actual ones may have larger vari-

ance due to the heavy contention. So resource allocation with these inaccurate PMFs may

lead to the violation of QoS requirements. The related worksabove does not evaluate what

the relationship is between the degree of inaccurate in stochastic representation and the

degradation of robustness in the system.

6.3 Model and definition

Stochastic model

In a normal heterogeneous multi-core embedded system, usually there is a set of tasks

to be executed. Also, there are a number of cores with variouscomputation power and

characteristics in the system. An estimated probabilisticestimated time to compute(ETC)

matrix P is known before scheduling. For the convenience of readers,we list acronyms

used in the rest of this chapter in Table 6.1. We assume that the estimated probabilistic

ETC matrix is generated using the second approach as discussed in section 6.2. The entry
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Table 6.1: Acronyms used in Chapter 6

Name Description
QoS Quality of the service
PMF Probability mass function
ETC Estimated time to compute
CAT Core available time
MCT Minimum completion time alogrithm
Mo Original makespan
Mn New makespan
Mc Correct makespan
MNo Normalized original makespan
MNn Normalized new makespan
MNc Normailzed correct makespan
Rn New ratio
Rc Correctratio
Ri Improve ratio

Pi,j of P represents the PMF of execution time of taski on corej. When making mapping

decisions, we use the information to generate probability distributions of task completion

times on different cores. For a given set of tasks and a given schedule, theestimated

makespandistribution is the probability distribution of total execution time of the whole

set of tasks based on the ETC matrix. We can calculate this probability distribution by

convoluting probability distributions of task execution times. The robustness in this chapter

is the minimum makespan (Λ) while maintaining a pre-determined probability� that all

cores will complete their tasks list withinΛ.

As estimated PMFs of task execution times are generated withstatistic information of

previous runs of tasks, any environment or system changes may lead to inaccuracy. As-

suming that we can get the updated information about those distribution by some methods,

we are able to obtain a resource allocation that meets the QoSrequirement with more con-

fidence. We call these distributions (PMFs) updated PMFs. There are methods to obtain

updated PMFs, for example, on-line profiling [144, 145]. Thedevelopment of these meth-

ods is out of the scope of this chapter.
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In the case that we can get updated PMFs of task execution times, whether a new re-

source allocation is necessary becomes another problem. Using a new resource allocation

not only requires time to re-run the scheduling algorithm, but also brings the overhead of

re-arranging resources in the system. However, if we can predict the degradation of robust-

ness based on the difference between updated PMFs and estimated PMFs, i.e., the degree

of inaccurate information, we can decide whether a new resource allocation is necessary.

Furthermore, with knowledge of which scheduling algorithmperforms the best when us-

ing inaccurate information, we can reduce the probability that a new resource allocation is

necessary by using the best scheduling algorithm. We will provide some insights on these

two questions in our evaluation part in the chapter.

Measurement Parameters

Since differences between estimated PMFs and updated PMFs may cause the robustness

degradation, several measurement parameters are introduced to measure the robustness

degradation.

∙ Original Schedule: Task Schedule generated by using estimated PMFs

∙ Remapped Schedule: Task Schedule generated by using updated PMFs

∙ Makespan: The total time taken for a system to finish all tasks with a given task

schedule

∙ Original Makespan (Mo): The makespan using estimated PMFs and the original

Schedule

∙ New Makespan (Mn): The makespan using updated PMFs and the original Schedule

∙ Correct Makespan (Mc): The makespan using updated PMFs and the remapped

Schedule
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∙ Newratio (Rn):

Rn =
Mn −Mo

Mo

(6.1)

∙ Corretc ratio (Rc):

Rc =
Mc −Mo

Mo

(6.2)

∙ Improveratio (Ri):

Ri =
Mn −Mc

Mc

(6.3)

As discussed in the previous section, the robustness metricin this chapter is the min-

imum makespan (Λ) while maintaining a pre-determined probability� that all cores will

complete their tasks list withinΛ. The smaller the makespan (Λ) is, the more robust the

system is. Original makespan gives the robustness of the system assuming accurate in-

formation is used in the schedule. When inaccurate information is used in the original

schedule, new makespan results in the actual robustness of the system without re-running

the scheduling algorithm. Correct makespan indicates the new robustness when a new

schedule is generated with updated accurate information. New ratio shows the degradation

of the robustness when using the inaccurate information. Improve ratio reveals the im-

provement caused by re-running the scheduling algorithm. Correct ratio indicates impacts

of changes of environment on the system’s robustness.

6.4 Motivational example

In this section, we will demonstrate how the inaccurate information impacts the robustness

of a schedule. Consider a case with five independent tasks thatneed to be scheduled in a

two cores embedded system. The estimated execution time distributions of different tasks

running in these two-core are shown in Fig. 6.1(a). We assumeall these distributions are

normal distributions as shown in Fig. 6.1(b).
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(a)

(b)

Figure 6.1: An example of the impacts of the inaccurate information. (a) Means and stan-
dard deviations of the task execution time distributions; (b) Normal distributions of task
execution time

Figure 6.2: The schedule without taskE
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In this example, we use the Min-min heuristic, which will be introduced in the next

section, to schedule these independent tasks. TaskA is scheduled first in coreP1, followed

by taskC in coreP0. Then we schedule taskD in coreP1 right after taskA, and taskB

in coreP0, as shown in Fig. 6.2. After we schedule these four tasks in the system, we can

compute the probability distributions of makespans in these two cores by convoluting task

execution time distributions. Makespan distributions areshown in Fig. 6.3. For each of

these two cores, we can calculate the convolution of the makespan distribution of the core

and the execution time distribution ofE running in the core, which is shown in Fig. 6.4.

By comparing results of these convolutions, we can make a greedy decision of which core

taskE is scheduled to. If taskE is scheduled inP0, all five tasks can be finished by time

34, with the probability of 90%. Otherwise, If taskE is scheduled inP1, all tasks can be

finished by time 27 with the probability of 90%. We schedule taskE in P1.

Figure 6.3: Makespan probability distributions of cores before taskE is scheduled

In some cases, current statistical characteristics of the task execution time may be dif-

ferent from previous estimated ones. The estimated PMF cannot represent the actual distri-
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Figure 6.4: Estimated makespan probability distributionsof cores after taskE is scheduled

bution of the task execution time accurately. Assuming thatthe actual distribution of task

E is different from the estimated one, the distribution ofE in coreP0 is a normal distribu-

tion with the mean of 9, and the standard deviation of 1, whilethe distribution in coreP1

is another normal distribution with the mean of 14 and the standard deviation of 6. In this

case, ifE is scheduled inP1, the system will finish tasks by time 34 with 90% guarantee,

about 26% robustness degradation. IfE is scheduled inP0, all tasks will be done by time

33 with 90% guarantee, which results in a different greedy decision from the one based on

estimated information as shown in Fig. 6.5.

In this example, the inaccurate information can degrade therobustness, i.e., makespan

in this example. Therefore, we will investigate how different degrees of inaccurate im-

pact the robustness and how different scheduling heuristics perform under an inaccurate

information environment in following sections.
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Figure 6.5: Actual makespan probability distributions of cores after taskE is scheduled

6.5 Algorithms

Overview

Three static greedy heuristics are used.Minimum completion time(MCT) [146] is an one-

phase heuristic. The output of this heuristic depends on theorder in which tasks are mapped

to cores.Min-min [146,147] andMax-min[146,147] are two-phase heuristics. These two

heuristics are independent from tasks assigning order in the sense that for a given set of

tasks and a system with a certain set of cores, outputs are identical no matter how many

times it runs.

Greedy heuristics are widely used in heterogeneous system resource allocation. Com-

pared to global heuristics such asgenetic algorithmandsimulated annealing, greedy heuris-

tics can get a schedule much quicker than global heuristics.Previous works show that Min-

min heuristics can get a schedule as optimal as the one generated by a genetic algorithm.

Definitions of these three heuristics are provided below.Core available time(CAT) is

the probability distribution of time when the core will finish all tasks that are assigned to
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this core previously. The PMF of the completion time for a newtaskti on corecj, cti,j, can

be calculated by convoluting the CAT of corecj and the execution time distribution of task

ti on corecj.

MCT

Minimum Completion Time(MCT) [146] assigns tasks in an arbitrary order to cores. For

an unmapped task, MCT maps it on the core that can complete thistask in the earliest time

while maintaining a certain probability. The idea behind MCTis that it considers both the

execution time of the task on the core as well as the load balance. Since MCT assigns tasks

in an arbitrary order, the scheduling results are non-determinstic. The MCT algorithm is

shown in Fig. 6.6.

