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Abstract
Regularity of fully nonlinear
parabolic equations and its

applications

Soojung Kim

Department of Mathematical Sciences
The Graduate School

Seoul National University

We study the fully nonlinear uniformly parabolic equation

F(D2u) − ∂tu = f on Ω × (0,T ],

where Ω is a smooth bounded domain in a complete Riemannian manifold M, and
T ∈ R is a positive number.

The first part of this thesis is based on joint work with Ki-Ahm Lee [37].
Asymptotic behavior of viscosity solutions to uniformly (or degenerate) parabolic
equations has been investigated in the Euclidean space when the operator F is pos-
itively homogeneous of order one and f ≡ 0. Precisely, the renormalized parabolic
solution with positive initial data converges to the related principal eigenfunction
as t → +∞. We also prove that log- concavity (or power concavity) is preserved
by the parabolic equation, under the assumption that Ω ⊂ Rn is convex and the op-
erator F is positively homogeneous and concave. Thus the uniform convergence
provides such geometric property for the principal eigenfunction.

The second part based on joint work with Seick Kim and Ki-Ahm Lee [36, 38]
is devoted to the proof of Krylov-Safonov Harnack inequality for nondivergent
uniformly parabolic operators on a complete Riemannian manifold M by ob-
taining Aleksandrov-Bakelman-Pucci-Krylov-Tso type estimate on M. For lin-
ear parabolic operators, we impose certain conditions on the distance function
introduced by Kim [35] to establish global Harnack inequality. In the nonlin-
ear parabolic setting, it is required to assume that M has the sectional curva-
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ture bounded from below. Lastly, we make use of regularization by sup and inf-
convolutions on Riemannian manifolds to prove Harnack inequality for viscosity
solutions.

Key words: fully nonlinear parabolic equation, fully nonlinear elliptic eigenvalue
problem, porous medium equation, Harnack inequality on Riemannian manifolds,
ABP type estimate
Student Number: 2007-20268
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Chapter 1

Introduction

Fully nonlinear elliptic and parabolic equations appear in stochastic control the-
ory (for example, the Bellman equation and the Bellman-Isaac equation [42, 13])
and in geometry (for example, mean curvature flows [25]). The theory of fully
nonlinear equations in nondivergence form has been developed since the early
1980s due to the breakthrough estimate by Krylov and Safonov [45, 46], and
the concept of weak solution called viscosity solution. Krylov-Safonov Harnack
inequality based on Aleksandrov-Bakelman-Pucci (ABP) estimate [1, 6, 52] is
the analogue of the De Giorgi-Nash-Moser theory for divergent operators (see
[26, 29]), and the notion of viscosity solutions introduced by Crandall and Lions
[19] and Evans [22, 23] suits fully nonlinear equations in nondivergence form.
Existence, Uniqueness of viscosity solutions and regularity theory of fully nonlin-
ear uniformly elliptic and parabolic equations are well understood and we refer to
[18, 12, 43, 44, 24, 13, 60, 61].

In this thesis, we are concerned with the fully nonlinear parabolic equation

F(D2u) − ∂tu = f in Ω × (0,T ], (1.0.1)

under the assumption that the operator F is uniformly elliptic, and Ω is a smooth
bounded domain in the Euclidean space Rn or in a complete Riemannian manifold
M, and T ∈ R is a positive number. Assuming F to be positively homogeneous
of order one, we investigate long- time behavior of viscosity solutions to (1.0.1)
with f ≡ 0 and its relation to the principal eigenvalue problem. Preservation of
some geometric property is also proved by the parabolic flow when Ω ⊂ Rn is
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CHAPTER 1. INTRODUCTION

convex and F is also assumed to be concave. On the other hand, we establish
Krylov-Safonov Harnack inequality for viscosity solutions to (1.0.1) on a Riman-
nian manifold M imposing certain conditions on the distance function or the sec-
tional curvature condition on M.

1.1 Long-time asymptotics for parabolic equations

In this section, we consider the following fully nonlinear uniformly or degenerate
parabolic equation

F(D2um) − ∂tu = 0 in Ω × (0,+∞),
u(·, 0) > 0 in Ω,

u = 0 on ∂Ω × (0,+∞),
(1.1.1)

in the range of the exponents m ≥ 1, where F is uniformly elliptic and positively
homogeneous of order one, and Ω ⊂ Rn is a smooth bounded domain. When
F is the Laplace operator, (1.1.1) is the well-known heat equation for m = 1,
porous medium equation for m > 1, or fast diffusion equation for 0 < m < 1,
respectively, that models linear or nonlinear diffusion of material (for example,
heat and gas flows) in various media. For the Laplace operator, the asymptotic
behavior of solutions to the uniform, degenerate or singular diffusion equations
has been studied by many authors and we refer to [47, 58] and references therein.

In Chapter 3, we shall show that a renormalized limit of u(·, t) as t → +∞ is
the function ϕ, which solves the following elliptic eigenvalue problem

F(D2ϕ) + µϕp = 0, in Ω,

ϕ > 0 in Ω,

ϕ = 0 on ∂Ω,

(1.1.2)

where 0 < p := 1
m ≤ 1 and µ > 0 is the corresponding eigenvalue depend-

ing on m, F and Ω. More precisely, for uniformly parabolic case when m = 1, it
is proved that the renormalized solution eµtu(·, t) converges uniformly to γ∗ϕ as
t → +∞, by using the regularity theory and the maximum principle, where µ > 0
is the corresponding eigenvalue of the problem (1.1.2), and the constant γ∗ > 0 is
uniquely determined depending only on the initial data. For porous medium type
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CHAPTER 1. INTRODUCTION

case (m > 1), it follows that the unique limit of t
m

m−1 um(·, t) is the positive eigen-
function associated with the eigenvalue µ = 1

m−1 from the barrier argument with
separable solutions. The existence and uniqueness up to a multiplicative constant
of the principal eigenfunction for an elliptic, positively homogeneous operator F
of order one were proven by Ishii and Yoshimura [31], and they also showed that
the principal eigenvalue µ > 0 is unique. The simplified proof can be found in [2],
where they investigated the principal eigenvalues of fully nonlinear operators via
maximum principle method (see also [8, 9, 53]). For the sub-linear case 0 < p < 1,
the unique positive eigenfunction of (1.1.2) can be established by using a barrier
argument.

Secondly, we study some geometric property of viscosity solutions to (1.1.1).
Under the additional assumptions that Ω is convex and F is concave, log(u) for
m = 1, and u

m−1
2 for m > 1 will turn out to be geometric quantities that preserve

the concavity for all time. The argument for the Laplace operator in [47] seems to
hold for fully nonlinear case, but it is not straight forward due to the nonlinearity
of the operator. Thus sophisticated geometric computations using approximation
of the nonlinear elliptic operator are employed to investigate geometric quantities,
which will satisfy maximum principle. For the porous medium type equations,
we impose an extra assumption on initial data due to lack of global regularity.
In general, we need to prove a weighted C2,α estimate up to the boundary. As a
consequence, the principal eigenfunction has such geometric property from the
uniform convergence, that is, log(ϕ) is concave in the case p = 1, and ϕ

1−p
2 is

concave for 0 < p < 1. This implies the convexity of the super-level sets of the
positive eigenfunction of (1.1.2). Since 1950s, the convexity of the level sets of
positive eigenfunctions for the Laplace operator has been investigated by many
authors; see [10, 40, 34, 47, 50, 27]. For the simplest case when a domain is a ball
and the operator is Laplacian, there is a unique rotationally symmetric solution
by the Alexandrov reflection argument which is decreasing and has convex super-
level sets. Therefore, our results give that the geometric property is preserved
under some nonlinear, concave perturbation of the operator.

Notation 1.1.1. • D2u ≥ 0, and D2u ≤ 0 are understood in the usual sense of
quadratic forms. For instance, D2u ≥ 0 means that D2u is positive semidef-
inite.

3



CHAPTER 1. INTRODUCTION

• In order to avoid confusion between coordinates and partial derivatives, we
will use the standard subindex notation to denote the former, while partial
derivatives will be denoted in the form f,α for ∂ f

∂xα
. The second order partial

derivatives will be denoted in the form f,αβ for ∂2 f
∂xα∂xβ

. This notation is usual
in some parts of the physics literature. However, we denote by fν and fτ
the normal and tangential derivatives, respectively, since no confusion is
expected.

1.2 Parabolic Harnack inequality on Riemannian man-
ifolds

Krylov-Safonov Harnack inequality on a complete Riemannian manifold M for
uniformly parabolic operators in nondivergence form is established in Chapter 4.
The Harnack inequality is well understood for the divergent operators on Rie-
mannian manifolds, where the volume doubling property and the weak Poincaré
inequality hold. Indeed, it is shown that the two conditions above imply the Har-
nack inequality for divergent parabolic operators; see [28, 54].

In the setting of elliptic equations in nondivergence form on M, Cabré [11]
obtained Krylov-Safonov type Harnack inequality of classical solutions to linear,
uniformly elliptic equations when M has nonnegative sectional curvature. ABP
estimate is essential to develop the regularity theory for fully nonlinear equations
such as Krylov-Safonov Harnack inequality, which is proved using affine func-
tions in the Euclidean space. Since affine functions can not be generalized into
an intrinsic notion on Riemannian manifolds, Cabré considered the functions of
the squared distance as appropriate replacements for the affine functions. Later,
Kim [35] improved Cabré’s result removing the sectional curvature assumption
and imposing the certain conditions on the distance function; see (1.2.2) below.
Recently, Wang and Zhang [62] obtained a version of ABP estimate on M with a
lower bound of Ricci curvature, and Harnack inequality of classical solutions for
nonlinear uniformly elliptic operators on M with the sectional curvature bounded
from below.

We first consider linear, uniformly parabolic equations of nondivergence type

4



CHAPTER 1. INTRODUCTION

defined by
L u := trace (Ax,t ◦ D2u) − ∂tu = f , (1.2.1)

where Ax,t is a positive definite symmetric endomorphism of TxM for any x ∈ M
with the assumption that

λ|X|2 ≤ 〈Ax,tX, X〉 ≤ Λ|X|2, ∀x ∈ M, ∀X ∈ TxM.

We assume essentially the same conditions introduced by Kim [35] that for the
distance function dp := d(·, p) on M, there is a positive constant aL such that

4dp(x) ≤
n − 1
dp(x)

for x < cut locus of p ∪ {p}, ∀p ∈ M,

L dp(x) ≤
aL

dp(x)
for x < cut locus of p ∪ {p}, ∀p ∈ M.

(1.2.2)

The first condition of (1.2.2) implies Bishop’s volume comparison theorem (see
[48]), in particular, the underlying manifold M has a global volume doubling
property. Under the assumption (1.2.2), Krylov-Safonov Harnack inequality is
proved for classical solutions to (1.2.1) in Section 4.1, which gives in particu-
lar a new, nondivergent proof for Li-Yau Harnack inequality for the heat operator
on M with nonnegative Ricci curvature. ABP-Krylov-Tso estimate discovered by
Krylov [41] in the Euclidean case (see also [57, 60]) is a parabolic analogue of
the ABP estimate, and a key ingredient in proving parabolic Harnack inequality.
In order to prove ABP-Krylov-Tso type estimate (Lemma 4.1.3) on Riemannian
manifolds, an intrinsically geometric version of Krylov-Tso normal map, namely,

Φ(x, t) :=
(
expx ∇xu(x, t),−

1
2

d2 (
x, expx ∇u(x, t)

)
− u(x, t)

)
is introduced. The map Φ is called the parabolic normal map related to u(x, t) and
its Jacobian determinant is explicitly computed in Lemma 4.1.2.

Influenced by Wang and Zhang [62], we prove Harnack inequality for the
following fully nonlinear uniformly parabolic equation

F(D2u) − ∂tu = f (1.2.3)

assuming that M has the sectional curvature bounded from below by −κ for κ ≥ 0
in Section 4.2. We introduce the parabolic contact set Aa,b for a, b > 0, which

5



CHAPTER 1. INTRODUCTION

consists of a point (x, t) ∈ M × R, where a concave paraboloid

−
a
2

d2
y (x) + bt + C (for some C)

touches u from below at (x, t) in a parabolic neighborhood of (x, t), i.e, Br(x) ×
(t − r2, t] for some r > 0. Under the assumption that the Ricci curvature of M is
bounded from below, the Jacobian determinant of the parabolic normal map on
the contact set Aa,b is estimated using the theory of Jacobi fields with the help of
[62], which is essential to prove a priori Harnack estimate. When dealing with the
fully nonlinear operators, the sectional curvature condition is required, and then
we obtain local Harnack inequality due to the local uniform doubling property of
negatively curved manifolds; see Bishop-Gromov Theorem 2.2.4.

Recently, the notion of viscosity solutions introduced by Ishii [30] has been
extended on Riemannian manifolds in [5, 51, 64], where they proved comparison,
uniqueness and existence results for the viscosity solutions to fully nonlinear el-
liptic and parabolic equations on Riemannian manifolds. In Section 4.3, we obtain
Krylov-Safonov Harnack inequality for viscosity solutions to (1.2.3) from a pri-
ori estimates by using regularization by sup- and inf-convolutions, proposed by
Jensen [32] in the Euclidean space. For ε > 0, the inf-convolution of u is defined
as

uε(x0) := inf
y∈Ω

{
u(y) +

1
2ε

d2(y, x0)
}

for x0 ∈ Ω ⊂ M.

Then, the inf-convolution is semi-concave and hence admits the Hessian almost
everywhere thanks to Aleksandrov theorem, [1, 7]. We shall prove in Proposition
4.3.3 that a class of all viscosity solutions for uniformly parabolic operators is
invariant under the regularization processes of sup- and inf-convolutions, where
the sectional curvature is bounded from below. Therefore, the application of a
priori estimate to sup- and inf-convolutions of viscosity solutions gives Harnack
inequality for viscosity solutions.

Notation 1.2.1. • Let r > 0, ρ > 0, x0 ∈ M and t0 ∈ R. We denote

Kr, ρ(x0, t0) := Br(x0) × (t0 − ρ, t0],

where Br(x0) is a geodesic ball of radius r centered at x0. In particular, we
denote

Kr(x0, t0) := Kr, r2(x0, t0).

6



CHAPTER 1. INTRODUCTION

• We denote ?
Q

f :=
1
|Q|

∫
Q

f ,

where |Q| stands for the volume of a set Q of M or M × R.

We conclude the introduction with a short summary of each chapter of this
thesis. In Chapter 2, we briefly recall the theory of viscosity solutions to fully non-
linear elliptic and parabolic equations. We also give some results on Riemannian
geometry that are used in the thesis. In Chapter 3, we study long time asymptotics
and geometric property for fully nonlinear parabolic equations and the related
elliptic eigenvalue problem in the Euclidean space. In Chapter 4, we establish
Krylov-Safonov Harnack inequality for viscosity solutions on Riemannian mani-
folds.

7



Chapter 2

Preliminaries

2.1 Viscosity solutions

In this section, we give an overview of the theory of viscosity solutions to fully
nonlinear equations. The concept of viscosity solutions gives us a way to under-
stand a nonsmooth function as a solution of equations in nondivergence form using
maximum principle. The existence of viscosity solutions is obtained most often
through the Perron method and uniqueness results. Viscosity solutions provide a
general existence and uniqueness theory and stability and compatibility with clas-
sical solutions . We refer to [18, 13, 60, 61] and references therein for the results
of existence, uniqueness, nice properties and regularity of viscosity solutions.

2.1.1 Uniformly elliptic operator

We introduce the uniformly elliptic operator which is a generalization of the
Laplace operator, and give some properties and examples of the uniformly elliptic
operators.

Definition 2.1.1. Let Sym(n) denote the set of n× n symmetric matrices. An oper-
ator F : Sym(n) → R is said to be uniformly elliptic with the so-called ellipticity
constants 0 < λ ≤ Λ, if for any S ∈ Sym(n), and for any positive semidefinite
P ∈ Sym(n), we have

λ trace(P) ≤ F(S + P) − F(S ) ≤ Λ trace(P).

8



CHAPTER 2. PRELIMINARIES

We state the basic hypotheses on the operator F : Sym(n) → R which will be
commonly assumed:

(F1) F is uniformly elliptic and F(0) = 0.

(F2) F is positively homogeneous of order one; for all t ≥ 0 and S ∈ Sym(n),

F(tS ) = tF(S ).

(F3) F is concave.

We may extend F on Rn2
by defining F(A) := F

(
A+AT

2

)
for a nonsymmetric matrix

A. Examples of the operator satisfying (F1), (F2), and (F3) are Bellman operator,
and the Pucci’s extremal operatorM− defined as follows.

Definition 2.1.2 (Pucci’s extremal operators). For 0 < λ ≤ Λ (called ellipticity
constants), the Pucci’s extremal operators are defined as follows: for any S ∈
Sym(n),

M+
λ,Λ(S ) :=M+(S ) = λ

∑
ei<0

ei + Λ
∑
ei>0

ei,

M−
λ,Λ(S ) :=M−(S ) = Λ

∑
ei<0

ei + λ
∑
ei>0

ei,

where ei = ei(S ) are the eigenvalues of S .

In the special case when λ = Λ = 1, the Pucci’s extremal operatorsM± simply
coincide with the trace operator. We notice that the hypothesis (F1) is equivalent
to the following: for any S , P ∈ Sym(n),

(F1’) M−(P) ≤ F(S + P) − F(S ) ≤ M+(P), and F(0) = 0.

We state some properties of the Pucci’s operators as a following lemma and refer
to [13] for the proof.

Lemma 2.1.1. Let Sym(n) denote the set of n × n symmetric matrices. For S , P ∈
Sym(n), the followings hold:

9



CHAPTER 2. PRELIMINARIES

(a)
M+(S ) = sup

A∈Sλ,Λ
trace(AS ), and M−(S ) = inf

A∈Sλ,Λ
trace(AS ),

where Sλ,Λ consists of positive definite symmetric matrices in Sym(n), whose
eigenvalues lie in [λ,Λ].

(b) M−(−S ) = −M+(S ).

(c) M−(S + P) ≤ M−(S ) +M+(P) ≤ M+(S + P) ≤ M+(S ) +M+(P).

2.1.2 Viscosity solutions

We recall viscosity solutions, which are the proper notion of the weak solutions
for the fully nonlinear elliptic and parabolic equations in nondivergence form.

Definition 2.1.3. Let F : Sym(n) → R be a uniformly elliptic operator, and let f
and u be continuous functions defined on a bounded domain Ω ⊂ Rn. A function
u is said to be a viscosity subsolution (respectively, viscosity supersolution) of

F(D2u) = f in Ω (2.1.1)

when the following holds: if u − φ has a local maximum at x0 for any x0 ∈ Ω and
φ ∈ C2(Ω), then we have

F(D2φ(x0)) ≥ f (x0)

(respectively, if u−φ has a local minimum at x0, then we have F(D2φ(x0)) ≤ f (x0)).
We say that u is a viscosity solution of F(D2u) = f in Ω when it is both a viscosity
subsolution and supersolution.

Viscosity solution for the parabolic equation is defined analogously; see Sub-
section 2.2.3. The notion of viscosity solutions is compatible with the classical
notion of solutions as the following lemma.

Lemma 2.1.2. Assume that u ∈ C2(Ω). Then, u is a viscosity subsolution of (2.1.1)
in Ω if and only if F(D2u(x)) ≥ f (x) for any x ∈ Ω.

We end this subsection by mentioning basic facts of viscosity sub and super-
solutions of uniformly elliptic equations. The following is the comparison princi-
ple which gives the uniqueness of the viscosity solution.

10



CHAPTER 2. PRELIMINARIES

Proposition 2.1.3 (Comparison principle). Let F be uniformly elliptic, and let
f ∈ C(Ω), where Ω ⊂ Rn is a smooth bounded domain. Let u, v ∈ C(Ω) be
viscosity sub and super solutions to (2.1.1), respectively. If u ≤ v on ∂Ω, then we
have u ≤ v on Ω.

Proposition 2.1.4 (Hopf’s Lemma). Let F be uniformly elliptic and let u ∈ C(Ω)
be a viscosity subsolution of (2.1.1) with f ≡ 0 satisfying u . 0 and u ≤ 0 in Ω,

where Ω ⊂ Rn is a smooth bounded domain. If u(x0) = 0 for x0 ∈ ∂Ω, then we
have

lim inf
x∈Ω→x0

u(x0) − u(x)
|x0 − x|

> 0.

2.1.3 Regularity for uniformly elliptic and parabolic equations

In this subsection, we summarize regularity estimates for the following fully non-
linear uniformly elliptic equation

F(D2u) = f in Ω, (2.1.2)

where we assume that F satisfies (F1), and Ω ⊂ Rn is a smooth bounded domain.
We refer to [13, 26] and references therein for the proofs.

(i) (Harnack inequality [13, Theorem 4.3]) Let u ∈ C(Ω) be a nonnegative vis-
cosity solution of (2.1.2) for f ∈ C(Ω)∩Ln(Ω). Then for any compact subset
K ⊂ Ω, we have

sup
K

u ≤ C
{
inf

K
u + ‖ f ‖Ln(Ω)

}
where C > 0 depends only on n, λ,Λ,K and Ω.

(ii) (Local regularity) Let u ∈ C(Ω) be a viscosity solution of (2.1.2). The fol-
lowings hold for an appropriate function f in Ω.

(a) [13, Proposition 4.10] Hölder regularity for f ∈ C(Ω).

(b) [13, Corollary 5.7 and Theorem 8.3] C1,α-regularity (0 < α < 1) for a
Hölder continuous function f in Ω.

We also assume that F is concave (or convex).

11



CHAPTER 2. PRELIMINARIES

(c) [13, Theorem 6.6] C1,1-regularity for f ≡ 0.

(d) [13, Theorem 6.1 and Theorem 8.1] C2,α-regularity (0 < α < 1) for a
Hölder continuous function f on Ω.

(e) [13, Theorem 7.1] W2,p- regularity for f ∈ Lp(Ω) and n < p < ∞.

(iii) (Global Regularity) Let u ∈ C
(
Ω
)

be a viscosity solution of{
F(D2u) = f in Ω,

u = g on ∂Ω.

(a) [13, Proposition 4.14] Hölder regularity for f ∈ C(Ω) ∩ Ln(Ω) and
g ∈ Cβ(∂Ω) (0 < β ≤ 1).

(b) [56] C1,α-regularity (0 < α < 1) for f ≡ 0 and g ∈ C1,β(∂Ω) (0 < β ≤

1).

We also assume that F is concave (or convex).

(c) [13, Proposition 9.8] C2,α-regularity (0 < α < 1) for f ≡ 0 and g ∈
C3(∂Ω).

(d) [63] W2,p-regularity for f ∈ Lp(Ω) and g ∈ W2,p(Ω) (n < p < ∞).

For viscosity solutions to the fully nonlinear uniformly parabolic equation

F(D2u) − ∂tu = f in Ω × (0,T ],

similar regularity results can be found in [49, 60, 61] and references therein.

2.2 Riemannian geometry

In this thesis, let (M, g) be a smooth, complete Riemannian manifold of dimension
n, where g is the Riemannian metric and Vol := Volg is the Riemannian measure
on M. We denote 〈X,Y〉 := g(X,Y) and |X|2 := 〈X, X〉 for X,Y ∈ TxM, where TxM
is the tangent space at x ∈ M. Let d(·, ·) be the distance function on M. For a given
point y ∈ M, dy(x) denotes the distance function to y, i.e., dy(x) := d(x, y).

12
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We recall the exponential map exp : T M → M. If γx,X : R → M is the
geodesic starting at x ∈ M with velocity X ∈ TxM, then the exponential map is
defined by

expx(X) := γx,X(1).

We observe that the geodesic γx,X is defined for all time since M is complete. For
X ∈ TxM with |X| = 1, we define the cut time tc(X) as

tc(X) := sup
{
t > 0 : expx(sX) is minimizing between x and expx(tX)

}
.

The cut locus of x ∈ M, denoted by Cut(x), is defined by

Cut(x) :=
{
expx(tc(X)X) : X ∈ TxM with |X| = 1, tc(X) < +∞

}
.

If we define

Ex := {tX ∈ TxM : 0 ≤ t < tc(X), X ∈ TxM with |X| = 1} ⊂ TxM,

it can be proved that Cut(x) = expx(∂Ex),M = expx(Ex)∪Cut(x), and expx : Ex →

expx(Ex) is a diffeomorphism. We note that Cut(x) is closed and has measure zero.
Given two points x and y < Cut(x), there exists a unique minimizing geodesic
expx(tX) (for X ∈ Ex) joining x to y with y = expx(X), and we will write X =

exp−1
x (y). For any x < Cut(y)∪ {y}, the distance function dy is smooth at x, and the

Gauss lemma implies that

∇dy(x) = −
exp−1

x (y)
| exp−1

x (y)|
,

and
∇(d2

y/2)(x) = − exp−1
x (y).

The injectivity radius at x of M is defined as

iM(x) := sup{r > 0 : expx is a diffeomorphism from Br(0) onto Br(x)}.

We note that iM(x) > 0 for any x ∈ M and the map x 7→ iM(x) is continuous.
We recall the Hessian of a C2- function u on M defined as

D2u (X,Y) := 〈∇X∇u,Y〉 ,

13
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for any vector fields X,Y on M,where ∇ denotes the Riemannian connection of M,
and ∇u is the gradient of u. The Hessian D2u is a symmetric 2-tensor in Sym T M,
whose value at x ∈ M depends only on u and the values X,Y at x. By a canonical
identification of the space of symmetric bilinear forms on TxM with the space of
symmetric endomorphisms of TxM, the Hessian of u at x ∈ M can be also viewed
as a symmetric endomorphism of TxM:

D2u(x) · X = ∇X∇u, ∀X ∈ TxM.

We will write D2u(x) (X, X) =
〈
D2u(x) · X, X

〉
for X ∈ TxM.

Let ξ be a vector field along a differentiable curve γ : [0, a] → M. We denote
by Dξ

dt (t) = ∇γ̇(t)ξ(t), the covariant derivative of ξ along γ. A vector field ξ along γ
is said to be parallel along γ when

Dξ
dt

(t) ≡ 0 on [0, a].

If γ : [0, 1] → M is a unique minimizing geodesic joining x to y, then for any
ζ ∈ TxM, there exists a unique parallel vector field, denoted by Lx,yζ(t), along γ
such that Lx,yζ(0) = ζ. The parallel transport of ζ from x to y , denoted by Lx,yζ, is
defined as

Lx,yζ := Lx,yζ(1) ∈ TyM,

which will induce a linear isometry Lx,y : TxM → TyM. We note that Ly,x = L−1
x,y

and 〈
Lx,yζ, ν

〉
y

=
〈
ζ, Ly,xν

〉
x
, ∀ζ ∈ TxM, ν ∈ TyM. (2.2.1)

We also define the parallel transport of a symmetric bilinear form along the unique
minimizing geodesic; see [5, p. 311].

Definition 2.2.1. Let x, y ∈ M, and let γ : [0, 1] → M be a unique minimizing
geodesic joining x to y. For S ∈ Sym T Mx, the parallel transport of S from x to y,
denoted by Lx,y ◦ S , is a symmetric bilinear form on TyM satisfying〈(

Lx,y ◦ S
)
· ν, ν

〉
y

:=
〈
S ·

(
Ly,xν

)
, Ly,xν

〉
x
, ∀ν ∈ TyM.

Identifying the space of symmetric bilinear forms on TyM with the space of
symmetric endomorphisms of TyM, Lx,y ◦ S can be considered as a symmetric
endomorphism of TyM such that(

Lx,y ◦ S
)
· ν = Lx,y

(
S ·

(
Ly,xν

))
, ∀ν ∈ TyM.

14
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Then it is not difficult to check that S and Lx,y ◦ S have the same eigenvalues.
Let the Riemannain curvature tensor be defined by

R(X,Y)Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z.

where ∇ denotes the Riemannian connection of M. For two linearly independent
vectors X,Y ∈ TxM, we define the sectional curvature of the plane determined by
X and Y as

Sec(X,Y) :=
〈R(X,Y)X,Y〉
|X|2|Y |2 − 〈X,Y〉2

.

Let Ric denote the Ricci curvature tensor defined as follows: for a unit vector
X ∈ TxM and an orthonormal basis {X, e2, · · · , en} of TxM,

Ric(X, X) =

n∑
j=2

Sec(X, e j).

As usual, Ric ≥ κ on M (κ ∈ R) stands for Ricx ≥ κgx for all x ∈ M.
Let M and N be Riemannian manifolds of dimension n and φ : M → N be

smooth. The Jacobian of φ is the absolute value of determinant of the differential
dφ, i.e.,

Jac φ(x) := | det dφ(x)| for x ∈ M.

The following is the area formula, which follows easily from the area formula in
Euclidean space and a partition of unity.

Lemma 2.2.1 (Area formula). For any smooth function φ : M × R→ M × R and
any measurable set E ⊂ M × R, we have∫

E
Jac φ(x, t)dV(x, t) =

∫
M×R
H0[E ∩ φ−1(y, s)]dV(y, s),

whereH0 is the counting measure.

2.2.1 Variation formulas and Volume comparison

First, we recall the first and second variations of the energy function (see for in-
stance, [21]).

15
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Lemma 2.2.2 (First and second variations of energy). Let γ : [0, 1] → M be a
minimizing geodesic, and ξ be a vector field along γ. For small ε > 0, let h :
(−ε, ε) × [0, 1]→ M be a variation of γ defined as

h(r, t) := expγ(t) rξ(t).

Define the energy function of the variation

E(r) :=
∫ 1

0

∣∣∣∣∣∂h
∂t

(r, t)
∣∣∣∣∣2 dt, for r ∈ (−ε, ε).

Then, we have

(a)
E(0) = d2 (γ(0), γ(1)) ,

(b)

1
2

E′(0) = 〈ξ(1), γ̇(1)〉 − 〈ξ(0), γ̇(0)〉 ,

(c)

1
2

E′′(0) =

∫ 1

0

{〈Dξ
dt
,

Dξ
dt

〉
− 〈R (γ̇(t), ξ(t)) γ̇(t), ξ(t)〉

}
dt.

In particular, if a vector field ξ is parallel along γ, then we have Dξ
dt ≡ 0 and

〈ξ, γ̇〉 ≡ C (for C ∈ R ) on [0, 1]. In this case, we have the following estimate:

E(r) = E(0) − r2
∫ 1

0
〈R (γ̇(t), ξ(t)) γ̇(t), ξ(t)〉 dt + o

(
r2

)
. (2.2.2)

Now, we state some known results on Riemannian manifolds. Under a certain
condition on the distance function, we have the estimate for Jacobian of the expo-
nential map and Bishop’s volume comparison theorem as follows The proof can
be found in [35, p. 286] (see also [48]).

Lemma 2.2.3. Suppose that M satisfies

4dp(x) ≤
n − 1
dp(x)

for x < Cut(p) ∪ {p}.

16
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(i) For any x ∈ M and X ∈ Ex,

Jac expx(X) = | det d expx(X)| ≤ 1.

(ii) (Bishop) For any x ∈ M, Vol(BR(x))/Rn is nonincreasing with respect to R,
where BR(x) is a geodesic ball of radius R centered at x. Namely,

Vol(BR(x))
Vol(Br(x))

≤
Rn

rn if 0 < r < R.

In particular, M satisfies the volume doubling property; i.e., Vol(B2R(x)) ≤
2n Vol(BR(x)).

Assuming Ricci curvature to be bounded from below (see [59] for instance),
we have the following volume doubling property in general.

Theorem 2.2.4 (Bishop-Gromov). Assume that Ric ≥ −(n − 1)κ on M for κ ≥ 0.
For any 0 < r < R, we have

Vol(B2r(z))
Vol(Br(z))

≤ 2n coshn−1
(
2
√
κR

)
. (2.2.3)

We observe that the doubling property (2.2.3) implies that for any 0 < r < R <

R0,
Vol(BR(z))
Vol(Br(z))

≤ D

(R
r

)log2D

,

whereD := 2n coshn−1
(
2
√
κR0

)
is the so-called doubling constant. Using the vol-

ume doubling property, it is easy to prove the following lemma.

Lemma 2.2.5. Assume that for any z ∈ M and 0 < r < 2R0, there exists a doubling
constantD > 0 such that

Vol(B2r(z)) ≤ DVol(Br(z)).

Then we have that for any Br(y) ⊂ BR(z) with 0 < r < R < R0,{?
Br(y)

∣∣∣r2 f
∣∣∣nθ} 1

nθ

≤ 2
{?

BR(z)

∣∣∣R2 f
∣∣∣nθ} 1

nθ

; θ :=
1
n

log2D. (2.2.4)

In particular, if the sectional curvature of M is bounded from below by −κ (κ ≥ 0),
then (2.2.4) holds with θ := 1 + log2 cosh(4

√
κR0).
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In the parabolic setting, it follows from Lemma 2.2.5 that for any 0 < r < R <

R0, 
?

Kr, αr2 (y,s)

∣∣∣r2 f
∣∣∣nθ+1


1

nθ+1

≤ 2α−
1

nθ+1

{?
KR(z,t)

∣∣∣R2 f
∣∣∣nθ+1

} 1
nθ+1

, (2.2.5)

where Kr,αr2(y, s) := Br(y) × (s − αr2, s] ⊂ KR(z, t) = BR(z) × (t − R2, t] for α > 0.

2.2.2 Semi-concavity

Semi-concavity of functions on Riemannian manifolds is a natural generalization
of concavity. The work of Bangert [7] concerning semi-concave functions enables
us to deal with functions that are not twice differentiable in the usual sense.

Definition 2.2.2. Let Ω be an open set of M. A function φ : Ω → R is said to
be semi-concave at x0 ∈ Ω if there exist a geodesically convex ball Br(x0) with
0 < r < iM(x0), and a smooth function Ψ : Br(x0) → R such that φ + Ψ is
geodesically concave on Br(x0). A function φ is semi-concave on Ω if it is semi-
concave at each point in Ω.

The following local characterization of semi-concavity is quoted from [17,
Lemma 3.11].

Lemma 2.2.6. Let φ : Ω → R be a continuous function and let x0 ∈ Ω, where
Ω ⊂ M is open. Assume that there exist a neighborhood U of x0, and a constant
C > 0 such that for any x ∈ U and X ∈ TxM with |X| = 1,

lim sup
r→0

φ
(
expx rX

)
+ φ

(
expx −rX

)
− 2φ(x)

r2 ≤ C.

Then φ is semi-concave at x0.

Hessian bound for the squared distance function is the following lemma which
is proved in [17, Lemma 3.12] using the formula for the second variation of en-
ergy. According to the local characterization of semi-concavity combined with
Lemma 2.2.7, d2

y is semi-concave on a bounded open set Ω ⊂ M for any y ∈ M,
provided that the sectional curvature of M is bounded from below.
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Lemma 2.2.7. Let x, y ∈ M. If Sec ≥ −κ (κ ≥ 0) along a minimizing geodesic
joining x to y, then for any X ∈ TxM with |X| = 1,

lim sup
r→0

d2
y
(
expx rX

)
+ d2

y
(
expx −rX

)
− 2d2

y (x)

r2 ≤ 2
√
κdy(x) coth

(√
κdy(x)

)
.

The following result from Bangert is an extension of Aleksandrov’s second
differentiability theorem that a convex function has second derivatives almost ev-
erywhere in the Euclidean space [2] (see also [59, Chapter 14]) .

Theorem 2.2.8 (Aleksandrov-Bangert, [7]). Let Ω ⊂ M be an open set and let
φ : Ω→ R be semi-concave. Then for almost every x ∈ Ω, φ is differentiable at x,
and there exists a symmetric operator A(x) : TxM → TxM characterized by any
one of the two equivalent properties:

(a) for ξ ∈ TxM, A(x) · ξ = ∇ξ∇φ(x),

(b) φ(expx ξ) = φ(x) + 〈∇φ(x), ξ〉 + 1
2 〈A(x) · ξ, ξ〉 + o

(
|ξ|2

)
as ξ → 0.

