14 research outputs found

    Surface energy and boundary layers for a chain of atoms at low temperature

    Get PDF
    We analyze the surface energy and boundary layers for a chain of atoms at low temperature for an interaction potential of Lennard-Jones type. The pressure (stress) is assumed small but positive and bounded away from zero, while the temperature ฮฒโˆ’1\beta^{-1} goes to zero. Our main results are: (1) As ฮฒโ†’โˆž\beta \to \infty at fixed positive pressure p>0p>0, the Gibbs measures ฮผฮฒ\mu_\beta and ฮฝฮฒ\nu_\beta for infinite chains and semi-infinite chains satisfy path large deviations principles. The rate functions are bulk and surface energy functionals Eโ€พbulk\overline{\mathcal{E}}_{\mathrm{bulk}} and Eโ€พsurf\overline{\mathcal{E}}_\mathrm{surf}. The minimizer of the surface functional corresponds to zero temperature boundary layers. (2) The surface correction to the Gibbs free energy converges to the zero temperature surface energy, characterized with the help of the minimum of Eโ€พsurf\overline{\mathcal{E}}_\mathrm{surf}. (3) The bulk Gibbs measure and Gibbs free energy can be approximated by their Gaussian counterparts. (4) Bounds on the decay of correlations are provided, some of them uniform in ฮฒ\beta

    Generating monotone quantities for the heat equation

    Get PDF

    Surface Energy and Boundary Layers for a Chain of Atoms at Low Temperature

    Get PDF
    We analyze the surface energy and boundary layers for a chain of atoms at low temperature for an interaction potential of Lennardโ€“Jones type. The pressure (stress) is assumed to be small but positive and bounded away from zero, while the temperature ฮฒ- 1 goes to zero. Our main results are: (1) As ฮฒโ†’ โˆž at fixed positive pressure p> 0 , the Gibbs measures ฮผฮฒ and ฮฝฮฒ for infinite chains and semi-infinite chains satisfy path large deviations principles. The rate functions are bulk and surface energy functionals Eยฏ bulk and Eยฏ surf. The minimizer of the surface functional corresponds to zero temperature boundary layers; (2) The surface correction to the Gibbs free energy converges to the zero temperature surface energy, characterized with the help of the minimum of Eยฏ surf; (3) The bulk Gibbs measure and Gibbs free energy can be approximated by their Gaussian counterparts; (4) Bounds on the decay of correlations are provided, some of them uniform in ฮฒ. ยฉ 2020, The Author(s)