Min-min

Min-min [146,147] selects the task-core pair in two phases. In phase1, for each unmapped

task, the core that can complete it in the earliest time whilemaintaining a certain probability

is selected to form a pair. In phase 2, among all pairs, the pair that has the minimumct

is selected, and the task in the pair is mapped to the corresponding core. The idea behind

Min-min is that it does its best to keep the current load balance with the least change on it.

The Min-min is provided in Fig. 6.7.

Max-min

Max-min[146, 147] is similar to Min-min. In phase 1, Max-min does exactly the same as

that of Min-min. Then in phase 2, Max-min finds the task-core pairs with the maximumct,

which is different from Min-min. The idea behind is that tasks with larger execution time

will likely increase the penalty if these tasks are not assigned to their best cores. Fig. 6.8

shows the Max-min algorithm.
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Input: a set of tasks,m different cores, ETC PMF matrix
Output: A MCT resource allocation schedule

1: A list of unmapped tasksU is generated.
2: Reorder the list in an arbitrary order.
3: while the listU is not emptydo
4: The first taski in the listU is selected; then amongm cores, the corej which

has the minimumcti,j is also selected.
5: Assign the task to the core.
6: Remove the task from the listU .
7: Update the CAT of the selected core.
8: end while

Figure 6.6: MCT algorithm

Input: a set of tasks,m different cores, ETC PMF matrix
Output: A Min-min resource allocation schedule

1: A list of unmapped tasksU is generated.
2: while the listU is not emptydo
3: For each task in the listU , find the core that gives the minimumct.
4: Among task-core pairs formed in step 3, find the pair with the minimum ct.
5: Assign the task in the selected pair to the according core.
6: Remove the task from the listU .
7: Update the CAT of the selected core.
8: end while

Figure 6.7: Min-min algorithm

Input: a set of tasks,m different cores, ETC PMF matrix
Output: A Max-min resource allocation schedule.

1: A list of unmapped tasksU is generated.
2: while the listU is not emptydo
3: For each task in the listU , find the core that gives the minimumct.
4: Among task-core pairs formed in step 3, find the pair with the maximumct.
5: Assign the task in the selected pair to the according core.
6: Remove the task from the listU .
7: Update the CAT of the selected core.
8: end while

Figure 6.8: Max-min algorithm
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6.6 Simulation

Simulation Setup

To evaluate the robustness degradation caused by the inaccurate information, the following

approach was used to simulate the stochastic resource allocation in a heterogeneous multi-

core embedded system. A set of 1024 independent tasks was formed randomly. They

consist of 28 task classes, where tasks in the same class are identical. There are 8 het-

erogeneous cores in a system. Each of these cores has its own computation power and

characteristic. So the estimated probabilistic ETC matrixP has the size of28 × 8. PMF

Pi,j is based on Gamma distribution with a mean ofmi,j and a standard deviation ofsdi,j.

In our simulation, we generate PMFs by sampling theprobability density functions(PDF)

of Gamma distributions with a start point, an end point and a fixed step. Each of the 40

simulation trials has different estimated probabilistic ETC matrixP .

Before generating PMFs of Gamma distributions, values of means and standard de-

viations need to be determined. We randomly generate a28 × 8 mean matrix based on

Gamma distribution as well as the standard deviation matrix. Here, we use the COV based

method [148] with the mean of task execution time from 40 to 80, and both coefficients of

variation of tasks and cores uniformly from 0.35 to 1, as shown in Fig. 6.9. When forming

the PMFPi,j, we can sample the PDF of Gamma distribution with a mean ofmi,j and a

standard deviation ofsdi,j. The objective of this method to generate PMFs for simulation.

And this method can be implemented easily by a statistical computing tool R [149]. In

literature, there are several low-overhead methods [139, 150, 151] to generate stochastic

profiles with sufficient coverage of variances in practical applications.

To simulate the case in which updated PMFs are different fromestimated PMFs, pa-

rameters (mean or standard deviation) of updated PMFs are generated by multiplying pa-

rameters of estimated PMFs with a scalar matrixS.
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Input: t different tasks,m different cores, coefficient of variation of task and core
Vtask, Vcore, mean of tasks’ ETC�task

Output: A random ETC matrix based on Gamma distribution
1: Compute the shape parameter and the scale parameter of task aswell as the shape

parameter of core
�task = 1/Vtask

2�core = 1/Vcore
2

�task = �task/�task

2: for i from 0 to (t− 1) do
3: q[i] = G(�task, �task)

/*q[i] will be used as mean ofi-th row in the ETC matrix*/
4: �core[i] = q[i]/�core

/*scale parameter fori-th row*/
5: for j from 0 to (m− 1) do
6: e[i, j] = G(�core, �core[i])
7: end for
8: end for

Figure 6.9: COV based method for generate Gamma random matrix

For example, if mean values are modified,

updated mean(i, j) = mean(i, j)× Si,j (6.4)

The entry of scalar matrix S is based on a uniform distribution with a range of [Smin,

Smax].

Simulation Results

Compare impacts on robustness when modifying different parameters

In this part, we compare impacts on robustness when using different scalar matrixes as well

as modifying different parameters.

We simulate two different scenarios in which two different kinds of inaccurate infor-

mation occur:

1. Keep standard deviations unchanged, and multiply means with a scalar matrix.

2. Keep means unchanged, and multiply standard deviations with a scalar.
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The first scenario usually happens when the embedded system is employed in a physi-

cally inconstant environment. For example, in an environment where temperature changes

rapidly, cores will likely run faster in low temperature than that in high temperature. As

the temperature increases, means of the probability distribution of execution times may

increase. In this case, the statistic information collected previously in low temperature

may not be accurate. The second scenario happens when resource contention among tasks

changes. When the resource contention is light, a core likelyfinishes same tasks in a nar-

row distribution, especially around the mean of the distribution. When the contention is

heavy, the distribution of a task class in a core may be wide, i.e., with larger standard devi-

ations. In our simulation, the scalar matrixes are within the range of [0.1, 1.9], [0.1, 2.9],

[0.1, 3.9], [0.1, 4.9].

MCT heuristic is used in all these four parameter modifications. The result of each trial

is the average value of MCT with 25 different task mapping order.

In Fig. 6.10(a), the increase of newratio is proportional to the increase of the scalar

matrix range with 20% to 70% penalty. Obviously, the increase of mean values of the

execution time distribution leads to a longer makspan. This20% to 70% penalty is caused

by the inaccurate information used in the original schedule. We find that the improveratio,

which indicates the improvement of re-scheduling, does notchange as much as the increase

of the scalar matrix range. Note that when we calculate the improve ratio, we compare the

difference between the newmakespan and the correctmakespan. In the convolution of

these two distributions, we use the updated PMFs. The “improve ratio” columns show that

the level of improvement brought from the re-scheduling does not mainly depend on the

inaccurate degree of the information, but depends on what the task set consists of. The

correctratio is also proportional to the increase of the scalar matrix range. It shows that

the degradation of robustness is a linear function of the degree of how the environment

changes. Comparing Fig. 6.10(b) with Fig. 6.10(a), we find that the inaccurate standard

deviations have much less impacts on the robustness than that of the inaccurate means.
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(a)

(b)

Figure 6.10: Three ratios with different inaccurate information. (a) Newratio, correctratio
and improveratio when changing the mean; (b) newratio, correctratio and improveratio
when changing the standard deviation
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Figure 6.11: The Original makespan when changing the mean and the standard deviation
with a fixed scale parameter

Figure 6.12: The normalized new makespan when changing the mean and the standard
deviation with a fixed scale parameter
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Figure 6.13: The normalized correct makespan when changingthe mean and the standard
deviation with a fixed scale parameter

Compare the performance of different heuristics

In this part, three different heuristics (Min-min, MCT, Max-min) are compared with their

performance when using inaccurate information. In this part, we will keep the standard

deviations fixed and change mean values. To compare the performance of these heuristics,

normalized makespans of MCT and Max-min are introduced.