The operator A(x) and its associated symmetric bilinear from on TxM are denoted
by D2φ(x) and called the Hessian of φ at x when no confusion is possible.

2.2.3 Viscosity solutions on Riemannian manifolds

In this subsection, we consider a refined definition of viscosity solutions to parabolic
equations slightly different from the usual definition in [64]; see [60] for the Eu-
clidean case.

Definition 2.2.3. Let Ω ⊂ M be open and T > 0. Let u : Ω×(0,T ]→ R be a lower
semi-continuous function. We say that u has a local minimum at (x0, t0) ∈ Ω×(0,T ]
in the parabolic sense if there exists r > 0 such that

u(x, t) ≥ u(x0, t0) for all (x, t) ∈ Kr(x0, t0) := Br(x0) × (t0 − r2, t0].

Similarly, we can define a local maximum in the parabolic sense.
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Definition 2.2.4 (Viscosity sub and super- differentials). Let Ω ⊂ M be open and
T > 0. Let u : Ω × (0,T ]→ R be a lower semi-continuous function. We define the
second order parabolic subjet of u at (x, t) ∈ Ω × (0,T ] by

P2,−u(x, t) :=
{(
∂tϕ(x, t),∇ϕ(x, t),D2ϕ(x, t)

)
∈ R × TxM × Sym T Mx : ϕ ∈ C2,1 (Ω × (0,T ]) ,

u − ϕ has a local minimum at (x, t) in the parabolic sense} .

If (p, ζ, A) ∈ P2,−u(x, t), then (p, ζ) and A are called a first order subdifferential
(with respect to (t, x)), and a second order subdifferential (with respect to x) of u
at (x, t), respectively.

In a similar way, for an upper semi-continuous function u : Ω × (0,T ] → R,

we define the second order parabolic superjet of u at (x, t) ∈ Ω × (0,T ] by

P2,+u(x, t) :=
{(
∂tϕ(x, t),∇ϕ(x, t),D2ϕ(x, t)

)
∈ R × TxM × Sym T Mx : ϕ ∈ C2,1 (Ω × (0,T ]) ,

u − ϕ has a local maximum at (x, t) in the parabolic sense} .

The following characterization of the parabolic subjet P2,−u can be obtained
by a simple modification of [5, Proposition 2.2], [64, Proposition 2.2].

Lemma 2.2.9. Let u : Ω × (0,T ] → R be a lower semi-continuous function and
let (x, t) ∈ Ω × (0,T ]. The following statements are equivalent:

(a) (p, ζ, A) ∈ P2,−u(x, t),

(b) for ξ ∈ TxM and σ ≤ 0,

u
(
expx ξ, t + σ

)
≥ u(x, t)+〈ζ, ξ〉+σp+

1
2
〈A · ξ, ξ〉+o

(
|ξ|2 + |σ|

)
as (ξ, σ)→ (0, 0).

Definition 2.2.5 (Viscosity solution). Let F : M × R × R × T M × Sym T M → R,

and let Ω ⊂ M be open and T > 0. We say that an upper semi-continuous function
u : Ω × (0,T ] → R is a parabolic viscosity subsolution of the equation ∂tu =

F(x, t, u,∇u,D2u) in Ω × (0,T ] if

p − F (x, t, u(x, t), ζ, A) ≤ 0

for any (x, t) ∈ Ω × (0,T ] and (p, ζ, A) ∈ P2,+u(x, t). Similarly, a lower semi-
continuous function u : Ω × (0,T ] → R is said to be a parabolic viscosity super-
solution of the equation ∂tu = F(x, t, u,∇u,D2u) in Ω × (0,T ] if

p − F (x, t, u(x, t), ζ, A) ≥ 0
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for any (x, t) ∈ Ω × (0,T ] and (p, ζ, A) ∈ P2,−u(x, t). We say that u is a parabolic
viscosity solution if u is both a parabolic viscosity subsolution and a parabolic
viscosity supersolution.

We remark that parabolic viscosity solutions at the present time will not be
influenced by what is to happen in the future. In the Euclidean space, Juutinen
[33] showed that a refined definition of parabolic viscosity solutions is equivalent
to the usual one if comparison principle holds. Whenever we refer to a “viscosity
(sub or super) solution” to parabolic equations in this thesis, we always mean a
“parabolic viscosity (sub or super) solution” for simplicity.
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Chapter 3

Asymptotic behavior for fully
nonlinear parabolic equations and
eigenvalue problems

In this chapter, we study large time behavior of solutions to the following fully
nonlinear parabolic equation

F(D2um) − ∂tu = 0 in Ω × (0,+∞),
u(·, 0) > 0 in Ω,

u = 0 on ∂Ω × (0,+∞),
(3.0.1)

in the range of the exponents m ≥ 1. In this chapter, F is always assumed to be
uniformly elliptic with F(0) = 0, and Ω ⊂ Rn is a smooth bounded domain. We
will impose the common hypothesis (F2) or (F3) on the nonlinear operator F.

3.1 Uniformly parabolic equations

3.1.1 Elliptic eigenvalue problem

For a nonlinear operator F satisfying (F1) and (F2), the existence and uniqueness
of principal half-eigenvalues have been explored in [31], and the simplified proof
can be found in [2, Theorem 3.4].
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Theorem 3.1.1 ([31]). Suppose that F satisfies (F1) and (F2). Then there exist
ϕ ∈ C1,α(Ω), (0 < α < 1), and µ > 0 such that ϕ > 0 in Ω and ϕ satisfies{

−F(D2ϕ) = µϕ in Ω,

ϕ(x) = 0 on ∂Ω.
(EV)

Moreover, µ is unique in the sense that if ρ is another eigenvalue of F in Ω asso-
ciated with a nonnegative eigenfunction, then µ = ρ ; and is simple in the sense
that if ψ in C0(Ω) is a solution of (EV) with ψ in place of ϕ, then ψ is a constant
multiple of ϕ.

3.1.2 Long-time asymptotics for uniformly parabolic equations

In this subsection, we study fully nonlinear uniformly parabolic equation
F(D2u) − ∂tu = 0 in Ω × (0,+∞),
u(·, 0) = u0 ∈ C0(Ω),

u = 0 on ∂Ω × (0,+∞).
(3.1.1)

In the entire subsection, we assume that Ω is a smooth bounded domain of Rn and
F satisfies (F1). We also assume that initial data u0 ∈ C0(Ω) is nonnegative in Ω.

In particular, we analyze the asymptotic behavior of the solution u of (3.1.1) when
time goes infinity. First, we find the exact decay rate of u comparing with barri-
ers which are separable solutions of the form ϕ(x)e−µt, where ϕ(x) is the positive
eigenfunction and µ > 0 is the principal eigenvalue in Theorem 3.1.1.

Lemma 3.1.2. Suppose that F satisfies (F1) and (F2). Let u be the solution of
(3.1.1) and let ϕ be the positive eigenfunction associated with the eigenvalue µ > 0
in Theorem 3.1.1. For a nonnegative and nonzero u0 ∈ C0(Ω), there exist To > 0
and 0 < C1 < C2 < +∞ such that

C1ϕ(x)e−µTo < u(x,To) < C2ϕ(x)e−µTo , ∀x ∈ Ω.

Moreover, we have

C1ϕ(x)e−µt < u(x, t) < C2ϕ(x)e−µt, ∀(x, t) ∈ Ω × [To,+∞). (3.1.2)
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Proof. (i) First, we construct a subsolution of F(D2w) − wt = 0, whose support
expands in time. Define g(x, t) = 1

tβ exp
(
−α r2

t

)
for α = 1

4λ , β = Λn
2λ and r = |x|.

Then it is easy to see that at the point (r, 0, · · · , 0),

∂i jg = 0 if i , j,

∂11g = 2α
g
t2 (2αr2 − t),

and ∂iig = −2α
g
t

if i > 1.

SinceM− is rotationally symmetric, we can check for r2 < t
2α

M−(D2g) − gt = Λ∂11g + (n − 1)Λ∂22g − gt =
g
t2

{
t(β − 2αΛn) + αr2(4Λα − 1)

}
≥ 0

and for r2 ≥ t
2α

M−(D2g) − gt =
g
t2

{
t[β − 2α(λ + (n − 1)Λ] + αr2(4λα − 1)

}
≥ 0.

This implies that g satisfies F(D2u) − ut ≥ M
−(D2u) − ut ≥ 0. Now we define for

any xo ∈ Ω,

h(x, t) := max
{

co
1

(t + τo)β
exp

(
−α
|x − x0|

2

t + τo

)
− δo, 0

}
,

where positive constants co, τo, and δo will be chosen later. Then h is also a sub-
solution of F(D2w) − wt = 0 as long as supp h(·, t) ⊂ Ω.

Select a point xo and η > 0 such that u0(xo) > 0, u0 > 0 on Bη(xo) and B2η(xo) ⊂
Ω. We recall that u0 ∈ C0(Ω) is nonzero and nonnegative. We assume that η > 0
satisfies ∪

x∈Ω(−2η)
B2η(x) ⊂ Ω for Ω(−2η) := {x ∈ Ω : dist (x, ∂Ω) > 2η} .

We set m0 := min
Bη(xo)

u0 > 0. By choosing co, τo and δo such that

η2 = 4Λnτo(> 2Λnτo),
co

τo
β

exp
(
−α

η2

τo

)
= δo and

co

τo
β
− δo = m0,

we can show that supp h(·, 0) ⊂ Bη(xo) and h(x, 0) ≤ mo in Bη(xo), and that the

support of h(x, t) is increasing for 0 < t ≤ t0 :=
1
e

(
co

δo

)1/β

− τo =
e − 1
4Λλ

η2. We also

have that
supp h(·, t0) = B√ e

2 η
(xo) at t0 =

e − 1
4Λλ

η2.
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Comparison principle implies that h(x, t) ≤ u(x, t) in Ω×(0, t0] and hence u(x, t0) ≥

h(x, t0) > 0 in B√ e
2 η

(xo) at t0 =
e − 1
4Λλ

η2 > 0. So far, we have proved that if

u(·, 0) > 0 on Bη(xo), then

u(·, t0) > 0 on B√ e
2 η

(xo) at t0 =
e − 1
4Λλ

η2 > 0.

By setting 1 + 2ε :=
√ e

2 , we also have that u(·, t0) > 0 in B(1+ε)η(xo).
(ii) Now, we apply the above argument repeatedly to show that u(·,To) > 0 in

Ω for some To > 0. For any y ∈ Ω(−(1+2ε)η) := {x ∈ Ω : dist (x, ∂Ω) > (1 + 2ε)η)} ,

we have a chain of uniform number of balls
{
Bη(xk)

}N

k=1
such that x1 = xo, ∂Bεη(xN) =

y, and |xk− xk+1| ≤ εη for k = 1, · · · ,N −1. The number N ∈ N of balls is bounded
by a uniform constant depending on ε, η, n and Ω. Applying (i) N- times with bar-
riers h (after suitable translation in space variables at each step) , we deduce that
there exist a time t1 > 0 such that u(·, t1) > 0 on Ω(−2ε). Indeed, once u(x, tk) > 0 in
some ball B(1+ε)η(xk) at t = tk, then u > 0 in B(1+ε)η(xk) × [tk,+∞), by comparison
with a separable solution δkϕ1(x)e−µ1t for small δk > 0, where ϕ1 is the positive
eigenfunction in B(1+ε+εk)η(xk) (for some small εk > 0) associated with µ1 > 0.
Therefore, we conclude that there is a time To > 0 such that

u(x,To) > 0 in Ω and |∇u(y,To)| > 0, ∀y ∈ ∂Ω

by applying (i) again. The second inequality comes from the nontrivial gradient
property of the barrier h.

(iii) We choose C1 > 0 small such that C1ϕ(x)e−µTo < u(x,To) in Ω since
|∇u(y,To)| > 0 for any y ∈ ∂Ω. Since u is C1+γ

(
Ω × [To,To + 1]

)
, there is C2 > 0

such that
C1ϕ(x)e−µTo < u(x,To) < C2ϕ(x)e−µTo in Ω.

Therefore, the comparison principle implies that (3.1.2). �

Under the assumption that F satisfies (F1) and (F2), we refine the asymptotic
behavior of solutions to (3.1.1). Let u be the solution of (3.1.1) and µ > 0 be the
principal eigenvalue in Theorem 3.1.1. Define the renormalized function

v(x, t) := eµtu(x, t). (3.1.3)

Then, v(x, t) satisfies

vt = F(D2v) + µv in Ω × (0,+∞).
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From Lemma 3.1.2, we deduce the following corollary.

Corollary 3.1.3. Under the same assumption of Lemma 3.1.2, v(x, t) = eµtu(x, t)
has the following estimates:

C1ϕ(x) < v(x, t) < C2ϕ(x) in Ω × [To,+∞),

||v(x, t)||L∞(Ω×[To,+∞)) ≤
C2

C1
||v(x,To)||L∞(Ω),

where 0 < C1 < C2 < +∞ and To > 0 are in Lemma 3.1.2.

Proof. From (3.1.2), we have

C1ϕ(x) < v(x, t) < C2ϕ(x) ≤
C2

C1
eµTou(x,To) =

C2

C1
v(x,To) in Ω × [To,+∞),

and hence the results follows. �

Now, we shall show that the renormalized parabolic flow v(x, t) = eµtu(x, t)
converges uniformly to the unique limit as t → +∞, which is the positive eigen-
function in Theorem 3.1.1. In order to obtain the uniform convergence to the posi-
tive eigenfunction, we use the approach presented by Armstrong and Trokhimtchouk
[3], who studied the long-time behavior of solutions to the uniformly parabolic
equations in Rn × (0,+∞).

Proposition 3.1.4. Suppose F satisfies (F1) and (F2). Let u be the solution of
(3.1.1) with a nonzero nonnegative initial data u0 ∈ C0(Ω) and let ϕ be the positive
eigenfunction associated with the principal eigenvalue µ > 0 in Theorem 3.1.1.
Define v(x, t) := eµtu(x, t). Then, there exists a unique constant γ∗ > 0 depending
on u0 such that

||v(x, t) − γ∗ϕ(x)||C0
x

(
Ω
) → 0 as t → +∞.

Proof. We recall that v is bounded from Corollary 3.1.3 and then

sup
s≥1
||v(·, · + s)||Cα(Ω×[0,+∞)) < +∞ for 0 < α < 1,

from the uniform Hölder regularity (see Theorem 4.23, [60]). For a given sequence
{sn} such that sn → +∞ as n → +∞, we find a subsequence {snk} and a function
w ∈ Cα

(
Ω × [0,+∞)

)
such that

v(x, t + snk)→ w(x, t) locally uniformly in Ω × [0,+∞) as nk → +∞,
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according to Arzela-Ascoli Theorem. Then a limit w satisfies F(D2w)+µw−wt = 0
in Ω × (0,+∞). Now, let A be the set of all sequential limits of {v(·, · + s)}s≥To ,

where To > 0 is given in Corollary 3.1.3. Then any w ∈ A satisfies that

F(D2w) + µw − wt = 0 in Ω × (0,+∞)

and
C1ϕ(x) ≤ w(x, t) ≤ C2ϕ(x) in Ω × (0,+∞)

for some constant 0 < C1 < C2 < +∞ from Corollary 3.1.3. We define

γ∗ := inf {γ > 0 : ∃w ∈ A such that w ≤ γϕ in Ω × (0,+∞)} .

We note that 0 < C1 ≤ γ
∗ ≤ C2 < +∞. We are going to prove thatA = {γ∗ϕ}.

First, we show that w ≤ γ∗ϕ for any w ∈ A. Fix ε > 0. There exists w̃ ∈ A
such that w̃ ≤ (γ∗ + ε)ϕ by the definition of γ∗ and then we have a sequence of
functions, {vn := v(·, · + sn)}, converging to w̃ locally uniformly as sn → +∞. This
implies that there is N > 0 such that ‖vn(x, 1) − w̃(x, 1)‖L∞(Ω) ≤ ε for all n ≥ N.
Maximum principle for e−µ(t−1)(vn − w̃) gives us that

|vn(x, t) − w̃(x, t)| ≤ εeµ(t−1), ∀(x, t) ∈ Ω × [1,+∞)

since e−µ(t−1)(vn − w̃) satisfies

M−(D2z) − zt ≤ 0 ≤ M+(D2z) − zt in Ω × (1,+∞)

and e−µ(t−1)(vn − w̃) = 0 on ∂Ω × [1,+∞). We apply the Regularity Theory to
e−µ(t−1)(vn − w̃) to estimate

‖∇x (vn(x, 2) − w̃(x, 2))‖L∞(Ω) ≤ Coeµε,

where the uniform constant Co > 0 depends only on λ,Λ, n and Ω. Since vn(x, 2)−
w̃(x, 2) = 0 for x ∈ ∂Ω, ‖vn(x, 2)−w̃(x, 2)‖L∞(Ω) ≤ eµε, and ‖∇x (vn(x, 2) − w̃(x, 2))‖L∞(Ω) ≤

Coeµε, we deduce that

|vn(x, 2) − w̃(x, 2)| ≤ C̃εϕ(x) in Ω

for some uniform constant C̃ > 0 depending only on Co,Ω, and ϕ. Therefore we
have

vn(x, 2) = v(x, 2 + sn) ≤ w̃(x, 2) + C̃εϕ(x) ≤ (γ∗ + ε + C̃ε)ϕ(x) in Ω,
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for some large sn > 0. By using maximum principle for u(x, t) − e−µt(γ∗ + ε +

C̃ε)ϕ(x), we conclude that

v(x, t) = eµtu(x, t) ≤ (γ∗ + ε + C̃ε)ϕ(x) for t ≥ 2 + sn.

and it follows that

w ≤ (γ∗ + ε + C̃ε)ϕ for all w ∈ A.

Since ε is arbitrary and C̃ is uniform, we have that w ≤ γ∗ϕ for all w ∈ A.
Second, we show thatA has only one element. Assume that w̃ . γ∗ϕ for some

w̃ ∈ A. By the definition of A, we can find a sequence of functions {v(·, · + sn)}
whose limit is w̃. Now we set u1(x, t) := e−µtw̃(x, t) and u2(x, t) := γ∗ϕ(x)e−µt.

Then u1 − u2 satisfies{
M−(D2z) − zt ≤ 0 ≤ M+(D2z) − zt in Ω × (0,+∞),

z = 0 on ∂Ω × (0,+∞).

It is easy to check that w̃(·, 0) � γ∗ϕ. Indeed, if not, the uniqueness says that
w̃ ≡ γ∗ϕ in Ω × (0,+∞), which is a contradiction. Thus the strong maximum
principle and Hopf’s Lemma imply that u2(x, 1) − u1(x, 1) > 0 in Ω and

u2(x, 1) − u1(x, 1) ≥ δϕ(x) in Ω

for small δ > 0, namely, w̃(x, 1) ≤ (γ∗ − δeµ)ϕ(x) in Ω. Therefore we have that

eµ(t+1)u1(x, t + 1) = w̃(x, t + 1) ≤ (γ∗ − δeµ)ϕ(x) in Ω × (0,+∞)

from the comparison principle. Setting tn := sn + 1, we get

v(x, t + tn)→ w̃(x, t + 1) locally uniformly in Ω × [0,+∞),

as n → +∞, which is a contradiction to the definition of γ∗ since w̃(x, t + 1) ≤
(γ∗ − δeµ)ϕ(x). Therefore we conclude thatA = {γ∗ϕ}.

Now we take sn = n for n ∈ N. Then for ε > 0, we can choose N ∈ N such that
if n ≥ N, then ||v(·, · + n) − γ∗ϕ||C0(Ω×[0,1]) ≤ ε, which means

||v(x, t) − γ∗ϕ(x)||L∞(Ω×[N,+∞)) ≤ ε.

This finishes the proof. �

Under the additional assumption that F is concave, we obtain the following
corollary.

28



CHAPTER 3. ASYMPTOTIC BEHAVIOR OF PARABOLIC EQUATIONS

Corollary 3.1.5. Suppose that F satisfies (F1), (F2) and (F3). Let u, v and ϕ be
the functions in Proposition 3.1.4. Then we have

||v(x, t) − γ∗ϕ(x)||Ck
x(Ω) → 0 as t → +∞

for k = 1, 2, where γ∗ > 0 is the constant in Proposition 3.1.4.

Proof. Since F is concave, the eigenfunction ϕ is of C2,α(Ω) and u and v also
belong to C2,α

(
Ω × (0,+∞)

)
. Moreover, we have the uniform C2,α estimate:

sup
s≥1
||v(·, · + s)||C2,α

(
Ω×[0,+∞)

) < +∞ (3.1.4)

since v is bounded from Corollary 3.1.3. Arzela-Ascoli Theorem says that for any
{sn} such that sn → +∞, there is a subsequence {snk} satisfying

vnk := v(·, · + snk) → γ∗ϕ

∇xvnk → γ∗∇ϕ

D2
xvnk → γ∗D2ϕ

locally uniformly in Ω × [0,+∞) as nk → +∞, since v(·, t) converges uniformly
to the unique limit γ∗ϕ from Proposition 3.1.4. Therefore, as t → +∞, ∇xv(·, t)
and D2

xv(·, t) converge to γ∗∇φ and γ∗D2φ in Ω, respectively, and then the uniform
convergence follows from the uniform C2,α estimate, (3.1.4). �

3.1.3 Log- concavity

In this subsection, we study log-concavity of solutions of (3.1.1) and (EV) pro-
vided that a smooth bounded domain Ω is convex, and the operator F satisfies
(F1), (F2) and (F3). First, let us approximate the operator with smooth operators
as follows.

Lemma 3.1.6. Suppose that F satisfies (F1), (F2) and (F3). Then there are smooth
operators Fε : Sn×n → R, which converges to F uniformly and satisfies (F1), (F3)
and ∣∣∣Fε

i j(M)Mi j − Fε(M)
∣∣∣ ≤ √nΛε for M = (Mi j) ∈ Sn×n, (3.1.5)

where Fε
i j(M) :=

∂Fε

∂pi j
(M).
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Proof. We extend F to Rn2
by F(M) = F

(
M+Mt

2

)
. Then we can show that F is

Lipschitz continuous in Rn2
with a Lipschitz constant

√
nΛ by using the uniform

ellipticity of F, (F1), and the fact that M+(N) = Λtr(N) ≤
√

nΛ

 n∑
i, j=1

N2
i j


1
2

for

0 ≤ N = (Ni j) ∈ Sn×n.

Let ψ ∈ C∞0 (Rn2
) be a standard mollifier with

∫
Rn2 ψ(Z)dZ = 1 and supp (ψ) ⊂

B1(0) and let ψε(Z) =
1
εn2ψ

(Z
ε

)
. Define Fε as

Fε(Z) := F ∗ ψε(Z) =

∫
Rn2

F(Z − Y)ψε(Y)dY.

Then it is easy to show that Fε is smooth, uniformly elliptic (with the same el-
lipticity constants λ,Λ) and concave. We can also show that Fε satisfies Fε(M) =

Fε(Mt) and
|Fε(M) − F(M)| ≤

√
nΛε

since F is Lipschitz continuous in Rn2
with a Lipschitz constant

√
nΛ. Thus Fε

converges uniformly to F.
Now, it remains to show that for any M = (Mi j) ∈ Sn×n,∣∣∣Fε

i j(M)Mi j − Fε(M)
∣∣∣ = |DFε(M) · M − Fε(M)| ≤

√
nΛε.

Since F is Lipschitz continuous, F is differentiable almost everywhere from Rademacher’s
Theorem. Moreover, we have ||DF||L∞(Rn2 ) ≤

√
nΛ. The condition (F2) implies that

F((1 + t)Z) − F(Z)
t

= F(Z) for Z ∈ Rn2
and t > 0 and hence

DF(Z) · Z = F(Z) a.e. Z ∈ Rn2
.

Thus we have

DFε(Z) · Z − Fε(Z) =

∫
Rn2

(DF(Y) · Z − F(Y))ψε(Z − Y) dY

=

∫
Rn2

DF(Y) · (Z − Y)ψε(Z − Y) dY

and then |DFε(Z) · Z − Fε(Z)| ≤
√

nΛε for Z ∈ Rn2
. Therefore we conclude that∣∣∣∣Fε

i j(M)Mi j − Fε(M)
∣∣∣∣ ≤ √nΛε for M ∈ Sn×n. �
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Remark 3.1.7.

i) If a differentiable operator F satisfies (F2), F should be linear. If F also
satisfies (F1), then F becomes Laplacian after a suitable transformation.

ii) Let σk(D2u) :=
∑

i1<···<ik

λi1 · · · λik for the eigenvalues λ1 ≤ · · · ≤ λn of D2u. Then

the operator F(D2u) := σk(D2u)
1
k satisfies the conditions (F2) and (F3).

Now, we prove that log-concavity is preserved under the parabolic flow of
(3.1.1) when initial data has such geometric property.

Lemma 3.1.8. Suppose that F satisfies (F1), (F2) and (F3) and that Ω is strictly
convex. Let u be the solution of (3.1.1) with initial data u0 ∈ Cb(Ω). If log u0

is concave, then the solution u(x, t) is log-concave in the x variables for all t ∈
(0,+∞), i.e.,

D2
x log u ≤ 0 in Ω × (0,+∞).

Proof. (i) First, we prove the preservation of log-concavity assuming that u0 ∈

C2,γ(Ω) ∩ Cb(Ω) (0 < γ < 1), D2
x log u0 ≤ 0 in Ω, and F(D2u0) = 0 on ∂Ω.

We approximate F by Fε as Lemma 3.1.6 and we may assume that Fε(0) = 0 by
subtracting Fε(0) to Fε . We also approximate u0 by uε0 ∈ C2,γ(Ω)∩Cb(Ω) for small
ε > 0 such that

uε0 → u0 in C2,γ(Ω), D2
x log uε0 ≤ εI in Ω, and Fε(D2uε0) = 0 on ∂Ω.

In fact, let uε0 be the solution of{
Fε(D2uε0) = F(D2u0) in Ω,

uε0 = 0 on ∂Ω.

Then we have the uniform global C2,γ estimate for uε0 (0 < γ < 1) from [13] so
we construct such initial data uε0 from Arzela-Ascoli Theorem. Indeed, we first
note that uε0 ≥ δou0 uniformly in Ω for some δo > 0 since u0 ∈ Cb(Ω). Then the
argument below, (3.1.8) says that there is a uniform η > 0 such that D2 log uε0 ≤
0 on Ω\Ω(−η) and then uniform C2 convergence in Ω(−η), up to a subsequence,
implies that D2 log uε0 ≤ εI on Ω\Ω(−η) for small ε > 0. Thus we deduce that
D2

x log uε0 ≤ εI in Ω for small ε > 0.
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Let uε be the solution of (3.1.1) with the operator Fε and initial data uε0.Then
we have the uniform global C2,γ estimate for uε (0 < γ < 1) from Theorem 3.2 in
[61] ; for a fixed T > 0,

‖uε‖C2,γ(Ω×[0,T ]) < C uniformly. (3.1.6)

The uniform C2,γ estimate gives the uniform convergence of uε to u in C2
(
Ω × [0,T ]

)
by Arzela-Ascoli Theorem since the family of viscosity solutions is closed in the
topology of local uniform convergence, where we recall that u is the solution of
(3.1.1) with the operator F and initial data u0. Since Fε ≥ M−, we have the uni-
form lower bound from the comparison principle;

uε ≥ ũ > 0 in Ω × (0,+∞),

where ũ is the solution of (3.1.1) with the Pucci’s operator M− and initial data
δou0. We also observe that |∇xuε(x, t)| > co > 0 uniformly for (x, t) ∈ ∂Ω × [0,T ]
for small co > 0.

To show log-concavity of u, we consider an approximating solution uε and we
set

gε := log uε ,

which is finite and smooth in Ω and takes the value gε = −∞ on ∂Ω × [0,+∞).
The function gε satisfies the equation

∂tg = e−gFε
(
eg

(
D2g + DgDgt

))
in Ω × (0,+∞).

To estimate the maximum of its second derivatives, we define, for a given 0 < δ <
1,

Z(t) := sup
y∈Ω

sup
|eβ |=1

gε,ββ(y, t) + ψ(t),

where eβ is a unit vector in Rn and ψ(t) := −δ − δ tan
(
3K
√
δ t

)
. The constant

K > 0, independent of ε > 0 and δ > 0, will be chosen later.
Now, fix T > 0 and suppose that there exists to ∈

[
0,min

(
π

12K
√
δ
,T

)]
⊂ [0,T ]

such that Z(to) = 0. We may assume that to is the first time for Z to vanish and

Z(to) = gε,αα(xo, to) + ψ(to) = 0
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for some direction eα ∈ Rn with |eα| = 1 and some point xo ∈ Ω. Then the unit
vectior eα is an eigen-direction of the Hessian matrix D2

xg
ε(xo, to), which implies

that
gε,αβ(xo, to) = 0 for β , α,

using orthonormal coordinates in which eα is taken as one of the coordinate axes.
We notice that Z(0) ≤ ε − δ < 0 if 0 < ε < δ from the assumption on the initial
data u0, which implies that to > 0.

We claim that xo is an interior point of Ω by proving that for any x̃ ∈ ∂Ω, t > 0

gε,αα(x, t) =
uε uε,αα − (uε,α)2

(uε)2 → −∞ as Ω 3 x→ x̃ ∈ ∂Ω. (3.1.7)

The above inequality holds when eα is not a tangential direction to ∂Ω at x̃, since
|D2uε | is uniformly bounded and uε = 0 on ∂Ω, |∇uε | > 0 on ∂Ω by Hopf’s lemma.
If eα is a tangential direction to ∂Ω at x̃, we take a coordinate system such that
x̃ = 0 and the tangent plane to ∂Ω at x̃ = 0 ∈ ∂Ω is xn = 0 with en being the inner
normal vector. Let the boundary be given locally by the equation xn = f (x′) for
x′ = (x1, · · · , xn−1) ∈ Rn−1. We introduce the change of variables;

yi = xi (i = 1, · · · , n − 1), yn = xn − f (x′), v(y, t) = uε(x, t).

Then along any tangent direction eτ to ∂Ω at x̃, we have

uε,ττ(x, t) = v,ττ(y, t) − 2v,nτ(y, t) fτ(x′) + v,nn(y, t) f 2
τ (x′) − v,n(y, t) f,ττ(x′).

Using the fact that v,ii(0, t) = 0 from the zero boundary condition and f,i(0) = 0
for i = 1, · · · , n − 1, we obtain

uε,ττ(x̃, t) = uε,ττ(0, t) = −v,n(0, t) f,ττ(0) = −uε,n(x̃, t) f,ττ(0) < 0

from Hopf’s lemma since f,ττ(0) > 0. We note that f,ττ(0) > 0 for a tangent vector
eτ since Ω is strictly convex and that uετ(x̃, t) = 0 from the zero boundary condition.
Thus gε,ττ(x, t) tends to −∞ when x ∈ Ω goes to x̃ ∈ ∂Ω for any tangential vector
eτ to ∂Ω at x̃ ∈ ∂Ω, so this is true for the tangential vector eα. Therefore we have
proved (3.1.7).

Moreover, from the uniform C2,γ estimate of uε , (3.1.6), we can find a small
η > 0, independent of ε, δ > 0, such that

gε,αα(x, t) ≤ 0 for (x, t) ∈
(
Ω\Ω(−η)

)
× [0,T ],
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where Ω(−η) = {x ∈ Ω : dist (x, ∂Ω) > η} . Indeed, we first observe that for any
(x, t) ∈ ∂Ω × [0,T ],

uε,ττ(x, t) < −coκo < 0 for any tangential direction τ to ∂Ω at x,

with κo > 0, the lower bound of the curvature of ∂Ω, from the above argument,
since |∇xuε | > co > 0 uniformly on ∂Ω × [0,T ]. If η > 0 is small enough, then for
x ∈ Ω \Ω(−η), there exists a unique x̃ ∈ ∂Ω such that |x− x̃| = dist(x, ∂Ω). For each
x̃ ∈ ∂Ω, let ν(x̃) be the outer normal vector to ∂Ω at x̃ ∈ ∂Ω and let τ(x̃) be the unit
vector such that τ(x̃) ⊥ ν(x̃) and

eα := β1(x̃)τ(x̃) + β2(x̃)ν(x̃)

with β2
1 + β2

2 = 1. We define ν(x) := ν(x̃) and τ(x) := τ(x̃) for each x ∈ Ω\Ω(−η),

where x̃ is the unique boundary point of Ω such that |x − x̃| = dist(x, ∂Ω). Then
the uniform C2,γ estimate implies that there is a uniform small η > 0 such that

|uεν(x, t)| >
co

2
, uε,ττ(x, t) < −

coκo

2
on

(
Ω\Ω(−η)

)
× [0,T ].

For each x ∈ Ω\Ω(−η) and t ∈ [0,T ] we have

uε,τ(x, t) = uε,τ(x̃)(x, t) = uε,τ(x̃)(x̃, t) + ∇uε,τ(x̃)(x∗, t) · (x − x̃)

≤ 0 + Co|x − x̃| = Codist(x, ∂Ω) ≤ C̃ouε(x, t)

for some x∗ ∈ Ω and for uniform constants 0 < Co < C̃o from the uniform C2,γ

estimates since |∇xuε | > co > 0 uniformly on ∂Ω × [0,T ]. Thus for x ∈ Ω\Ω(−η),

we have

(uε)2gε,αα(x, t) = uεuε,αα(x, t) − (uε,α(x, t))2

= uε
{
β2

1(x̃)uε,ττ(x, t) + 2β1(x̃)β2(x̃)uε,τν(x, t) + β2
2(x̃)uε,νν(x, t)

}
− β2

2(x̃)
(
uεν(x, t)

)2
− β2

1(x̃)(uετ(x, t))2 − 2β1(x̃)β2(x̃)uετ(x, t)uεν(x, t)

≤ uε
{
β2

1(x̃)uε,ττ(x, t) + 2β1(x̃)β2(x̃)uε,τν(x, t) + β2
2(x̃)uε,νν(x, t)

}
−
β2

2

2
(x̃)

(
uεν(x, t)

)2
+ β2

1(x̃)(uετ(x, t))2

≤ uε(x, t)
(
−

coκo

2
β2

1 +
coκo

4
β2

1 + Coβ
2
2

)
−

c2
o

8
β2

2 + C̃2
o(uε(x, t))2β2

1

= −C̃2
ouε(x, t)

{
coκo

4C̃2
o

− uε(x, t)
}
β2

1 −

{
c2

o

8
−Couε(x, t)

}
β2

2,

(3.1.8)
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for uniform C̃o > Co > 0, where we use Young’s inequality and the uniform C2,γ

estimate. By using the uniform C2,γ estimate again, we choose η > 0 sufficiently
small to deduce that gε,αα ≤ 0 in

(
Ω\Ω(−η)

)
× [0,T ]. Therefore, we conclude that

the maximum point xo belongs to Ω(−η) since gε,αα(xo, to) = −ψ(to) > δ > 0.
Next, we look at the evolution equation of gε,αα, which is given by the equation

as below;

∂tg,αα = Fε
i j ·

(
Di jg,αα + Dig,ααD jg + DigD jg,αα + 2Dig,αD jg,α

)
+ (g2

,α − g,αα)
{
e−gFε

(
eg

(
Di jg + DigD jg

))
− Fε

i j ·
(
Di jg + DigD jg

)}
+ e−gFε

i j,kl ·
{
eg

(
Di jg + DigD jg

)}
α
{eg (Dklg + DkgDlg)}α ,

where Fε
i j =

∂Fε

∂pi j

(
egε

(
D2gε + Dgε(Dgε)t

))
and Fε

i j,kl =
∂2Fε

∂pi j∂pkl

(
egε

(
D2gε + Dgε(Dgε)t

))
.