    ์™„์ „ ๋น„์„ ํ˜• ํฌ๋ฌผ ํŽธ๋ฏธ๋ถ„ ๋ฐฉ์ •์‹์˜ ์ •์น™ ์ด๋ก ๊ณผ ๊ทธ ์‘์šฉ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ˆ˜๋ฆฌ๊ณผํ•™๋ถ€, 2013. 8. ์ด๊ธฐ์•”.์ด ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ๋น„๋ฐœ์‚ฐ ๊ตฌ์กฐ๋ฅผ ๊ฐ–๋Š” ์™„์ „ ๋น„์„ ํ˜• ํฌ๋ฌผ ๋ฐฉ์ •์‹์˜ ํ•ด์˜ ์ •์น™ ์ด๋ก ๊ณผ ๊ทธ ์‘์šฉ์— ๋Œ€ํ•˜์—ฌ ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ์ฒซ๋ฒˆ์งธ ์žฅ์€ ์™„์ „ ๋น„์„ ํ˜• ๊ณ ๋ฅธ ํฌ๋ฌผํ˜• ๋ฐ ํ‡ดํ™”๋œ ํฌ๋ฌผํ˜• ๋ฐฉ์ •์‹์˜ ํ•ด์˜ ์ ๊ทผ์  ํ–‰๋™ ์–‘์ƒ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ์ด๋‹ค. ๋จผ์ €, ํฌ๋ฌผ ๋ฐฉ์ •์‹์˜ ์ •๊ทœํ™” ๋œ ํ•ด๊ฐ€ ์‹œ๊ฐ„์ด ํ๋ฆ„์— ๋”ฐ๋ผ ๋ฐฉ์ •์‹๊ณผ ๊ด€๋ จ๋œ ์™„์ „ ๋น„์„ ํ˜• ํƒ€์› ์ž‘์šฉ์†Œ์˜ ์ œ 1 ๊ณ ์œ  ํ•จ์ˆ˜๋กœ ์ˆ˜๋ ดํ•จ์„ ์ฆ๋ช…ํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋ณผ๋กํ•œ ์˜์—ญ์—์„œ ์˜ค๋ชฉํ•œ ์™„์ „ ๋น„์„ ํ˜• ์ œ์ฐจ ์ž‘์šฉ์†Œ๊ฐ€ ์ฃผ์–ด์กŒ์„๋•Œ, ํฌ๋ฌผํ˜• ํ•ด์˜ ์ดˆ๊ธฐ ๊ธฐํ•˜์  ๊ตฌ์กฐ-ํŠน์ •ํ•œ ์˜ค๋ชฉ์„ฑ(log-concavity, power concavity)-๊ฐ€ ๋ณด์กด๋˜๋Š” ๊ฒƒ์„ ๋ณด์˜€๋‹ค. ์œ„์˜ ์ˆ˜๋ ด์„ฑ์„ ์ด์šฉํ•˜๋ฉด ์ œ 1 ๊ณ ์œ  ํ•จ์ˆ˜ ๋˜ํ•œ ๊ฐ™์€ ๊ธฐํ•˜์  ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ๋‘๋ฒˆ์งธ ์žฅ์—์„œ๋Š” ์™„์ „ ๋ฆฌ๋งŒ ๋‹ค์–‘์ฒด ์œ„์—์„œ ์™„์ „ ๋น„์„ ํ˜• ํฌ๋ฌผ ๋ฐฉ์ •์‹์˜ ํ•ด๋ฅผ ๋‹ค๋ฃจ์—ˆ๋Š”๋ฐ, ํŠนํžˆ ์ •์น™ ์ด๋ก ์˜ ์ดˆ์„์ด ๋˜๋Š” ํฌ๋ฌผํ˜• Harnack ๋ถ€๋“ฑ์‹์„ ์ฆ๋ช…ํ•˜์˜€๋‹ค. ์„ ํ˜• ์ž‘์šฉ์†Œ์— ๋Œ€ํ•ด์„œ๋Š” ๊ฑฐ๋ฆฌ ํ•จ์ˆ˜๋กœ ์ •์˜๋œ ํŠน์ •ํ•œ ์กฐ๊ฑด์„ ๊ฐ€์ •ํ•˜๊ณ  ์ •์น™์ธ ํ•ด์˜ ๋Œ€์—ญ์  Harnack ๋ถ€๋“ฑ์‹์„ ์–ป์—ˆ๋‹ค. ๋˜ ๋‹จ๋ฉด ๊ณก๋ฅ ์˜ ํ•˜ํ•œ์„ ๊ฐ€์ง€๋Š” ๋‹ค์–‘์ฒด์— ๋Œ€ํ•ด ๋น„์„ ํ˜• ์ž‘์šฉ์†Œ์˜ ๊ตญ์†Œ์  Harnack ๋ถ€๋“ฑ์‹์„ ๋ณด์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ Jensen์˜ sup- and inf-convolution์„ ์ด์šฉํ•˜์—ฌ, ์—ฐ์† ํ•ด์ธ viscosity ํ•ด์— ๋Œ€ํ•œ Harnack ๋ถ€๋“ฑ์‹์„ ์ฆ๋ช…ํ•˜์˜€๋‹ค.Abstract 1 Introduction 1 1.1 Long-time asymptotics for parabolic equations 2 1.2 Parabolic Harnack inequality on Riemannian manifolds 4 2 Preliminaries 8 2.1 Viscosity solutions 8 2.1.1 Uniformly elliptic operator 8 2.1.2 Viscosity solutions 10 2.1.3 Regularity for uniformly elliptic and parabolic equations 11 2.2 Riemannian geometry 12 2.2.1 Variation formulas and Volume comparison 15 2.2.2 Semi-concavity 18 2.2.3 Viscosity solutions on Riemannian manifolds 19 3 Asymptotic behavior of parabolic equations 22 3.1 Uniformly parabolic equations 22 3.1.1 Elliptic eigenvalue problem 22 3.1.2 Long-time asymptotics for uniformly parabolic equations 23 3.1.3 Log-concavity 29 3.2 Degenerate parabolic equations 39 3.2.1 Sub-linear elliptic eigenvalue problems 39 3.2.2 Long-time asymptotics for degenerate parabolic equations 42 3.2.3 Square-root concavity of thepressure 47 4 Harnack inequality on Riemannian manifolds 69 4.1 Harnack inequality for linear parabolic operators 69 4.1.1 ABP-Krylov-Tso type estimate 70 4.1.2 Barrier functions 78 4.1.3 Parabolic version of the Calderon-Zygmund decomposition 90 4.1.4 Proof of parabolic Harnack inequality 94 4.1.5 Weak Harnack inequality 107 4.2 Harnack inequality for nonlinear parabolic operators 110 4.3 Harnack inequality for viscosity solutions 121 4.3.1 Sup-and inf-convolution 121 4.3.2 Proof of parabolic Harnack inequality 132 Abstract (in Korean)Docto
    corecore