∙ Max-min normalized original makespan

MNo(Max−min) =
Mo(Max−min)

Mo(Min−min)
(6.5)

∙ Max-min normalized new makespan

MNn(Max−min) =
Mn(Max−min)

Mn(Min−min)
(6.6)

∙ Max-min normalized correct makespan

MNc(Max−min) =
Mc(Max−min)

Mc(Min−min)
(6.7)
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∙ MCT normalized original makespan

MNo(MCT ) =
Mo(MCT )

Mo(Min−min)
(6.8)

∙ MCT normalized new makespan

MNn(MCT ) =
Mn(MCT )

Mn(Min−min)
(6.9)

∙ MCT normalized correct makespan

MNc(MCT ) =
Mc(MCT )

Mc(Min−min)
(6.10)

Figure 6.14: The newratio of three heuristics when changing the mean and the standard
deviation with a fixed scale parameter

In the respect of the three ratios (Nnewratio, correctratio, and improveratio), Fig.

6.14, 6.15, and 6.16 show that the Max-min is least impacted by the inaccurate informa-

tion. However, in Fig. 6.11, 6.12, and 6.13, Max-min has the longest new makespans and

the longest correct makespans among these three heuristics. It means that the Max-min

generates the least robust schedules in the environment with or without inaccurate infor-

mation, even though the inaccurate information has smallest impacts in the Max-min. So
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Figure 6.15: The correctratio of three heuristics when changing the mean and the standard
deviation with a fixed scale parameter

Figure 6.16: The improveratio of three heuristics when changing the mean and the stan-
dard deviation with a fixed scale parameter
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the Max-min performance is the worst among these three heuristics. The performance of

MCT is very close to the performance of Min-min with respect tothe original makespan.

Furthermore, MCT outperforms the Min-min in the new makespan. It means that MCT is

less impacted by the inaccurate information and performs close to the Min-min in the orig-

inal makespan, and it performs the best in the new makespan even though the difference

between these two heuristics is not significant.

6.7 Conclusion

We propose a systematic method of measuring the robustness degradation with a stochastic

approach. We evaluate impacts of inaccurate information onsystem robustness in two dif-

ferent scenarios. In our simulation, the makespan is the robustness metric. We find that the

makespan with inaccurate information increases proportional to the increase of mean val-

ues of task execution time distribution caused by environment changes. Also, 20% to 70%

penalty is caused by the inaccurate information used in making scheduling decisions. The

impact of environment changes on the robustness is linear tothe degree of how much inac-

curate information (mainly the shift of means of PMFs) is generated by these environment

changes. However, the improvement of re-scheduling with updated information mainly

depends on how the task set consists of, not how inaccurate the information is. We also

find that the impact of inaccurate means of PMFs is much largerthan inaccurate standard

deviations.

Among these three greedy algorithms, MCT performs the best under inaccurate infor-

mation. It generates schedules that are almost as optimal asones from Min-min where

accurate information is used. And inaccurate information has less impacts on schedules

from MCT than it does on Min-min. Max-min performs the worst.

Copyrightc⃝ Jiayin Li, 2012.
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Chapter 7 Online Optimization on Cloud systems

In Infrastructure-as-a-Service(IaaS) cloud computing, computational resources are pro-

vided to remote users in the form of leases. For a cloud user, he/she can request multiple

cloud services simultaneously. In this case, parallel processing in the cloud system can

improve the performance. When applying parallel processingin cloud computing, it is

necessary to implement a mechanism to allocate resource andschedule the execution order

of tasks. Furthermore, a resource optimization mechanism with preemptable task execu-

tion can increase the utilization of clouds. In this chapter, we propose two online dynamic

resource allocation algorithm for the IaaS cloud system with preemptable tasks. Our al-

gorithms adjust the resource allocation dynamically basedon the updated of the actual

task executions. And the experimental results show that ouralgorithms can significantly

improve the performance in the situation where resource contention is fierce.

7.1 Introduction

In cloud computing, a cloud is a cluster of distributed computers providing on-demand

computational resources or services to the remote users over a network [152]. In an

Infrastructure-as-a-Service (IaaS) cloud, resources or services are provided to users in the

form of leases. The users can control the resources safely thanks to the free and efficient

virtualization solutions, e.g., the Xen hypervisor [153].One of the advantages of the IaaS

clouds is that the computational capacities providing to end-users are flexible and efficient.

Thevirtual machines(VMs) in Amazon’s Elastic Compute Cloud are leased to users at the

price of ten cents per hour. Each VM offers an approximate computational power of a 1.2

GHz Opteron processor, with 1.7 GB memory and 160 GB disk space. For example, when

a user needs to maintain a database with a certain disk space for a month, he/she can rent

a number of VMs from the cloud, and return them after that month. In this case, the user
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can minimize the costs. And the user can add or remove resources from the cloud to meet

peak or fluctuating service demands and pay only the capacityused.

Cloud computing is emerging with growing popularity and adoption [154]. However,

there is no data center that has unlimited capacity. Thus, incase of significant client

demands, it may be necessary to overflow some workloads to another data center [155].

These workload sharing can even occur between private and public clouds, or among pri-

vate clouds or public clouds. The workload sharing is able toenlarge the resource pool and

provide even more flexible and cheaper resources. To collaborate the execution across mul-

tiple clouds, the monitoring and management mechanism is a key component and requires

the consideration of provisioning, scheduling, monitoring, and failure management [155].

Traditional monitoring and management mechanisms are designed for enterprise environ-

ments, especially a unified environment. However, the largescale, heterogeneous resource

provisioning places serious challenges for the managementand monitoring mechanism in

multiple data centers. For example, the Open Cirrus, a cloud computing testbed, consists

of 14 geographically distributed data center in different administrative domains around the

world. Each data center manages at least 1000 cores independently [156]. The overall

testbed is a heterogeneous federated cloud system. It is important for the monitoring and

management mechanism to provide the resource pool, which includes multiple data cen-

ters, to clients without forcing them to handle issues, suchas the heterogeneity of resources

and the distribution of the workload. Virtualization in cloud computing, such as VMs, has

been intensively studied recently. However, scheduling workloads across multiple hetero-

geneous clouds/data centers has not been well studied in theliterature. To the best of our

knowledge, this is the first chapter to address the scheduling issue in the federated hetero-

geneous multi-cloud system.

A large numbers of applications running on cloud systems arethose compute on large

data corpora [157]. These “big data” applications draw frominformation source such as

digital media collections, virtual worlds, simulation traces, data obtain from scientific in-
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struments, and enterprise business databases. These data hungry applications require scal-

able computational resources. Fortunately, these applications exhibit extremely good paral-

lelism [157]. Using a “map/reduce” approach in the cloud application development, large

batch processes can be partitioned into a set of discrete-linked processes, which we call

tasks. These tasks can be executed in parallel to improve response time [158]. In Fedex’s

data center, a four-hour batch process can be successfully runs in 20 minutes after the

“map/reduce” [158]. When applying parallel processing in executing these tasks, we need

to consider the following questions: 1) how to allocate resources to tasks; 2) in what or-

der the clouds should execute tasks, since tasks have data dependencies; and 3) how to

schedule overheads when VMs prepare, terminate or switch tasks. Resource allocation and

scheduling can solve these three problems. Resource allocation and task scheduling have

been studied in high performance computing [107,108] and inembedded systems [24,159].

However, the autonomic feature and the resource heterogeneity within clouds [152] and the

VM implementation require different algorithms for resource allocation and task schedul-

ing in the IaaS cloud computing, especially in the federatedheterogeneous multi-cloud

system.

The two major contributions of this chapter are:

∙ We present a resource optimization mechanism in heterogeneous IaaS federated

multi-cloud systems, which enables preemptable task scheduling. This mechanism

is suitable for the autonomic feature within clouds and the diversity feature of VMs.

∙ We propose two online dynamic algorithms for resource allocation and task schedul-

ing. We consider the resource contention in the task scheduling.

In section 7.2, we discuss works related to this topic. In section 7.3, models for resource

allocation and task scheduling in IaaS cloud computing system are presented, followed by

an motivation example in section 7.4. We propose our algorithms in section 7.5, followed

by experimental result in section 7.6. Finally, we give the conclusion in section 7.7.
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7.2 Related works

Cloud system has been drawing intensive research interests in the recent years. A number

of public clouds are available for customer and researchers, such as Amazon AWS [160],

GoGrid [161], and Rackspace [162]. Some other companies alsoprovide cloud services,

such as Microsoft [163], IBM [164], Google [165], and HP [166]. To benefit the cloud

research, open source cloud services are under way, such as Eucalyptus [167], Open Neb-

ula [168], Tashi [157], RESEVOIR [169], and Open Cirrus [156].Open Cirrus is a cloud

testbed consists of 14 distributed data centers among the world. Essentially, it is a federated

heterogeneous cloud system, which is similar to the target cloud system in this chapter.