Since Fε satisfies (F3) and (3.1.5) with the constant 2
√

nΛε instead of
√

nΛε, it
follows that

∂tgεαα ≤ Fε
i j ·

(
Di jgε,αα + Digε,ααD jgε + DigεD jgε,αα + 2Digε,αD jgε,α

)
+ 2
√

nΛe−gε
∣∣∣(gε,α)2 − gε,αα

∣∣∣ ε.
At the point of maximum (xo, to), we see that

gε,αα = −ψ > δ > 0, ∇xgε,αα = 0, D2
xg

ε
,αα ≤ 0 and gε,αβ = 0, ∀β , α.

Thus using the ellipticity condition of Fε , we have at the point of maximum
(xo, to),

∂tgε,αα ≤ 2Fε
αα

(
gε,αα

)2
+ 2
√

nΛe−gε
(
(gε,α)2 + gε,αα

)
ε

≤ 2Λ
(
gε,αα

)2
+ 2
√

nΛ

∣∣∣uε,αα∣∣∣
(uε)2 ε

≤ 2Λ
(
gε,αα

)2
+ Kε,

for a uniform constant K > 0, where we choose a uniform K > 0 bigger than

2
√

nΛ

1 + sup
Ω(−η)×[0,T ]

|D2
xu

ε |

(uε)2

 from the uniform C2,γ estimates for uε .

On the other hand, when the supremum of Z(t) − ψ(t) = sup
y∈Ω

sup
|eβ |=1

g,ββ(y, t) is

achieved at a point x(t) ∈ Ω with a unit vector eβ(t) at each time t > 0, we can
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check that ∇xg,β(t) β(t) = 0 and g,β(t) β′(t) = 0 at the point (x(t), t) using |eβ(t)|2 = 1.
Thus, we have that at the first time to > 0,

0 ≤ Z′(to) = ∂tgε,αα(xo, to) + ψt(to)
≤ ψt + 2Λψ2 + Kε ≤ ψt + K(ψ2 + ε).

(3.1.9)

But, it is easy to check that if 0 < ε < δ2,

ψt + K(ψ2 + ε) <
3K(−δ3/2 + δ2)

cos(3K
√
δt)

< 0 for 3K
√
δ t <

π

2
,

which is a contradiction to (3.1.9). Therefore, the function Z never reaches 0 for
t ∈

[
0,min

(
π

12K
√
δ
,T

)]
and hence we obtain that

sup
y∈Ω

sup
|eα |=1

∂αα log uε(y, t) < −ψ(t) ≤ 2δ for t ∈
[
0,min

(
π

12K
√
δ
,T

)]
for 0 < ε < δ2. Using the uniform C2,γ-estimates of uε ,we let ε go to 0 and then
let δ go to 0 to obtain

D2
x log u ≤ 0 in Ω × [0,T ].

Therefore, u(x, t) is log-concave in the x variables in Ω × (0,+∞) since T is arbi-
trary.

(ii) For general initial data u0 ∈ Cb(Ω), we will show that there is a sequence
of log-concave functions u0 j ∈ C2,γ(Ω) ∩ Cb(Ω) satisfying that F(D2u0 j) = 0 on
∂Ω, which converge to u0 uniformly in Ω.

First, we may assume that u0 ∈ C∞(Ω)∩Cb(Ω) is strictly log-concave. Indeed,
we perform a mollification to obtain an approximating sequence u0 j ∈ C∞(Ω) of
log-concave functions, which converges to u0 uniformly in Ω. We modify u0 j to
make it strictly log-concave;

ũ0 j(x) := u0 j(x) exp(−c j|x|2),

where c j > 0 converges to 0 as j→ +∞.

For a strictly log-concave u0 ∈ C∞(Ω) ∩ Cb(Ω), we consider{
F(D2u0 j) = ξ j · F(D2u0) in Ω,

u0 j = 0 on ∂Ω,

36



CHAPTER 3. ASYMPTOTIC BEHAVIOR OF PARABOLIC EQUATIONS

where 0 ≤ ξ j ≤ 1 satisfies that ξ j ∈ C∞0 (Ω), and ξ j ≡ 1 in Ω(−1/ j) for Ω(−δ) := {x ∈
Ω : dist (x, ∂Ω) > δ}. Since we have the global uniform C1,α estimate (0 < α < 1)
from [13], u0 j converges to u0 in C1,α(Ω) as j → +∞, up to a subsequence. Since
u0 j ∈ C2,γ(Ω), and F(D2u0 j) = 0 on ∂Ω, it remains to show that u0 j is log-concave
for large j in order to obtain the desired initial data uo j converging to u0 uniformly.

We use the uniform global C1,α estimate and the scaling property with a similar
argument as in the proof of Theorem 3.2.2 to show that there is a uniform constant
ηo > 0 such that

|D2u0 j(x)| ≤ C dist (x, ∂Ω)−1+α for x ∈ Ω\Ω(−ηo),

where ηo and C > 0 are uniform with respect to j. By choosing a uniform small
0 < η < ηo, we have

u0 j(x)D2u0 j(x)−∇u0 j(x)∇ut
0 j(x) ≤ C dist (x, ∂Ω)1+(−1+α)I−δ2

oI ≤ 0 for x ∈ Ω\Ω(−η)

for uniform C > 0 and δo > 0 since u0, uo j ∈ Cb(Ω). For Ω(−η),we have the uniform
interior C2,γ estimate of u0 j if j is large enough. So we have that D2 log u0 j ≤

0 in Ω(−η) since log u0 is strictly concave. Therefore, we deduce that u0 j is log-
concave. Thus we have proved that for a given log-concave function u0 ∈ Cb(Ω),
there is a sequence of log-concave functions u0 j ∈ C2,γ(Ω) ∩ Cb(Ω) satisfying that
F(D2u0 j) = 0 on ∂Ω, which converges to u0 uniformly in Ω.

Let u0 j converge to u0 uniformly in Ω and let u j and u be the solution of (3.1.1)
with the operator F and initial data u0 j and u0, respectively. From the maximum
principle for u j − u, we have

||u j − u||L∞(Ω×[0,+∞)) ≤ ||u0 j − u0||L∞(Ω) → 0 as j→ +∞

since u j − u satisfies M−(D2v) − vt ≤ 0 ≤ M+(D2v) − vt in Ω × (0,+∞). Then
log-concavity of u j from (i);

1
2

(
log u j(x, t) + log u j(y, t)

)
− log u j

( x + y
2

, t
)
≤ 0 for x, y ∈ Ω, t ∈ (0,+∞),

is preserved under the uniform convergence. Therefore, we conclude that u(x, t) is
log-concave in the x variables for any t > 0.

�
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Corollary 3.1.9. Suppose that F satisfies (F1), (F2) and (F3) and that Ω is convex.
Let u be the solution of (3.1.1) with initial data u0 ∈ Cb(Ω). If u0 is log-concave,
then the solution u(x, t) is log-concave in the x variables for t > 0.

Proof. We approximate Ω by Ω j which are strictly convex, smooth and bounded
domains in Rn and approximate initial data u0 by u0 j ∈ Cb(Ω j). Let u j be the
solution of (3.1.1) with the operator F and initial data u0 j in Ω j×(0,+∞). Then we
have uniform local Hölder estimates for u j in Ω×(0,+∞), namely, ||u j||Cα(K×[t0,t1]) <

C uniformly for each compact subset K × [t0, t1] of Ω × (0,+∞). We can also
check that u j converges to u pointwise in Ω × [0,+∞) by using the maximum
principle. So we have uniform convergence of u j to u locally in Ω × (0,+∞), up
to a subsequence, from Arzela-Ascoli Theorem. Therefore for any K × [t0, t1] ⊂
Ω × (0,+∞), we let j go to +∞ to obtain

1
2

(
log u(x, t) + log u(y, t)

)
− log u

( x + y
2

, t
)
≤ 0 for x, y ∈ K, t ∈ [t0, t1],

which completes the proof. �

Remark 3.1.10.

i) We note that any concave function in a convex domain Ω is log-concave.

ii) It is well-known that the distance function dist(x, ∂Ω) is concave for a convex
domain Ω, so Lemma 3.1.8 and Corollary 3.1.9 are not void.

Corollary 3.1.11 (Log-concavity). Suppose that F satisfies (F1), (F2) and (F3),
and that Ω is convex. Then, the positive eigenfunction ϕ(x) in Theorem 3.1.1 is
log-concave, i.e., D2 logϕ(x) ≤ 0 for x ∈ Ω.

Proof. We take the distance function as an initial data of the uniformly parabolic
equation (3.1.1). Then Corollary 3.1.9 yields that for x, y ∈ Ω and t > 0,

1
2

(
log u(x, t) + log u(y, t)

)
− log u

( x + y
2

, t
)
≤ 0.

From the uniform convergence of eµtu(·, t) to γ∗ϕ in Proposition 3.1.4, we con-
clude that

1
2

(
logϕ(x) + logϕ(y)

)
− logϕ

( x + y
2

)
≤ 0 for x, y ∈ Ω.

�

38



CHAPTER 3. ASYMPTOTIC BEHAVIOR OF PARABOLIC EQUATIONS

3.2 Degenerate parabolic equations

3.2.1 Sub-linear elliptic eigenvalue problems

In the range of the exponents m > 1, we consider the following elliptic equation
−F(D2 f m) = 1

m−1 f in Ω,

f = 0 on ∂Ω,

f > 0 in Ω,

(3.2.1)

which is the asymptotic profile, after appropriate normalization (Proposition 3.2.4),
of solutions to the following parabolic equation

F(D2um) − ∂tu = 0 in Ω × (0,+∞), m > 1,
u(·, 0) = u0, in Ω,

u = 0 on ∂Ω × (0,+∞).
(3.2.2)

For (3.2.2), we require initial data u0 to have nontrivial bounded gradient of um
0 on

∂Ω, i.e.,
um

0 ∈ Cb(Ω),

where

Cb(Ω) :=
{
h ∈ C0(Ω) |co dist(x, ∂Ω) ≤ h(x) ≤ Co dist(x, ∂Ω) for 0 < co ≤ Co < +∞

}
.

We note that if f is a solution of (3.2.1), then φ := f m is a solution of (NLEV)
associated with the exponent p = 1

m and the eigenvalue µ = 1
m−1 .

For the sublinear case, 0 < p = 1
m < 1, we can generalize the comparison

principle as follows and we refer to Section 2, [4] for Laplace operator. We also
found [2, Theorem 3.3] which dealt with comparison between viscosity sub- and
super-solutions of general elliptic equations.

Lemma 3.2.1 (Comparison principle). Suppose that F satisfies (F1), and either
(F2) or (F3). Let v and w be in C2(Ω) ∩C1(Ω) such that v . 0, v,w ≥ 0 in Ω and

F(D2v) +
1

m − 1
v

1
m ≤ 0 ≤ F(D2w) +

1
m − 1

w
1
m in Ω.

If v ≥ 0 ≥ w on ∂Ω, then v ≥ w in Ω.
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Proof. (i) First, we assume that v is a strict supersolution, i.e., F(D2v)+ 1
m−1v

1
m < 0

in Ω. Then we will show that v > w in Ω. On the contrary, suppose that v ≤ w for
some point in Ω. Since a nonzero and nonnegative function v satisfies

M−(D2v) ≤ F(D2v) < −
1

m − 1
v

1
m ≤ 0 in Ω,

we have that v > 0 in Ω and |∇v| > δ0 > 0 on ∂Ω ∩ {v = 0} for some δ0 > 0
from the strong minimum principle and Hopf’s lemma. This implies that there is
a small ε > 0 such that v ≥ εw since w ∈ C1(Ω) and w = 0 on ∂Ω. Define

t∗ := sup {t > 0 | v ≥ tw in Ω} .

Then 0 < ε ≤ t∗ ≤ 1 from the assumption that v ≤ w for some point in Ω since v is
positive in Ω. Now we set z := v − t∗w and then a nonnegative function z vanishes
at some point in Ω and satisfies

M−(D2z) ≤ F(D2v) − F(D2t∗w) <
1

m − 1

(
t∗w

1
m − v

1
m
)

≤
1

m − 1

(
(t∗w)

1
m − v

1
m
)
≤ 0 in Ω,

where we use the hypotheses on the operator F in the first two inequalities. Since
M−(D2z) < 0 in Ω, we have that z . 0, so the strong minimum principle and
Hopf’s lemma imply that z > 0 in Ω and |∇z| > δ1 > 0 on ∂Ω ∩ {z = 0} for some
δ1 > 0. Then we can choose ε0 > 0 small so that z ≥ ε0w in Ω, since w = 0 on ∂Ω

and w ∈ C1(Ω). It is a contradiction to the definition of t∗. Therefore, we conclude
that v > w in Ω.

(ii) Now we assume that v is a supersolution, i.e., F(D2v) + 1
m−1v

1
m ≤ 0 in Ω

and we approximate v by strict supersolutions. We note that v > 0 in Ω from the
strong minimum principle. Let vε := (1+ε)v for 0 < ε < 1. Then vε satisfies vε > v
and

F(D2vε) +
1

m − 1
(vε)

1
m ≤ (1 + ε)F(D2v) +

(1 + ε)
1
m

m − 1
v

1
m

≤
1

m − 1
v

1
m
{
(1 + ε)

1
m − (1 + ε)

}
< 0 in Ω.

From (i), we get vε > w in Ω. Letting ε → 0, it follows that v ≥ w in Ω. �
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Theorem 3.2.2 (Existence and Uniqueness). Suppose F satisfies (F1) and (F2).
Let 0 < p := 1

m < 1. The nonlinear eigenvalue problem (NLEV) has a unique
solution φ ∈ C0,1(Ω) ∩C1,α(Ω), (0 < α < 1), namely, φ satisfies

−F(D2φ) = 1
m−1φ

p in Ω,

φ = 0 on ∂Ω,

φ > 0 in Ω.

(NLEV)

Proof. (i) First, the uniqueness of the solution follows from the comparison prin-
ciple. To prove the existence, we use Perron’s method via comparison principle so
we establish positive super and sub-solutions with zero boundary data. Let h be
the solution of 

F(D2h) = −1 in Ω,

h = 0 on ∂Ω,

h > 0 in Ω.

If we select t > 0 satisfying t1− 1
m ||h||−

1
m

L∞(Ω) = 1
m−1 , then we have

F(D2(th)) = −t = −t1− 1
m h−

1
m (th)

1
m ≤ −

1
m − 1

(th)
1
m in Ω,

i.e., h+ := th is a supersolution. Now, let ϕ be the positive eigenfunction of (EV)
at Theorem 3.1.1. By choosing s > 0 such that µ

(
s||ϕ||L∞(Ω)

)1− 1
m = 1

m−1 , we have

F(D2(sϕ)) ≥ −
1

m − 1
(sϕ)

1
m in Ω.

Thus, h− := sϕ is a subsolution. So we have constructed a supersolution h+ and
a subsolution h−. Comparison principle implies that h− ≤ h+ and then there is a
viscosity solution φ to (NLEV) such that h− ≤ φ ≤ h+ from Perron’s method, [18].

(ii) Now we show that φ ∈ C0,1(Ω) ∩ C1,α(Ω). First, φ belongs to L∞(Ω) from
comparison since h+ ∈ L∞(Ω) by Aleksandrov-Bakelman-Pucci estimates, [13].
Then φ is of C1,α(Ω) from the regularity theory of uniformly elliptic equations,
[13] since φp ∈ L∞(Ω).

To show Lipschitz regularity of φ up to the boundary, we recall that

co dist (x, ∂Ω) ≤ h− ≤ φ ≤ h+ ≤ Co dist (x, ∂Ω) (3.2.3)
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for some 0 < co ≤ Co < +∞ from Hopf’s Lemma for h− and C0,1(Ω) - regularity
of h+, [13]. Let δ > 0 be a fixed constant such that ∪x∈Ω(−ε) Bε(x) ⊂ Ω for any
0 < ε ≤ δ, where Ω(−ε) := {x ∈ Ω : dist (x, ∂Ω) > ε} . For xo ∈ Ω \Ω(−δ), set

2ε := dist (xo, ∂Ω) ≤ δ.

Now we scale the function φ in the following way;

φε(x) :=
1
ε
φ(xo + εx) in B1(0).

Then (3.2.3) implies that 0 < co ≤ φε(x) ≤ 3Co in B1(0) and φε satisfies

F(D2φε) = −
ε1+p

m − 1
φp
ε in Ω

with ‖φp
ε ‖L∞(B1(0)) ≤ (3Co)p. From the regularity theory,[13], we have

|Dφ(xo)| = |Dφε(0)| ≤ C̃ for a uniform constant C̃ > 0,

where C̃ depends only on Co, p, λ,Λ and n. Therefore, we have |Dφ(xo)| ≤ C̃ for
any xo ∈ Ω \Ω(−δ) and then we conclude that

||Dφ||L∞(Ω) ≤ C̃ + ||Dφ||L∞
(
Ω(−δ)

) < +∞

from the interior C1,α estimates. �

Remark 3.2.3. From Hopf’s Lemma, the eigenfunction φ in Theorem 3.2.2 has
nontrivial bounded gradient on the boundary, that is, inf

∂Ω
|∇φ| > δo > 0 for some

δo > 0. So, φ belongs to Cb(Ω) from Lipschitz regularity.

3.2.2 Long-time asymptotics for degenerate parabolic equations

In this subsection, we study the asymptotic behavior of the solution of (3.2.2) in
the range of exponents m > 1 when t → +∞.

Proposition 3.2.4. Suppose that F satisfies (F1) and (F2). Let u be the solution
of (3.2.2) with um

0 ∈ Cb(Ω) and let φ is the solution of (NLEV) in Theorem 3.2.2.
Set W(x, t) := φ(x)

(1+t)
m

m−1
. Then, we have
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(i)
t

m
m−1 |um(x, t) −W(x, t)| → 0 uniformly for x ∈ Ω, as t → +∞,

(ii) for (x, t) ∈ Ω × [1,+∞),

co dist (x, ∂Ω) < t
m

m−1 um(x, t) < Co dist (x, ∂Ω)

(iii) for (x, t) ∈ Ω × [2,+∞),

t
m

m−1 |∇um(x, t)| < Co,

where the uniform constants 0 < co < Co depend on u0.

Proof. (i) We recall that φ ∈ C0,1(Ω) and inf
∂Ω
|∇φ| > δ > 0 for some δ > 0. We can

choose τ1 > τ2 > 0 such that

φ(x)τ−
m

m−1
1 ≤ um

0 (x) ≤ φ(x)τ−
m

m−1
2 for x ∈ Ω

since um
0 ∈ Cb(Ω). The comparison principle implies that for (x, t) ∈ Ω × (0,+∞),

φ(x)(τ1 + t)−
m

m−1 ≤ um(x, t) ≤ φ(x)(τ2 + t)−
m

m−1

since φ(x)(κ+ t)−
m

m−1 is a separable solution of (3.2.2) for any κ > 0. Thus, we have
for (x, t) ∈ Ω × (0,+∞),

t
m

m−1 |um(x, t) −W(x, t)| ≤ t
m

m−1φ(x) ·max
{∣∣∣(τi + t)−

m
m−1 − (1 + t)−

m
m−1

∣∣∣ , i = 1, 2
}

≤ max
x∈Ω

φ(x) ·max
{∣∣∣∣∣∣ t

m
m−1

(τi + t)
m

m−1
−

t
m

m−1

(1 + t)
m

m−1

∣∣∣∣∣∣ , i = 1, 2
}

and hence we deduce that lim
t→+∞

t
m

m−1 ||um(·, t) −W(·, t)||L∞(Ω) = 0.
(ii) Let w := um. In the proof of (i), we have for (x, t) ∈ Ω × (0,+∞),

φ(x)(τ1 + t)−
m

m−1 ≤ w(x, t) = um(x, t) ≤ φ(x)(τ2 + t)−
m

m−1 .

Since φ ∈ C0,1(Ω) and inf
∂Ω
|∇φ| > δ > 0 for some δ > 0, we can find positive

constants 0 < c1 < C1 < +∞ such that for (x, t) ∈ Ω × (0,+∞),

c1

(1 + t)
m

m−1
dist (x, ∂Ω) ≤ w(x, t) ≤

C1

(1 + t)
m

m−1
dist (x, ∂Ω)
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and then for (x, t) ∈ Ω × [1,+∞),

c1

2
m

m−1 t
m

m−1
dist (x, ∂Ω) ≤ w(x, t) = um(x, t) ≤

C1

t
m

m−1
dist (x, ∂Ω). (3.2.4)

Therefore, (ii) follows.
(iii) Let 0 < δo < 1 be a constant such that Bδo(x) ⊂ Ω for x ∈ Ω(−δo) := {x ∈

Ω : dist (x, ∂Ω) > δo}. Let (xo, to) ∈
(
Ω\Ω(−δo)

)
× [2,+∞). For xo ∈ Ω\Ω(−δo), we

set dist (xo, ∂Ω) = 2σ. According to (3.2.4), it follows that for (x, t) ∈ Bσ(xo) ×
[to/2, to],

c2σ ≤ t
m

m−1
o w(x, t) ≤ C2σ, (3.2.5)

where c2 := c12−
m

m−1 and C2 := 3C12
m

m−1 . We define for (x̃, t̃) ∈ B1(0) × [σ−1−1/m −

1, σ−1−1/m],

w̃(x̃, t̃) :=
t

m
m−1
o

σ
w

(
xo + σx̃, σ1+1/mto t̃

)
,

where xo + σx̃ ∈ Bσ(xo) and σ1+1/mtot̃ ∈ [to − σ
1+1/mto, to] ⊂ [to/2, to]. From the

scaling property, w̃ satisfies

mw̃1− 1
m F(D2w̃) − w̃t = 0 in B1(0) × [σ−1−1/m − 1, σ−1−1/m].

From (3.2.5), we have

c2 ≤ w̃ ≤ C2 in B1(0) × [σ−1−1/m − 1, σ−1−1/m],

which implies that w̃ solves a uniformly parabolic equation in B1(0) × [σ−1−1/m −

1, σ−1−1/m] with the ellipticity constants depending only on m, c2,C2, λ and Λ.

From uniform gradient estimates for uniformly parabolic equations, Theorem 1.3
and Theorem 4.8 in [61], we obtain that

|∇w̃(0, σ−1−1/m)| < C,

where C > 0 depends only on m, c2,C2, λ and Λ. Therefore we deduce that

t
m

m−1
o |∇w(xo, to)| = |∇w̃(0, σ−1−1/m)| < C

and hence

t
m

m−1 |∇w(x, t)| < C uniformly for (x, t) ∈
(
Ω\Ω(−δo)

)
× [2,+∞).
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For to ∈ [2,+∞), (3.2.4) gives that

c̃ ≤ t
m

m−1
o w(x, t) ≤ C̃ for (x, t) ∈ Ω(−δo/2) × [to/2, to],

where c̃ := c12−
m

m−1 δo/2 and C̃ := C12
m

m−1 diam (Ω). We define for (x̃, t̃) ∈ Ω(−δo/2)×

[1/2, 1],
w̃(x̃, t̃) := t

m
m−1
o w

(
x̃, tot̃

)
,

where tot̃ ∈ [to/2, to] and c̃ ≤ w̃ ≤ C̃ in Ω(−δo/2) × [1/2, 1]. From the scaling
property, w̃ satisfies

mw̃1− 1
m F(D2w̃) − w̃t = 0 in Ω(−δo/2) × [1/2, 1],

which is uniformly parabolic in Ω(−δo/2) × [1/2, 1] with the ellipticity constants
depending only on m, c̃, C̃, λ and Λ. Thus we have

t
m

m−1
o |∇w(x, to)| = |∇w̃(x, 1)| < C uniformly for x ∈ Ω(− 3

4 δ0)

from uniform gradient estimates, Theorem 1.3 and Theorem 4.8 in [61], where
C > 0 depends only on m, c̃, C̃, λ and Λ. Therefore, we conclude that t

m
m−1 |∇w(x, t)|

is uniformly bounded in Ω(− 3
4 δ0) × [2,+∞) and hence

t
m

m−1 |∇w(x, t)| < C uniformly in Ω × [2,+∞)

by putting together with the above argument. �

Corollary 3.2.5. Under the same assumption of Proposition 3.2.4, we also assume
that F is concave. For each compact subset K of Ω, we have∥∥∥t

m
m−1 um(·, t) − φ

∥∥∥
Ck

x(K)
→ 0 as t → +∞

for k = 0, 1, 2.

Proof. Since

|t
m

m−1 um(x, t) − φ(x)| ≤ t
m

m−1 |um(x, t) −W(x, t)| + |t
m

m−1 W(x, t) − φ(x)|

≤ t
m

m−1 |um(x, t) −W(x, t)| + φ(x)

∣∣∣∣∣∣( t
1 + t

) m
m−1
− 1

∣∣∣∣∣∣ ,
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we have the uniform convergence of t
m

m−1 um(·, t) to the limit φ as t → +∞ from
Proposition 3.2.4. For K b Ω,we can find a compact set K′ such that K b K′ b Ω.

Then there is a time T > 0 such that for (x, t) ∈ K′ × [T,+∞),

−
1
2

inf
K′
φ ≤ t

m
m−1 um(x, t) − φ(x) ≤ sup

K′
φ.

Let w := um. Then we have

1
2

inf
K′
φ ≤ t

m
m−1 w(x, t) ≤ 2 sup

K′
φ.

For to ∈ [2T,+∞), we have

c̃ ≤ t
m

m−1
o w(x, t) = t

m
m−1
o um(x, t) ≤ C̃ for (x, t) ∈ K′ × [to/2, to],

where c̃ :=
1
2

inf
K′
φ and C̃ := 21+ m

m−1 sup
K′
φ. From (iii) in Proposition 3.2.4, we also

have
t

m
m−1
o |∇w(x, t)| < 2

m
m−1 Co uniformly for (x, t) ∈ Ω × [to/2, to],

and then for (x, t) ∈ K′ × [to/2, to],∣∣∣∣∣∣∇ (
t

m
m−1
o w

)1− 1
m

∣∣∣∣∣∣ =
m − 1

m

(
t

m
m−1
o w

)− 1
m
|t

m
m−1
o ∇w(x, t)| ≤

m − 1
m

(c̃)−
1
m 2

m
m−1 Co,

where a uniform constant Co > 0 is in Proposition 3.2.4. By using a similar ar-
gument as in the proof of (iii), Proposition 3.2.4 and the concavity of F, we can
apply Theorem 1.1 and Theorem 4.13 in [61], to deduce∥∥∥∥t

m
m−1
o um(·, to)

∥∥∥∥
C2,α(K)

=
∥∥∥∥t

m
m−1
o w(·, to)

∥∥∥∥
C2,α(K)

< C,

where 0 < α < 1 and a uniform constant C > 0 depends only on m, c̃, C̃,Co, λ,Λ,K
and K′. So we have proved

‖t
m

m−1 um(·, t)‖C2,α(K) < C uniformly for t ∈ [2T,+∞).

Now we use Arzela-Ascoli Theorem and the uniform convergence of t
m

m−1 um(·, t)
to the unique limit φ to conclude that

||t
m

m−1 um(·, t) − φ||Ck
x(K) → 0 as t → +∞

for k = 1, 2. For details of the proof, we refer to Corollary 3.1.5. �
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Corollary 3.2.6. Suppose that F satisfies (F1) and (F2). Let u be the solution of
(3.2.2) with um

0 ∈ Cb(Ω). Set U(x, t) := f (x)

(1+t)
1

m−1
, where f solves


−F(D2 f m) = 1

m−1 f in Ω,

f = 0 on ∂Ω,

f > 0 in Ω.

Then, we have

t
1

m−1 |u(x, t) − U(x, t)| → 0 uniformly for x ∈ Ω, as t → +∞,

and hence
lim

t→+∞
‖t

1
m−1 u(·, t) − f ‖L∞(Ω) = 0.

Proof. Let φ be the solution of (NLEV) in Theorem 3.2.2. Since φ = f m and
(1 − r)m ≤ 1 − rm for 0 ≤ r ≤ 1, the result follows from Proposition 3.2.4. �

3.2.3 Square-root concavity of the pressure

Let u be the solution of the problem (3.2.2) with um
0 ∈ Cb(Ω). Let v := um−1 be

the pressure and let v =: w2. We prove the concavity of w in spatial variables for
any t > 0 if the initial data u0 has the concavity of u

m−1
2

0 , under some assumption.
The function w =

√
v is a suitable quantity to perform geometrical investigation,

which was demonstrated by Daskalopoulos, Hamilton and Lee in [20] for the
Laplace operator.

First, let us approximate the problem (3.2.2) as follows; for 0 < η < 1,
F(D2um

η ) − ∂tuη = 0 in Ω × (0,∞),
uη = η on ∂Ω × (0,∞),

uη(·, 0) = uη,0 ≥ η in Ω.

(3.2.6)

Let gη := um
η . Then gη satisfies the following problem:

mg1−1/m
η F(D2gη) − ∂tgη = 0 in Ω × (0,∞),

gη = ηm on ∂Ω × (0,∞),
gη(·, 0) = gη,0 = um

η,0 ≥ η
m in Ω.

(3.2.7)
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We note that gη satisfies a uniformly parabolic equation in Ω× (0,+∞) for a fixed
η > 0 since gη ≥ ηm from the comparison principle. We assume that gη,0 satisfies

1
2

g0 ≤ gη,0 − ηm ≤ 2g0 in Ω. (3.2.8)

Lemma 3.2.7. Suppose that F satisfies (F1). Let gη be the solution of (3.2.7) with
the initial data gη,0 ∈ C0(Ω) satisfying (3.2.8) for some g0 ∈ Cb(Ω). There are
uniform positive constants c0, c1 and K with respect to 0 < η < 1 and F such that

c0 dist (x, ∂Ω) e−Kt < gη(x, t) − ηm < c1 dist (x, ∂Ω), ∀(x, t) ∈ Ω × [0,+∞),

and
0 < c0e−Kt < |∇xgη(x, t)| < c1, ∀(x, t) ∈ ∂Ω × [0,+∞).

Proof. We establish a subsolution and a supersolution of (3.2.7). From Theorem
3.1.1, let ϕ− solve{

−M−(D2ϕ−) = µ−ϕ− in Ω,

ϕ− = 0 on ∂Ω,
(EV)

associated with the eigenvalue µ− > 0. We may assume that gη,0 ≥ ηm + ϕ− by
multiplying a positive constant to ϕ− since gη,0 − ηm ≥ 1

2g0 and g0 ∈ Cb(Ω). We
define

h(x, t) := ηm + ϕ−(x)e−Kt for K := µ−m
(
1 + ||ϕ−||L∞(Ω)

)1−1/m > 0.

Then we have

mh1−1/mF(D2h) − ht ≥ mh1−1/mM−(D2h) − ht

= mh1−1/me−Kt

{
M−(D2ϕ−) +

Kϕ−

mh1−1/m

}
= mh1−1/me−Ktϕ−

−µ− + µ−
m

(
1 + ||ϕ−||L∞(Ω)

)1−1/m

m(ηm + ϕ−e−Kt)1−1/m


≥ 0 in Ω × (0,+∞),

h = ηm on ∂Ω × [0,+∞) and h(·, 0) = ηm + ϕ− ≤ gη,0 in Ω. Thus the comparison
principle gives that

gη(x, t) ≥ h(x, t) = ηm + ϕ−(x)e−Kt for (x, t) ∈ Ω × [0,+∞),
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where K > 0 depends only on the initial data g0. Thus, we find c0 > 0 such that

gη(x, t) > ηm + c0 dist (x, ∂Ω) e−Kt, ∀(x, t) ∈ Ω × [0,+∞)

and |∇gη(x, t)| > c0e−Kt for (x, t) ∈ ∂Ω × (0,+∞) since inf
∂Ω
|∇ϕ−| > 0.

On the other hand, let ϕ+ be the positive eigenfunction of −M+(D2ϕ+) = 1
m−1 (ϕ+)

1
m in Ω,

ϕ+ = 0 on ∂Ω.

from Theorem 3.2.2. Multiplying a positive constant to ϕ+, we assume that gη,0 ≤
ηm + ϕ+ and that ϕ+ is the positive eigenfunction associated with the eigenvalue
µ+ > 0 since gη,0 − ηm ≤ 2g0 and g0 ∈ Cb(Ω). If we define h := ηm + ϕ+, then h
satisfies

mh1−1/mF(D2h)−ht ≤ mh1−1/mM+(D2h) = mh1−1/m
{
−µ+(ϕ+)

1
m
}
< 0 in Ω × (0,+∞).

From the comparison principle, we obtain that

gη ≤ ηm + ϕ+ in Ω × [0,+∞).

Thus there is a uniform constant c1 > 0, depending only on g0, such that gη(x, t) <
ηm + c1 dist (x, ∂Ω) for (x, t) ∈ Ω × (0,+∞) and |∇gη| < c1 on ∂Ω × (0,+∞) since
ϕ+ ∈ C0,1(Ω). �

Lemma 3.2.8. Under the same condition as Lemma 3.2.7, we also assume that
gη,0 converges to g0 in Cγ(Ω) (0 < γ ≤ 1) when η tends to 0. Let u be the solution

of (3.2.2) with the initial data u0 := g
1
m
0 and let g := um. Then for any T > 0, gη

converges to g uniformly in Ω × [0,T ], up to a subsequence, when η tends to 0.

Proof. Let 0 < ε < 1. From Lemma 3.2.7, we have

0 < δ ≤ gη ≤ M in Ω(−ε) × [0,T ]

for δ := c0εe−KT and M := c1 diam (Ω), where Ω(−ε) := {x ∈ Ω : dist (x,Ω) > ε}.

Thus gη satisfies

±
{
M±

δ̃λ,M̃Λ
(D2gη) − ∂tgη

}
≥ 0 in Ω(−ε) × (0,T ]
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for δ̃ := mδ1−1/m and M̃ := mM1−1/m. Then {gη} are equicontinuous in Ω(−2ε)×[0,T ]
from [61] since gη,0 ∈ Cγ(Ω) for 0 < γ ≤ 1. We use Arzela-Ascoli Theorem to
deduce that gη converges to a continuous function locally uniformly in Ω× [0,T ],
as η tends to 0, up to a subsequence.

We recall that the family of viscosity solutions is closed in the topology of
local uniform convergence, and that

0 < gη ≤ ηm + c1 dist (x, ∂Ω) in Ω × [0,+∞)

from Lemma 3.2.7. Therefore, we deduce that gη converges to g uniformly in
Ω× [0,T ], up to a subsequence, as η tends to 0, since gη,0 converges to g0 in Cγ(Ω)
and the solution to (3.2.2) is unique. �

From the above lemma, it suffices to show the concavity of g
m−1
2m
η = u

m−1
2

η for the
square-root concavity of the pressure of u.

Lemma 3.2.9 (Aronson-Bénilan inequality). Suppose that F satisfies (F1) and
(F3). Let gη be the solution of (3.2.7) with the initial data gη,0 ∈ C0(Ω) satisfying
(3.2.8) for some g0 ∈ Cb(Ω), and uη := g1/m

η . Then we have

∂tgη ≥ −
m

m − 1
·

gη
t

and ∂tuη ≥ −
1

m − 1
·

uη
t
, ∀(x, t) ∈ Ω× (0,+∞). (3.2.9)

Proof. (i) First, we assume that F is smooth. Let δ > 0 and let C be any positive
constant bigger than m

m−1 . We can select τδ ∈ (−δ, 0) such that

∂tgη(x, δ) + C
gη(x, δ)
δ + τδ

≥ ηm, ∀x ∈ Ω,

since ∂tgη(·, δ) is bounded and gη(·, δ) ≥ ηm in Ω. We define

Z(t) := inf
x∈Ω

(
∂tgη(x, t) + C

gη(x, t)
t + τδ

)
.