Data intensive applications are the major type of applications running in the cloud com-

puting platform. Most of the data intensive applications can be modeled by MapReduce

programming model [170]. In MapReduce model, user specify the map function that can

be executed independently, and the reduce function that gather results from the map func-

tion and generate the final result. The runtime system automatically parallelizes the map

function and distributes them in the cloud system. Apache Hadoop is a popular frame-

work, inspired by MapReduce, for running the data-intensiveapplication in IaaS cloud

systems [171]. Both reliability and data motion are transparently provided in Hadoop

framework. MapReduce programming model and Hadoop distributed file system are im-

plemented in the open-source Hadoop framework. All-pairs,an high level abstraction, was

proposed to allow the easy expression and efficient execution of data intensive applica-

tions [172]. Liu et al. designed a programming model, GridBatch, for large scale data

intensive batch applications [173]. In GridBatch, user can specify the data partitioning and

the computation task distribution, while the complexity ofparallel programming is hidden.

A dynamic split model was designed to enhance the resource utilization in MapReduce

platforms [174]. A priority-based resource allocation approach as well as a resource us-

age pipeline are implemented in this dynamic split model. Various scheduling methods for

data-intensive services were evaluated [175], with both soft and hardservice level agree-
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ments(SLA). However, the problem of scheduling workloads in heterogeneous multi-cloud

platform was not considered in the related work mentioned above.

Virtualization is an important part in cloud computing. Emeneker et al. propose an

image caching mechanism to reduce the overhead of loading disk image in virtual ma-

chines [176]. Fallenbeck et al. present a dynamic approach to create virtual clusters to deal

with the conflict between parallel and serial jobs [177]. In this approach, the job load is

adjusted automatically without running time prediction. Asuspend/resume mechanism is

used to improve utilization of physical resource [178]. Theoverhead of suspending/resume

is modeled and scheduled explicitly. But the VM model considered in [178] is homoge-

neous, so the scheduling algorithm is not applicable in heterogeneous VMs models.

Computational resource management in cloud computing has been studied in the lit-

erature recently. To make resource easy for users to manage collectively, CloudNet [179]

provides virtual private clouds from enterprise machines and allocates them via public

clouds. Computation-intensive users can reserve resourceswith on-demand characteristics

to create their virtual private clouds [180–185]. However,CloudNet focuses on providing

secure links to cloud for enterprise users, resource allocation is not an objective in Cloud-

Net. Lease-based architecture [185, 186] is widely used in reserving resource for cloud

users. In [185], applications can reserve group of resources using leases and tickets from

multiple sites. Haizea [186] supports both the best-effortand the advanced reservation

leases. The priorities of these two kinds of leases are different. The utilization of the whole

system is improved. The model of job in these two paper is a batch job model, which mean

every application is scheduled as independent. Data dependencies are not considered. Thus

this method cannot be “map/reduce” and parallelized among multiple data centers. In our

proposed resource allocation mechanism, we model the data dependencies among an appli-

cation, and distribute the application among multiple datacenters at the task level, leading

to more flexible and more efficient resource allocation schedules.

Wilde et al. proposed Swift, a scripting language for distributed computing [187]. Swift
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focuses on the concurrent execution, composition, and coordination of large scale inde-

pendent computational tasks. A workload balancing mechanism with adaptive scheduling

algorithms is implemented in Swift, based on the availability of resources. A dynamic

scoring system is designed to provide an empirically measured estimate of a site’s ability

to bear load, which is similar to the feedback information mechanism proposed in our de-

sign. However, the score in the Swift is decreased only when the site fails to execute the

job. Our approach has a different use of the feedback information. The dynamic estimated

finish time of remote site is based on the previous executionson this site in our approach.

Therefore, even a “delayed but successful” finish of a job leads to a longer estimated finish

time in the next run in our approach. ReSS is used in the Swift asthe resource selection

service [188]. Ress requires a central information repository to gather information from

different nodes or clusters. However, our approach is a decentralized approach that does

not need any central information repository.

A system that can automatically scale its share of infrastructure resources is designed

in [189]. The adaptation manager monitors and autonomically allocating resources to users

in a dynamic way, which is similar to the manager server in ourproposed mechanism. How-

ever, this centralized approach cannot fit in the future multi-provider cloud environment,

since different providers may not want to be controlled by such a centralized manager.

Another resource sharing system that can trade machines in different domains without in-

fringing autonomy of them is developed in [190]. A machine broker of a data center is

proposed to trade machines with other data centers, which isa distributed approach to

share resource among multiple data centers. However, the optimization of resource allo-

cation is not considered in this paper. Our proposed resource allocation mechanism is a

distributed approach. A manager server of a cloud communicates with others, and shares

workloads with our dynamic scheduling algorithm. Our approach can improve federated

heterogeneous cloud systems. Moreover, it can be adapted inthe future multi-provider

cloud system.
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7.3 Model and Background

Cloud system

In this chapter, we consider an infrastructure-as-a-service (IaaS) cloud system. In this kind

of system, a number of data centers participate in a federated approach. These data centers

deliver basic on-demand storage and compute capacities over Internet. The provision of

these computational resources is in the form of virtual machines (VMs) deployed in the data

center. These resources within a data center form a cloud. Virtual machine is an abstract

unit of storage and compute capacities provided in a cloud. Without loss of generality, we

assume that VMs from different clouds are offered in different types, each of which has

different characteristics. For example, they may have different numbers of CPUs, amounts

of memory and network bandwidths. As well, the computational characteristics of different

CPU may not be the same.

Figure 7.1: An example of our proposed cloud resource allocation mechanism. Heteroge-
neous VMs are provided by multiple clouds. And clouds are connected to the Internet via
manager servers.

For a federated cloud system, a centralized management approach, in which a super
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node schedule tasks among multiple clouds, may be a easy way to address the schedul-

ing issues in such system. However, as authors in [155, 156] have indicated, the future

cloud computing will consist of multiple cloud providers. In this case, the centralized

management approach may be accepted by different cloud providers. Thus we propose a

distributed resource allocation mechanism that can be usedin both federated cloud system

or the future cloud system with multiple providers.

As shown in Fig. 7.1, in our proposed cloud resource allocation mechanism, every

data center has a manager server server that knows the current statuses of VMs in it own

cloud. And manager servers communicate with each other. Clients submit their tasks to

the cloud where the dataset is stored. Once a cloud receives tasks, its manager server can

communicate with manager servers of other clouds, and distribute its tasks across the whole

cloud system by assigning them to other clouds or executing them by itself.

When distributing tasks in the cloud system, manager serversshould be aware of the

resource availabilities in other clouds, since there is nota centralized super node in the sys-

tem. Therefore, we need the resource monitoring infrastructure in our resource allocation

mechanism. In cloud systems, resource monitoring infrastructure involves both producers

and consumers. Producers generate status of monitored resources. And consumers make

use of the status information [191]. Two basic messaging methods are used in the resource

monitoring between consumers and producers: the pull mode and the push model [192].

Consumers pull information from producers to inquire the status in the pull mode. In the

push mode, when producers update any resource status, they push the information to the

consumers. The advantage of the push mode is that the accuracy is higher when the thresh-

old of a status update, i.e., trigger condition, is defined properly. And the advantage of the

pull mode is that the transmission cost is less when the inquire interval is proper [191].

In our proposed cloud system resource allocation mechanism, we combine both com-

munication modes in the resource monitoring infrastructure. In our proposed mechanism,

when the manager server of cloudA assigns an application to another cloudB, the man-
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ager server ofA is the consumer. And the manager server ofB is the producer. manager

server ofA needs to know the resource status from the manager server ofB in two scenar-

ios: 1) when the manager server ofA is considering assigning tasks to cloud B, the current

resource status of cloudB should be taken into consideration. 2) When there is an task is

assigned to cloudB by manager server ofA, and this task is finished, manager server ofA

should be informed.

We combine the pull and the push mode as the following:

∙ A consumer will pull information about the resource status from other clouds, when

it is making scheduling decisions.

∙ After an application is assigned to another cloud, the consumer will no longer pull

information regarding to this application.

∙ When the application is finished by the producer, the producerwill push its informa-

tion to the consumer. The producer will not push any information to the consumer

before the application is finished.

In a pull operation, the trigger manager server sends a task check inquire to manager

servers of other clouds. Since different cloud providers may not be willing to share detailed

information about their resource availability, we proposethat the reply of a task check in-

quire should be as simple as possible. Therefore, in our proposed resource monitoring

infrastructure, these target manager servers only responses with the earliest available time

of required resources, based on its current status of resources. And no guarantee or reser-

vation is made. Before target manager servers check their resource availability, they first

check the required dataset locality. If the required dataset is not available in their data cen-

ter, the estimated transferring time of the dataset from thetrigger cloud will be included

in the estimation of the earliest available time of requiredresources. Assuming the speed

of transferring data between two data centers isSc, and the size of the required dataset is

MS, then the preparation overhead isMS/Sc. Therefore, when a target cloud already has
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the required in its data center, it is more likely that it can be respond with a sooner earliest

available time of required resources, which may lead to an assignment to this target cloud.

In a push operation, whenB is the producer andA is consumer, the manager server ofB

will inform the manager server ofA the time when the application is finished.

Figure 7.2: An application submitted in the cloud system. When an application is submitted
to the cloud system, it is partitioned, assigned, scheduled, and executed in the cloud system

When a client submits his/her workload, typically an application, to a cloud, the man-

ager server first partitions the application into several tasks, as shown in Fig. 7.2. Then

for each task, the manager server decides which cloud will execute this task based on the

information from all other manager servers and the data dependencies among tasks. If the

manager server assigns a task to its own cloud, it will store the task in a queue. And when

the resources and the data are ready, this task is executed. If the manager server of cloudA

assigns a task to cloudB, the manager server ofB first checks whether its resource avail-

abilities can meet the requirement of this task. If so, the task will enter a queue waiting for

execution. Otherwise, the manager server ofB will reject the task.

Before a task in the queue of a manager server is about to be executed, the manager

server transfers a disk image to all the computing nodes thatprovide enough VMs for task

execution. We assume that all required disk images are stored in the data center and can

be transferred to any clouds as needed. We use the multicasting to transfer the image to
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all computing nodes within the data center. Assuming the size of this disk image isSI , we

model the transfer time asSI/b, whereb is the network bandwidth. When a VM finishes

its part of the task, the disk image is discarded from computing nodes.

Resource allocation model

In cloud computing, there are two different modes of rentingthe computing capacities from

a cloud provider.

∙ Advance Reservation (AR): Resources are reserved in advance. They should be

available at a specific time;

∙ Best-effort: Resources are provisioned as soon as possible. Requests are placed in a

queue.

A lease of resource is implemented as a set of VMs. And the allocated resources of a

lease can be described by a tuple(n,m, d, b), wheren is number of CPUs,m is memory in

megabytes,d is disk space in megabytes, andb is the network bandwidth in megabytes per

second. For the AR mode, the lease also includes the requiredstart time and the required

execution time. For the best-effort and the immediate modes, the lease has information

about how long the execution lasts, but not the start time of execution. The best-effort

mode is supported by most of the current cloud computing platform. The Haizea, which

is a resource lease manager for OpenNebula, supports the AR mode [153]. The “map”

function of “map/reduce” data-intensive applications areusually independent. Therefore,

it naturally fits in the best-effort mode. However, some large scale “reduce” processes of

data-intensive applications may needs multiple reducers.For example, a simple “word-

count” application with tens of PBs of data may need a parallel“reduce” process, in which

multiple reducers combine the results of multiple mappers in parallel. Assuming there are

N reducers, in the first round of parallel ”reduce”, each ofN reducers counts1/N results

from the mappers. ThenN/2 reducers receive results from the otherN/2 reducers, and
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counts2/N results from the last round of reducing. It repeatslog2N + 1 rounds. Between

two rounds, reducers need to communicate with others. Therefore, a AR mode is more

suitable for these data-intensive applications.

When supporting the AR tasks, it may leads to a utilization problem, where the average

task waiting time is long, and machine utilization rate is low. Combining AR and best-effort

in a preemptable fashion can overcome this problems [186]. In this chapter, we assume that

a few of applications submitted in the cloud system are in theAR mode, while the rest of

the applications are in the best-effort mode. And the applications in AR mode have higher

priorities, and are able to preempt the executions of the best-effort applications.

When an AR taskA needs to preempt a best-effort taskB, the VMs have to suspend

taskB and restore the current disk image of taskB in a specific disk space before the

manager server transfers the disk image of tasksA to the VMs. When the taskA finishes,

the VMs will resume the execution of taskB. We assume that there is a specific disk space

in every node for storing the disk image of suspended task.

There are two kinds of AR tasks: one requires a start time in future, which is referred to

as “non-zero advance notice” AR task; and the other on requires to be executed as soon as

possible with higher priority than the best-effort task, which is referred to as “zero advance

notice” AR task. For a “zero advance notice” AR task, it will start right after the manager

server makes the scheduling decision and assign it a cloud. Since our scheduling algo-

rithms, mentioned in Section 7.5, are heuristic approaches, this waiting time is negligible,

compared to the execution time of task running in the cloud system.

Local mapping and energy consumption

From the user’s point of view, the resources in the cloud system are leased to them in the

term of VMs. Meanwhile, from the cloud administrator’s point of view, the resources in

the cloud system is utilized in the term of servers. A server can provide the resources

of multiple VMs, and can be utilized by several tasks at the same time. One important

165



function of the manager server of each cloud is to schedule its tasks to its server, according

the numbers of required VMs. Assuming there are a set of tasksT to schedule on a server

S, we define the remaining workload capacity of a serverS is C(S), and the number of

required VM by taskti is wl(ti). The server can execute all the tasks inT only if:

C(S) ≥
∑

ti∈T

(wl(ti)) (7.1)

We assume servers in the cloud system work in two different modes: the active mode

and the idle mode. When the server is not executing any task, itis switched to the idle

mode. When tasks arrive, the server is switched back to the active mode. The server

consumes much less energy in the idle mode than that in the active mode.

Application model

In this chapter, we use theDirected Acyclic Graphs(DAG) to represent applications. A

DAG T = (V,E) consists of a set of verticesV , each of which represents a task in the

application, and a set of edgesE, showing the dependencies among tasks. The edge set

E contains edgeseij for each taskvi ∈ V that taskvj ∈ V depends on. The weight of a

task represents the type of this task. Given an edgeeij, vi is the immediate predecessor of

vj, andvj is called the immediate successor ofvi. A task only starts after all its immediate

predecessors finish. Tasks with no immediate predecessor are entry-node, and tasks without

immediate successors are exit-node.

Although the compute nodes from the same cloud may equip withdifferent hardware,

the manager server can treat its cloud as a homogeneous system by using the abstract com-

pute capacity unit and the virtual machine. However, as we assumed, the VMs from differ-

ent clouds may have different characteristics. So the wholecloud system is a heterogeneous

system. In order to describe the difference between VMs’ computational characteristics,

we use anM × N execution time matrix (ETM)E to indicate the execution time ofM

types of tasks running onN types of VMs. For example, the entryeij in E indicate the
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required execution time of task type i when running on VM typej. We also assume that a

task requires the same lease(n,m, d, b) no matter on which type of VM the task is about

to run.

7.4 Motivational Example

An example of task scheduling in CMP

First we give an example of resource allocation in a cloud system. We schedule three

applications in a three-cloud system. The DFGs representing these applications are shown

in Fig. 7.3(a). Application 1 and 3 are best-effort applications, and Application 2 is AR

applications. For simplicity, we assume that every cloud only execute one task at a time,

and that the time to load an image of a task is negligible. We will relax these assumptions

in the later part of this chapter. The execution times (t) of each task in these applications

running on different cloud are shown in Fig. 7.3(b).

Round-robin vs. list scheduling

The round-robin algorithm is one of the load balancing algorithms used in cloud systems,

such as the GoGrid [193]. As shown in the “RR” row of Fig. 7.3(c),the tasks are assigned

to the clouds evenly, regardless of the heterogeneous performance across different clouds.