We note that Z(δ) ≥ ηm > 0.
Suppose that there is to ∈ (δ,+∞) such that Z(to) = 0. We may assume that to

is the first time for Z to vanish and hence Zt(to) ≤ 0. Since(
∂tgη + C

gη
t + τδ

)
= 0 + C

gη
t + τδ

> 0 on ∂Ω × [δ,+∞),
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the infimum of Z at time t = to is achieved at an interior point xo of Ω. Then we

have that ∂tgη(xo, to) < 0, and
(
∂tgη

)2
= C2

g2
η

(to + τδ)2 > 0 at the minimum point

(xo, to) ∈ Ω × (δ,+∞).
We consider the function

Ψ(s) := mg1−1/m
η (x, t)F

(
(1 − s)D2gη(x, t)

)
− (1 − s)∂tgη(x, t)

for any (x, t) ∈ Ω × (0,+∞). We note that Ψ(0) = Ψ(1) = 0. We use the concavity
of F to obtain that gη satisfies

mg1−1/m
η Fi j(D2gη)Di jgη − ∂tgη ≤ 0 in Ω × (0,+∞).

At the minimum point (xo, to), we have

Zt = ∂t

(
∂tgη + C

gη
t + τδ

)
(xo, to)

=

(
1 −

1
m

)
mg−1/m

η F(D2gη)∂tgη + mg1−1/m
η Fi j(D2gη) · Di j∂tgη + C

∂tgη
t + τδ

−C
gη

(t + τδ)2

=

(
1 −

1
m

)
(∂tgη)2

gη
+ mg1−1/m

η Fi j(D2gη) · Di j

(
∂tgη + C

gη
t + τδ

)
− mg1−1/m

η Fi j(D2gη) · Di j

(
C

gη
t + τδ

)
+ C

∂tgη
t + τδ

−C
gη

(t + τδ)2

≥

(
1 −

1
m

)
(∂tgη)2

gη
−C

∂tgη
t + τδ

+ C
∂tgη

t + τδ
−C

gη
(t + τδ)2

=

(
1 −

1
m

)
C2 gη

(t + τδ)2 −C
gη

(t + τδ)2 = C
gη

(t + τδ)2

(
m − 1

m
C − 1

)
> 0,

which is a contradiction since Zt(to) ≤ 0. Therefore we deduce that Z(t) > 0 for
any t > δ, i.e.,

∂tgη > −C
gη

t + τδ
≥ −C

gη
t − δ

, ∀t > δ.

Since δ > 0 and C > m
m−1 are arbitrary, we conclude that

∂tgη ≥ −
m

m − 1
·

gη
t
, ∀(x, t) ∈ Ω × (0,+∞)

and hence the result follows.
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(ii) In general, we approximate F by smooth operators Fε using the mollifica-
tion as in Lemma 3.1.6. Let gεη be the solution of (3.2.7) with the operator Fε and
the same initial data gη,0. Let g±η be the solution of (3.2.7) with the operatorM±

and the initial data gη,0, respectively. From the comparison principle, we have that

0 < ηm ≤ g−η ≤ gεη ≤ g+
η < +∞ in Ω × (0,+∞),

and hence gεη solves the uniformly parabolic equation in Ω × (0,+∞), where 0 <

η < 1 is fixed. Then, gεη and ∂tgεη converge to gη and ∂tgη, locally uniformly in Ω×

(0,+∞), respectively, when ε goes to 0, up to a subsequence. In fact, gεη converges
to gη in C1,α(Ω × (0,+∞)) since gεη and gη are uniformly bounded, where 0 <

η < 1 is fixed. From the uniform interior C2,α- estimate of the uniformly parabolic
equation [61], we have the convergence of ∂tgεη to ∂tgη locally uniformly in Ω ×

(0,+∞) when ε tends to 0. Therefore, we use (i) for gεη, to conclude that

∂tgη ≥ −
m

m − 1
·

gη
t

for t > 0,

completing the proof. �

Corollary 3.2.10 (Aronson-Bénilan inequality). Suppose that F satisfies (F1) and
(F3). Let u be the solution of (3.2.2) with um

0 ∈ Cb(Ω)∩Cγ(Ω) for some 0 < γ ≤ 1.
Then we have

∂tu ≥ −
1

m − 1
·

u
t

in Ω × (0,+∞).

Proof. For 0 < η < 1, we find gη,0 ∈ Cγ(Ω) satisfying (3.2.8) and converging
to g0 := um

0 in Cγ(Ω) as η goes to 0. Let gη be the solution of (3.2.7) with the
initial data gη,0, and let g := um. From Lemma 3.2.8, gη converges to g uniformly
in each compact subset of Ω × [0,+∞) when η tends to 0, up to a subsequence.
As in the proof of Lemma 3.2.8, we have the local uniform Hölder estimate of gη
in Ω × (0,+∞) and then we use Theorem 1.3 and Theorem 4.8 in [61] to obtain
the uniform interior C2,γ̃- estimate of gη (0 < γ̃ < 1) in each compact subset of
Ω × (0,+∞). Thus, ∂tgη converges to ∂tg locally uniformly in Ω × (0,+∞), when
η goes to 0, up to a subsequence. Therefore, Lemma 3.2.9 and the convergence of
gη to g imply that

∂tg ≥ −
m

m − 1
·

g
t

in Ω × (0,+∞),

which finishes the proof. �
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Lemma 3.2.11. Suppose that F satisfies (F1) and (F3). Let gη be the solution of
(3.2.7) with the initial data gη,0 ∈ C2,γ(Ω), (0 < γ < 1) satisfying (3.2.8) for some
g0 ∈ Cb(Ω), and

F(D2gη,0) ≤ 0 in Ω.

Then gη is nonincreasing in time.

Proof. Fix 0 < η < 1 and T > 0. We show that

∂tgη ≤ 0 in Ω × (0,T ].

We approximate the operator F by smooth operators Fε using mollification as in
Lemma 3.1.6 and we may assume that Fε(0) = 0 by subtraction of Fε(0) to Fε .

We also approximate the initial data gη,0 by gεη,0 satisfying Fε(D2gεη,0) = 0 on ∂Ω

and Fε(D2gεη,0) ≤ 0 in Ω. Indeed, let gεη,0 be the solution of the following elliptic
problem  Fε(D2h) = ξε ·

{
Fε(D2gη,0) − 2

√
nΛε

}
in Ω,

h = ηm on ∂Ω,

where 0 ≤ ξε ≤ 1 satisfies that ξε ∈ C∞0 (Ω), and ξε ≡ 1 in Ω(−ε) for Ω(−ε) := {x ∈
Ω : dist (x, ∂Ω) > ε}. Then the solution gεη,0 is such initial data since Fε(D2gη,0) ≤
F(D2gη,0) + 2

√
nΛε ≤ 2

√
nΛε as in the proof of Lemma 3.1.6. We notice that

gεη,0 and gη,0 have a uniform C1,γ- estimate in Ω for 0 < γ < 1 from [13] since

F(D2gη,0) and ξε ·
{
Fε(D2gη,0) − 2

√
nΛε

}
are uniformly bounded. Then Arzela-

Ascoli Theorem gives that gεη,0 converges to gη,0 uniformly in Ω, as ε tends to 0,
up to a subsequence, where 0 < η < 1 is fixed.

Let gεη be the solution of (3.2.7) with Fε and gεη,0 in place of F and g0, re-
spectively. From the global Hölder regularity [61] and Arzela-Ascoli Theorem,
we have that gεη converges uniformly to gη in Ω × [0,T ], as ε tends to 0, up to a
subsequence. We recall that gεη ∈ C2,γ(Ω × [0,T ]) (see [61]) solves a uniformly
parabolic equation (3.2.7) in Ω × (0,T ], where ε and η are fixed.

For a fixed ε > 0, we will show that ∂tgεη ≤ 0 in Ω × (0,T ]. Define

h := ∂tgεη − δt − δ

for small 0 < δ < 1. Then h is negative on the parabolic boundary of Ω × (0,T ].
Indeed, for (x, t) ∈ ∂Ω × [0,+∞), we have that h = 0 − δt − δ ≤ −δ < 0, and for
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(x, 0) ∈ Ω × {t = 0}, we have

h = ∂tgεη − δ ≤ −δ < 0 in Ω

since ∂tgεη(·, 0) = m(gεη,0)1−1/mFε(D2gεη,0) ≤ 0 in Ω.

Suppose that there is to ∈ (0,T ] such that h(xo, to) = 0 at some point xo ∈ Ω

for the first time. Then the point (xo, to) is a maximum point of h in Ω× (0, to], and
hence at the maximum point (xo, to), we have

0 ≥ m(gεη)
1−1/mFε

i j(D
2gεη)Di jh − ht = −

(
1 −

1
m

) (
∂tgεη

)2

gεη
+ δ

= −

(
1 −

1
m

)
δ2(to + 1)2

gεη
+ δ ≥ −

(
1 −

1
m

)
δ2(T + 1)2

ηm + δ.

However, it is a contradiction if we select δ small enough. Thus, for given 0 <

ε, η < 1, and T > 0, we find a small δ(η,T ) > 0 such that if 0 < δ < δ(η,T ), then
h < 0 in Ω × [0,T ], i.e.,

∂tgεη < δt + δ in Ω × [0,T ] .

Letting δ go to 0, we have ∂tgεη ≤ 0 in Ω × [0,T ], i.e., for (x, t) ∈ Ω × [0,T ],

gεη(x, t + s) − gεη(x, t) ≤ 0, ∀s > 0.

Using the uniform convergence of gεη to gη, we let ε go to 0 to deduce

∂tgη ≤ 0 in Ω × [0,T ],

completing the proof. �

Lemma 3.2.12. Suppose that a smooth operator F satisfies (F1) and (F3). Let gη
be the solution of (3.2.7) with the initial data gη,0 ∈ C2,γ(Ω) (0 < γ < 1) satisfying
(3.2.8) for some g0 ∈ Cb(Ω). We assume that F(D2gη,0) = 0 on ∂Ω and

−C̃g
1
m
η,0 ≤ F(D2gη,0) ≤ 0 in Ω

for some C̃ > 0. Then we have

−mC̃gη ≤ ∂tgη ≤ 0 in Ω × (0,+∞).
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Proof. According to Lemma 3.2.11, ∂tgη is nonpositive in Ω × (0,+∞). Define a
linearized operator

H[h] := mg1−1/m
η Fi j · Di jh − ∂th +

(
1 −

1
m

)
∂tgη
gη

h

for Fi j := ∂F
∂pi j

(D2gη). Then we have that H[∂tgη] = 0 in Ω × (0,+∞), and −gη
satisfies

H[−gη] ≥ 0 +

(
1 −

1
m

)
∂tgη
gη

(−gη) ≥ 0 in Ω × (0,+∞)

since F is concave (see the proof of Lemma 3.2.9), and ∂tgη ≤ 0 in Ω × (0,+∞).

We note that −mC̃gη,0 ≤ ∂tgη,0 = mg1− 1
m

η,0 F(D2gη,0) in Ω and that −mC̃gη < 0 = ∂tgη
on ∂Ω × [0,+∞). Therefore the result follows from the comparison principle. �

Lemma 3.2.13. Suppose that a smooth operator F satisfies (F1) and (F3). and
that Ω is strictly convex. Let gη be the solution of (3.2.7) with the initial data
gη,0 ∈ C2,γ(Ω), (0 < γ < 1) satisfying (3.2.8) for some g0 ∈ Cb(Ω). We assume that
F(D2gη,0) = 0 on ∂Ω, and

−C̃g1/m
η,0 ≤ F(D2gη,0) ≤ 0 in Ω

for a uniform constant C̃ > 0 with respect to 0 < η < 1. We also assume that gη,o
has a uniform C2- estimate in Ω with respect to 0 < η < 1. Then for T > 0, we
have

|D2
xgη| < C(T ) uniformly on ∂Ω × [0,T ], (3.2.10)

where C(T ) > 0 depends only on m, n, λ,Λ,T, C̃, the boundary gradient estimate
of g0, and the uniform C2- estimate of gη,0.

Proof. (i) Since gη,o has a uniform Lipschitz estimate with respect to 0 < η < 1,
Lemma 3.2.7 and Lemma 3.2.11 imply that

|∇gη| < C uniformly in Ω × [0,+∞), (3.2.11)

where C > 0 is uniform with respect to 0 < η < 1. In fact, for any unit vector
eα ∈ Rn, ∂αgη satisfies

mg1−1/m
η Fi j · Di j(∂αgη) − ∂t(∂αgη) +

(
1 −

1
m

)
∂tgη
gη

∂αgη = 0 in Ω × (0,+∞)
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for Fi j := ∂F
∂pi j

(D2gη). Since ∂tgη ≤ 0 from Lemma 3.2.11, the comparison princi-
ple implies that ∂αgη is uniformly bounded by a constant depending only on the
uniform Lipschitz estimate of gη,0, and the uniform boundary gradient estimate in
Lemma 3.2.7.

(ii) We fix η > 0, and denote gη by g for simplicity. We fix a boundary point
xo ∈ ∂Ω and denote xo by the origin. Now we introduce the coordinate system
such that the tangent plane to ∂Ω at 0 is xn = 0 with en being the inner normal
vector. When eτ = ei, (i = 1, · · · , n − 1) is tangential to ∂Ω at 0, we have gτ = 0
and gττ = −g,nκτ < 0 at 0 as in the proof of Lemma 3.1.8, where κτ is the curvature
of ∂Ω at 0 in the direction eτ. Using the uniform boundary estimates in Lemma
3.2.7, and the strict convexity of ∂Ω, we obtain

0 < c(T ) < −gττ(0, t) < C, ∀t ∈ [0,T ] (3.2.12)

for any tangential unit vector eτ to ∂Ω at 0, where 0 < c(T ) < C are independent
of 0 < η < 1. Thus, there is C > 0, independent of 0 < η < 1, such that

|∂ei,e jg(0, t)| < C, ∀t ∈ [0,T ], (1 ≤ i, j ≤ n − 1).

(iii) Near the origin, ∂Ω is represented by xn = ψ(x′) = 1
2 Ai jxix j + O(|x′|3).

Since Ω is strictly convex, the eigenvalues of
(
Ai j

)
lie in [κ0, κ1] for some 0 <

κ0 < κ1. After a change of coordinate of Rn−1, the boundary of Ω near 0 becomes
xn = ψ̃(x′) = 1

2 |x
′|2 + O(|x′|3) and the operator F will be transformed to a new

operator F̃ with new elliptic coefficients λ̃ = λ̃(λ,Λ, κ0, κ1) and Λ̃ = Λ̃(λ,Λ, κ0, κ1)
that are uniformly bounded and positive. So ∂Ω is close to a unit ball with an error
O(|x′|3) near the origin. For simplicity, we assume that Ω = B1(en) and denote
B1(en) by B1. The general domain can be considered with a simple modification
as [14].

(iv) We claim that |∂ek ,eng(0, t)| ≤ C for t ∈ [0,T ], where C > 0 is independent
of η, and k = 1, · · · , n − 1. For positive constants A1, A2, and A3, which will be
fixed later, we define

w±(x, t) := ∂Tkg ± A1

n−1∑
l=1

g2
,l ± A2x2

n ± A3

(
1 − |x − en|

2
)2−ρ

:= (1 − xn)g,k + xkg,n ± A1

n−1∑
l=1

g2
,l ± A2x2

n ± A3

(
1 − |x − en|

2
)2−ρ

,
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where ρ := 1 − 1
m , and ∂Tkg := (1 − xn)g,k + xkg,n is a directional derivative and

coincides with a tangential derivative on ∂B1. Define

v := A4xn

for a uniform constant A4 > 0, which will be chosen large later.
Now, we consider a linearized operator

H[h] := mg1− 1
m Fi j · Di jh − ∂th

with Fi j := ∂F
∂pi j

(D2g). We will show that

H[w+] ≥ 0 = H[v] and H[w−] ≤ 0 = H[−v] in B1 × (0,T ] (3.2.13)

for sufficiently large constants A1, A2, and A3.

We can select A4 > 0 large so that

−v ≤ w− ≤ w+ ≤ v on B1 × {0}

since gη,o has a uniform C2- estimate in Ω, and satisfies that ∂Tkgη,o = 0 on ∂B1,

∂lgη,o(0) = 0 for l = 1, · · · , n − 1, and |x|2 ≤ 2xn for x ∈ B1.

We recall that |∇xg| < c1 on ∂B1 × [0,+∞) from Lemma 3.2.7. Since g = ηm

on ∂B1 and

g2
,l = [(1 − xn)g,l + xlg,n + xng,l − xlg,n]2 ≤ 2[(1 − xn)g,l + xlg,n]2 + 2(xng,l − xlg,n)2

≤ 2[(1 − xn)g,l + xlg,n]2 + 8c2
1|x|

2 = 8c2
1|x|

2 on ∂B1 × [0,+∞),

we see that for (x, t) ∈ ∂B1 × [0,+∞),

−
{
8(n − 1)c2

1A1 + A2

}
|x|2 ≤ w−(x, t) ≤ w+(x, t) ≤

{
8(n − 1)c2

1A1 + A2

}
|x|2.

Since |x|2 = 2xn for x ∈ ∂B1, we obtain that

−2
{
8(n − 1)c2

1A1 + A2

}
xn ≤ w− ≤ w+ ≤ 2

{
8(n − 1)c2

1A1 + A2

}
xn, ∀(x, t) ∈ ∂B1×[0,T ].

Thus for a large A4 > 0, we have that

−v ≤ w− ≤ w+ ≤ v on ∂p (B1 × (0,T ]) .
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If we prove (3.2.13), then the comparison principle gives

−v ≤ w− ≤ w+ ≤ v in B1 × [0,T ].

Therefore, we deduce that, for 1 ≤ k ≤ n − 1,

|∂kng(0, t)| = |∂nw±(0, t)| ≤ |∂nv(0)| = A4 for t ∈ [0,T ].

So, it remains to show (3.2.13) by choosing suitable constants A1, A2, and A3.

Note that ∂tgη/gη is uniformly bounded in Ω × (0,+∞) from Lemma 3.2.12. We
use (3.2.11), Lemma 3.2.12, and the ellipticity of F to have

H[w+] ≥ −
(
1 −

1
m

)
∂tg
g

(1 − xn)g,k + xkg,n + 2A1

n−1∑
l=1

g2
,l


+ 2mg1− 1

m

− n∑
i=1

Fnig,ki +

n∑
i=1

Fkig,ni + A1

n−1∑
l=1

Fi jg,lig,l j + A2Fnn


+ A3(2 − ρ)(1 − ρ)mg1− 1

m
(
1 − |x − en|

2
)−ρ

4λ|x − en|
2

− A3(2 − ρ)mg1− 1
m
(
1 − |x − en|

2
)1−ρ

nΛ

≥ −C(1 + A1) + 2mg1− 1
m

−C

 n∑
l,i=1

|g,li|2


1
2

+ A1λ

n−1∑
l=1

n∑
i=1

g2
,li + A2λ/2


+ mg1− 1

m A2λ + A3(2 − ρ)(1 − ρ)mg1− 1
m
(
1 − |x − en|

2
)−ρ

4λ|x − en|
2

− A3(2 − ρ)mg1− 1
m
(
1 − |x − en|

2
)1−ρ

nΛ

for a uniform C > 0 with respect to 0 < η < 1. Using the equation mg1− 1
m F(D2g)−

∂tg = 0 = F(0) and the ellipticity of F, it follows that (see the proof of Theorem
9.5 in [13])

g2
,nn ≤ C

∑
(i, j),(n,n)

|g,i j|
2 + C

∣∣∣∣∣∂tg
g
· g1/m

∣∣∣∣∣2 in B1 × (0,+∞). (3.2.14)
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Using (3.2.14) and Lemma 3.2.12, we have

H[w+] ≥ −C(1 + A1) + 2mg1− 1
m

−C

 n∑
l,i=1

|g,li|2


1
2

+
A1

C

n∑
l,i=1

g2
,li + A2λ/2


+ mλA2g1− 1

m + A3(2 − ρ)(1 − ρ)mg1− 1
m
(
1 − |x − en|

2
)−ρ

4λ|x − en|
2

− A3(2 − ρ)mg1− 1
m
(
1 − |x − en|

2
)1−ρ

nΛ

for a large C > 0, independent of 0 < η < 1. Selecting A2 ≥ A1 and A2
1 ≥

C3

2λ (see
[13, Theorem 9.5]), we obtain

H[w+] ≥ −C(1 + A1) + mλA2g1− 1
m + A3(2 − ρ)(1 − ρ)mg1− 1

m
(
1 − |x − en|

2
)−ρ

4λ|x − en|
2

− A3(2 − ρ)mg1− 1
m
(
1 − |x − en|

2
)1/m

nΛ.

Since gη ≥ δ
(
1 − |x − en|

2
)

in B1 × (0,T ] for a uniform δ = δ(T ) > 0 with respect
to 0 < η < 1 from Lemma 3.2.7, we have

H[w+] ≥ −C(1 + A1) + mλA2δ
1− 1

m
(
1 − |x − en|

2
)1− 1

m

+ A3

{
m(2 − ρ)(1 − ρ)δ1− 1

m 4λ|x − en|
2 −C

(
1 − |x − en|

2
)1/m

}
for a large C > 0 independent of 0 < η < 1. Choosing A3 and A2 large, we deduce
H[w+] ≥ 0 in B1 × (0,T ], and hence

H[w+] ≥ 0 = H[v] in B1 × (0,T ].

Similarly, we have H[w−] ≤ 0 = H[−v] in B1 × (0,T ]. Therefore, we have proved
that

|∂kng(0, t)| ≤ A4 for all t ∈ [0,T ],

where A4 is uniform with respect to 0 < η < 1.
(v) Lastly, since g2

,nn(0, t) ≤ C
∑

(i, j),(n,n)

|g,i j(0, t)|2 for (0, t) ∈ ∂Ω × (0,+∞) from

(3.2.14), we have
|∂nngη(0, t)| ≤ C, ∀t ∈ (0,T ],
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where C > 0 is independent of 0 < η < 1. Therefore, we have

|D2
xgη(0, t)| ≤ C, ∀t ∈ [0,T ],

and hence (3.2.10) follows since xo = 0 is an arbitrary point of ∂Ω. �

Lemma 3.2.14. Suppose that F satisfies (F1) and (F3). and that Ω is strictly
convex. Let gη be the solution of (3.2.7) with the initial data gη,0 ∈ C2,γ(Ω), (0 <
γ < 1) satisfying (3.2.8) for some g0 ∈ Cb(Ω). We also assume that for T > 0,

|D2
xgη| < C(T ) uniformly on ∂Ω × (0,T ], (3.2.15)

where C(T ) > 0 is independent of 0 < η < 1. Let wη := g
m−1
2m
η . Then, there exist

η(T ) > 0 and c(T ) > 0 such that if 0 < η < η(T ), then

wη,αα(x, t) =
m − 1

2mg2−m−1
2m

η

(
gηgη,αα −

m + 1
2m

g2
η,α

)
≤ −

m − 1
2m

c(T )

η
m+1

2

, ∀(x, t) ∈ ∂Ω×(0,T ],

(3.2.16)
for any unit vector eα ∈ Rn, where η(T ) > 0 and c(T ) > 0 depend only on
C(T ), c0e−KT and the lower bound of the curvature of ∂Ω, and the uniform con-
stant c0e−KT > 0 is as in Lemma 3.2.7.

Proof. We fix η > 0. For simplicity, we denote gη by g. Fix a (xo, to) ∈ ∂Ω× (0,T ].
We may assume xo = 0 and introduce the coordinate system such that xo = 0 and
that the tangent plane at 0 is xn = 0 with en being the inner normal vector at the
origin. When eτ = ei, (i = 1, · · · , n − 1) is tangential to ∂Ω at xo = 0, we have
gτ = 0 and gττ = −g,nκτ < 0 at 0 as in the proof of Lemma 3.1.8, where κτ > 0 is
the curvature of ∂Ω at 0 in the direction eτ.

According to the uniform boundary gradient estimates in Lemma 3.2.7 and the
strict convexity of ∂Ω, we have

0 < c1(T ) < −gττ = |∇g| · κτ < C1 at (0, to) ∈ ∂Ω × (0,T ] (3.2.17)

for any tangential unit vector eτ to ∂Ω at 0, where c1(T ) > 0 and C1 > 0 are
uniform with respect to 0 < η < 1. Then we have

g(0, to) · gττ(0, to) −
m + 1

2m
g2
τ(0, to) ≤ −c1(T )ηm − 0 = −c1(T )ηm

60



CHAPTER 3. ASYMPTOTIC BEHAVIOR OF PARABOLIC EQUATIONS

for any tangent unit vector eτ to ∂Ω at xo = 0 ∈ ∂Ω, where c1(T ) > 0 depends
only on c0e−KT and the lower bound of the curvature of ∂Ω.

Let eα be any unit vector in Rn. We decompose eα := β1eτ+β2eν with β2
1 +β2

2 =

1, where unit vectors eν and eτ are normal and tangent to ∂Ω at 0, respectively. We
use (3.2.17), (3.2.15) and Lemma 3.2.7 to have at (0, to) ∈ ∂Ω × (0,T ],

gg,αα(0, to) −
m + 1

2m
g2
,α(0, to) = g

(
β2

1gττ + 2β1β2gτν + β2
2gνν

)
−

m + 1
2m

β2
2g2

ν

≤ g
{
−c1(T )β2

1 + C(T )
(
2β1β2 + β2

2

)}
− β2

2δo(T )

for a uniform δo(T ) > 0 depending on m, c0e−KT . We use Young’s inequality to
deduce that at (0, to) ∈ ∂Ω × (0,T ],

gg,αα(0, to) −
m + 1

2m
g2
,α(0, to) ≤ g

{
−

c1(T )
2

β2
1 + C̃(T )β2

2

}
− β2

2δo(T )

= −ηm c1(T )
2

β2
1 +

{
ηmC̃(T ) − δo(T )

}
β2

2

≤ −
min{c1(T ), δo(T )}

2
ηm(β2

1 + β2
2) =: −c(T )ηm

with C̃(T ) := C(T )+ 2C(T )2

c1(T ) , for small 0 < ηm < {η(T )}m := δo(T )
2C̃(T )

. Thus we conclude

gη(xo, to)gη,αα(xo, to) −
m + 1

2m
g2
η,α(xo, to) ≤ −c(T )ηm

for any direction eα. Since (xo, to) is an arbitrary point of ∂Ω × (0,T ], we deduce

wη,αα =
m − 1

2m
1

η2m−m−1
2

(
gηgη,αα −

m + 1
2m

g2
η,α

)
≤ −

m − 1
2m

c(T )

η
m+1

2

on ∂Ω × (0,T ],

completing the proof. �

Lemma 3.2.15. Suppose that F satisfies (F1) and (F3), and that Ω is strictly
convex. Then there exist g0 ∈ Cb(Ω) ∩ C2,γ(Ω), (0 < γ < 1), and 0 < ηo < 1
satisfying the following properties :

(i) g0 and gη,0 := g0 + ηm satisfy

F(D2ψ) = 0 on ∂Ω, and − C̃ψ1/m ≤ F(D2ψ) ≤ 0 in Ω

for a uniform constant C̃ > 0 with respect to 0 < η < ηo and F,
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(ii) g0 and gη,0 have a uniform C2,γ- estimate in Ω with respect to 0 < η < ηo and
F,

(iii) g
m−1
2m

0 and g
m−1
2m
η,0 are concave in Ω for 0 < η < ηo,

(iv) gη,0 converges to g0 in C2(Ω) as η tends to 0, where ηo > 0 is a uniform
constant.

Proof. Let d be the distance function to ∂Ω, which is concave in Ω, and let h be
the solution to  F(D2h) = −d

1
m in Ω,

h = 0 on ∂Ω.

Note that h has a uniform C2,γ- estimate (0 < γ < 1) in Ω with respect to F. Then
there exist uniform numbers εo, ηo > 0, and a convex domain Ωo b Ω such that
|∇h| > εo in Ω \ Ωo from Hopf’s Lemma, the level sets of h are strictly convex in
Ω \ Ωo, and that D2 (h + ηm)

m−1
2m ≤ 0 in Ω \ Ωo for 0 ≤ η < ηo since h ∈ C2,γ(Ω),

and

D2 (h + ηm)
m−1
2m =

m − 1
2m

(h + ηm)
m−1
2m −2

{
(h + ηm)D2h −

m + 1
2m
∇h∇ht

}
(we refer to (3.1.8), and the proof of Lemma 3.2.14).

Let δ0 < δ1 < δ2 be small positive numbers to be fixed later satisfying Ω \ {h >
δ2} ⊂ Ω \Ωo. Define

h̃ := h −Co(h − δ0)3 in {h > δ0} \Ωo

for some Co > 0, which will be chosen later. Then we can find 0 < δ0 < δ1 < δ2 <

1, and Co > 0 such that ∇h̃ ‖ ∇h, 1
2 < ∇h̃ · ∇h < 1 in {h > δ0} \ {h > δ2}, D2h̃ ≤ 0

in {h > δ1} \ {h > δ2}, and that F(D2h̃) ≤ 0, D2(h̃ +ηm)
m−1
2m ≤ 0 in {h > δ0} \ {h > δ1}

for 0 ≤ η < ηo.

Now we set

g0 := h in Ω \ {h > δ0} , g0 := h̃ in {h > δ0} \ {h > δ2} ,

and
g0 := δ2 −Co(δ2 − δ0)3 on {h > δ2}.
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Then go is concave in {h > δ1}. By regularizing g0 in {h > (δ1 + δ2)/2}, we obtain
g0 ∈ C2,γ(Ω) such that g0 is concave in {h > δ1}, and that −C̃g

1
m
0 ≤ F(D2g0) ≤ 0 in Ω \ {h > δ1},

g0 = 0 on ∂Ω

for some C̃ > 0 since h ∈ Cb(Ω) ∩ C2,γ(Ω), and F(D2h̃) ≤ 0 in {h > δ0} \ {h >

δ1}. We notice that g
m−1
2m

0 is concave in {h > δ1} since g0 is concave in {h > δ1}.

Therefore, we set gη,0 := g0 + ηm, and hence g0 and gη,0 satisfy (i)− (iv), where we
recall D2(g0 + ηm)

m−1
2m ≤ 0 in Ω \ {h > δ1} for 0 ≤ η < ηo. �

Lemma 3.2.16. Suppose that F satisfies (F1), (F2) and (F3) and Ω is a strictly
convex bounded domain. Let g0 be an initial data in Lemma 3.2.15, u be the solu-
tion of (3.2.2) with initial data u0 := g

1
m
0 , and g := um. Then u

m−1
2 is concave in the

spatial variables for any t > 0, i.e.,

D2
x u

m−1
2 ≤ 0 in Ω × (0,+∞).

Proof. Let gη be the solution of (3.2.7) with the initial data gη,0, where gη,0 is as
in Lemma 3.2.15. For a fixed T > 0, it suffices to show the concavity of wη :=

u
m−1

2
η = g

m−1
2m
η for small 0 < η � 1;

1
2

(
g

m−1
2m
η (x, t) + g

m−1
2m
η (y, t)

)
− g

m−1
2m
η

( x + y
2

, t
)
≤ 0, ∀x, y ∈ Ω, ∀t ∈ [0,T ]

since the uniform convergence of gη to g in Lemma 3.2.8 preserves the concavity.
Now, we approximate F by a smooth operator Fε as in Lemma 3.1.6, and we

may assume that Fε(0) = 0. For any ε > 0, let gε0 and gεη,0 be the initial data as in
Lemma 3.2.15 with Fε in place of F, and let gεη be the solution of (3.2.7) with Fε

and gεη,0. We note that Lemmas 3.2.13 and 3.2.14 hold for gεη for 0 < ε < 1 and
0 < η < min{ηo, η(T )}, where η(T ) and ηo are the uniform constants as in Lemma
3.2.14 and Lemma 3.2.15, respectively.

Fix 0 < η < min{η(T ), ηo}. Since gεη,0 is uniformly bounded with respect to
0 < ε < 1, where η is fixed, the comparison principle implies

0 < ηm ≤ gεη ≤ C < +∞ in Ω × (0,+∞).
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Since gεη is uniformly bounded with respect to 0 < ε < 1, we have the uniform
global C1,γ- estimate (0 < γ < 1) for gεη in Ω × [0,T ] with respect to 0 < ε < 1
from [61] and hence the uniform C2,γ estimate for gεη in Ω × [0,T ] using Theorem
1.1 in [61], where 0 < η < min{η(T ), ηo} is fixed. According to Arzela-Ascoli
Theorem, gεη converges uniformly to gη in C2(Ω × [0,T ]), up to a subsequence,
since gεη,0 converges to gη,0 uniformly in Ω as ε tends to 0, up to a subsequence.
Thus we consider the concavity of wε

η := (uεη)
m−1

2 for small 0 < ε < 1.
We note that the function gεη solves

mg1−1/mFε(D2g) = ∂tg in Ω × (0,T ],

which is uniformly parabolic for a given η > 0.
The geometric quantity wε

η satisfies

∂tw =
m − 1

2
w

m−3
m−1 Fε

(
2m

m − 1
w

3−m
m−1

(
w2D2w +

m + 1
m − 1

wDwDwt

))
in Ω × (0,T ].

After the change of the time t 7→ mt, the above equation will be transformed to

∂tw =
m − 1

2m
w

m−3
m−1 Fε

(
2m

m − 1
w

3−m
m−1

(
w2D2w + rwDwDwt

))
, (3.2.18)

with r = m+1
m−1 . By taking differentiation twice, the function wε

η satisfies

∂tw,αβ =
m − 1

2m
w

m−3
m−1 Fε

i j,kl ·

(
2m

m − 1
w

3−m
m−1

(
w2Di jw +

m + 1
m − 1

wDiwD jw
))
,α

·

(
2m

m − 1
w

3−m
m−1

(
w2Dklw +

m + 1
m − 1

wDkwDlw
))
,β

+ Fε
i j ·

(
2w,αw,βDi jw + 2ww,αβDi jw + 2ww,αDi jw,β + 2ww,βDi jw,α + w2Di jw,αβ

+ rw,αβDiwD jw + 2rw,αDiw,βD jw + 2rw,βDiw,αD jw

+ 2rwDiw,αD jw,β + 2rwDiw,αβD jw
)

+
m − 1

2m
m − 3
m − 1

w
m−3
m−1−1w,αβFε

(
2m

m − 1
w

3−m
m−1

(
w2D2w + rwDwDwT

))
−

m − 3
m − 1

w−1w,αβFε
i j ·

(
w2Di jw + rwDiwD jw

)
−

m − 1
2m

m − 3
m − 1

2
m − 1

w
m−3
m−1−2w,αw,βFε

(
2m

m − 1
w

3−m
m−1

(
w2D2w + rwDwDwT

))
+

m − 3
m − 1

2
m − 1

w−2w,αw,βFε
i j ·

(
w2Di jw + rwDiwD jw

)
,
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with Fε
i j = ∂Fε

∂pi j

(
2m

m−1 (wε
η)

3−m
m−2

(
(wε

η)
2D2wε

η + rwε
ηDwε

η(Dwε
η)

t
))

and

Fε
i j,kl =

∂2Fε

∂pi j∂pkl

(
2m

m − 1
(wε

η)
3−m
m−2

(
(wε

η)
2D2wε

η + rwε
ηDwε

η(Dwε
η)

t
))
.

In order to study the concavity of wε
η, we consider for given 0 < ε < δ < 1,

sup
y∈Ω

sup
|eβ |=1

∂ββwε
η(y, t) + ψ(t),

where eβ ∈ Rn is a unit vector, and ψ(t) := −ε − e−1/δe2Kt tan(K
√
δt) for some

uniform constant K > 0, which will be chosen later and independent of 0 < ε <

δ < 1.
Now suppose that there is a time to ∈

[
0,min

(
π

4K
√
δ
,T

)]
⊂ [0,T ] such that

sup
y∈Ω

sup
|eβ |=1

∂ββwε
η(y, to) + ψ(to) = 0.