The execution orders of three clouds are presented in Fig. 7.4(a). In this schedule, task G

preempts task B at time 7, since task G is an AR task. And task J is scheduled as soon as

possible, starting at time 9, pausing at time 15, and resuming right after previously assigned

tasks, i.e., tasks I and D. The total execution time is 32. We assume the execution time of

a given application starts from the time when the application is submitted to the time when

the application is done. With this scheduling, the average of three application execution

time is 22.67 time unit. By using our CLS algorithm, we generatea schedule with the

consideration of the heterogeneous performance in the cloud system. The tasks assignment

is shown in the “Sch” row of Fig. 7.3(c). And the execution order of three clouds are shown
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(a)

(b)

(c)

Figure 7.3: An example of resource allocation in a cloud system. (a) The DFG of three
applications, (b) the execution time table, and (c) two different task assignments, where
“RR” is the round-robin approach, and ”Sch” is using the list scheduling

in Fig. 7.4(b). In this schedule, tasks are likely assigned to the cloud that can execute them

in the shortest time. Task F and G preempt task C and B, respectively. The total execution

time is only 21 time unit, which is 34% faster than the round-robin schedule. And the

average execution time is 13.33, 41% faster than the round-robin schedule.

In this motivational example, we show the significant improvement by simply us-

ing CLS algorithm, even without considering the dynamic adapting scheduling. We will

present the details of our algorithms in the following section.

168



(a)

(b)

Figure 7.4: Execution orders of three clouds, (a) with the round-robin schedule, and (b)
with the list-schedule

7.5 Resource allocation and task scheduling algorithm

Since the manager servers neither know when applications arrive, nor whether other man-

ager servers receive applications, it is a dynamic scheduling problem. We propose two

algorithms for the task scheduling:dynamic cloud list scheduling(DCLS) anddynamic

cloud min-min scheduling(AMMS).

Static resource allocation

When a manager server receives an application submission, itwill first partition this ap-

plication into tasks in the form of a DAG. Then a static resource allocation is generated

offline. We proposed two greedy algorithms to generate the static allocation: the cloud list

scheduling and the cloud min-min scheduling.

Cloud list scheduling (CLS)

Our proposed CLS is similar to CPNT [108]. Some definitions usedin listing the task are

provided as follow. Theearliest start time(EST) and thelatest start time(LST) of a task
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are shown as in Equation (7.2) and (7.3). The entry-tasks have EST equals to 0. And The

LST of exit-tasks equal to their EST.

EST (vi) = max
vm∈pred(vi)

{EST (vm) + AT (vm)} (7.2)

LST (vi) = min
vm∈succvi

{LST (vm)} − AT (vi) (7.3)

Because the cloud system concerned in this chapter is heterogeneous, the execution

times of a task on VMs of different clouds are not the same.AT (vi) is the average execution

time of taskvi. The critical node (CN) is a set of vertices in the DAG of which EST and

LST are equal. Algorithm 7.1 shows a function forming a task list based on the priorities.

Algorithm 7.1 Forming a task list based on the priorities
Input: A DAG, Average execution timeAT of every task in the DAG
Output: A list of tasksP based on priorities

1: The EST of every tasks is calculated
2: The LST of every tasks is calculated
3: Empty listP and stackS, and pull all tasks in the list of taskU
4: Push the CN task into stackS in the decreasing order of their LST
5: while the stackS is not emptydo
6: if top(S) has un-stacked immediate predecessorsthen
7: S ←the immediate predecessor with least LST
8: else
9: P ← top(S)

10: poptop(S)
11: end if
12: end while

Once the list of tasks is formed, we can allocate resources totasks in the order of

this list. The task on the top of this list will be assigned to the cloud that can finish it

at the earliest time. Note that the task being assigned at this moment will start execution

only when all its predecessor tasks are finished and the cloudresources allocated to it are

available. After assigned, this task is removed from the list. The procedure repeats until

the list is empty. An static resource allocation is obtainedafter this assigning procedure

that is shown in Algorithm 7.2.
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Algorithm 7.2 The assigning procedure of CLS
Input: A priority-based list of tasksP , m different clouds,ETM matrix
Output: A static resource allocation generated by CLS

1: while The listP is not emptydo
2: T = top(P )
3: Pull resource status information from all other manager servers
4: Get the earliest resource available time forT , with the consideration of the dataset

transferring time, responsed from all other manager servers
5: Find the cloudCmin giving the earliest estimated finish time of T, assuming no other

task preempts T
6: Assign task T to cloudCmin

7: Remove T fromP
8: end while

Cloud min-min scheduling (CMMS)

Min-min is another popular greedy algorithm [44]. The original min-min algorithm does

not consider the dependencies among tasks. So in the dynamicmin-min algorithm used in

this chapter, we need to update the mappable task set in everyscheduling step to maintain

the task dependencies. Tasks in the mappable task set are thetasks whose predecessor tasks

are all assigned. Algorithm 7.3 shows the pseudo codes of theCMMS algorithm.

Algorithm 7.3 Cloud min-min scheduling (CMMS)
Input: A set of tasks,m different clouds,ETM matrix
Output: A schedule generated by CMMS

1: Form a mappable task setP
2: while there are tasks not assigneddo
3: Update mappable task setP
4: for i: taskvi ∈ P do
5: Pull resource status information from all other manager servers
6: Get the earliest resource available time, with the consideration of the dataset trans-

ferring time, responsed from all other manager servers
7: Find the cloudCmin(vi) giving the earliest finish time ofvi, assuming no other

task preemptsvi
8: end for
9: Find the task-cloud pair(vk, Cmin(vk)) with the earliest finish time in the pairs gen-

erated in for-loop
10: Assign taskvk to cloudDmin(vk)
11: Removevk from P
12: Update the mappable task setP
13: end while
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Energy-aware local mapping

A manager server uses a slot table to record execution schedules of all resources, i.e.,

servers, in its cloud. When an AR task is assigned to a cloud, the manager server of this

cloud will first check the resource availability in this cloud. Since AR tasks can preempt

best-effort tasks, the only case where an AR task is rejectedis that most of the resources

are reserved by some other AR tasks at the required time, no enough resources left for this

task. If the AR task is not rejected, which means there are enough resources for this task, a

set of servers will be reserved by this task, using the algorithm shown in Alg. 7.4. The time

slots for transferring the disk image of the AR task and the task execution are reserved in

the slot tables of those servers. The time slots for storing and reloading the disk image of

the preempted task are also reserved if preemption happens.

When a best-effort task arrives, the manager server will put it in the execution queue.

Every time when there are enough VMs for the task on the top of the queue, a set of servers

are selected by the algorithm shown in Alg. 7.5. And the manager server also updates the

time slot table of those servers.

The objectives of Alg. 7.4 and 7.5 are to minimize the number of active servers as well

as the total energy consumption of the cloud. When every active server is fully utilized, the

required number of active servers is minimized. When taskti is assigned to cloudj, we

define the marginal workload of this task as:

wlm(ti) = wl(ti) mod C(Sj) (7.4)

whereSj represents the kind server in cloudj, andC(Sj) is the workload capacity of

serverSj. To find the optimal local mapping, we group all the tasks thatcan be executed

simultaneously, and sort them in the descending order of their marginal workloads. For

each of the large marginal workload task, we try to find some small marginal workload

tasks to fill the gap and schedule them on a server.
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Algorithm 7.4 Energy-aware local mapping for AR tasks
Input: A set of AR tasksT , which require to start at the same time. A set of serversS
Output: A local mapping

1: for ti ∈ T do
2: Calculatewlm(ti)
3: if wl(ti)− wlm(ti) <

∑
si∈idle

(C(si)) then
4: Schedulewl(ti)− wlm(ti) to the idle servers
5: else
6: First schedule a part ofwl(ti)− wlm(ti) to the idle servers
7: Schedule the rest ofwl(ti) − wlm(ti) to the active servers, preempting the best-

effort tasks
8: end if
9: end for

10: Sort tasks inT in the descending order of marginal workload, form listLd

11: Sort tasks inT in the ascending order of marginal workload, form listLa

12: while T is not emptydo
13: ta = top(Ld)
14: if there exists a server j:C(j) = wlm(ta) then
15: Schedule thewlm(ta) to server j
16: end if
17: sa = maxsi∈S(C(si))
18: Scheduleta to sa, deleteta from T , Ld, andLa

19: for k: tk ∈ La do
20: if C(sa) > 0 andC(sa) ≥ wlm(tk) then
21: Scheduletk to sa, deletetk from T , Ld, andLa

22: else
23: Break
24: end if
25: end for
26: end while

Feedback information

In the two static scheduling algorithms presented above, the objective function when mak-

ing decision about assigning a certain task is the earliest estimated finish time of this task.