We may assume that to is the first time for it to be zero. From the assumption on
the initial data gεη,0 that D2(gεη,0)

m−1
2m ≤ 0 in Ω, we have

sup
y∈Ω

sup
|eβ |=1

∂ββwε
η(y, 0) + ψ(0) ≤ ψ(0) = −ε < 0,

and hence to > 0.
We assume that the supremum

sup
y∈Ω

sup
|eβ |=1

∂ββwε
η(x, to) = ∂ααwε

η(xo, to) = −ψ(to) > 0

is achieved at (xo, to) ∈ Ω ×
(
0,min

(
π

4K
√
δ
,T

)]
with some direction eα. From the

boundary estimate of the second derivatives, (3.2.16) in Lemma 3.2.14, the maxi-
mum point xo should be an interior point of Ω since ∂ααwε

η(xo, to) = −ψ(to) > 0.
Without losing of generality, we assume that xo = 0 and introduce orthonormal

coordinates in which eα is taken as one of the coordinate axes so that

∂αβwε
η(0, to) = 0 for β , α.

In order to create extra terms, we perturb second derivatives of wε
η and we use

the function
Z(x, t) := ∂αβwε

η(x, t)ξα(x)ξβ(x)
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where ξβ(x) := δαβ + cαxβ + 1
2cαcαxαxβ and we denote ~ξt := (ξ1, · · · , ξn) (see [47]).

We choose cβ ∈ R so that

−4(wε
η)

2cβ + 4wε
η ∂βw

ε
η = 0 at the maximum point (0, to).

We notice that Z(0, to) = ∂ααwε
η(0, to) = −ψ(to) > 0.

Now we define

Y(x, t) := Z(x, t) + ψ(t)|~ξ(x)|2 = ~ξt(x)
{
D2

xw
ε
η(x, t) + ψ(t)I

}
~ξ(x).

We have that

∂tY ≥ 0, D2
xY ≤ 0 and ∇xY = 0 at (0, to), (3.2.19)

since

D2
xw

ε
η(x, t) + ψ(t)I ≤ 0 for (x, t) ∈ Ω × (0, to],

and Y(0, to) = ~ξt(0)
{
D2

xw
ε
η(0, to) + ψ(to)I

}
~ξ(0) = ∂ααwε

η(0, to) + ψ(to) = 0.

A simple computation gives that at (0, to),

Z,i = ∂αβiwε
ηξ

αξβ + 2∂βiwε
ηcαξ

αξβ

Z,i j = ∂αβi jwε
ηξ

αξβ + 4∂βi jwε
ηcαξ

αξβ + 2∂βiwε
ηc jcαξαξβ + 2∂i jwε

ηcαcβξαξβ.

Thus at the maximum point (0, to) of all second derivatives of wε
η, we have

Zt = ∂αβtwε
ηξ

αξβ

≤ w2Fε
i j · Z,i j + Fε

i j · w,βi jξ
αξβ

(
−4w2cα + 4ww,α

)
+ 2Fε

i j · w,i j

(
−w2c2

α + w2
,α

)
+

(
2wFε

i j · Di jw + rFε
i j · DiwD jw

)
w,αα + 4rFε

α j · D jw w,αw,αα − 2w2Fε
α j · c jcα w,αα

+ 2rwFε
i j · D jwDiw,αα + 2rwFε

αα · w
2
,αα

+
|m − 3|

2m
w−

m+1
m−1

{
ww,αα +

2
m − 1

w2
,α

}
2
√

nΛε,

≤ w2Fε
i j · ∂i j

(
|~ξ|2

)
(−ψ(to)) +

(
2w · nΛ∂ααw + rΛ|∇w|2

)
Z

+ 4rΛ|∇w|2 Z + 2w2Λ

∑
j

c2
j

 Z

+ 2rwΛZ2 +
|m − 3|

2m
w−

m+1
m−1

{
ww,αα +

2
m − 1

w2
,α

}
2
√

nΛε,
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where we use the concavity of Fε , (3.1.5) in Lemma 3.1.6, (3.2.19), (F1), and the
choice of cα.

Since Fε
i j · ∂i j

(
|~ξ|2

)
= 2cα

∑n
j=1

(
Fα jc j + F j jcα

)
≤ 2(n + 1)Λ|cα|

(∑
j c2

j

)1/2
from

(F1), w := wε
η satisfies that at (0, to),

Zt(0, to) = ∂αβtwε
ηξ

αξβ

≤
{
2wε

ηnΛ + 2rwε
ηΛ

}
Z2 +

(wε
η)

2
· 2(n + 1)Λ

∑
j

c2
j

 + 5rΛ|∇wε
η|

2 + 2(wε
η)

2Λ

∑
j

c2
j


+
|m − 3|

2m
(wε

η)
− 2

m−1 2
√

nΛ

}
Z +

{
|m − 3|

m(m − 1)
(wε

η)
−m+1

m−1 (∂αwε
η)

2 · 2
√

nΛ

}
ε.

Since cβ =
∂βwε

η(0,to)
wε
η(0,to) , we use the uniform global C1,γ estimate for gεη (with respect

to 0 < ε < 1) to find a large constant K = Kη > 0 independent of 0 < ε < δ < 1
such that

Zt(0, to) ≤ K
(
Z2 + Z + ε

)
,

where η is fixed. Thus we obtain that

0 ≤ ∂tY(0, to) = Zt(0, to) + ψt(to)

≤ K
(
Z2 + Z + ε

)
+ ψt(to) = ψt(to) + K

(
ψ2(to) − ψ(to) + ε

)
.

On the other hand, we can check that ψ(t) := −ε−e−1/δe2Kt tan(K
√
δt) satisfies

ψt + K(ψ2 − ψ + ε) < 0, ∀0 < t ≤
π

4K
√
δ
,

for small 0 < ε � δ � 1, which are uniform numbers with respect to T, η, and K.
This implies a contradiction to the fact that ∂tY(0, to) ≥ 0 if to ∈

(
0,min

(
π

4K
√
δ
,T

)]
.

Therefore, we deduce that for small 0 < ε � δ � 1,

sup
y∈Ω

sup
|eβ |=1

∂ββwε
η(y, t) < −ψ(t), ∀t ∈

[
0,min

(
π

4K
√
δ
,T

)]
,

i.e.,

sup
y∈Ω

sup
|eβ |=1

∂ββ(uεη)
m−1

2 (y, t) < ε + e−1/δ+π/(2
√
δ), ∀t ∈

[
0,min

(
π

4K
√
δ
,T

)]
.
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Using the uniform C2,γ- estimate of gεη, we let δ and ε go to 0 to conclude that

D2
xu

m−1
2

η ≤ 0 in Ω × (0,T ],

which means

1
2

{
u

m−1
2

η (x, t) + u
m−1

2
η (y, t)

}
− u

m−1
2

η

( x + y
2

, t
)
≤ 0 ∀x, y ∈ Ω, ∀t ∈ [0,T ].

This finishes the proof. �

Corollary 3.2.17 (Square-root Concavity). Let F satisfy (F1), (F2) and (F3). If
Ω is strictly convex, then φ

1−p
2 is concave, where φ is the positive eigenfunction

Theorem 3.2.2 and p := 1
m .

Proof. We choose the initial data g0 as in Lemma 3.2.15. Let u be the solution of
(3.2.2) with initial data u0 := g

1
m
0 . Lemma 3.2.16 implies

D2
xu

m−1
2 ≤ 0 in Ω × (0,∞).

The uniform convergence in Corollary 3.2.5, namely,

t
m

m−1 um(x, t)→ φ(x) uniformly for x ∈ Ω as t → +∞,

preserves the concavity. Therefore, it follows that

1
2

{
φ

m−1
2m (x) + φ

m−1
2m (y)

}
− φ

m−1
2m

( x + y
2

)
≤ 0 for x, y ∈ Ω.

�

Corollary 3.2.18. Let F satisfy (F1), (F2) and (F3). If Ω is convex, then φ
1−p

2 is
concave, where φ is the positive eigenfunction Theorem 3.2.2 and p := 1

m .
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Chapter 4

Parabolic Harnack inequality on
Riemannian manifolds

In this chapter, we establish Harnack inequality for uniformly parabolic operators
in nondivergence form on a smooth, complete Riemannian manifold (M, g) of di-
mension n. We first prove Harnack inequality of smooth solutions to uniformly
parabolic equations by using Aleksandrov-Bakelman-Pucci-Krylov-Tso type esti-
mate (Lemmas 4.1.3, 4.2.3) and Christ’s Theorem 4.1.10 (see also Lemma 4.1.11)
on M. By applying a priori Harnack estimates in Section 4.1 and Section 4.2 to the
sup- and inf-convolutions uε of the viscosity solution u, we shall show Harnack
inequality for viscosity solutions.

4.1 Harnack inequality for linear parabolic opera-
tors

In this section, we consider linear uniformly parabolic equation

L u := trace (Ax,t ◦ D2u) − ∂tu = f in M × (0,+∞), (4.1.1)

where Ax,t is a positive definite symmetric endomorphism of TxM for any x ∈ M
with the assumption that

λ|X|2 ≤ 〈Ax,tX, X〉 ≤ Λ|X|2 ∀x ∈ M, ∀X ∈ TxM.
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Assuming in this section that there exists aL > 0 such that for all p ∈ M,

4dp(x) ≤
n − 1
dp(x)

for x < Cut(p) ∪ {p}, (4.1.2)

L dp(x) ≤
aL

dp(x)
for x < Cut(p) ∪ {p}, t ∈ R, (4.1.3)

instead of the curvature condition on M, we prove global Harnack inequality of
smooth solutions to (4.1.1). Here, (4.1.2) and (4.1.3) are essentially the same con-
dition introduced by Kim [35] in the elliptic case.

4.1.1 ABP-Krylov-Tso type estimate

In this section, we obtain Aleksandrov-Bakelman-Pucci-Krylov-Tso type estimate
(Lemma 4.1.3) which is a crucial ingredient in proving Krylov-Safonov Harnack
inequality. In the simplified proof of classical ABP-Krylov-Tso estimate [57], the
normal map

(x, t) 7→ (∇u(x, t), u(x, t) − ∇u(x, t) · x)

plays a role to bound the maximum of u by estimating the measure of the image
of the normal map, where the second term is considered (up to a sign) as the
Legendre transform of u. As Cabré used paraboloids instead in [11], we introduce
an intrinsically geometric version of Krylov-Tso normal map, namely,

Φ(x, t) :=
(
expx ∇xu(x, t),−

1
2

d
(
x, expx ∇u(x, t)

)2
− u(x, t)

)
.

which is called the parabolic normal map related to u(x, t).
First, we quote the following lemma from Lemma 3.2 in [11], in which the

Jacobian of the map x 7→ expx(∇v(x)) is computed explicitly.

Lemma 4.1.1 (Cabré). Let v be a smooth function in an open set Ω of M. Define
the map φ : Ω→ M by

φ(x) := expx ∇v(x).

Let x ∈ Ω and suppose that ∇v(x) ∈ Ex. Set y := φ(x). Then we have

Jac φ(x) = Jac expx(∇v(x)) ·
∣∣∣∣ det D2

(
v + d2

y/2
)

(x)
∣∣∣∣,

where Jac expx(∇v(x)) denotes the Jacobian of expx, a map from TxM to M, at the
point ∇v(x) ∈ TxM.

70



CHAPTER 4. HARNACK INEQUALITY ON RIEMANNIAN MANIFOLDS

As a parabolic analogue of Lemma 4.1.1, we have direct computation of the
Jacobian of the parabolic normal map Φ below.

Lemma 4.1.2. Let v be a smooth function in an open set K of M × R. Define the
map φ : K → M by

φ(x, t) := expx ∇xv(x, t)

and the map Φ : K → M × R by

Φ(x, t) :=
(
φ(x, t),−

1
2

d (x, φ(x, t))2
− v(x, t)

)
.

Let (x, t) ∈ K and assume that ∇xv(x, t) ∈ Ex. Set y := φ(x, t). Then

Jac Φ(x, t) = Jac expx(∇xv(x, t)) ·
∣∣∣∣(−vt) det

(
D2

x

(
v + d2

y/2
)) ∣∣∣∣,

where Jac expx(∇xv(x, t)) denotes the Jacobian of expx at the point ∇xv(x, t) ∈
TxM.

Proof. We may assume that ∇xv(x, t) , 0, which is equivalent to x , y. Let
(ξ, σ) ∈ TxM × R\{(0, 0)} and let γ = (γ1, γ2) be the geodesic with γ(0) = (x, t)
and γ′(0) = (ξ, σ). We note that γ1(τ) = expx τξ and γ2(τ) = t + στ. Set

Y(s, τ) := expγ1(τ)
[
s∇xv(γ(τ))

]
.

Consider the family of geodesics (in the parameter s)

Π(s, τ) :=
(
Y(s, τ), γ2(τ) − s

{
1
2

d (γ1(τ), φ(γ(τ)))2 + v(γ(τ)) + γ2(τ)
})

that joins Π(0, τ) = γ(τ) to Π(1, τ) = Φ(γ(τ)). Then we define

J(s) :=
∂

∂τ

∣∣∣∣
τ=0

Π(s, τ),

which is a Jacobi field along

X(s) :=
(
expx(s∇xv(x, t)), t − s

{
1
2

d (x, φ(x, t))2 + v(x, t) + t
})
.

Simple computation says that

J(0) = (ξ, σ) and J(1) =
∂

∂τ

∣∣∣∣
τ=0

Φ(γ(τ)) = dΦ(x, t) · (ξ, σ).
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We also have

DsJ(0) =
(
D2

xv(x, t) ξ + σ∇xvt(x, t) , −σvt(x, t) − σ

−
〈
∇x

(
d2

x/2
)

(y), d expx(∇xv(x, t)) ·
(
D2

x

(
v + d2

y/2
)

(x, t) · ξ + σ∇xvt(x, t)
)〉)

.

In fact, we have

DsJ(0) = Ds
∂Π

∂τ

∣∣∣∣
s=0,τ=0

= Dτ

∂Π

∂s

∣∣∣∣
s=0,τ=0

= Dτ

∣∣∣∣
τ=0

(
∇xv(γ(τ)),−

1
2

d(γ1(τ), φ(γ(τ)))2 − v(γ(τ)) − γ2(τ)
)

=
(
D2

xv(x, t) · ξ + σ∇xvt(x, t),

−
〈
∇x(d2

y/2)(x), ξ
〉
−

〈
∇x(d2

x/2)(φ(x, t)),
∂

∂τ
φ(γ(τ))

∣∣∣∣
τ=0

〉
− 〈∇xv(x, t), ξ〉 − σvt − σ

)
=

(
D2

xv · ξ + σ∇xvt,−

〈
∇x(d2

x/2)(φ(x, t)),
∂

∂τ
φ(γ(τ))

∣∣∣∣
τ=0

〉
− σvt − σ

)
,

since ∇x(d2
y/2)(x) = − exp−1

x (y) = −∇xv(x, t). Then we use Lemma 4.1.1 to obtain

∂

∂τ
φ(γ(τ))

∣∣∣∣
τ=0

= d expx(∇xv(x, t)) ·
(
D2

x

(
v + d2

y/2
)

(x, t) · ξ + σ∇xvt(x, t)
)
.

On the other hand, consider the Jacobi field Jξ,σ along X(s) satisfying

Jξ,σ(0) = (ξ, σ) and Jξ,σ(1) = (0, 0).

Then we can check that

Jξ,σ(s) =
∂

∂τ
Ψ
∣∣∣∣
τ=0

and DsJξ,σ(0) =
(
−D2

x

(
d2

y/2
)

(x) · ξ,−σ
)
,

where

Ψ(s, τ) :=
(
expγ1(τ) s exp−1

γ1(τ) φ(x, t), γ2(τ) − s
{

1
2

d(x, φ(x, t))2 + v(x, t) + γ2(τ)
})
.

(We refer [11, Lemma 3.2] for the proof.)
Define J̃ξ,σ := J − Jξ,σ. The Jacobi field J̃ξ,σ along X(s) satisfying

J̃ξ,σ(0) = (0, 0) and Ds J̃ξ,σ(0) = DsJ(0) − DsJξ,σ(0)
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is written by
d exp(x,t)(sX′(0)) ·

(
sDs J̃ξ,σ(0)

)
.

Therefore, we have

J(1) = J̃ξ,σ(1) = d exp(x,t)

(
∇xv(x, t),−

1
2

d(x, y)2 − v(x, t) − t
)
·
(
DsJ(0) − DsJξ,σ(0)

)
,

which means

dΦ(x, t) · (ξ, σ) = d exp(x,t)

(
∇xv(x, t),−

1
2

d(x, y)2 − v(x, t) − t
)
·(

D2
x

(
v + d2

y/2
)

(x, t) · ξ + σ∇xvt(x, t) ,

−σvt −
〈
∇x

(
d2

x/2
)

(y), d expx(∇xv(x, t)) ·
(
D2

x

(
v + d2

y/2
)

(x, t) · ξ + σ∇xvt(x, t)
)〉)

=
(
d expx (∇xv(x, t)) ·

(
D2

x

(
v + d2

y/2
)

(x, t) · ξ + σ∇xvt(x, t)
)
,

−σvt −
〈
∇x

(
d2

x/2
)

(y), d expx(∇xv(x, t)) ·
(
D2

x

(
v + d2

y/2
)

(x, t) · ξ + σ∇xvt(x, t)
)〉)

.

To calculate the Jacobian of Φ, we introduce an orthonormal basis {e1, · · · , en} of
TxM and an orthonormal basis {e1, · · · , en} of TyM = Texpx ∇v(x,t)M. By setting for
i, j = 1, · · · , n,

Ai j :=
〈
ei, d expx (∇xv(x, t)) ·

(
D2

x

(
v + d2

y/2
)

(x, t)e j

)〉
,

bi :=
〈
ei, d expx (∇xv(x, t)) · ∇vt(x, t)

〉
,

ci :=
〈
ei, ∇x

(
d2

x/2
)

(y)
〉
,

the Jacobian matrix of Φ at (x, t) is(
Ai j bi

−ckAk j −vt − bkck

)
.

Lastly, we use the row operations to deduce that

Jac Φ(x, t) =

∣∣∣∣∣∣det
(

Ai j bi

0 −vt

)∣∣∣∣∣∣ =
∣∣∣(−vt) det(Ai j)

∣∣∣ .
This completes the proof. �
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The following lemma will play a key role to estimate sublevel sets of u in
Lemma 4.1.6 and then to prove a decay estimate of the distribution function of u
in Lemma 4.1.14. This ABP-type lemma corresponds to [11, Lemma 4.1].

Lemma 4.1.3. Suppose that M satisfies the condition (4.1.3). Let zo ∈ M, R > 0,
and 0 < η < 1. Let u be a smooth function in Kα1R, α2R2(zo, 0) ⊂ M × R satisfying

u ≥ 0 in Kα1R, α2R2(zo, 0)\Kβ1R, β2R2(zo, 0) and inf
K2R(zo,0)

u ≤ 1, (4.1.4)

where α1 := 11
η

, α2 := 4 + η2 +
η4

4 , β1 := 9
η
, and β2 := 4 + η2. Then we have

|BR(zo)| · R2 ≤ C(η, n, λ)
∫
{u≤Mη}∩Kβ1R, β2R2 (zo,0)

{(
R2L u + aL + Λ + 1

)+
}n+1

(4.1.5)

where the constant Mη > 0 depends only on η > 0 and C(η, n, λ) > 0 depends only
on η, n and λ.

Proof. For any y ∈ BR(zo), we define

wy(x, t) :=
1
2

R2u(x, t) +
1
2

d2
y (x) −Cηt, Cη :=

6
η2 .

From the assumption (4.1.4), it is easy to check that

inf
K2R(zo,0)

wy ≤

(
5 +

24
η2

)
R2 =: AηR2,

Figure 4.1: α1 := 11
η
, α2 := 4 + η2 +

η4

4 , β1 := 9
η
, β2 := 4 + η2.
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and

wy ≥

(
6 +

24
η2

)
R2 = (Aη + 1)R2 on Kα1R, α2R2(zo, 0)\Kβ1R, β2R2(zo, 0).

From the above observation, for any (y, h) ∈ BR(zo) ×
(
AηR2, (Aη + 1)R2

)
, we can

find a time t ∈
(
−β2R2, 0

)
such that

h = inf
Bβ1R(zo)×(−β2R2,t]

wy(z, τ) = wy

(
x, t

)
,

where the infimum is achieved at an interior point x of Bβ1R(zo). By the same
argument as in [11, pp. 637-638], we have the following relation:

y = expx ∇x

(
1
2

R2u
) (

x, t
)
.

Now, we consider the map Φ : Kα1R, α2R2(zo, 0) → M × R (with v(x, t) =
1
2R2u(x, t) −Cηt in Lemma 4.1.2) defined as

Φ(x, t) :=
expx ∇x

(
1
2

R2u
)

(x, t),−
1
2

d
(
x, expx ∇x

(
1
2

R2u
)

(x, t)
)2

−
1
2

R2u(x, t) + Cηt
 .

Define a set

E :=
{

(x, t) ∈ Kβ1R, β2R2(zo, 0) : ∃y ∈ BR(zo) s.t. wy(x, t) = inf
Bβ1R(zo)×(−β2R2,t]

wy ≤ (Aη + 1)R2
}
.

The set E is a subset of the contact set in Kβ1R, β2R2(zo, 0) that contains a point (x, t),
where a concave paraboloid −1

2d2
y (x) + Cηt + C (for some C) touches 1

2R2u from
below. Thus we have proved that for any (y, s) ∈ BR(zo) × (−(Aη + 1)R2,−AηR2),
there is at least one (x, t) ∈ E such that (y, s) = Φ(x, t), namely,

BR(zo) ×
(
−(Aη + 1)R2,−AηR2

)
⊂ Φ(E).

So Area formula gives

|BR(zo)| · R2 ≤

∫
M×R
H0

[
E ∩ Φ−1(y, s)

]
dV(y, s) =

∫
E

Jac Φ(x, t)dV(x, t). (4.1.6)
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We notice that for (x, t) ∈ E and y ∈ BR(zo), wy(x, t) = 1
2R2u(x, t) + 1

2d2
y (x) −Cηt ≤

(Aη + 1)R2 and hence u(x, t) ≤ 2(Aη + 1) =: Mη for (x, t) ∈ E.
Lastly, we claim that for (x, t) ∈ E,

Jac Φ(x, t) ≤
1

(n + 1)n+1λn

{(
1
2

R2L u(x, t) + aL + Λ + Cη

)+}n+1

. (4.1.7)

Fix (x, t) ∈ E and y ∈ BR(zo) to satisfy

wy(x, t) = inf
Bβ1R(zo)×(−β2R2,t]

wy.

We recall that y = expx ∇x

(
1
2R2u

)
(x, t) (see [11, pp. 637-638]).

If x is not a cut point of y, then Lemma 4.1.2 (with v(x, t) = 1
2R2u(x, t) − Cηt)

and Lemma 2.2.3 (i) imply that

Jac Φ(x, t) ≤

∣∣∣∣∣∣
(
−

1
2

R2ut + Cη

)
det

(
D2

x

(
1
2

R2u +
1
2

d2
y

))
(x, t)

∣∣∣∣∣∣ .
Since the minimum of wy in Bβ1R(zo) × (−β2R2, t] is achieved at (x, t), we have

0 ≤ D2
xwy(x, t) = D2

x

(
1
2

R2u +
1
2

d2
y

)
and 0 ≥ ∂twy(x, t) =

1
2

R2ut −Cη,

where D2
xwy(x, t) ≥ 0 means that the Hessian of wy at (x, t) is positive semidefinite.

Therefore, by using the geometric and arithmetic means inequality, we get

Jac Φ(x, t) ≤
(
−

1
2

R2ut + Cη

)
det

(
D2

x

(
1
2

R2u +
1
2

d2
y

))
(x, t)

≤
1
λn

(
−

1
2

R2ut + Cη

)
det Ax,t det

(
D2

x

(
1
2

R2u +
1
2

d2
y

))
≤

1
(n + 1)n+1λn

{
tr

(
Ax,t ◦ D2

x

(
1
2

R2u +
1
2

d2
y

))
−

1
2

R2ut + Cη

}n+1

=
1

(n + 1)n+1λn

{
1
2

R2L u(x, t) + L

[
1
2

d2
y

]
+ Cη

}n+1

≤
1

(n + 1)n+1λn

{
1
2

R2L u + aL + Λ + Cη

}n+1

=
1

(n + 1)n+1λn

{(
1
2

R2L u + aL + Λ + Cη

)+}n+1

,
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where we used

L
[
d2

y/2
]

= dyL dy +
〈
Ax,t∇dy,∇dy

〉
≤ aL + Λ|∇dy|

2.

When x is a cut point of y, we make use of upper barrier technique due to
Calabi [15]. Since y = expx ∇x

(
1
2R2u

)
(x, t), x is not a cut point of yσ := φσ(x, t) :=

expx ∇x

(
σ
2 R2u

)
(x, t) for 0 ≤ σ < 1. Now we consider

Φσ(z, τ) :=
(
φσ(z, τ),−

σ

2
R2u(z, τ) −

1
2

d (z, φσ(z, τ))2 + Cητ

)
instead of Φ since Jac Φ(x, t) = lim

σ↑1
Jac Φσ(x, t). As before, we have

Jac Φσ(x, t) ≤

∣∣∣∣∣∣(−σ2 R2ut + Cη

)
det

(
D2

x

(
σ

2
R2u +

1
2

d2
yσ

))
(x, t)

∣∣∣∣∣∣ .
We note that

lim inf
σ↑1

∣∣∣∣∣∣(−σ2 R2ut + Cη

)
det

(
D2

x

(
σ

2
R2u +

1
2

d2
yσ

))
(x, t)

∣∣∣∣∣∣
= lim inf

σ↑1

∣∣∣∣(−∂twyσ(x, t)
)

det
(
D2

xwyσ

)
(x, t)

∣∣∣∣
for wyσ(z, τ) := 1

2R2u(z, τ)+ 1
2d2

yσ(z)−Cητ. According to the triangle inequality, we
have

wy(z, τ) ≤
1
2

R2u(z, τ) +
1
2

(
dyσ(z) + d(yσ, y)

)2
−Cητ

= wyσ(z, τ) + d(yσ, y)dyσ(z) +
1
2

d(yσ, y)2,

where the equality holds at (z, τ) = (x, t). Since wy has the minimum at (x, t)
in Bβ1R(zo) × (−β2R2, t], the minimum of wyσ(z, τ) + d(yσ, y)dyσ(z) (in Bβ1R(zo) ×
(−β2R2, t]) is also achieved at (x, t), that implies that

D2
x

(
wyσ + d(yσ, y)dyσ

)
(x, t) ≥ 0, ∂twyσ(x, t) ≤ 0.

To bound D2yσ(x) uniformly in σ ∈ [1/2, 1), we recall the Hessian comparison
theorem (see [54],[55]): Let −k2 (k > 0) be a lower bound of sectional curvature
along the minimal geodesic joining x and y. Then for 0 < σ < 1,

D2dyσ(x) ≤ k coth(kdyσ(x))Id
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and hence we find a constant N > 0 independent of σ such that

D2dyσ(x) ≤ NId for
1
2
≤ σ < 1.

Following the above argument, for 1
2 ≤ σ < 1, we obtain

0 ≤ lim inf
σ↑1

(
−∂twyσ(x, t)

)
det

(
D2

xwyσ + d(yσ, y)D2dyσ

)
(x, t)

≤ lim inf
σ↑1

(
−∂twyσ(x, t)

)
det

(
D2

xwyσ + d(yσ, y)NId
)

(x, t)

≤ lim inf
σ↑1

1
(n + 1)n+1λn

{
1
2

R2L u + aL + Λ + Cη + d(yσ, y)nΛN
}n+1

≤
1

(n + 1)n+1λn

{(
1
2

R2L u + aL + Λ + Cη

)+}n+1

.

Then we deduce that

Jac Φ(x, t) ≤
1

(n + 1)n+1λn

{(
1
2

R2L u(x, t) + aL + Λ + Cη

)+}n+1

since

lim inf
σ↑1

∣∣∣∣det
(
D2

xwyσ

)
(x, t)

∣∣∣∣ = lim inf
σ↑1

∣∣∣∣det
(
D2

xwyσ + d(yσ, y)NId
)

(x, t)
∣∣∣∣

= lim inf
σ↑1

det
(
D2

xwyσ + d(yσ, y)NId
)

(x, t).

We conclude that (4.1.7) is true for (x, t) ∈ E. Therefore the estimate (4.1.5)
follows from (4.1.6) since E ⊂

{
u ≤ Mη

}
∩ Kβ1R, β2R2(zo, 0). �

4.1.2 Barrier functions

We modify the barrier function of [60] to construct a barrier function in the Rie-
mannian case. First, we fix some constants that will be used frequently (see Figure
4.1); for a given 0 < η < 1,

α1 :=
11
η
, α2 := 4 + η2 +

η4

4
, β1 :=

9
η

and β2 := 4 + η2.
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Lemma 4.1.4. Suppose that M satisfies the condition (4.1.3). Let zo ∈ M, R > 0
and 0 < η < 1. There exists a continuous function vη(x, t) in Kα1R, α2R2(zo, β2R2),
which is smooth in (M\Cut(zo)) ∩ Kα1R, α2R2(zo, β2R2) such that

(i) vη(x, t) ≥ 0 in Kα1R, α2R2(zo, β2R2) \Kβ1R, β2R2(zo, β2R2),

(ii) vη(x, t) ≤ 0 in K2R(zo, β2R2),

(iii) R2L vη + aL + Λ + 1 ≤ 0 a.e. in Kβ1R, β2R2(zo, β2R2)\K η
2 R(zo,

η2

4 R2),

(iv) R2L vη ≤ Cη a.e. in Kβ1R, β2R2(zo, β2R2),

(v) vη(x, t) ≥ −Cη in Kα1R, α2R2(zo, β2R2).

Here, the constant Cη > 0 depends only on η, n, λ,Λ, aL ( independent of R and
zo ).

Proof. Fix 0 < η < 1. Consider

h(s, t) := −Ae−mt

(
1 −

s
β2

1

)l 1
(4πt)n/2 exp

(
−α

s
t

)
for t > 0,

as in Lemma 3.22 of [60] and define

ψ(s, t) := h(s, t) + (aL + Λ + 1)t in [0, β2
1] × [0, β2]\[0, η

2

4 ] × [0, η
2

4 ],

where the positive constants A,m, l, α ( depending only on η, n, λ,Λ, aL ) will be
chosen later. In particular, l will be an odd number in N. We extend ψ smoothly in
[0, α2

1] × [− η
4

4 , β2] to satisfy

ψ ≥ 0 on [0, α2
1] × [− η

4

4 , β2]\[0, β2
1] × [0, β2],

ψ ≥ −Cη on [0, α2
1] × [− η

4

4 , β2],

and
sup

[0,β2
1]×[0,β2]

{2aL |∂sψ| + Λ (2|∂sψ| + 4s|∂ssψ|) + |∂tψ|} (s, t) < Cη

for some Cη > 0. We also assume that ψ(s, t) is nondecreasing with respect to s in
[0, α2

1] × [− η
4

4 , β2]. We define

vη(x, t) = v(x, t) := ψ

d2
zo

(x)
R2 ,

t
R2

 for (x, t) ∈ Kα1R, α2R2(zo, β2R2),
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where dzo is the distance function to zo. Properties (i) and (v) are trivial.

We denote dzo(x) and h
(

d2
zo (x)
R2 , t

R2

)
by d(x) and φ(x, t) for simplicity and we

notice that for (x, t) ∈ Kβ1R, β2R2(zo, β2R2)\K η
2 R(zo,

η2

4 R2),

v(x, t) = h
(
d2(x)

R2 ,
t

R2

)
+ (aL + Λ + 1)

t
R2 = φ(x, t) + (aL + Λ + 1)

t
R2

and φ(x, t) is negative in Kβ1R, β2R2(zo, β2R2).
Now, we claim that

L φ ≤ 0 a.e. in Kβ1R, β2R2(zo, β2R2)\K η
2 R(zo,

η2

4 R2). (4.1.8)

Once (4.1.8) is proved, then property (iii) follows from the simple calculation that
R2L

[
(aL + Λ + 1) t

R2

]
= −(aL + Λ + 1) in Kβ1R,β2R2(zo, β2R2). Now we use the

identity

L [ϕ(u(x), t)] = ∂uϕ(u, t)L u + ∂uuϕ(u, t)〈Ax,t∇u,∇u〉 − ∂tϕ(u, t)

to obtain

L φ =
2d
R2 ∂sh

(
d2

R2 ,
t

R2

)
Ld

+

{
2
R2∂sh +

4d2

R4 ∂ssh
} (

d2

R2 ,
t

R2

)
〈Ax,t∇d,∇d〉 −

1
R2∂th

(
d2

R2 ,
t

R2

)
.
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Since d ·L d ≤ aL and λ ≤ 〈Ax,t∇d,∇d〉 ≤ Λ in M\Cut(zo), we have that

(β2
1R2 − d2)2

(−φ)
L φ

= (β2
1R2 − d2)

{
2l + (β2

1R2 − d2)
2α
t

}
dL d

−

{
l(l − 1)4d2 + 2l(β2

1R2 − d2)
4αd2

t
+ (β2

1R2 − d2)2 4α2d2

t2

}
〈Ax,t∇d,∇d〉

+ (β2
1R2 − d2)

{
2l + (β2

1R2 − d2)
2α
t

}
〈Ax,t∇d,∇d〉

+ (β2
1R2 − d2)2αd2

t2 − (β2
1R2 − d2)2

( n
2t

+
m
R2

)
≤ 2l(β2

1R2 − d2)(aL + Λ) + (β2
1R2 − d2)2

{
2α
t

(aL + Λ) +
αd2

t2

}
− l(l − 1)4d2λ − (β2

1R2 − d2)2
(
4α2d2

t2 λ +
n
2t

)
− 2l(β2

1R2 − d2)
4αd2

t
λ −

m
R2 (β2

1R2 − d2)2 a.e. in Kβ1R, β2R2(zo, β2R2).

By choosing

α :=
1

4λ
,

2β2
1

η2λ
(aL + Λ) + 1 ≤ l := 2l′ + 1 (for some l′ ∈ N),

m := 2 ·max

8α
η2 (aL + Λ),

2l(aL + Λ)

β2
1 −

η2

4

 ,
(4.1.9)

we deduce

(β2
1R2 − d2)2

(−φ)
L φ ≤ 0 a.e. in Kβ1R,β2R2(zo, β2R2)\K η

2 R(zo,
η2

4 R2).

Indeed, we divide the domain Kβ1R,β2R2(zo, β2R2)\K η
2 R(zo,

η2

4 R2) into three regions
such that

Kβ1R,β2R2(zo, β2R2)\K η
2 R(zo,

η2

4
R2) =: A1 ∪ A2 ∪ A3,

where A1 := {0 ≤ t
R2 ≤

η2

4 ,
η

2 ≤
d
R ≤ β1}, A2 := { η

2

4 ≤
t

R2 ≤ β2,
η

2 ≤
d
R ≤ β1} and
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A3 := { η
2

4 ≤
t

R2 ≤ β2, 0 ≤ d
R ≤

η

2 }. We can check that

(β2
1R2 − d2)2

(−φ)
L φ ≤ 0 a.e. in Kβ1R,β2R2(zo, β2R2)\K η

2 R(zo,
η2

4 R2)

by choosing α and l large in A1, m large in A2 and A3 as in (4.1.9). Therefore, we
have proved (4.1.8).

From the assumption on ψ, we have that for a.e. (x, t) ∈ Kβ1R, β2R2(zo, β2R2),

R2L v(x, t) = 2∂sψ

(
d2

R2 ,
t

R2

)
d ·L d +

{
2∂sψ +

4d2

R2 ∂ssψ

} (
d2

R2 ,
t

R2

)
〈Ax,t∇d,∇d〉

− ∂tψ

(
d2

R2 ,
t

R2

)
≤ sup

[0,β2
1]×[0,β2]

{2aL ∂sψ + Λ (2∂sψ + 4s|∂ssψ|) + |∂tψ|} (s, t) < Cη.

This proves property (iv).
In order to show (ii), we take A > 0 large enough so that for (x, t) ∈ K2R(zo, β2R2),

v(x, t) ≤ −Ae−β2m

(
1 −

4
β2

1

)l 1
(4πβ2)n/2 e−4α/η2

+ (aL + Λ + 1)β2 ≤ 0.

This finishes the proof of the lemma. �

Now we apply Lemma 4.1.3 to u + vη with vη constructed in Lemma 4.1.4

and translated in time. Since the barrier function vη(x, t) = ψη

(
d2

zo (x)
R2 , t

R2

)
is not

smooth on Cut(zo), we need to approximate vη by a sequence of smooth functions
as Cabré’s approach at [11]. We recall that the cut locus of zo is closed and has
measure zero. It is not hard to verify the following lemma and we just refer to [11]
Lemmas 5.3, 5.4.

Lemma 4.1.5. Let zo ∈ M, R > 0 and let ψ : R+ × [0,T ] → R be a smooth
function such that ψ(s, t) is nondecreasing with respect to s for any t ∈ [0,T ].
Let v(x, t) := ψ

(
d2

zo
(x), t

)
. Then there exist a smooth function 0 ≤ ϕ(x) ≤ 1 on M

satisfying
ϕ ≡ 1 in Bβ1R(zo) and suppϕ ⊂ B 10

η R(zo)
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and a sequence {wk}
∞
k=1 of smooth functions in M × [0,T ] such that

wk → ϕv uniformly in M × [0,T ],
∂twk → ϕ∂tv uniformly in M × [0,T ],
D2

xwk ≤ CId in M × [0,T ],
D2

xwk → D2
xv a.e. in Bβ1R(zo) × [0,T ],

where the constant C > 0 is independent of k.

Lemma 4.1.6. Suppose that M satisfies the conditions (4.1.2),(4.1.3). Let zo ∈

M,R > 0, and 0 < η < 1. Let u be a smooth function such that L u ≤ f in
Kα1R, α2R2(zo, 4R2) such that

u ≥ 0 in Kα1R, α2R2(zo, 4R2)\Kβ1R, β2R2(zo, 4R2)

and
inf

K2R(zo,4R2)
u ≤ 1.

Then, there exist uniform constants Mη > 1, 0 < µη < 1, and 0 < εη < 1 such that∣∣∣∣{u ≤ Mη

}
∩ KηR(zo, 0)

∣∣∣∣∣∣∣Kα1R, α2R2(zo, 4R2)
∣∣∣ ≥ µη, (4.1.10)

provided

R2

?
Kα1R, α2R2 (zo,4R2)

| f +|n+1


1

n+1

≤ εη, (4.1.11)

where Mη > 0, 0 < εη, µη < 1 depend only on η, n, λ,Λ and aL .

Proof. Let vη be the barrier function in Lemma 4.1.4 after translation in time (by
−η2R2) and let {wk}

∞
k=1 be a sequence of smooth functions approximating vη as in

Lemma 4.1.5. We notice that u + vη ≥ 0 in Kα1R, α2R2(zo, 4R2)\Kβ1R, β2R2(zo, 4R2) and
inf

K2R(zo,4R2)
(u+vη) ≤ 1. Thanks to the uniform convergence of wk to ϕvη, we consider

a sequence {εk}
∞
k=1 converging to 0 such that sup

K2R(zo,4R2)
wk ≤ εk and

wk ≥ −εk in Kα1R, α2R2(zo, 4R2)\Kβ1R, β2R2(zo, 4R2),
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and define
wk :=

u + wk + εk

1 + 2εk
.

Then wk satisfies the hypotheses of Lemma 4.1.3 (after translation in time by 4R2).
Now we replace u by wk in (4.1.5) and then the uniform convergence implies that
for a given 0 < δ < 1, we have

|BR(zo)|R2 ≤ C(η, n, λ)
∫
{u+vη≤Mη+δ}∩Kβ1R, β2R2 (zo,4R2)

{(
R2L wk + aL + Λ + 1

)+
}n+1

if k is sufficiently large. Since D2
xwk ≤ CId and |∂twk| < C uniformly in k on

Kβ1R,β2R2(zo, 4R2), we use the dominated convergence theorem to let k go to +∞.
Letting δ go to 0, we obtain

|BR(zo)| · R2 ≤ C(η, n, λ)
∫
{u+vη≤Mη}∩Kβ1R,β2R2 (zo,4R2)

{(
R2L [u + vη] + aL + Λ + 1

)+
}n+1

= C(η, n, λ)
∫

E1∪E2

{(
R2L [u + vη] + aL + Λ + 1

)+
}n+1

,

where E1 := {u + vη ≤ Mη} ∩
(
Kβ1R, β2R2(zo, 4R2)\KηR(zo, 0)

)
and E2 := {u + vη ≤

Mη} ∩ KηR(zo, 0). From properties (iii) and (iv) of vη in Lemma 4.1.4 and Bishop’s
volume comparison theorem, we deduce that

|Kα1R, α2R2(zo, 4R2)|
1

n+1 ≤ Cη

∥∥∥∥(R2L u
)+

∥∥∥∥
Ln+1

(
Kβ1R,β2R2 (zo,4R2)

) + Cη

∥∥∥χE2

∥∥∥
Ln+1

(
Kβ1R, β2R2 (zo,4R2)

)

≤ Cη||R2 f +||
Ln+1

(
Kα1R, α2R2 (zo,4R2)

) + Cη

∣∣∣∣{u + vη ≤ Mη

}
∩ KηR(zo, 0)

∣∣∣∣ 1
n+1
,

where Cη > 0 depends only on n, λ and η > 0. We note that {u ≤ Mη − vη} ⊂ {u ≤
Mη + Cη} from (v) in Lemma 4.1.4. Therefore, by taking

εη =
1

2Cη

, M′
η = Mη + Cη and µ

1
n+1
η =

1
2Cη

,

we conclude that

∣∣∣∣{u ≤ M′
η

}
∩ KηR(zo, 0)

∣∣∣∣∣∣∣Kα1R, α2R2(zo, 4R2)
∣∣∣ ≥ µη > 0. �

Using iteration of Lemma 4.1.6, we have the following corollaries.
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Corollary 4.1.7. Suppose that M satisfies the conditions (4.1.2),(4.1.3). Let zo ∈

M and 0 < η < 1. For i ∈ N, let Ri :=
(

2
η

)i−1
R and ti :=

∑i
j=1 4R

2
j . Let u be a

nonnegative smooth function such that L u ≤ f in
⋃k

i=1 K
α1Ri,α2R

2
i
(zo, ti) for some

k ∈ N. We assume that for h > 0, inf⋃k
i=1 K2Ri

(zo,ti)
u ≤ h and

R
2
i

?K
α1Ri ,α2R2

i
(zo,ti)
| f +|n+1


1

n+1

≤ εηhMk−i
η , ∀1 ≤ i ≤ k.

Then we have ∣∣∣∣{u ≤ hMk
η

}
∩ KηR(zo, 0)

∣∣∣∣∣∣∣Kα1R, α2R2(zo, 4R2)
∣∣∣ ≥ µη, (4.1.12)

where Mη, εη, µη are the same uniform constants as in Lemma 4.1.6.

Proof. We may assume h = 1 since v := u
h satisfies L v = 1

hL u ≤ f
h . We use

the induction on k to show the lemma. When k = 1, it is immediate from Lemma
4.2.5.

Now suppose that (4.1.12) is true for k − 1. By assumption, we find a jo ∈ N

such that 1 ≤ jo ≤ k and inf
K2R jo

(zo,t jo )
u = inf⋃k

i=1 K2Ri
(zo,ti)

u ≤ 1. Define v := u/Mk− jo
η .

Then v satisfies that L v ≤ f /Mk− jo
η , inf

K2R jo
(zo,t jo )

v ≤ 1 and

R
2
jo

?K
α1R jo , α2R2

jo
(zo,t jo )

∣∣∣ f +/Mk− jo
η

∣∣∣n+1


1

n+1

≤ εη.

Applying Lemma 4.1.6 to v in K
α1R jo , α2R

2
jo

(zo, t jo), we deduce∣∣∣∣{v ≤ Mη

}
∩ KηR jo

(zo, t jo − 4R2
jo)

∣∣∣∣∣∣∣∣∣Kα1R jo , α2R
2
jo

(zo, t jo)
∣∣∣∣∣ =

∣∣∣∣{v ≤ Mη

}
∩ K2R jo−1

(zo, t jo−1)
∣∣∣∣∣∣∣∣∣Kα1R jo , α2R

2
jo

(zo, t jo)
∣∣∣∣∣ ≥ µη > 0

which implies that inf⋃ jo−1
i=1 K2Ri

(zo,ti)
u ≤ inf

K2R jo−1
(zo,t jo−1)

u ≤ Mk− jo+1
η . Therefore, we use

the induction hypothesis for jo − 1(≤ k − 1) to conclude∣∣∣∣{u/Mk− jo+1
η ≤ M jo−1

η

}
∩ KηR(zo, 0)

∣∣∣∣∣∣∣Kα1R, α2R2(zo, 4R2)
∣∣∣ ≥ µη > 0,
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which implies (4.1.12). �

We remark that Lemma 4.1.6 and Corollary 4.1.7 hold for any M′
η ≥ Mη. The

following is a simple technical lemma that will be used in the proof of Proposition
4.1.9.

Lemma 4.1.8. Let A,D > 0 and ε > 0. Let u be a nonnegative smooth function
such that L u ≤ f in BR(zo) × (−AR2, 0] with

R2
(?

BR(zo)×(−AR2,0]
| f +|n+1

) 1
n+1

≤ ε.

Then, there exists a sequence uk of nonnegative smooth functions in BR(zo) ×
(−AR2,DR2] such that uk converges to u locally uniformly in BR(zo) × (−AR2, 0]
and L uk ≤ gk in BR(zo) × (−AR2,DR2] with

R2
(?

BR(zo)×(−AR2,DR2]
|g+

k |
n+1

) 1
n+1

≤ ε.

Proof. First, we define for (x, t) ∈ BR(zo) × (−∞,DR2],

u(x, t) :=


0 for t ∈ (−∞,−AR2],
u(x, t) for t ∈ (−AR2, 0],
u(x, 0) + S t for t ∈ (0,DR2],

where S := sup
BR(zo)

{
(L u)+(x, 0) + |ut(x, 0)|

}
. Then u is Lipschitz continuous with

respect to time in BR(zo) × (−AR2,DR2] and satisfies

L u(x, t) ≤ f (x, t) :=


0 for t ∈ (−∞,−AR2),
f (x, t) for t ∈ (−AR2, 0),
L u(x, 0) + ut(x, 0) − S ≤ 0 for t ∈ (0,DR2].

Let εk > 0 converge to 0 as k → +∞, and let ϕ be a nonnegative smooth function

such that ϕ(t) = 0 for t < (0, 1) and
∫
R
ϕ(t)dt = 1. We define ϕk(t) :=

1
εk
ϕ

(
t
εk

)
and

uk(x, t) :=
∫
R

u(x, s)ϕk(t − s)ds, ∀(x, t) ∈ BR(zo) × (−∞,DR2],
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where we notice that the above integral is calculated over (t − εk, t) ⊂ R. Then, a
smooth function uk satisfies

L uk(x, t) =

∫
R

L u(x, s)ϕk(t − s)ds ≤ gk(x, t), ∀(x, t) ∈ BR(zo) × (−∞,DR2],

where gk(x, t) :=
∫
R

f
+
(x, s)ϕk(t − s)ds ≥ 0. We also have

R2
(?

BR(zo)×(−AR2,DR2]
|g+

k |
n+1

) 1
n+1

≤
R2{

|BR(zo)| · (A + D)R2} 1
n+1

|| f
+
||Ln+1(BR(zo)×(−AR2−εk ,DR2−εk])

≤
R2{

|BR(zo)| · (A + D)R2} 1
n+1

|| f
+
||Ln+1(BR(zo)×(−AR2,0])

≤

( A
A + D

) 1
n+1

ε < ε,

which finishes the proof. �

Proposition 4.1.9. Suppose that M satisfies the conditions (4.1.2),(4.1.3). Let zo ∈

M,R > 0, 0 < η < 1
2 and τ ∈ [3, 16]. Let u be a nonnegative smooth function such

that L u ≤ f in B 49
η3 R(zo) ×

(
−3R2, τR2

η2

]
. Assume that inf

BR(zo)×
[

2R2

η2 , τR2

η2

] u ≤ 1 and

R2


?

B 49
η3 R(zo)×

(
−3R2, τR2

η2

] | f +|n+1


1

n+1

≤ ε′η

for a uniform constant 0 < ε′η < 1. Let r > 0 satisfy
(
η

2

)N
R ≤ r <

(
η

2

)N−1
R for

some N ∈ N and let (z1, t1) be a point such that d(zo, z1) < R and |t1| < R2. Then
there exists a uniform constant M′

η > 1 (independent of r,N, z1 and t1) such that∣∣∣∣{u ≤ M′
η

N+2
}
∩ Kηr(z1, t1)

∣∣∣∣∣∣∣Kα1r, α2r2(z1, t1 + 4r2)
∣∣∣ ≥ µη > 0,

where 0 < µη < 1 is the constant in Lemma 4.1.6.
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Proof. (i) From Lemma 4.1.8, we approximate u by nonnegative smooth functions
uk, which are defined on B 48

η3 R(zo)×
(
−3R2, 64R2

(4−η2)η6 + R2
]
. We find functions uk and

gk such that uk converges locally uniformly to u in B 48
η3 R(zo) ×

(
−3R2, τR2

η2

]
, and

satisfies

L uk ≤ gk in B 48
η3 R(zo) ×

(
−3R2,

64R2

(4 − η2)η6 + R2
]
,

and

R2


?

B 48
η3 R(zo)×

(
−3R2, 64R2

(4−η2)η6 +R2
] |g+

k |
n+1


1

n+1

≤
49
48
ε′η < 2ε′η

by using the volume comparison theorem and Lemma 4.1.8. For a small δ > 0,
we consider wk :=

uk

1 + δ
and then for large k, wk satisfies inf

BR(zo)×
[

2R2

η2 , τR2

η2

] wk ≤ 1,

L wk ≤ gk in B 48
η3 R(zo) ×

(
−3R2, 64R2

(4−η2)η6 + R2
]
, and

R2


?

B 48
η3 R(zo)×

(
−3R2, 64R2

(4−η2)η6 +R2
] |g+

k |
n+1


1

n+1

< 2ε′η,

according to the local uniform convergence of uk to u in Lemma 4.1.8. So if we
show the proposition for wk, the local uniform convergence will imply that the
result holds for u by letting k → +∞ and δ → 0. Now we assume that u is
a nonnegative smooth function in B 48

η3 R(zo) ×
(
−3R2, 64R2

(4−η2)η6 + R2
]

satisfying the
same hypotheses as wk.

(ii) We use Corollary 4.1.7 so we need to check the two hypotheses with k =

N + 2 and h = 1. As in the corollary, we define for i ∈ N,

ri :=
(
2
η

)i−1

r and ti := t1 +

i∑
j=1

4r2
j .

Using the conditions on r, z1, and t1, simple computation says that for 0 < η < 1/2,

B2rN+1(z1) ⊃ B2R(z1) ⊃ BR(zo),

tN < R2 +
16R2

4 − η2 <
2R2

η2 <
16R2

η2 < −R2 +
4(4 + η2)R2

η2 < tN+2.
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Thus we have B2rN+1(z1) × (tN , tN+2) ⊃ BR(zo) ×
[

2R2

η2 ,
16R2

η2

]
⊃ BR(zo) ×

[
2R2

η2 ,
τR2

η2

]
for

0 < η < 1
2 and hence inf⋃N+2

i=1 K2ri (z1,ti)
u ≤ inf⋃N+2

i=N+1 K2ri (z1,ti)
u ≤ 1. We remark that rN+2 is

comparable to R.
Now, it suffices to show for some large M′

η ≥ Mη, and small 0 < ε′η < εη, we
have

r2
i

?K
α1ri ,α2r2

i
(z1,ti)
| f +|n+1


1

n+1

≤ εηM′
η

N+2−i, ∀1 ≤ i ≤ N + 2, (4.1.13)

where Mη and εη are the constants in Corollary 4.1.7. We notice that Bβ1rN+2(zo) ⊂
Bα1rN+2(z1) ⊂ B 12

η ·
4
η2 R(zo) and

N+2⋃
i=1

Kα1ri,α2r2
i
(z1, ti) ⊂ B 48

η3 R(zo) ×
(
−3R2,

64R2

(4 − η2)η6 + R2
]

since d(zo, z1) < R, |t1| < R2 and 2
η
R ≤ rN+2 <

4
η2 R. Then for i = 1, 2, · · · ,N + 2,

we have

r2(n+1)
i

?
K
α1ri ,α2r2

i
(z1,ti)
| f +|n+1 ≤

(
4
η2

)2(n+1) R2(n+1)

|Kα1ri,α2r2
i
(z1, ti)|

|| f +||n+1

Ln+1

B 48
η3 R(zo)×

(
−3R2, 64R2

(4−η2)η6 +R2
]

≤

(
4
η2

)2(n+1)

(2ε′η)
n+1

∣∣∣∣∣B 48
η3 R(zo) ×

(
−3R2, 64R2

(4−η2)η6 + R2
]∣∣∣∣∣

|Kα1ri,α2r2
i
(z1, ti)|

≤ C(n, η)ε′η
n+1
|B 48

η3 R(zo)|R2

|Bα1ri(z1)|r2
i

≤ C(n, η)ε′η
n+1

∣∣∣Bβ1rN+2(zo)
∣∣∣ r2

N+2

|Bα1ri(z1)|r2
i

,

where we use that 2
η
R ≤ rN+2 <

4
η2 R and the volume comparison theorem in the last

inequality and the constant C(n, η) > 0 depending only on n and η, may change
from line to line. Since d(zo, z1) < R, we use the volume comparison theorem
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again to obtain

r2(n+1)
i

?
K
α1ri ,α2r2

i
(z1,ti)
| f +|n+1 ≤ C(n, η)ε′η

n+1

∣∣∣Bβ1rN+2(zo)
∣∣∣ r2

N+2

|Bα1ri(z1)|r2
i

≤ C(n, η)ε′η
n+1

∣∣∣Bα1rN+2(z1)
∣∣∣ r2

N+2

|Bα1ri(z1)|r2
i

≤ C(n, η)ε′η
n+1

(
rN+2

ri

)n+2

≤ C(n, η)ε′η
n+1

(
2
η

)(n+2)(N+2−i)

.

We select M′
η > Mη large and 0 < ε′η < εη small enough to satisfy

C(n, η)ε′η
n+1

(
2
η

)(n+2)(N+2−i)

≤ εn+1
η M′

η
(n+1)(N+2−i), ∀1 ≤ i ≤ N + 2,

which proves (4.1.13). Therefore, Corollary 4.1.7 (after translation in time by t1)
gives ∣∣∣∣{u ≤ M′

η
N+2

}
∩ Kηr(z1, t1)

∣∣∣∣∣∣∣Kα1r, α2r2(z1, t1 + 4r2)]
∣∣∣ ≥ µη > 0.

�

4.1.3 Parabolic version of the Calderón-Zygmund decomposi-
tion

Throughout this subsection, we assume that a complete Riemannian manifold M
satisfies the condition (4.1.2). We introduce a parabolic version of the Calderón-
Zygmund lemma (Lemma 4.1.13) to prove power decay of super-level sets in
Lemma 4.1.14 (see [60, 11, 13]). Christ [16] proved that the following theorem
holds for so-called ”spaces of homogeneous type”, which is a generalization of
Euclidean dyadic decomposition. In harmonic analysis, a metric space X is called
a space of homogeneous type when X equips a nonnegative Borel measure ν sat-
isfying the doubling property

ν(B2R(x)) ≤ A1ν(BR(x)) < +∞, ∀x ∈ X, R > 0,

for some constant A1 independent of x and R. From Bishop’s volume comparison,
a complete Riemannian manifold M satisfying the condition (4.1.2) is a space of
homogeneous type with A1 = 2n.
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Theorem 4.1.10 (Christ). There exist a countable collection {Qk,α ⊂ M : k ∈
Z, α ∈ Ik} of open subsets of M and positive constants 0 < δ0 < 1, c1 and c2 (with
2c1 ≤ c2 ) that depend only on n, such that

(i)
∣∣∣M\⋃α Qk,α

∣∣∣ = 0 for k ∈ Z,

(ii) if l ≤ k, α ∈ Ik, and β ∈ Il, then either Qk,α ⊂ Ql,β or Qk,α ∩ Ql,β = ∅,

(iii) for any (k, α) and any l < k, there is a unique β such that Qk,α ⊂ Ql,β,

(iv) diam(Qk,α) ≤ c2δ
k
0,

(v) any Qk,α contains some ball Bc1δ
k
0
(zk,α).

For convenience, we will use the following notation.

Definition 4.1.1 (Dyadic cubes on M).

(i) The open set Q = Qk,α in Theorem 4.1.10 is called a dyadic cube of genera-
tion k on M. From the property (iii) in Theorem 4.1.10, for any (k, α), there
is a unique β such that Qk,α ⊂ Qk−1,β. We call Qk−1,β the predecessor of Qk,α.
When Q := Qk,α, we denote the predecessor Qk−1,β by Q̃ for simplicity.

(ii) For a given R > 0, we define kR ∈ N to satisfy

c2δ
kR−1
0 < R ≤ c2δ

kR−2
0 .

The number kR means that a dyadic cube of generation kR is comparable to a
ball of radius R.

For the rest of this section, we fix some small numbers;

δ :=
2c1

c2
δ0 ∈ (0, δ0), δ1 :=

δ0(1 − δ0)
2

∈

(
0,
δ0

2

)
,

η := min(δ, δ1) ∈
(
0,

1
2

)
and κ :=

η

2

√
1 − δ2

0.

By using the dyadic decomposition of a manifold M, we have the following
decomposition of M × (T1,T2] in space and time. For time variable, we take the
standard euclidean dyadic decomposition.
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Lemma 4.1.11. There exists a countable collection {Kk,α ⊂ M × (T1,T2] : k ∈
Z, α ∈ Jk} of subsets of M × (T1,T2] ⊂ M × R and positive constants 0 < δ0 < 1,
c1 and c2 (with 2c1 ≤ c2) that depend only on n, such that

(i)
∣∣∣M × (T1,T2]\

⋃
α Kk,α

∣∣∣ = 0 for k ∈ Z,

(ii) if l ≤ k, α ∈ Jk, and β ∈ Jl, then either Kk,α ⊂ Kl,β or Kk,α ∩ Kl,β = ∅,

(iii) for any (k, α) and any l < k, there is a unique β such that Kk,α ⊂ Kl,β,

(iv) diam(Kk,α) ≤ c2δ
k
0 × c2

2δ
2k
0 ,

(v) any Kk,α contains some cylinder Bc1δ
k
0
(zk,α) × (tk,α − c2

1δ
2k
0 , t

k,α].

Proof. To decompose in time variable, for each k ∈ Z, we select the largest integer
Nk ∈ Z to satisfy

1
4

c2
2δ

2k
0 ≤

T2 − T1

22Nk
< c2

2δ
2k
0 .

For k-th generation, we split the interval (T1,T2] into 22Nk disjoint subintervals
which have the same length. Then we obtain |Jk| = |Ik| · 22Nk disjoint subsets on
M × (T1,T2] satisfying properties (i)-(v). �

For the rest of this section, let {Kk,α ⊂ M × (T1,T2] : k ∈ Z, α ∈ Jk} be the
parabolic dyadic decomposition of M × (T1,T2] as in Lemma 4.1.11.

Definition 4.1.2 (Parabolic dyadic cubes ).

(i) K = Kk,α is called a parabolic dyadic cube of generation k. If K := Kk,α ⊂

Kk−1,β =: K̃, we say K̃ is the predecessor of K.

(ii) For a parabolic dyadic cube K of generation k, we define l(k) to be the length
of K in time variable, namely, l(k) = T2−T1

22Nk
for M× (T1,T2] in Lemma 4.1.11.

We quote the following technical lemma proven by Cabré [11, Lemma 6.5].

Lemma 4.1.12 (Cabré). Let zo ∈ M and R > 0. Then we have the following.

(i) If Q is a dyadic cube of generation k such that

k ≥ kR and Q ⊂ BR(zo),
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then there exist z1 ∈ Q and rk ∈ (0,R/2) such that

Bδrk(z1) ⊂ Q ⊂ Q̃ ⊂ B2rk(z1) ⊂ B 11
η rk

(z1) ⊂ B 11
η R(zo) (4.1.14)

and
B 9

ηR(zo) ⊂ B 11
η R(z1). (4.1.15)

In fact, for k ≥ kR, the above radius rk is defined by

rk :=
1
2

c2δ
k−1
0 =

c1

δ
δk

0.

(ii) If Q is a dyadic cube of generation kR and d(zo,Q) ≤ δ1R, then Q ⊂ BR(zo)
and hence (4.1.14) and (4.1.15) hold for some z1 ∈ Q and rkR ∈

[
δ0R

2 ,
R
2

)
.

Moreover,
Bδ1R(zo) ⊂ B2rkR

(z1).

(iii) There exists at least one dyadic cube Q of generation kR such that d(zo,Q) ≤
δ1R.

We remark that for k ≥ kR,

η2r2
k ≤ δ

2
0r2

k =
1
4

c2
2δ

2k
0 ≤ l(k) < c2

2δ
2k
0 = 4r2

k+1

and (4.1.14) gives that for any a ∈ R,

Kηrk(z1, a) ⊂ Q ×
(
a − l(k), a

]
⊂ K2rk(z1, a) (4.1.16)

Definition 4.1.3. Let m ∈ N. For any parabolic dyadic cube K := Q× (a− l(k), a]
of generation k, the elongation of K along time in m steps (see [39]) , denoted by
K

m
, is defined by

K
m

:= Q̃ ×
(
a, a + m · l(k − 1)

]
,

where l(k) is the length of a parabolic dyadic cube of generation k in time and Q̃
is the predecessor of Q in space. The elongation K

m
is the union of the stacks of

parabolic dyadic cubes congruent to the predecessor of K.

Now we have a parabolic version of Calderón-Zygmund lemma. The proof of
lemma is the same as Euclidean case so we refer to [60] for the proof.
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Lemma 4.1.13 (Lemma 3.23, [60]). Let K1 = Q1 ×
(
a − l(k0), a

]
be a parabolic

dyadic cube of generation k0 in M × (T1,T2], and let 0 < α < 1 and m ∈ N. Let
A ⊂ K1 be a measurable set such that |A ∩ K1| ≤ α|K1| and let

Am
α := ∪

{
K

m
: |K ∩A| > α|K|, K, a parabolic dyadic cube in K1

}
∩ (Q1 × R) .

Then, we have
|Am

α | ≥
m

(m + 1)α
|A|.

4.1.4 Proof of parabolic Harnack inequality

In order to prove the parabolic Harnack inequality, we take the approach presented
in [60] and iterate Lemma 4.1.6 with Christ decomposition (Theorem 4.1.10) and
Calderón-Zygmund type lemma (Lemma 4.1.13). We begin this subsection with
recalling that η ∈

(
0, 1

2

)
is fixed as in the previous subsection. So the uniform

constants µη, ε′η and M′
η in Proposition 4.1.9 are also fixed and we denote them by

µ, ε0 and M0 for simplicity.
We select an integer m > 1 large enough to satisfy

m
(m + 1)(1 − µ)

>
1

1 − µ

2

,

where 0 < µ < 1 is the constant in Lemma 4.1.6. For T1 := −3R2 and T2 :=(
16
η2 + 1 + m

)
R2, we consider a parabolic dyadic decomposition of M × (T1,T2] in

Lemma 4.1.11 and fix the decomposition for this subsection.

Lemma 4.1.14. Suppose that M satisfies the conditions (4.1.2),(4.1.3). Let zo ∈

M,R > 0 and τ ∈ [3, 16]. Let u be a nonnegative smooth function such that
L u ≤ f in B 50

η3 R(zo) ×
(
−3R2, τR2

η2

]
. Assume that

inf
BR(zo)×

[
2R2

η2 , τR2

η2

] u ≤ 1

and

R2


?

B 50
η3 R

(zo)×
(
−3R2, τR2

η2

] | f +|n+1


1

n+1

≤ ε1
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for a uniform constant 0 < ε1 < ε0. Let K1 be a parabolic dyadic cube of genera-
tion kR such that

K1 := Q1 × (t1 − l(kR), t1] ⊂ Q1 × (−R2,R2),

where Q1 is a dyadic cube of generation kR such that d(zo,Q1) ≤ δ1R. Then for
i = 1, 2, · · · , we have ∣∣∣{u > Mi

1} ∩ K1

∣∣∣
|K1|

<
(
1 −

µ

2

)i
, (4.1.17)

where 0 < ε1 < ε0 and M1 > 0 depend only on n, λ,Λ, and aL .

Proof. (i) As Proposition 4.1.9, we use Lemma 4.1.8 to assume that a nonnegative
smooth function u defined on B 49

η3 R(zo) × (T1,T2] satisfies that inf
BR(zo)×

[
2R2

η2 , τR2

η2

] u ≤ 1

and L u ≤ f in B 49
η3 R(zo) × (T1,T2] for some f with

R2


?

B 49
η3 R(zo)×(T1,T2]

| f +|n+1


1

n+1

≤
50
49
ε1 < 2ε1.

(ii) According to Lemma 4.1.12, there exists a dyadic cube Q1 ⊂ BR(zo) of
generation kR such that d(zo,Q1) ≤ δ1R. We find z1 ∈ Q1 and rkR ∈ [ δ0

2 R, 1
2R)

satisfying (4.1.14),(4.1.15) and Bδ1R(zo) ⊂ B2rkR
(z1). Since η2r2

kR
≤ l(kR) < 4r2

kR+1 =

4δ2
0r2

kR
< δ2

0R2, we find t1 ∈ (−R2 + l(kR),R2) such that K1 := Q1 × (t1 − l(kR), t1] is
a parabolic dyadic cube of generation kR of M × (T1,T2]. From (4.1.16), we also
have that

KηrkR
(z1, t1) ⊂ K1 ⊂ K2rkR

(z1, t1).

We use the induction to prove (4.1.17) so we first check the case i = 1. We
notice that d(zo, z1) < R, rkR ∈ [ δ0

2 R, 1
2R) ⊂ ( η2R,R) and |t1| < R2. We set ε1 :=(

3/η2+3
16/η2+m+4

) 1
n+1 ε0

2 . Then, u satisfies the hypotheses of Proposition 4.1.9 with r = rkR

and N = 1, so we deduce that

0 < µ ≤

∣∣∣{u ≤ M3
0} ∩ KηrkR

(z1, t1)
∣∣∣

|Kα1rkR , α2r2
kR

(z1, t1 + 4r2
kR

)|
=

∣∣∣{u ≤ M3
0} ∩ KηrkR

(z1, t1)
∣∣∣

|Kα1rkR , α2r2
kR

(z1, t1)|
<

∣∣∣{u ≤ M3
0} ∩ K1

∣∣∣
|K1|

.
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Thus, we have for M1 ≥ M3
0 ,

|{u > M1} ∩ K1|

|K1|
≤ 1 − µ < 1 −

µ

2
.

(iii) Now, suppose that (4.1.17) is true for i, that is,∣∣∣{u > Mi
1} ∩ K1

∣∣∣
|K1|

<
(
1 −

µ

2

)i
.

To show the (i+1)-th step, define for h > 0,

Bh := {u > h} ∩ B 49
η3 R(zo) × (T1,T2].

We know

∣∣∣∣BMi
1
∩ K1

∣∣∣∣
|K1|

<
(
1 −

µ

2

)i
. If h > 0 is a constant such that

|A|

|K1|
≥

(
1 −

µ

2

)i+1
for A := BhMi

1
∩ K1,

then we will show that h < M1 for a uniform constant M1 > M0 > 1, that will be
fixed later.

Suppose on the contrary that h ≥ M1. From (ii), we have
|A|

|K1|
≤
|BM3

0
∩ K1|

|K1|
≤

1 − µ for M1 ≥ M3
0 and h ≥ 1. Applying Lemma 4.1.13 to A with α = 1 − µ, it

follows that
|Am

1−µ| ≥
m

(m + 1)(1 − µ)
|A| >

1
1 − µ

2

|A|.

We claim that
Am

1−µ ⊂ B hMi
1

Mm
0

(4.1.18)

for h ≥ C1Mm
0 > 1, where a uniform constant C1 > 0 will be chosen. If not,

there is a point (x1, s1) ∈ Am
1−µ\B hMi

1
Mm

0

and we find a parabolic dyadic cube K :=

Q × (a − l(k), a] ⊂ K1 of generation k(> kR) such that

|A ∩ K| > (1 − µ)|K| and (x1, s1) ∈ K
m
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from the definition of Am
1−µ. According to Lemma 4.1.12, there exist z1 ∈ Q ⊂

Q1 ⊂ BR(zo) and rk ∈ (0,R/2) satisfying (4.1.14), (4.1.15), Kηrk(z1, a) ⊂ K ⊂
K2rk(z1, a) and

(x1, s1) ∈ K
m

= Q̃ ×
(
a, a + m · l(k − 1)

]
⊂ B2rk(z1) × (a, a + m · 4r2

k ].

We note that

inf
B2rk (z1)×(a,a+m·4r2

k ]
u ≤ u(x1, s1) ≤

hMi
1

Mm
0

and

Bα1rk(z1) ×
(
a − (η2 + η4/4)r2

k , a + m · 4r2
k

]
⊂ Bα1R(zo) ×

(
−3R2, (1 + m)R2

]
,

since rk < R/2 and a ∈ (t1 − l(kR), t1] ⊂ (−R2,R2). We also have that for j =

1, · · · ,m,

r2
k

?K
α1rk ,α2r2

k
(z1,a+(m− j+1)·4r2

k )
| f +|n+1


1

n+1

≤ ε0
hMi

1

Mm− j+1
0

. (4.1.19)

Indeed, the volume comparison theorem and the property (4.1.15) will give that

r2
k

?K
α1rk ,α2r2

k
(z1,a+(m− j+1)·4r2

k )
| f +|n+1


1

n+1

=
r

n
n+1
k · r

n+2
n+1
k∣∣∣Bα1rk(z1)

∣∣∣ 1
n+1

(
α2r2

k

) 1
n+1

|| f +||Ln+1

≤
R

n
n+1 · R

n+2
n+1∣∣∣Bα1R(z1)

∣∣∣ 1
n+1 (

α2R2) 1
n+1

|| f +||
Ln+1

(
B 12

η R(zo)×(T1,T2]
)

≤
R2∣∣∣Bβ1R(zo)

∣∣∣ 1
n+1 (

α2R2) 1
n+1

|| f +||
Ln+1

B 49
η3

(zo)×(T1,T2]


≤

C1R2/2∣∣∣∣∣B 49
η3

(zo) × (T1,T2]
∣∣∣∣∣ 1

n+1

|| f +||
Ln+1

B 49
η3

(zo)×(T1,T2]

 < C1ε1,

where a uniform constant C1 > 1 depends only on η, n and m. For h ≥ C1Mm
0 and

M1 > 1, we have that

r2
k

?K
α1rk ,α2r2

k
(z1, a+(m− j+1)·4r2

k )
| f +|n+1


1

n+1

< C1ε1 < ε0
hMi

1

Mm
0
≤ ε0

hMi
1

Mm− j+1
0

,
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which proves (4.1.19). Thus, we can apply Lemma 4.1.6 iteratively to ũ j :=
Mm− j+1

0
hMi

1
u, for 1 ≤ j ≤ m, to deduce

µ ≤

∣∣∣∣{u ≤ hMi
1

}
∩ Kηrk(z1, a)

∣∣∣∣
|Kα1rk , α2r2

k
(z1, a + 4r2

k )|
<

∣∣∣∣{u ≤ hMi
1

}
∩ K

∣∣∣∣
|K|

.