The estimated finish time of task i running on cloud j,�i,j, is as below:

�i,j = ERATi,j + SI/b+ ETMi,j (7.5)

SI is the size of this disk image,b is the network bandwidth.ERATi,j is the earliest

resource available time based the information from the pulloperation. It is also based on
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Algorithm 7.5 Energy-aware local mapping for best-effort task
Input: A set of best-effort tasksT , which can start at the same time. A set of serversS
Output: A local mapping

1: for ti ∈ T do
2: Calculatewlm(ti)
3: Schedulewl(ti)− wlm(ti) to the idle servers
4: end for
5: Form a set of active serversSg thatC(si) > 0, ∀si ∈ Sg

6: Sort tasks inT in the descending order of marginal workload, form listLd

7: Sort tasks inT in the ascending order of marginal workload, form listLa

8: while T is not emptydo
9: ta = top(Ld)

10: if there exists a server j inSg: C(j) = wlm(ta) then
11: Schedule thewlm(ta) to server j
12: end if
13: sa = maxsi∈Sg

(C(si))
14: if C(sa) < wlm(ta) then
15: sa = anyidleserver
16: end if
17: Scheduleta to sa, deleteta from T , Ld, andLa

18: for k: tk ∈ La do
19: if C(sa) > 0 andC(sa) ≥ wlm(tk) then
20: Scheduletk to sa, deletetk from T , Ld, andLa

21: else
22: Break
23: end if
24: end for
25: end while

the current task queue of cloud j and the schedule of execution order. But the estimated

finish time from (7.5) may not be accurate. For example, as shown in Fig. 7.5(a), we

assume there are three clouds in the system. The manager server of cloud A needs to

assign a best-effort task i to a cloud. According to equation7.5, cloud C has the smallest

� . So manager server A transfers task i to cloud C. Then manager server of cloud B needs

to assign an AR task j to a cloud. Task j needs to reserve the resource at 8. Cloud C has the

smallest� again. manager server B transfers task j to cloud C. Since taskj needs to start

when i is not done, task j preempts task i at time 8, as shown in Fig. 7.6. In this case, the

actual finish time of task i is not the same as expected.
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(a)

(b)

Figure 7.5: An example of resource contention. (a) Two tasksare submitted to a het-
erogeneous clouds system. (b)The earliest resource available times (ERAT), the image
transferring time (SI/b), and the execution time (EMT) of two tasks on different clouds

Figure 7.6: The estimated and the actual execution order of the cloud C
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In order to reduce the impacts of this kind of delays, we use a feedback factor in com-

puting the estimated finish time. As discussed previously inthis chapter, we assume once

a task is done, the cloud will push the resource status information to the original cloud.

Again, using our example in Fig. 7.5, when task i is done at timeTact fin (=14), manager

server C informs manager server A that task i is done. With this information, the manager

server A can compute the actual execution timeΔ�i,j of task i on cloud j:

Δ�i,j = Tact fin − ERATi,j (7.6)

And the feedback factorfdj of cloud j is :

fdj = �×
Δ�i,j − SI/b− ETMi,j

SI/b+ ETMi,j

(7.7)

� is a constant between 0 and 1. So a feedback estimated earliest finish time�fdi,j of task i

running on cloud j is as follows:

�fdi,j = ERATi,j + (1 + fdj)× (SI/b+ ETMi,j) (7.8)

In our proposed dynamic cloud list scheduling (DCLS) and dynamic cloud min-min

scheduling (DCMMS), every manager server stores feedback factors of all clouds. Once a

manager server is informed that a task originally from it is done, it will update the value

of the feedback factor of the task-executing cloud. For instance, in the previous example,

when cloud C finishes task i and informs that to the manager server of cloud A, this manager

server will update its copy of feedback factor of cloud C. When the next task k is considered

for assignment, the�fdk,C is computed with the new feedback factor and used as objective

function.

7.6 Experimental results

Experiment setup

We evaluate the performance of our dynamic algorithms through our own written simu-

lation environment that acts like the IaaS cloud system. We simulate workloads with job
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Table 7.1: The mapping of job traces to applications

parameter in our model values in job traces

task id job ID
application arrival time Min(job start time)

task execution time job end time - job start time
# of CPU required by a tasklength(node list) * cpu per node

Table 7.2: Comparison of three data center. The job trace LLNL-uBGL was obtained from
a small uBGL, which has the same single core performance as theone shown in this table

Data Peak performance Number normalized
center (TFLOP/s) of CPUs performance per core

Thunder 23 4096 1
Altas 44.2 9216 0.85

uBGL(big) 229.4 81920 0.50

traces from the Parallel Workloads Archive [194]. We selectthree different job traces:

LLNL-Thunder, LLNL-Atlsa, and LLNL-uBGL. For each job tracer, we extract four val-

ues: the job ID, the job start time, the job end time, and the node list. However, job traces

from the Parallel Workloads Archive do not include information about data dependencies.

To simulate data dependencies, we first sort jobs by their start time. Then we group up to

64 adjacent jobs as one application, represented by a randomly generated DAG. Table 7.1

shows how we translate those values from job traces to the parameter we use in our appli-

cation model. Note that we map the earliest job start time in an application as the arrival

time of this application, since there is no record about job arrival time in these job traces.

There are three data center in our simulation: 1) 1024 node cluster, with 4 Inetl IA-

64 1.4GHz Itanium processors, 8 GB memory, and 185 GB disk space per node; 2) 1152

node cluster, with 8 AMD Opteron 2.4GHz processors, 16 GB memory, and 185GB disk

space per node; and 3) 2048 processors BlueGene/L system with512 MB memory, 80

GB memory. We select these three data center configuration based on the clusters where

LLNL-Thunder, LLNL-Atlsa, and LLNL-uBGL job traces were obtained.
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Figure 7.7: Average application execution time in the loosesituation

Based on the information in [195], we compare the computational power of these three

data center in Table 7.2. With the normalized performance per core, we can get the ex-

ecution time of all tasks on three different data centers. Among these applications, 20%

applications are in the AR modes, while the rest are in the best-effort modes. We assume

the bandwidth between two data centers are 1Gbps [196], the bandwidth of nodes inside

the data center are 4GBps [195], and the size of every dataset is 1TB [197]. We run these

three jobs trace separately in our simulation.

We set the arrival of applications in two different ways. In the first way, we use the

earliest start time of a application in the original job trace as the arrival time of this ap-

plication. We also set the required start time of an AR application as a random start time

no later than 30 minutes after it arrives. In most of the cases, applications do not need to

contend resources in this setting. We call this aloose situation. In the other way, we set the

arrival time of applications close to each other. In this setting, we reduce the arrival time

gap between two adjacent application by 100 time. It means that applications usually need

to wait for resources in clouds. We call this atight situation. In both these two setting, we

tunes the constant� to show how the dynamic procedure impacts the average application

execution time. We define the execution time of an application as the time elapses from the

application is submitted to the application is finished.
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Figure 7.8: Average application execution time in the tightsituation

Result

Fig. 7.7 shows the average application execution time in theloose situation. We compare

our two dynamic algorithms with the First-Come-First-Serve(FCFS) algorithm [198]. We

find out that the DCMMS algorithm has the shorter average execution time. And the dy-

namic procedure with updated information does not impact the application execution time

significantly. The reason the dynamic procedure do not has a significant impact on the

application execution time is that the resource contentionis not significant in the loose

situation. Most of the resource contentions occurs when a ARapplication preempts a best-

effort application. So the estimated finish time of an application is usually close to the

actual finish time, which limits the effect of the dynamic procedure. And the manager

server does not call the dynamic procedure in most of the cases.

Figure 7.8 shows that DCMMS still outperforms DCLS and FCFS. Andthe dynamic

procedure with updated information works more significantly in the tight situation than it

does in the loose situation. Because the resource contentions are fiercer in tight situation,

the actual finish time of a task is often later than estimated finish time. And the best-effort

task is more likely preempted some AR tasks. The dynamic procedure can avoid tasks

gathering in some fast clouds. We believe that the dynamic procedure works even better in

a homogeneous cloud system, in which every task runs faster in some kinds of VMs than
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Table 7.3: Feedback improvements in different cases

Arrical gap DLS FDLSFeedbackDMMSFDMMSFeedback
reduce times (� = 1) improv. (� = 1) improv.