However, this contradicts to the fact that |A∩K| > (1− µ)|K|. Therefore, we have
proved thatAm

1−µ ⊂ B hMi
1

Mm
0

for h ≥ C1Mm
0 .

(iv) Since |BMi
1
∩ K1| <

(
1 − µ

2

)i
|K1|, we have that

∣∣∣B hMi
1

Mm
0

∩ K1

∣∣∣ ≤ |BMi
1
∩ K1| <(

1 −
µ

2

)i
|K1| ≤

1
1 − µ

2

|A| for h ≥ C1Mm
0 . Then, by using (4.1.18), we obtain

|Am
1−µ\K1| = |A

m
1−µ| − |A

m
1−µ ∩ K1|

≥
m

(m + 1)(1 − µ)
|A| −

∣∣∣∣∣∣∣B hMi
1

Mm
0

∩ K1

∣∣∣∣∣∣∣
>

(
m

(m + 1)(1 − µ)
−

1
1 − µ

2

)
|A| =: α|A| ≥ α

(
1 −

µ

2

)i+1
|K1|

with α := m
(m+1)(1−µ) −

1
1− µ2

> 0. We find a point (x1, s1) ∈ Am
1−µ\K1 and a parabolic

dyadic cube K := Q × (a − l(k), a] ⊂ K1 of generation k(> kR) such that (x1, s1) ∈
K

m
, and |A ∩ K| > (1 − µ)|K|. We may assume that

s1 > t1 +
α

2

(
1 −

µ

2

)i+1
l(kR)

sinceAm
1−µ ⊂ Q1 × (t1 − l(kR),+∞) and

|Am
1−µ\K1 |

|Q1 |
> α

(
1 − µ

2

)i+1
l(kR). Using Lemma

4.1.12 again, there exist z1 ∈ Q ⊂ Q1 ⊂ BR(zo) and rk ∈ (0,R/2) satisfying
(4.1.14),(4.1.15), and Kηrk(z1, a) ⊂ K ⊂ K2rk(z1, a). Then we have

s1 ≤ a + m · l(k − 1) < t1 + m · 4r2
k

and hence

rk ≥

√
α

√
8m

(
1 −

µ

2

) i+1
2 √

l(kR) ≥
√
αδ2

0

4
√

2m

(
1 −

µ

2

) i+1
2

R ≥
(
η

2

)Ni
R
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for a uniform integer N > 0 independent of i ∈ N. We apply Proposition 4.1.9 to
u in order to get

µ ≤

∣∣∣∣{u ≤ MNi+2
0

}
∩ Kηrk(z1, a)

∣∣∣∣∣∣∣∣Kα1rk , α2r2
k
(z1, a + 4r2

k )
∣∣∣∣ ≤

∣∣∣∣{u ≤ M(N+2)i
0

}
∩ K

∣∣∣∣
|K|

,

since rk ≥
(
η

2

)Ni
R, and (z1, a) ∈ K ⊂ K1 ⊂ BR(zo) × (−R2,R2). If h ≥ M1 :=

max{C1Mm
0 ,M

N+2
0 }, this implies

1 − µ >

∣∣∣∣{u > M(N+2)i
0

}
∩ K

∣∣∣∣
|K|

≥

∣∣∣∣{u > hMi
1

}
∩ K

∣∣∣∣
|K|

=
|A ∩ K|
|K|

,

which is a contradiction to the fact that |A ∩ K| > (1 − µ)|K|. Thus, we have
h < M1 for a uniform constant M1 := max{C1Mm

0 ,M
N+2
0 }. Therefore, we conclude

that |{u>Mi+1
1 }∩K1|
|K1 |

<
(
1 − µ

2

)i+1
, completing the proof. �

The following corollary is a direct consequence of Lemma 4.1.14, which esti-
mates the distribution function of u.

Corollary 4.1.15. Under the same assumption as Lemma 4.1.14, we have

|{u ≥ h} ∩ K1|

|K1|
≤ dh−ε ∀h > 0, (4.1.20)

where d > 0 and 0 < ε < 1 depend only on n, λ,Λ, and aL .

Another consequence of Lemma 4.1.14 is a weak Harnack inequality for non-
negative supersolutions to L u = f .

Corollary 4.1.16. Under the same assumption as Lemma 4.1.14, we have for
po := ε

2 , (
1

|KκR(zo, 0)|

∫
KκR(zo,0)

upo

) 1
po

≤ C, (4.1.21)

where C > 0 depends only on n, λ,Λ, and aL .
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Proof. Let k = kR and let
{
Kk,α := Qk,α × (tk,α − l(k), tk,α]

}
α∈J′k

be a family of parabolic

dyadic cubes intersecting KκR(zo, 0). For α ∈ J′k, we have that Kk,α ⊂ B(κ+δ0)R(zo) ×
(−R2,R2] since d(zo,Qk,α) ≤ κR(< δ1R), diam(Qk,α) ≤ c2δ

k
0 ≤ δ0R, and −R2+l(k) <

−κ2R2 ≤ tk,α ≤ l(k) < δ2
0R2. Since

|KκR(zo, 0)| ≥
(

κ

κ + δ0

)n

|B(κ+δ0)R(zo)| · κ2R2 ≥

(
κ

κ + δ0

)n ∑
α∈J′k

|Qk,α| · κ2R2

≥

(
κ

κ + δ0

)n ∑
α∈J′k

|Bc1δ
k
0
(zk,α)| · κ2R2 ≥

(
κ

κ + δ0

)n ∑
α∈J′k

|B δδ0
2 R(zk,α)| · κ2R2

≥

(
κ

κ + δ0
·

δδ0

2(δ0 + 2κ)

)n ∑
α∈J′k

|B(δ0+2κ)R(zk,α)| · κ2R2

≥

(
κ

κ + δ0
·

δδ0

2(δ0 + 2κ)

)n ∑
α∈J′k

|BκR(zo)| · κ2R2,

the number |J′k| of parabolic dyadic cubes intersecting KκR(zo, 0) is uniformly
bounded. Thus for some Kk,α with α ∈ J′k, we have∫

KκR(zo)
upo ≤ |J′k| ·

∫
Kk,α

upo

≤ |J′k| ·
{
|Kk,α| + po

∫ ∞

1
hpo−1|{u ≥ h} ∩ Kk,α|dh

}
≤ |J′k| ·

{
|Kk,α| + pod|Kk,α|

∫ ∞

1
hpo−1−εdh

}
.

from Corollary 4.1.15, where d and ε are the constants in Corollary 4.1.15.
By using the volume comparison theorem, we conclude that

1
|KκR(zo, 0)|

∫
KκR(zo,0)

upo ≤ C0
|Kk,α|

|KκR(zo, 0)|
≤ C0

(
κ + δ0

κ

)n

·
δ2

0

κ2

for C0 := |J′k|·
{
1 + pod

∫ ∞
1

h−1−ε/2dh
}

since Kk,α ⊂ B(κ+δ0)R(zo)×(tk,α−δ2
0R2, tk,α]. �

So far, we have dealt with nonnegative supersolutions. Now, we consider a
nonnegative solution u of L u = f . We apply Corollary 4.1.15 as in [11] (see also
[60]) to solutions C1 −C2u for some constants C1 and C2.
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Lemma 4.1.17. Suppose that M satisfies the conditions (4.1.2),(4.1.3). Let zo ∈

M,R > 0 and τ ∈ [3, 16]. Let u be a nonnegative smooth function such that
L u = f in B 50

η3 R(zo) ×
(
−3R2, τR2

η2

]
. Assume that inf

BR(zo)×
[

2R2

η2 , τR2

η2

] u ≤ 1 and

R2


?

B 50
η3 R

(zo)×
(
−3R2, τR2

η2

] | f |n+1


1

n+1

≤
ε1

4
=: ε

for a uniform constant 0 < ε1 < 1 as in Lemma 4.1.14.
Then there exist constants σ > 0 and M̃0 > 1 depending on n, λ,Λ and aL

such that for ν := M̃0
M̃0−1/2 > 1, the following holds:

If j ≥ 1 is an integer and z1 ∈ M and t1 ∈ R satisfy

d(zo, z1) ≤ κR, |t1| ≤ κ
2R2

and
u(z1, t1) ≥ ν j−1M̃0,

then

(i) K 50
η3 L j,

(
3+ τ

η2

)
L2

j
(z1, t1) ⊂ B 50

η3 R(zo) ×
(
−3R2, τR2

η2

]
,

(ii) sup
K

50
η3 L j ,

(
3+ τ

η2

)
L2

j

(z1,t1)
u ≥ ν jM̃0,

where L j := σM̃− ε
n+2

0 ν−
jε

n+2 R and 0 < ε < 1 as in Corollary 4.1.15.

Proof. We select σ > 0 and M̃0 > 1 large so that

σ >
c2

c1δ0
(2d2ε)

1
n+2

and
σM̃− ε

n+2
0 + dM̃−ε

0 ≤
κ

4
,

where d, ε, c1, c2 and δ0 are the constants in Corollary 4.1.15 and Theorem 4.1.10.
Since L j ≤

κR
4 < ηR

8 , d(zo, z1) ≤ κR < R and |t1| ≤ κ
2R2 < η2R2

4 , we have

B 50
η3 L j

(z1) ×
(
t1 −

(
3 +

τ

η2

)
L2

j , t1

]
⊂ B 50

η3 R(zo) ×
(
−3R2,

τR2

η2

]
,
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so (i) is true.
Now, suppose on the contrary that

sup
K

50
η3 L j ,

(
3+ τ

η2

)
L2

j

(z1,t1)
u < ν jM̃0.

Let k j := kL j ≥ kR with L j in Definition 4.1.1. From Lemma 4.1.12, there exists
a dyadic cube QL j of generation k j such that d(z1,QL j) ≤ δ1L j. We also find a
parabolic dyadic cube KL j of generation k j such that

KL j ⊂ QL j ×

t1 −
τL2

j

η2 − L2
j , t1 −

τL2
j

η2 + L2
j


since l(k j) < δ2

0L2
j . Let K1 be the unique predecessor of KL j of generation kR, that

is,
KL j ⊂ K1 := Q1 × (a − l(kR), a].

Then we have

d(zo,Q1) ≤ d(zo,QL j) ≤ d(zo, z1) + d(z1,QL j) ≤ κR + δ1L j < δ1R

and (a − l(kR), a] ⊂ (−R2,R2)

since

l(kR) + |t1| +
τL2

j

η2 + L2
j ≤ l(kR) + |t1| +

16L2
j

η2 + L2
j

≤ δ2
0R2 + κ2R2 +

(
16
η2 + 1

)
κ2

16
R2 =

{
δ2

0 +

(
16
η2 + 17

)
η4(1 − δ2

0)
64

}
R2 < R2.

Now, we apply Corollary 4.1.15 to u with K1 to obtain∣∣∣∣∣∣
{

u ≥ ν j M̃0

2

}
∩ KL j

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
{

u ≥ ν j M̃0

2

}
∩ K1

∣∣∣∣∣∣ ≤ d
(
ν j M̃0

2

)−ε
|K1|. (4.1.22)

On the other hand, we consider the function

w :=
νM̃0 − u/ν j−1

(ν − 1)M̃0
,
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which is nonnegative and satisfies

L w = −
f

ν j−1(ν − 1)M̃0
in K 50

η3 L j,
(
3+ τ

η2

)
L2

j
(z1, t1)

from the assumption. We also have w(z1, t1) ≤ 1 and

| f |
ν j−1(ν − 1)M̃0

≤
| f |

(ν − 1)M̃0
=

2(M̃0 − 1/2)| f |
M̃0

≤ 2| f |.

By using the volume comparison theorem with L j ≤
κ
4R < ηR

8 and B 11
η

4
η2

ηR
8

(zo) ⊂

B 50
η3

ηR
8

(z1), we get

L2
j


?

K
50
η3 L j ,

(
3+ τ

η2

)
L2

j

(z1,t1)
|2 f |n+1


1

n+1

=
2L2

j

|B 50
η3 L j

(z1)|
1

n+1

{(
3 + τ

η2

)
L2

j

} 1
n+1

|| f ||Ln+1

≤
2(ηR/8)2

|B 50
η3 ·

ηR
8

(z1)|
1

n+1

{(
3 + τ

η2

)
(ηR/8)2

} 1
n+1

|| f ||Ln+1

≤
2(ηR/8)2

|B 11
η

4
η2

ηR
8

(zo)|
1

n+1

{(
3 + τ

η2

)
(ηR/8)2

} 1
n+1

|| f ||Ln+1

≤
2R2

|B 11
η

4
η2 R(zo)|

1
n+1

{(
3 + τ

η2

)
R2

} 1
n+1

|| f ||
Ln+1

B 50
η3 R

(zo)×
(
−3R2, τR2

η2

]
≤ 2

(
50
44

) n
n+1 ε1

4
≤ ε1.

Applying Corollary 4.1.15 to w in KL j , we deduce that |{w ≥ M̃0} ∩ KL j | ≤

dM̃−ε
0 |KL j |, i.e., ∣∣∣∣∣∣

{
u ≤ ν j M̃0

2

}
∩ KL j

∣∣∣∣∣∣ ≤ dM̃−ε
0 |KL j |.

Putting together with (4.1.22), we obtain

|KL j | ≤ 2d2εν− jε M̃−ε
0 |K1|
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since dM̃−ε
0 ≤

κ
2 < 1/2. From Theorem 4.1.10, there is a point z∗ ∈ QL j such that

B
c1δ

k j
0

(z∗) ⊂ QL j ⊂ Q1 ⊂ Bc2δ
kR
0

(z∗). Then we have∣∣∣∣∣Bc1δ
k j
0

(z∗)
∣∣∣∣∣ · c2

1δ
2k j

0 ≤

∣∣∣∣∣Bc1δ
k j
0

(z∗)
∣∣∣∣∣ · l(k j) ≤ |KL j |

≤ 2d2εν− jε M̃−ε
0 |K1| = 2d2εν− jε M̃−ε

0 |Q1| · l(kR)

< 2d2εν− jε M̃−ε
0 |Bc2δ

kR
0

(z∗)| · c2
2δ

2kR
0

≤ 2d2εν− jε M̃−ε
0

c2δ
kR
0

c1δ
k j

0

n ∣∣∣∣∣Bc1δ
k j
0

(z∗)
∣∣∣∣∣ c2

2δ
2kR
0

from the volume comparison theorem. This means

δ
k j

0 < (2d2ε)
1

n+2 M̃− ε
n+2

0 ν−
jε

n+2
c2

c1
δkR

0 .

Since c2δ
kR−1
0 < R ≤ c2δ

kR−2
0 , we deduce that

L j ≤ c2δ
k j−2
0 ≤

c2
2

c1δ
2
0

(2d2ε)
1

n+2 M̃− ε
n+2

0 ν−
jε

n+2 δkR
0

<
c2

c1δ0
(2d2ε)

1
n+2 M̃− ε

n+2
0 ν−

jε
n+2 R < σM̃− ε

n+2
0 ν−

jε
n+2 R = L j,

in contradiction to the definition of L j. Therefore, (ii) is true. �

Thus we deduce the following lemma from Lemma 4.1.17.

Lemma 4.1.18. Suppose that M satisfies the conditions (4.1.2),(4.1.3). Let zo ∈

M,R > 0 and τ ∈ [3, 16]. Let u be a nonnegative smooth function such that
L u = f in B 50

η3 R(zo) ×
(
−3R2, τR2

η2

]
. Assume that

inf
BR(zo)×

[
2R2

η2 , τR2

η2

] u ≤ 1

and

R2


?

B 50
η3 R

(zo)×
(
−3R2, τR2

η2

] | f |n+1


1

n+1

≤ ε
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for a uniform constant 0 < ε < 1 in Lemma 4.1.17. Then

sup
B κR

2
(zo)×

(
− κ

2R2
4 , κ

2R2
4

) u ≤ C,

where C > 0 depends only on n, λ,Λ and aL .

Proof. We take jo ∈ N such that
∞∑

j= jo

50
η3 L j <

κR
2

and
∞∑

j= jo

(
3 +

16
η2

)
L2

j <
κ2R2

4
.

We claim that sup
B κR

2
(zo)×

(
− κ

2R2
4 , κ

2R2
4

) u ≤ ν jo−1M̃0 with M̃0 > 1 as in Lemma 4.1.17. If

it does not hold, then there is a point (z jo , t jo) ∈ B κR
2

(zo) ×
(
− κ

2R2

4 , κ
2R2

4

)
such that

u(z jo , t jo) > ν jo−1M̃0. Applying Lemma 4.1.17 with (z1, t1) = (z jo , t jo), we can find
a point (z jo+1, t jo+1) ∈ K 50

η3 L j,
(
3+ τ

η2

)
L2

j
(z jo , t jo) such that

u(z jo+1, t jo+1) ≥ ν jo M̃0.

According to the choice of jo, we have

d(zo, z jo+1) ≤ d(zo, z jo) + d(z jo , z jo+1) <
κR
2

+
κR
2

= κR

and

|t jo+1| ≤ |t jo | + |t jo − t jo+1| <
κ2R2

4
+
κ2R2

4
< κ2R2.

Thus we iterate this argument to obtain a sequence of points (z j, t j) for j ≥ jo

satisfying
d(zo, z j) ≤ κR, |t j| ≤ κ

2R2 and u(z j, t j) ≥ ν j−1M̃0,

since d(zo, z j) ≤ d(zo, z jo) +

∞∑
i= jo

d(zi, zi+1) ≤
κR
2

+

∞∑
i= jo

50
η3 Li < κR and |ti| ≤ |t jo | +

∞∑
i= jo

|ti − ti+1| ≤
κ2R2

4
+

∞∑
i= jo

(
3 +

τ

η2

)
L2

i < κ2R2 for j ≥ jo. This contradicts to the

continuity of u and therefore we conclude that

sup
B κR

2
(zo)×

(
− κ

2R2
4 , κ

2R2
4

) u ≤ ν jo−1M̃0.

�
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Now the Harnack inequality follows easily from Lemma 4.1.18 by using a
standard covering argument and the volume comparison theorem.

Theorem 4.1.19 (Harnack Inequality). Suppose that M satisfies the conditions
(4.1.2),(4.1.3). Let zo ∈ M, and R > 0. Let u be a nonnegative smooth function in
K2R(0, 4R2) ⊂ M × R. Then

sup
KR(zo,2R2)

u ≤ C

 inf
KR(zo,4R2)

u + R2
(?

K2R(zo,4R2)
|L u|n+1

) 1
n+1

 , (4.1.23)

where C > 0 is a constant depending only on n, λ,Λ and aL .

Proof. According to Lemma 4.1.18, for τ ∈ [3, 16], a nonnegative smooth func-
tion v in K 50

η3 r,
(
3+ τ

η2

)
r2

(
x, t + τr2

η2

)
satisfies

sup
K κr

2
(x,t)

v ≤ C

 inf
K κr

2
(x,t+ τr2

η2 )
v + r2


?

K
50
η3 r,

(
3+ τ

η2

)
r2

(
x,t+ τr2

η2

) |L v|n+1


1

n+1
 (4.1.24)

since κ
2 < 1.

Now, let (x, t) ∈ KR(zo, 2R2) = BR(zo) × (R2, 2R2] and (y, s) ∈ KR(zo, 4R2) =

BR(zo) × (3R2, 4R2]. We show that

u(x, t) ≤ C
{

u(y, s) +
R2

|K2R(zo, 4R2)|
1

n+1

||L u||Ln+1(K2R(zo,4R2))

}
for a uniform constant C > 0 depending only on n, λ,Λ and aL . We consider
a piecewise C1 path γ : [0, l] → M, γ(0) = x, γ(l) = y, l < 2R, consisting
of a minimal geodesic parametrized by arc length joining x and zo, followed by
a minimal geodesic parametrized by arc length joining zo and y. We notice that
γ([0, l]) ⊂ BR(zo) and d(γ(s1), γ(s2)) ≤ |s1 − s2|.

We can select uniform constants A > 0 and N ∈ N such that

A := max
{

64
3κη2 ,

50
η3

}
and

3
16
η2A2 ≤ N ≤

1
3
η2A2

since 16−9
16·3 η

2A2 ≥ 7·4
32κ

A > 1. For i = 0, 1, · · · ,N, we define

(xi, ti) :=
(
γ

(
i

l
N

)
, i

s − t
N

+ t
)
∈ BR(zo) × [R2, 4R2].
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Then we have (x0, t0) = (x, t), (xN , tN) = (y, s) and for i = 0, · · · ,N − 1,

d(xi+1, xi) ≤
l
N
<

2R
N
≤

64
3κη2A

·
κR
2A
≤
κ

2
R
A
,

3R2

η2A2 ≤
R2

N
≤ ti+1 − ti =

s − t
N
≤

3R2

N
≤

16R2

η2A2 .

We also have that K 50
η3

R
A , 3

R2

A2 +ti−ti−1
(xi, ti) ⊂ K2R(zo, 4R2) for i = 1, · · · ,N since 50

η3
R
A ≤

R. We apply the estimate (4.1.24) with r = R
A , τ = (ti+1 − ti)

η2A2

R2 and (x, t) =

(xi+1, ti+1) for i = 0, 1, · · · ,N − 1 and use the volume comparison theorem to have

u(xi, ti) ≤ C

u(xi+1, ti+1) +
(R/A)2

|K 50
η3

R
A , 3

R2

A2 +ti−ti−1
(xi+1, ti+1)|

1
n+1

||L u||Ln+1(K2R(zo,4R2))


≤ C

u(xi+1, ti+1) +
(R/A)2

|B 50
η3

R
A
(xi+1) ·

(
3 + 3

η2

)
R2

A2 |
1

n+1

||L u||Ln+1(K2R(zo,4R2))


≤ C

{
u(xi+1, ti+1) +

R2

|B3R(xi+1) · 4R2|
1

n+1

||L u||Ln+1(K2R(zo,4R2))

}
,

where a uniform constant C > 0 may change from line to line. Since B3R(xi+1) ⊃
B2R(zo), we deduce that

u(xi, ti) ≤ C
{

u(xi+1, ti+1) +
R2

|B2R(zo) · 4R2|
1

n+1

||L u||Ln+1(K2R(zo,4R2))

}
.

Therefore, we conclude that

u(x, t) ≤ C
{

u(y, s) +
R2

|K2R(zo, 4R2)|
1

n+1

||L u||Ln+1(K2R(zo,4R2))

}
for a uniform constant C > 0 since N ∈ N is uniform. �

4.1.5 Weak Harnack inequality

Arguing in a similar way as Theorem 4.1.19, Corollary 4.1.16 gives the following
weak Harnack inequality.
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Theorem 4.1.20 (Weak Harnack Inequality). Suppose that M satisfies the con-
ditions (4.1.2),(4.1.3). Let zo ∈ M, and R > 0. Let u be a nonnegative smooth
function such that L u ≤ f in K2R(zo, 4R2). Then(?

KR(zo,2R2)
upo

) 1
po

≤ C

 inf
KR(zo,4R2)

u + R2
(?

K2R(zo,4R2)
| f +|n+1

) 1
n+1

 ,
where 0 < po < 1 and C > 0 depend only on n, λ,Λ and aL .

Proof. Let ε > 0 be the constant in Corollary 4.1.15 and let po := ε
2 . We consider

a parabolic decomposition of M×(0, 4R2] according to Lemma 4.1.11. Let k := k κR
A

for the constant A > 0 in the proof of Theorem 4.1.19. Let
{
Kk,α := Qk,α × (tk,α − l(k), tk,α]

}
α∈J′k

be a family of parabolic dyadic cubes intersecting KR(zo, 2R2). We note that diam(Qk,α) ≤
c2δ

k
0 ≤ δ0 ·

κR
A and l(k) ≤ δ2

0 ·
κ2R2

A2 . Following the same argument as Corollary 4.1.16,
we deduce that |J′k| is uniformly bounded and∫

KR(zo,2R2)
upo ≤ |J′k|

∫
Kk,α

upo

for some Kk,α with α ∈ J′k. Then we find (x, t) ∈ Kk,α ∩ BR(zo) × [R2, (2 + δ2
0
κ2

A2 )R2]
such that Kk,α ⊂ K κR

A
(x, t) since diam(Qk,α) ≤ δ0 ·

κR
A and l(k) ≤ δ2

0 ·
κ2R2

A2 . Since
d(zo, x) ≤ R and B κR

A
(x) ⊂ B(1+ κ

A )R(zo), we have

1
|KR(zo, 2R2)|

∫
KR(zo,2R2)

upo ≤
C0

|K κR
A

(x, t)|

∫
K κR

A
(x,t)

upo (4.1.25)

for C0 := |J′k|
(
1 + κ

A

)n
· κ

2

A2 by using the volume comparison theorem.
We set

inf
KR(zo,4R2)

u =: u(y, s)

for some (y, s) ∈ KR(zo, 4R2). As in the proof of Theorem 4.1.19 we take a piece-
wise geodesic path γ connecting x to y. Let N ∈ N be the constant in Theorem
4.1.19. For i = 0, 1, · · · ,N, we define

(xi, ti) :=
(
γ

(
i

l
N

)
, i

s − t
N

+ t
)
∈ BR(zo) × [R2, 4R2].
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Then we have (x0, t0) = (x, t), (xN , tN) = (y, s) and for i = 0, · · · ,N − 1,

d(xi+1, xi) <
κ

2
·

R
A

and
3R2

η2A2 ≤ ti+1 − ti ≤
16R2

η2A2 .

It is easy to check that for any i = 0, 1, · · · ,N − 1, B κR
A

(xi) ∩ B κR
A

(xi+1) ⊃ B κR
2A

(xi+1)
and hence

inf
K κR

A
(xi,ti+1)

u ≤ inf
K κR

2A
(xi+1,ti+1)

u ≤

 1
|K κR

2A
(xi+1, ti+1)|

∫
K κR

2A
(xi+1,ti+1)

upo


1

po

≤ 2
n+2
po

 1
|K κR

A
(xi+1, ti+1)|

∫
K κR

A
(xi+1,ti+1)

upo


1

po

.

(4.1.26)

On the other hand, Corollary 4.1.16 says that for i = 0, 1, · · · ,N − 1 1
|K κR

A
(xi, ti)|

∫
K κR

A
(xi,ti)

upo


1/po

≤ C

 inf
K κR

A
(xi,ti+1)

u +
(R/A)2∣∣∣∣∣K 50

η3 ·
R
A , 3

R2

A2 +ti+1−ti
(xi, ti+1)

∣∣∣∣∣ 1
n+1

∥∥∥ f +
∥∥∥

Ln+1(K2R(zo,4R2))


≤ C

 inf
K κR

A
(xi,ti+1)

u +
R2∣∣∣K2R

(
zo, 4R2)∣∣∣ 1

n+1

∥∥∥ f +
∥∥∥

Ln+1(K2R(zo,4R2))


by using the same argument as Theorem 4.1.19 with the volume comparison the-
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orem. Combining with (4.1.26), we deduce 1
|K κR

A
(x, t)|

∫
K κR

A
(x,t)

upo


1/po

≤ C

 inf
K κR

A
(xN−1,tN )

u +
R2∣∣∣K2R

(
zo, 4R2)∣∣∣ 1

n+1

∥∥∥ f +
∥∥∥

Ln+1(K2R(zo,4R2))


≤ C

 inf
K κR

2A
(xN ,tN )

u +
R2∣∣∣K2R

(
zo, 4R2)∣∣∣ 1

n+1

∥∥∥ f +
∥∥∥

Ln+1(K2R(zo,4R2))


≤ C

u(y, s) +
R2∣∣∣K2R

(
zo, 4R2)∣∣∣ 1

n+1

∥∥∥ f +
∥∥∥

Ln+1(K2R(zo,4R2))

 ,
for a uniform constant C > 0 since N ∈ N is uniform. Therefore, the result follows
from (4.1.25). �

4.2 Harnack inequality for nonlinear parabolic op-
erators

The aim of this section is to prove Proposition 4.2.5, which is a main ingredient
of a priori Harnack estimate. We begin with the definition of the contact set for
the elliptic case from [62].

Definition 4.2.1. Let Ω be a bounded open set in M and let u ∈ C(Ω). For a given
a > 0 and a compact set E ⊂ M, the contact set associated with u of opening a
with vertex set E is defined by

Aa(E; Ω; u) :=
{
x ∈ Ω : ∃y ∈ E s.t. inf

Ω

(
u +

a
2

d2
y

)
= u(x) +

a
2

d2
y (x)

}
.

The following lemma is quoted from [62, Proof of Theorem 1.2] and [11,
Proof of Lemma 4.1] (see also [17, Proposition 2.5] and [59, Chapter 14]).

Lemma 4.2.1. Assume that

Ric ≥ −κ on M, for κ ≥ 0.
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Let Ω be a bounded open set in M and E be a compact set in M. For a > 0 and a
smooth function u on Ω, we define the map φ̃ : Ω→ M as

φ̃(x) := expx a−1∇u(x).

Then, we have the following : Let x ∈ Aa(E; Ω; u).

(a) If y ∈ E satisfies

inf
Ω

(
u +

a
2

d2
y

)
= u(x) +

a
2

d2
y (x),

then y = φ̃(x) = expx a−1∇u(x), x < Cut(y), and 1
a∇u(x) = −dy(x)∇dy(x).

(b)

Jac φ̃(x) ≤ S n

(√
κ

n
|∇u|

a

) {
H

(√
κ

n
|∇u|

a

)
+
4u
na

}n

, (4.2.1)

where
H (τ) = τ coth(τ), S (τ) = sinh(τ)/τ, τ ≥ 0.

Now we define a parabolic version of the contact set which contains a point
(x, t) ∈ M × R, where a concave paraboloid −

a
2

d2
y (x) + bt + C (for some a, b > 0

and C) touches u from below at (x, t) in a parabolic neighborhood of (x, t), i.e., in
Kr(x, t) for some r > 0.

Definition 4.2.2. Let Ω be a bounded open set in M and let u ∈ C(Ω × (0,T ]) for
T > 0. For given a, b > 0 and a compact set E ⊂ M, the parabolic contact set
associated with u is defined by

Aa,b(E; Ω × (0,T ]; u)

:=
{

(x, t) ∈ Ω × (0,T ] : ∃y ∈ E s.t. inf
Ω×(0, t]

(
u(z, τ) +

a
2

d2
y (z) − bτ

)
= u(x, t) +

a
2

d2
y (x) − bt

}
.

As in Section 4.1, for u ∈ C2,1 (Ω × (0,T ]) ,we define the map φ : Ω×(0,T ]→
M by

φ(x, t) := expx a−1∇u(x, t),

and define the parabolic normal map Φ : Ω × (0,T ]→ M × R by

Φ(x, t) :=
(
φ(x, t),−

1
2

d2 (x, φ(x, t)) − a−1 {u(x, t) − bt}
)
.
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Lemma 4.2.2. Assume that

Ric ≥ −κ on M, for κ ≥ 0.

Let Ω be a bounded open set in M, and let u be a smooth function on Ω × (0,T ]
for T > 0. For any compact set E ⊂ M, a, b > 0, and 0 < λ̃ ≤ 1, we have that if
(x, t) ∈ Aa,b(E; Ω × (0,T ]; u), then

Jac Φ(x, t) ≤
1

(n + 1)n+1 S n+1
(√

κ

n
|∇u|

a

) { λ̃4u − ∂tu
λ̃a

+
b
λ̃a

+ nH

(√
κ

n
|∇u|

a

)}+n+1

,

(4.2.2)
where

H (τ) = τ coth(τ), S (τ) = sinh(τ)/τ, τ ≥ 0.

Proof. Let (x, t) ∈ Aa,b := Aa,b(E; Ω× (0,T ]; u) ⊂ Ω× (0,T ]. From the definition
of the parabolic contact set, there exists a vertex y ∈ E such that

inf
Ω×(0,t]

(
u(z, τ) +

a
2

d2
y (z) − bτ

)
= u(x, t) +

a
2

d2
y (x) − bt.

According to Lemma 4.2.1, we have that

y = φ(x, t) = expx a−1∇u(x, t), x < Cut(y), and
1
a
∇u(x, t) = −dy(x)∇dy(x)

since
inf
Ω

(
u(z, t) +

a
2

d2
y (z)

)
= u(x, t) +

a
2

d2
y (x).

We notice that D2
(
u + a

2d2
y

)
(x, t) ≥ 0 and ∂tu(x, t) − b ≤ 0. Now we set

φ̃ := φ(·, t) : Ω 3 z 7→ expz a−1∇u(z, t) ∈ M

to obtain from Lemma 4.2.1 that

Jac φ̃(x) ≤ S n

(√
κ

n
|∇u|

a

) {
H

(√
κ

n
|∇u|

a

)
+
4u
na

}n

(x, t). (4.2.3)

By a simple calculation, we have that for (ξ, σ) ∈ TxM × R\{(0, 0)},

dΦ(x, t) · (ξ, σ) =

dφ̃ · ξ + σ
∂φ

∂t
, −

〈
∇

(
d2

x/2
)

(y), dφ̃ · ξ + σ
∂φ

∂t

〉
y
− a−1σ (∂tu − b)

 ,
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where ∂φ

∂t (x, t) = d
dτ

∣∣∣
τ=0

φ(x, t + τ) ∈ TyM and we used ∇
(
d2

y/2
)

(x) = −a−1∇u(x, t).
To compute the Jacobian of Φ, we introduce an orthonormal basis {e1, · · · , en}

of TxM and an orthonormal basis {e1, · · · , en} of TyM = Tφ(x,t)M. By setting for
i, j = 1, · · · , n,

Ai j :=
〈
ei, dφ̃ · e j

〉
, bi :=

〈
ei,

∂φ

∂t

〉
, and ci :=

〈
ei, ∇

(
d2

x/2
)

(y)
〉
,

the Jacobian matrix of Φ at (x, t) is(
Ai j bi

−ckAk j −ckbk + a−1 (b − ∂tu)

)
.

Using the row operations and (4.2.3), we deduce that

Jac Φ(x, t) =

∣∣∣∣∣∣det
(

Ai j bi

0 a−1 (b − ∂tu)

)∣∣∣∣∣∣ = a−1 (b − ∂tu) Jac φ̃(x)

≤ a−1 (b − ∂tu) S n

(√
κ

n
|∇u|

a

) {
H

(√
κ

n
|∇u|

a

)
+
4u
na

}n

(x, t),

where we note that (b − ∂tu) (x, t) ≥ 0 and Jac φ̃(x) ≥ 0. According to the geomet-
ric and arithmetic means inequality, we conclude that

Jac Φ(x, t) ≤
1

(n + 1)n+1

[
nS

(√
κ

n
|∇u|

a

) {
H

(√
κ

n
|∇u|

a

)
+
4u
na

}
+

b − ∂tu
a

]n+1

=
1

(n + 1)n+1

[
S

(√
κ

n
|∇u|

a

) {
λ̃4u − ∂tu + b

λ̃a
+ nH

(√
κ

n
|∇u|

a

)}
+

{
1 −

1
λ̃
S

(√
κ

n
|∇u|

a

)}
b − ∂tu

a

]n+1

≤
1

(n + 1)n+1

[
S

(√
κ

n
|∇u|

a

) {
λ̃4u − ∂tu + b

λ̃a
+ nH

(√
κ

n
|∇u|

a

)}]n+1

since (b − ∂tu) (x, t) ≥ 0 and S (τ) = sinh(τ)/τ ≥ 1 ≥ λ̃ for all τ ≥ 0. �

Assuming the sectional curvature of M to be bounded from below, we have
ABP-Krylov-Tso type estimate in the following lemma, which will play a key
role to estimate sublevel sets of u in Proposition 4.2.5; see also Lemma 4.1.3 and
Figure 4.1.
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Lemma 4.2.3. Assume that

Sec ≥ −κ on M, for κ ≥ 0.