1 237.82253.59 -6.63% 206.31 223.47 -8.32%
20 309.35286.55 7.37% 262.66 255.44 2.75%
40 445.74397.15 10.9% 385.48 336.52 12.7%
60 525.32420.83 19.89% 448.04 343.60 23.31%
80 729.56537.28 26.36% 648.37 440.05 32.13%
100 981.41680.22 30.69% 844.33 504.66 40.23%

Table 7.4: Average application execution time with variouspercentages of AR applications
in the loose situation (� = 0.8)

0% 20% 50% 80% 100%
FCFS 1 1 1 1 1
DCLS 0.81 0.75 0.61 0.55 0.49

DCMMS 0.77 0.56 0.52 0.46 0.44

in some other kinds.

In order to find out the relationship between resource contention and feedback improve-

ment, we increase the resource contention by reducing the arrival time gap between two

adjacent applications. We reduce this arrival time gap by 20, 40, 60, 80, and 100 times,

respectively. In the setting with original arrival time gap, an application usually come after

the former application is done. Resource contention is light. And when arrival time gaps

are reduced by 100 times, it means during the execution of an application, there may be

multiple new applications arriving. Resource contention isheavy in this case. As shown

in Table 7.3, the improvement caused by feedback procedure increases as the resource

contention become heavier.

We also test our proposed algorithms in setups with various percentages of AR appli-

cations, as shown in Table 7.4 and 7.5. The values in the first row represent how many

applications are set as the AR applications. The values in the second, the third, and the

fourth row are the average application execution time, normalized by the corresponding
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Table 7.5: Average application execution time with variouspercentages of AR applications
in the tight situation (� = 0.8)

0% 20% 50% 80% 100%
FCFS 1 1 1 1 1
DCLS 0.63 0.55 0.49 0.43 0.38

DCMMS 0.51 0.38 0.32 0.30 0.27

Figure 7.9: Energy consumption in the loose situation. Columns without “(EL)” are sched-
ules without energy-aware local mapping. And columns with “(EL)” are schedules with
energy-aware local mapping.

execution time with the FCFS algorithm. From these two tables, we can observe that

higher percentage of AR applications leads to a better improvement of the DLS and the

DCMMS algorithm, compared to the FCFS algorithm, in both the loose situation and the

tight situation. The reason is that more AR applications cause longer delays of the best-

effort applications. By using the feedback information, ourDLS and DCMMS can reduce

workload unbalance, which is the major drawback of the FCFS algorithm. Furthermore,

we compare the energy consumption of three algorithms, shown in Fig. 7.9 and 7.10. Both

DCLS and DCMMS can reduce energy consumption compared to the FCFS algorithm. In

addition, our energy-aware local mapping further reduce the energy consumption signifi-

cantly, in all three algorithms.

In the future work, we will evaluate our proposed mechanism in existing simulators, so

181



Figure 7.10: Energy consumption in the tight situation. Columns without “(EL)” are
schedules without energy-aware local mapping. And columnswith “(EL)” are schedules
with energy-aware local mapping.

that results can be reproduced easier by other researchers.In addition, we will investigate

the implementation of our design in the real-world cloud computing platform. A reasonable

way to achieve this goal is to combine our design with the Hadoop platform [171]. The

multi-cloud scheduling mechanism and algorithms in our design can be used on the top

of the Hadoop platform, distributing applications in the federated multi-cloud platform.

When a give task is assigned to a cloud, the Hadoop will be used to distribute tasks to

multiple nodes. And our proposed energy-aware local mapping design can be implemented

in the Hadoop Distributed File System, which enables the “rack awareness” feature for data

locality inside the data center.

7.7 Conclusion

The cloud computing is emerging with rapidly growing customer demands. In case of sig-

nificant client demands, it may be necessary to share workloads among multiple data cen-

ters, or even multiple cloud providers. The workload sharing is able to enlarge the resource

pool and provide even more flexible and cheaper resources. Inthis chapter, we present a

resource optimization mechanism for preemptable applications in federated heterogeneous
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cloud systems. We also propose two novel online dynamic scheduling algorithms, DCLS

and DCMMS, for this resource allocation mechanism. Experimental results show that the

DCMMS outperforms DCLS and FCFS. And the dynamic procedure withupdated infor-

mation provides significant improvement in the fierce resource contention situation. The

energy-aware local mapping in our dynamic scheduling algorithms can significantly reduce

the energy consumptions in the federated cloud system.

Copyrightc⃝ Jiayin Li, 2012.
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Chapter 8 Conclusions

In this dissertation, we have discussed issues in the embedded system design, including

thermal issues in the 3D CMP chip, the endurance issue in the PCM, the battery issue in the

embedded system design, the impact of inaccurate information in embedded system, and

the cloud computing to move the workload to remote cloud computing facilities. Further-

more, we have presented a comprehensive set of optimizationtechniques for energy-aware

embedded systems.

We have presented an online 3D CMP temperature prediction model for multimedia

embedded systems. We have also proposed our real-time constrained task scheduling algo-

rithms, the TARS algorithms, to reduce peak temperature in a 3D CMP. By considering the

the inter-iteration data dependencies and frequencies assignment collaboratively, our pro-

posed TARS algorithms can significantly reduce the peak temperature on chip and avoid

most of the temperature violations. Our simulation resultsshowed that our TARS algo-

rithms can reduce peak temperature by 8.1∘C, and avoid up to 80% violations in the top

layer and up to 100% violations in the bottom layer.

We have designed an ILP-based memory activities optimization algorithm for the PCM

main memory. In order to increase the lifetime of the PCM memory, we schedule and share

the data in SPMs, reducing the redundant writes to the PCM memory in this algorithm. Our

experimental results show that our ILP algorithm can significantly reduce the number of

write by 61% on average. In addition, the performance of the system is also improved due

to less writes that are time-consuming.

We have proposed four optimization algorithms for embeddedCMP systems equipped

with the MLC/SLC PCM + DRAM hybrid memory. In our proposed algorithms, we not

only schedule and assign tasks to cores in the CMP system, but also provide a memory

configuration that balances the hybrid memory performance as well as the efficiency. Our
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experiments show that our genetic-based algorithm generates the best solutions. It signifi-

cantly reduces the maximum memory usage by 76.8%, compared to the DRAM+ uniform

SLC configuration, and improves the efficiency of memory usage by 155.6%, compared to

the DRAM + uniform 4 bits/cell MLC configuration. In addition,the performance of the

system, in terms of total execution, is also improved by 101%, compared to the uniform 4

bits/cell MLC configuration.

For the battery issue in the embedded system design, we have presented a complete

model for task scheduling in distributed mobile DSP system,which includes application

model, network model as well as energy model. Using this model, we propose our battery-

aware three-phase scheduling algorithms. We show that these algorithms can generate

optimal schedules while satisfying lifetime constraint, especially the one based on Min-

Min algorithm. These algorithms can also improve the complete ratio of the system.

We have propose a systematic method of measuring the robustness degradation with a

stochastic approach. We evaluate impacts of inaccurate information on system robustness

in two different scenarios. In our simulation, the makespanis the robustness metric. We

find that the makespan with inaccurate information increases proportional to the increase

of mean values of task execution time distribution caused byenvironment changes. Also,

20% to 70% penalty is caused by the inaccurate information used in making scheduling

decisions. The impact of environment changes on the robustness is linear to the degree

of how much inaccurate information (mainly the shift of means of PMFs) is generated

by these environment changes. However, the improvement of re-scheduling with updated

information mainly depends on how the task set consists of, not how inaccurate the in-

formation is. We also find that the impact of inaccurate meansof PMFs is much larger

than inaccurate standard deviations. Among these three greedy algorithms, MCT performs

the best under inaccurate information. It generates schedules that are almost as optimal as

ones from Min-min where accurate information is used. And inaccurate information has

less impacts on schedules from MCT than it does on Min-min.
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Finally, we have designed a resource optimization mechanism for preemptable appli-

cations in federated heterogeneous cloud systems. We also propose two novel online dy-

namic scheduling algorithms, DCLS and DCMMS, for this resource allocation mechanism.

Experimental results show that the DCMMS outperforms DCLS andFCFS. And the dy-

namic procedure with updated information provides significant improvement in the fierce

resource contention situation. The energy-aware local mapping in our dynamic scheduling

algorithms can significantly reduce the energy consumptions in the federated cloud system.

Copyrightc⃝ Jiayin Li, 2012.
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