Let R0 > 0 and 0 < η < 1. For z0 ∈ M, and 0 < R ≤ R0, let u be a smooth function
in Kα1R, α2R2(z0, 0) ⊂ M × R such that

u ≥ 0 in Kα1R, α2R2(z0, 0)\Kβ1R, β2R2(z0, 0) and inf
K2R(z0,0)

u ≤ 1, (4.2.4)

where α1 := 11
η

, α2 := 4 + η2 +
η4

4 , β1 := 9
η
, and β2 := 4 + η2. Then we have

|BR(z0)| · R2 ≤

∫
{u≤Mη}∩Kβ1R, β2R2 (z0,0)

S n+1 ·

[{
R2

2λ

{
M−(D2u) − ∂tu

}
+

6
λη2 + (n + 1)

Λ

λ
H

}+]n+1

,

(4.2.5)

where the constant Mη > 0 depends only on η > 0, and

S := S
(
2α1
√
κR0

)
, H := H

(
2α1
√
κR0

)
for S (τ) = sinh(τ)/τ, and H (τ) = τ coth(τ).

Proof. We consider the parabolic contact set

Aa,b

(
BR(z0); Kα1R, α2R2(z0, 0); u

)
for a := 2

R2 and b := 12
η2R2 ,

which will be denoted by A for simplicity. As in the proof of Lemma 4.1.3, for
any y ∈ BR(z0), we define

wy(x, t) :=
1
2

R2u(x, t) +
1
2

d2
y (x) −Cηt, Cη :=

b
a

=
6
η2 .

From the assumption (4.2.4), we see that

inf
K2R(z0,0)

wy ≤

(
5 +

24
η2

)
R2 =: AηR2,

and

wy ≥

(
6 +

24
η2

)
R2 = (Aη + 1)R2 on Kα1R, α2R2(z0, 0)\Kβ1R, β2R2(z0, 0).
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Then we deduce that for any
(
y, h

)
∈ BR(z0) ×

(
AηR2, (Aη + 1)R2

)
, there exists a

time t ∈
(
−β2R2, 0

)
such that

h = inf
Bα1R(z0)×(−α2R2,t]

wy = wy

(
x, t

)
,

where the infimum is achieved at an interior point x ∈ Bβ1R(z0). This means that
(x, t) is a parabolic contact point, i.e., (x, t) ∈ A. According to Lemma 4.2.1, we
observe that

y = expx

(
1
2

R2 ∇u
(
x, t

))
, and x < Cut(y).

Now, we define the map φ : Kα1R, α2R2(z0, 0)→ M as

φ(x, t) := expx

(
1
2

R2∇u(x, t)
)
,

and the map Φ : Kα1R, α2R2(z0, 0)→ M × R as

Φ(x, t) :=
(
φ(x, t),−

1
2

d2 (x, φ(x, t)) −
1
2

R2u(x, t) + Cηt
)
.

We also define

Ã :=

(x, t) ∈ Kβ1R, β2R2(z0, 0) : ∃y ∈ BR(z0) s.t. wy(x, t) = inf
Bα1R(z0)×(−α2R2,t]

wy ≤ (Aη + 1)R2

 .
According to the argument above, we have proved that for any (y, s) ∈ BR(z0) ×(
−(Aη + 1)R2,−AηR2

)
, there exists a point (x, t) ∈ Ã such that (y, s) = Φ(x, t), that

is,
BR(z0) ×

(
−(Aη + 1)R2,−AηR2

)
⊂ Φ(Ã).

Thus, the area formula provides

|BR(z0)| · R2 ≤

∫
M×R
H0

[
Ã ∩ Φ−1(y, s)

]
dV(y, s) =

∫
Ã

Jac Φ(x, t)dV(x, t).

(4.2.6)

We note that

Ã ⊂ A ∩ Kβ1R,β2R2(z0, 0) ∩ {u ≤ Mη} (4.2.7)
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for Mη := 2(Aη + 1) since 1
2R2u(x, t) ≤ wy(x, t) ≤ (Aη + 1)R2 for (x, t) ∈ Ã.

Next, we claim that for (x, t) ∈ A,

Jac Φ(x, t) ≤
1

(n + 1)n+1 S n+1
(
2α1
√
κR0

) [{nR2

2λ

(
λ

n
4u − ∂tu

)
+

6n
λη2 + nH

(
2α1
√
κR0

)}+]n+1

.

(4.2.8)

From Lemma 4.2.1, if (x, t) ∈ A, then we have

R2

2
∇u(x, t) = −dy(x)∇dy(x) for y := φ(x, t) ∈ BR(z0); x < Cut(y),

and hence

R2

2
|∇u(x, t)| = dy(x) ≤ d(y, z0) + d(z0, x) ≤ R + α1R ≤ 2α1R0. (4.2.9)

Using Lemma 4.2.2 (with λ̃ = λ/n) and (4.2.9), we deduce that for (x, t) ∈ A,

(n + 1) Jac Φ(x, t)
1

n+1

≤ S

√ (n − 1)κ
n

R2|∇u|
2


nR2

2λ

(
λ

n
4u − ∂tu

)
+

6n
λη2 + nH

√ (n − 1)κ
n

R2|∇u|
2




+

≤ S
(
2α1
√
κR0

) {nR2

2λ

(
λ

n
4u − ∂tu

)
+

6n
λη2 + nH

(
2α1
√
κR0

)}+

,

since H (τ) and S (τ) are nondecreasing for τ ≥ 0. This proves (4.2.8).
Lastly, we shall show that for (x, t) ∈ A,

λ

n
4u ≤ M−(D2u) +

2nΛ

R2 H
(
2α1
√
κR0

)
. (4.2.10)

Indeed, for (x, t) ∈ A, we recall Lemma 4.2.1 again to see

D2
(
u +

1
R2 d2

y

)
(x, t) ≥ 0 for y := φ(x, t); x < Cut(y),

i.e., the Hessian of R2u + d2
y at (x, t) is positive semidefinite. From Lemma 2.2.7

and (4.2.9), it follows that

D2u(x, t) ≥ −
2
R2 D2

(
1
2

d2
y

)
(x) ≥ −

2
R2 H

(√
κ dy(x)

)
gx ≥ −

2
R2 H

(
2α1
√
κR0

)
gx.
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Let µ1 be the largest eigenvalue of D2u(x, t). If µ1 ≥ 0, then we have

M−(D2u(x, t)) ≥ λµ1 − (n − 1)Λ
2
R2 H

(
2α1
√
κR0

)
≥
λ

n
4u − nΛ

2
R2 H

(
2α1
√
κR0

)
.

If µ1 < 0, then we have

M−(D2u(x, t)) = Λ4u ≥ −nΛ
2
R2 H

(
2α1
√
κR0

)
≥
λ

n
4u − nΛ

2
R2 H

(
2α1
√
κR0

)
,

which proves (4.2.10) for (x, t) ∈ A. Therefore, the ABP-Krylov-Tso type esti-
mate (4.2.5) follows from (4.2.6), (4.2.7) (4.2.8) and (4.2.10). �

As Subsection 4.1.2, we construct the barrier as below. First, we fix some
constants that will be used frequently (see Figure 4.1); for a given 0 < η < 1,

α1 :=
11
η
, α2 := 4 + η2 +

η4

4
, β1 :=

9
η

and β2 := 4 + η2.

Lemma 4.2.4. Assume that

Sec ≥ −κ on M, for κ ≥ 0.

Let R0 > 0 and 0 < η < 1. For z0 ∈ M, and 0 < R ≤ R0, there exists a con-
tinuous function vη(x, t) in Kα1R, α2R2(z0, β2R2), which is smooth in (M\Cut(z0)) ∩
Kα1R, α2R2(z0, β2R2), such that

(a) vη(x, t) ≥ 0 in Kα1R, α2R2(z0, β2R2) \Kβ1R, β2R2(z0, β2R2),

(b) vη(x, t) ≤ 0 in K2R(z0, β2R2),

(c) R2
{
M+(D2vη) − ∂tvη

}
+12
η2 +2(n+1)ΛH

(
2α1
√
κR0

)
≤ 0 a.e. in Kβ1R, β2R2(z0, β2R2)\

K η
2 R(z0,

η2

4 R2),

(d) R2
{
M+(D2vη) − ∂tvη

}
≤ Cη a.e. in Kβ1R, β2R2(z0, β2R2),

(e) vη(x, t) ≥ −Cη in Kα1R, α2R2(z0, β2R2),

where H (τ) = τ coth(τ), and the constant Cη > 0 depends only on η, n, λ,Λ,
√
κR0

(independent of R and z0).
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Proof. As in Lemma 4.1.4, we consider

h(s, t) := −Ae−mt

(
1 −

s
β2

1

)l 1
(4πt)n/2 exp

(
−α

s
t

)
for t > 0,

and define

ψη(s, t) := h(s, t) + C̃t in [0, β2
1] × [0, β2]\[0, η

2

4 ] × [0, η
2

4 ],

where C̃ := 12/η2 + 2(n + 1)ΛH
(
2α1
√
κR0

)
, and the positive constants A,m, l, α

(depending only on η, n, λ,Λ,
√
κR0) will be chosen later. Extending ψη smoothly

in [0, α2
1] × [− η

4

4 , β2] to satisfy (a) and (e), we define

vη(x, t) := ψη

d2
z0

(x)
R2 ,

t
R2

 for (x, t) ∈ Kα1R, α2R2(z0, β2R2),

where dz0 is the distance function to z0. We may assume that ψη(s, t) is nonde-
creasing with respect to s in [0, α2

1] × [− η
4

4 , β2].
We recall that〈

D2
(
d2

z0
/2

)
(x) · ξ, ξ

〉
=

〈
dz0 D2dz0(x) · ξ, ξ

〉
+

〈
∇dz0(x), ξ

〉2 , ∀ξ ∈ TxM, x < Cut(z0),

and

M+
(
D2

(
d2

z0
/2

)
(x)

)
≤ nΛH

(√
κdz0(x)

)
≤ nΛH

(
α1
√
κR0

)
, ∀x ∈ Bβ1R(z0)\Cut(z0),

from Lemma 2.2.7. Following the proof of Lemma 4.1.4, and using Lemma 2.1.1
(a), we can select positive constants A,m, l, α, depending only on η, n, λ,Λ,

√
κR0,

such that (b), (c), and (d) hold. �

The following proposition is obtained by applying Lemma 4.2.3 to u + vη with
vη, constructed in Lemma 4.2.4 and translated in time, due to Lemma 4.1.5 .

Proposition 4.2.5. Assume that

Sec ≥ −κ on M, for κ ≥ 0,

and that F satisfies (F1). Let 0 < η < 1 and Kα1R, α2R2(z0, 4R2) ⊂ KR0(x0, t0) ⊂
M × R. Let u be a smooth function on Kα1R, α2R2(z0, 4R2) such that

F(D2u) − ∂tu ≤ f in Kβ1R, β2R2(z0, 4R2),
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u ≥ 0 in Kα1R, α2R2(z0, 4R2)\Kβ1R, β2R2(z0, 4R2),

and
inf

K2R(z0,4R2)
u ≤ 1.

Then, there exist uniform constants Mη > 1, 0 < µη < 1, and 0 < εη < 1 such that∣∣∣∣{u ≤ Mη

}
∩ KηR(z0, 0)

∣∣∣∣∣∣∣Kβ1R, β2R2(z0, 4R2)
∣∣∣ ≥ µη,

provided ?
Kβ1R, β2R2 (z0,4R2)

∣∣∣β2
1R2 f +

∣∣∣nθ+1


1

nθ+1

≤ εη; f + := max( f , 0),

where θ := 1 + log2 cosh(4
√
κR0), and Mη > 0, 0 < µη, εη < 1 depend only on

η, n, λ,Λ and
√
κR0.

Proof. Let vη be the barrier function as in Lemma 4.2.4 after translation in time
(by −η2R2) and let {wk}

∞
k=1 be a sequence of smooth functions approximating vη

from Lemma 4.1.5. We notice that u+vη ≥ 0 in Kα1R, α2R2(z0, 4R2)\Kβ1R, β2R2(z0, 4R2)
and inf

K2R(z0,4R2)
(u + vη) ≤ 1. We can apply Lemma 4.2.3 to u + wk after a slight

modification as in the proof of Lemma 4.1.6, and use the dominated convergence
theorem to let k go to +∞ due to Lemma 4.1.5. Thus we obtain

|BR(z0)| · R2 ≤ C1

∫
{u+vη≤Mη}∩Kβ1R,β2R2 (z0,4R2)

[{
R2

{
M−(D2u + D2vη) − ∂t(u + vη)

}
+ C2

}+
]n+1

,

where C1 := S n+1
(
2
√
κR0

)
/(2λ)n+1, and C2 := 12/η2 + 2(n + 1)ΛH

(
2
√
κR0

)
.

Using Lemma 2.1.1, (F1) and the properties (c), (d) of vη in Lemma 4.2.4, we have

|BR(z0)| · R2 ≤ C1

∫
E1∪E2

[{
R2

{
M−(D2u) − ∂tu

}
+ R2

{
M+(D2vη) − ∂tvη

}
+ C2

}+
]n+1

≤ C1

∫
E1∪E2

[{
R2

{
F(D2u) − ∂tu

}
+ R2

{
M+(D2vη) − ∂tvη

}
+ C2

}+
]n+1

≤ C1

∫
Kβ1R, β2R2 (z0,4R2)

∣∣∣R2 f + + (Cη + C2) χE2

∣∣∣n+1
,
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where E1 := {u + vη ≤ Mη} ∩
(
Kβ1R, β2R2(z0, 4R2)\KηR(z0, 0)

)
and E2 := {u + vη ≤

Mη} ∩ KηR(z0, 0). Then, it follows that

|BR(z0)| · R2∣∣∣Kβ1R, β2R2(z0, 4R2)
∣∣∣ ≤ C3

?
Kβ1R, β2R2 (z0,4R2)

∣∣∣β2
1R2 f + + χE2

∣∣∣n+1

≤ C3

?
Kβ1R, β2R2 (z0,4R2)

∣∣∣β2
1R2 f +

∣∣∣nθ+1


n+1
nθ+1

+ C3
|E2|

n+1
nθ+1∣∣∣Kβ1R, β2R2(z0, 4R2)

∣∣∣ n+1
nθ+1

for θ := 1 + log2 cosh(4
√
κR0) ≥ 1, where a uniform constant C3 > 0 depending

only on η, n, λ,Λ and
√
κR0 may change from line to line. Therefore, Bishop-

Gromov’s Theorem 2.2.4 implies that

|E2|
n+1
nθ+1∣∣∣Kβ1R, β2R2(z0, 4R2)

∣∣∣ n+1
nθ+1

+

?
Kβ1R, β2R2 (z0,4R2)

∣∣∣β2
1R2 f +

∣∣∣nθ+1


n+1
nθ+1

≥
1

C3

|BR(z0)| · R2∣∣∣Kβ1R, β2R2(z0, 4R2)
∣∣∣

≥
1

C3

1
D

(
1
β1

)log2D 1
β2

=: 2µ
n+1
nθ+1
η

forD := 2n coshn−1(2
√
κR0). By selecting εη := µ

1
nθ+1
η , we conclude that

µη ≤

∣∣∣∣{u + vη ≤ Mη

}
∩ KηR(z0, 0)

∣∣∣∣∣∣∣Kβ1R, β2R2(z0, 4R2)
∣∣∣ ≤

∣∣∣∣{u ≤ M̃η

}
∩ KηR(z0, 0)

∣∣∣∣∣∣∣Kβ1R, β2R2(z0, 4R2)
∣∣∣

for M̃η := Mη + Cη depending only on η, n, λ,Λ and
√
κR0 since vη ≥ −Cη in

Kβ1R, β2R2(z0, 4R2) from Lemma 4.2.4. �

Therefore, we have the following Harnack inequality.

Theorem 4.2.6 (Harnack inequality). Assume that M has sectional curvature
bounded from below by −κ for κ ≥ 0, i.e., Sec ≥ −κ on M, and F satisfies (F1).
Let u be a nonnegative smooth function in K2R(x0, 4R2) ⊂ M × R. Then we have

sup
KR(x0,2R2)

u ≤ C

 inf
KR(x0,4R2)

u + R2
(?

K2R(x0,4R2)

∣∣∣F(D2u) − ∂tu
∣∣∣nθ+1

) 1
nθ+1

 ,
where θ := 1 + log2 cosh(8

√
κR) and C > 0 is a uniform constant depending only

on n, λ,Λ and
√
κR.
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Theorem 4.2.7 (Weak Harnack inequality). Assume that Sec ≥ −κ on M for κ ≥
0, and F satisfies (F1). Let u be a nonnegative function such that F(D2u)−∂tu ≤ f
in K2R(x0, 4R2). Then we have(?

KR(x0,2R2)
up

) 1
p

≤ C

 inf
KR(x0,4R2)

u + R2
(?

K2R(x0,4R2)
| f +|nθ+1

) 1
nθ+1

 ; f + := max( f , 0),

where θ := 1 + log2 cosh(8
√
κR), and the positive constants p ∈ (0, 1) and C are

uniform depending only on n, λ,Λ, and
√
κR.

Sketch of proof of Theorems 4.2.6 and 4.2.7
Theorems 4.2.6 and 4.2.7 follow from Proposition 4.2.5 and a standard cover-

ing argument using Bishop and Gromov’s Theorem 2.2.4. In fact, we follow Sec-
tion 4.1 to prove a decay estimate for the distribution function of a supersolution
u to F(D2u) − ∂tu = f in K2R(x0, 4R2) by using Proposition 4.2.5 and a parabolic
version of the Calderón-Zygmund decomposition Lemma 4.1.11. We note that M
has local doubling property Bishop and Gromov’s Theorem 2.2.4 since Sec ≥ −κ.
Then, the weak Harnack inequality in Theorem 4.2.7 easily follows. To complete
the proof of Theorem 4.2.6, we apply Proposition 4.2.5, and obtain the same decay
estimate for w := C1 −C2u (for C1,C2 > 0), which satisfies

M−(D2w) − ∂tw = −C2

{
M+(D2u) − ∂tu

}
≤ −C1

{
F(D2u) − ∂tu

}
= −C1 f .

�

4.3 Harnack inequality for viscosity solutions

4.3.1 Sup- and inf-convolution

In this subsection, we study the sup- and inf- convolutions introduced by Jensen[32]
(see also [13, Chapter 5]) to regularize continuous viscosity solutions. Let Ω ⊂ M
be a bounded open set, and let u be a continuous function on Ω × [T0,T2] for
T2 > T0. For ε > 0,we define the inf-convolution of u (with respect to Ω×(T0,T2]),
denoted by uε, as follows: for (x0, t0) ∈ Ω × [T0,T2],

uε(x0, t0) := inf
(y,s)∈Ω×[T0,T2]

{
u(y, s) +

1
2ε

{
d2(y, x0) + |s − t0|

2
}}
. (4.3.1)
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Lemma 4.3.1. For u ∈ C
(
Ω × [T0,T2]

)
, let uε be the inf-convolution of u with

respect to Ω × (T0,T2]. Let (x0, t0) ∈ Ω × [T0,T2].

(a) If 0 < ε < ε′, then uε′(x0, t0) ≤ uε(x0, t0) ≤ u(x0, t0).

(b) There exists (y0, s0) ∈ Ω×[T0,T2] such that uε(x0, t0) = u(y0, s0)+ 1
2ε

{
d2(y0, x0) + |s0 − t0|

2
}
.

(c) d2(y0, x0) + |s0 − t0|
2 ≤ 2ε|u(x0, t0) − u(y0, s0)| ≤ 4ε||u||L∞(Ω×(T0,T2]).

(d) uε ↑ u uniformly in Ω × [T0,T2].

(e) uε is Lipschitz continuous in Ω × [T0,T2]: for (x0, t0), (x1, t1) ∈ Ω × [T0,T2],

|uε(x0, t0) − uε(x1, t1)| ≤
3
2ε

diam(Ω)d(x0, x1) +
3
2ε

(T2 − T0)|t0 − t1|. (4.3.2)

Proof. From the definition of uε, (a) and (b) are obvious. From (a) and (b), it
follows that

1
2ε

{
d2(y0, x0) + |s0 − t0|

2
}

= uε(x0, t0) − u(y0, s0) ≤ u(x0, t0) − u(y0, s0),

proving (c). To show (d), we observe that

0 ≤ u(x0, t0) − uε(x0, t0) ≤ u(x0, t0) − u(y0, s0).

We use (c) and the uniform continuity of u on Ω × [T0,T2] to deduce that uε
converges to u uniformly on Ω × [T0,T2].

Now we prove (e). For (y, s) ∈ Ω × [T0,T2], we have

uε(x0, t0) ≤ u(y, s) +
1
2ε

{
d2(y, x0) + |s − t0|

2
}

≤ u(y, s) +
1
2ε

{
(d(y, x1) + d(x1, x0))2 + (|s − t1| + |t1 − t0|)2

}
= u(y, s) +

1
2ε

{
d2(y, x1) + d2(x0, x1) + 2d(y, x1)d(x0, x1) + (|s − t1| + |t0 − t1|)2

}
≤ u(y, s) +

1
2ε

{
d2(y, x1) + |s − t1|

2
}

+
3
2ε

diam(Ω)d(x0, x1) +
3
2ε

(T2 − T0)|t0 − t1|.

Taking the infimum of the right hand side, we conclude (4.3.2), that is, uε is Lips-
chitz continuous on Ω × [T0,T2]. �
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Now, we show the semi-concavity of the inf-convolution, and hence the inf-
convolution is twice differentiable almost everywhere in the sense of Aleksandrov
and Bangert’s Theorem 2.2.8.

Lemma 4.3.2. Assume that

Sec ≥ −κ on M, for κ ≥ 0

For u ∈ C
(
Ω × [T0,T2]

)
, let uε be the inf-convolution of u with respect to Ω ×

(T0,T2], where Ω ⊂ M is a bounded open set, and T0 < T2.

(a) uε is semi-concave in Ω × (T0,T2). Moreover, for almost every (x, t) ∈ Ω ×

(T0,T2), uε is differentiable at (x, t), and there exists the Hessian D2uε(x, t) (in
the sense of Aleksandrov-Bangert’s Theorem 2.2.8) such that

uε
(
expx ξ, t + σ

)
= uε(x, t)+〈∇uε(x, t), ξ〉+σ∂tuε(x, t)+

1
2

〈
D2uε(x, t) · ξ, ξ

〉
+o

(
|ξ|2 + |σ|

)
(4.3.3)

as (ξ, σ) ∈ TxM × R→ (0, 0).

(b) D2uε(x, t) ≤
1
ε

√
κ diam(Ω) coth

(√
κ diam(Ω)

)
gx a.e. in Ω × (T0,T2).

(c) Let H × (T1,T2] be a subset such that H × [T1,T2] ⊂ Ω × (T0,T2], where H is
open, and T0 < T1 < T2. Then, there exist a smooth function ϕ on M×(−∞,T2]
satisfying

0 ≤ ϕ ≤ 1 on M × (−∞,T2], ϕ ≡ 1 in H × [T1,T2] and suppϕ ⊂ Ω×(T0,T2],

and a sequence {wk}
∞
k=1 of smooth functions on M × (−∞,T2] such that

wk → ϕuε uniformly in M × (−∞,T2] as k → +∞,

|∇wk| + |∂twk| ≤ C in M × (−∞,T2],
∂twk → ∂tuε a.e. in H × (T1,T2) as k → +∞,

D2wk ≤ Cg in M × (−∞,T2],
D2wk → D2uε a.e. in H × (T1,T2) as k → +∞,

where the constant C > 0 is independent of k.
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Proof. To prove semi-concavity of uε in Ω× (T0,T2), we fix (x0, t0) ∈ Ω× (T0,T2),
and find (y0, s0) ∈ Ω × [T0,T2] satisfying

uε(x0, t0) = u(y0, s0) +
1
2ε

{
d2(y0, x0) + |s0 − t0|

2
}
.

For any ξ ∈ Tx0 M with |ξ| = 1, and for small r ∈ R, it follows from the definition
of the inf-convolution uε that

uε
(
expx0

rξ, t0 + r
)

+ uε
(
expx0

−rξ, t0 − r
)
− 2uε(x0, t0)

≤ u(y0, s0) +
1
2ε

{
d2

(
y0, expx0

rξ
)

+ |s0 − (t0 + r)|2
}

+ u(y0, s0) +
1
2ε

{
d2

(
y0, expx0

−rξ
)

+ |s0 − (t0 − r)|2
}
− 2uε(x0, t0)

≤
1
2ε

{
d2

y0

(
expx0

rξ
)

+ d2
y0

(
expx0

−rξ
)
− 2d2

y0
(x0)

}
+

1
ε

r2.

Then, we use Lemma 2.2.7 to obtain that for any ξ ∈ Tx0 M with |ξ| = 1,

lim sup
r→0

uε
(
expx0

rξ, t0 + r
)

+ uε
(
expx0

−rξ, t0 − r
)
− 2uε(x0, t0)

r2

≤ lim sup
r→0

1
2ε

d2
y0

(
expx0

rξ
)

+ d2
y0

(
expx0

−rξ
)
− 2d2

y0
(x0)

r2 +
1
ε

≤
1
ε

√
κdy0(x0) coth

(√
κdy0(x0)

)
+

1
ε

≤
1
ε

√
κ diam(Ω) coth

(√
κ diam(Ω)

)
+

1
ε
,

(4.3.4)

where we note that τ coth(τ) is nondecreasing with respect to τ ≥ 0. We recall
that uε is Lipschitz continuous on Ω × [T0,T2] according to Lemma 4.3.1. Since
(x0, t0) ∈ Ω × (T0,T2) is arbitrary, (4.3.4) and Lemma 2.2.6 imply that uε is semi-
concave on Ω × (T0,T2). Thus, uε admits the Hessian almost everywhere in Ω ×

(T0,T2) satisfying (4.3.3) from Aleksandrov and Bangert’s Theorem 2.2.8. The
upper bound of the Hessian in (b) follows from (4.3.3) and (4.3.4).

We use a standard mollification and a partition of unity to approximate ϕuε by
a sequence {wk}

∞
k=1 of smooth functions in (c), where a mollifier is supported in

(−δ, 0] with respect to time (for small δ > 0), not in (−δ, δ). By using Lipschitz
continuity of uε on Ω×[T0,T2] and semi-concavity on Ω×(T0,T2), it is not difficult
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to prove the properties of wk. For the details, we refer to the proof of Lemma 5.3
in [11]. �

Next, we shall prove that if u is a viscosity supersolution of the equation

F(D2u) − ∂tu = f in Ω × (T0,T2] ⊂ M × R,

then the inf-convolution uε is still a viscosity supersolution; see [18, Lemma A.5]
for the Euclidean case.

Proposition 4.3.3. Assume that

Sec ≥ −κ on M, for κ ≥ 0.

Let H and Ω be bounded open sets in M such that H ⊂ Ω, and T0 < T1 < T2. Let
u ∈ C

(
Ω × [T0,T2]

)
, and let ω denote a modulus of continuity of u on Ω×[T0,T2],

which is nondecreasing on (0,+∞) with ω(0+) = 0. For ε > 0, let uε be the inf-
convolution of u with respect to Ω × (T0,T2]. Then, there exists ε0 > 0 depending
only on ||u||L∞

(
Ω×[T0,T2]

),H,Ω,T0, and T1, such that if 0 < ε < ε0, then the following

statements hold: Let (x0, t0) ∈ H × [T1,T2], and let (y0, s0) ∈ Ω × [T0,T2] satisfy

uε(x0, t0) = u(y0, s0) +
1
2ε

{
d2(y0, x0) + |s0 − t0|

2
}
.

(a) We have that
(y0, s0) ∈ Ω × (T0,T2],

and there is a unique minimizing geodesic joining x0 to y0.

(b) If (p, ζ, A) ∈ P2,−uε(x0, t0), then we have

y0 = expx0
(−εζ), and s0 ∈ [t0 − εp,T2].

(c) If (p, ζ, A) ∈ P2,−uε(x0, t0), then we have(
p, Lx0,y0ζ, Lx0,y0 ◦ A − 2κ ω

(
2
√
ε ||u||L∞

(
Ω×[T0,T2]

)) gy0

)
∈ P2,−u(y0, s0),

where Lx0,y0 stands for the parallel transport along the unique minimizing
geodesic joining x0 to y0 = expx0

(−εζ).
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Proof. By recalling Lemma 4.3.1, (c), we see that

(y0, s0) ∈ B2
√

mε(x0) ×
([

t0 − 2
√

mε, t0 + 2
√

mε
]
∩ [T0,T2]

)
,

for m := ||u||L∞
(
Ω×[T0,T2]

). Since the distance between H and ∂Ω is positive, we
select ε0 > 0 so small that

2
√

mε0 < min
{

d(H, ∂Ω), T1 − T0

}
=: δ0,

where d(H, ∂Ω) means the distance between H and ∂Ω. For 0 < ε < ε0, we have
that

(y0, s0) ∈ Ω × (T0,T2]

since (x0, t0) ∈ H × [T1,T2]. We observe that

iΩ := inf
{

iM(x) : x ∈ Ω
}
> 0

since Ω is compact from Hopf- Rinow Theorem and the map x 7→ iM(x) is contin-
uous. Now, we select

ε0 :=
1

8||u||L∞
(
Ω×[T0,T2]

) min
{
δ2

0, i2
Ω

}
.

Then we have that for 0 < ε < ε0,

d2(x0, y0) ≤ 4ε||u||L∞
(
Ω×[T0,T2]

) < 4ε0||u||L∞
(
Ω×[T0,T2]

) < i2
Ω
,

and hence d(x0, y0) < iΩ ≤ min {iM(x0), iM(y0)} , which implies the uniqueness of
a minimizing geodesic joining x0 to y0. This finishes the proof of (a).

From (a), there exists a unique vector X ∈ Tx0 M such that

y0 = expx0
X, and |X| = d(x0, y0).

First, we claim that if (p, ζ, A) ∈ P2,−uε(x0, t0), then y0 = expx0
(−εζ), namely,

X = −εζ. Since (p, ζ, A) ∈ P2,−uε(x0, t0), we have that for any ξ ∈ Tx0 M with
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|ξ| = 1, small r ∈ R, σ ≤ 0 and for any (y, s) ∈ Ω × [T0,T2],

u(y, s) +
1
2ε

{
d2

(
y, expx0

rξ
)

+ |s − (t0 + σ)|2
}

≥ uε
(
expx0

rξ, t0 + σ
)

≥ uε(x0, t0) + r〈ζ, ξ〉 + σp +
r2〈A · ξ, ξ〉

2
+ o

(
r2 + |σ|

)
= u(y0, s0) +

1
2ε

{
d2(y0, x0) + |s0 − t0|

2
}

+ r〈ζ, ξ〉 + σp +
r2〈A · ξ, ξ〉

2
+ o

(
r2 + |σ|

)
.

(4.3.5)

When (y, s) = (y0, s0) and σ = 0 in (4.3.5), we see that for small r ≥ 0,

1
2ε
{d(y0, x0) + r}2 ≥

1
2ε

d2
(
y0, expx0

rξ
)

≥
1
2ε

d2(x0, y0) + r〈ζ, ξ〉 +
r2〈A · ξ, ξ〉

2
+ o

(
r2

)
,

and hence for small r ≥ 0,

rd(x0, y0) ≥ r 〈εζ, ξ〉 + O
(
r2

)
, ∀ξ ∈ Tx0 M with |ξ| = 1. (4.3.6)

If X = 0, (4.3.6) implies that 〈εζ, ξ〉 = 0 for all ξ ∈ Tx0 M. Thus we deduce that
ζ = 0 and y0 = expx0

0 = expx0
(−εζ).

Now, we assume that X , 0. If (y, s) = (y0, s0), σ = 0, and ξ = X/|X| =

X/d(x0, y0) in (4.3.5), then we have that for small r ≥ 0,

1
2ε
{d(x0, y0) − r}2 ≥

1
2ε

d2(x0, y0) + r 〈ζ, ξ〉 +
r2〈A · ξ, ξ〉

2
+ o

(
r2

)
and hence for small r ≥ 0,

− rd(x0, y0) ≥ r 〈εζ, X/|X|〉 + O
(
r2

)
. (4.3.7)

For small r ≥ 0, (4.3.6) and (4.3.7) imply that

〈−εζ, ξ〉 ≤ |X| = d(x0, y0), ∀ξ ∈ Tx0 M with |ξ| = 1,

and
〈−εζ, X/|X|〉 = |X| = d(x0, y0).
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Then, it follows that −εζ = X and hence y0 = expx0
X = expx0

(−εζ) for X , 0.
Thus we have proved that y0 = expx0

(−εζ).
When (y, s) = (y0, s0) and r = 0 in (4.3.5), we have that for small σ ≤ 0,

1
2ε
|s0 − t0 − σ|

2 ≥
1
2ε
|s0 − t0|

2 + σp + o(|σ|),

which implies that s0 ≥ t0 − εp. This proves (b).
To show (c), we recall that there is a unique minimizing geodesic joining x0

to y0, and (y0, s0) ∈ Ω × (T0,T2] according to (a). Using the parallel transport, we
rewrite (4.3.5) as follows: for any ν ∈ Ty0 M with |ν| = 1, and small r ∈ R, σ ≤ 0,
and for (y, s) ∈ Ω × [T0,T2],

u(y, s) ≥ u(y0, s0) + r
〈
ζ, Ly0,x0ν

〉
x0

+ σp +
r2

2

〈
A ·

(
Ly0,x0ν

)
, Ly0,x0ν

〉
x0

+
1
2ε

{
d2(y0, x0) − d2

(
y, expx0

rLy0,x0ν
)}

+
1
2ε

{
|s0 − t0|

2 − |s − t0 − σ|
2
}

+ o(r2 + |σ|).

By setting (y, s) :=
(
expy0

rν, s0 + σ
)

for small r ∈ R, σ ≤ 0, we claim that

u
(
expy0

rν, s0 + σ
)
≥ u(y0, s0) + r

〈
Lx0,y0ζ, ν

〉
y0

+ σp +
r2

2

〈(
Lx0,y0 ◦ A

)
· ν, ν

〉
y0

+
1
2ε

{
d2(y0, x0) − d2

(
expy0

rν, expx0
Ly0,x0rν

)}
+ o

(
r2 + |σ|

)
≥ u(y0, s0) + r

〈
Lx0,y0ζ, ν

〉
y0

+ σp +
r2

2

〈(
Lx0,y0 ◦ A

)
· ν, ν

〉
y0

−
1
2ε

r2κ d2(x0, y0) + o
(
r2 + |σ|

)
.

(4.3.8)

The first inequality is immediate from (2.2.1) and Definition 2.2.1. To prove the
second inequality in (4.3.8), we consider a unique minimizing geodesic

γ(t) := expx0
(−tεζ)

joining γ(0) = x0 to γ(1) = y0 = expx0
(−εζ). For a given ν ∈ Ty0 M with |ν| = 1,

define a variational field

ν(t) := Ly0,γ(t)ν ∈ Tγ(t)M
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along γ, where ν(0) = Ly0,x0ν, and ν(1) = ν. For small ε > 0, we define a variation
h : (−ε, ε) × [0, 1]→ M, of γ,

h(r, t) := expγ(t) rν(t).

The energy is defined as

E(r) :=
∫ 1

0

∣∣∣∣∣∂h
∂t

(r, t)
∣∣∣∣∣2 dt.

We use the second variation of energy formula (2.2.2) to obtain

E(r) = E(0) − r2
∫ 1

0
〈R (γ̇(t), ν(t)) γ̇(t), ν(t)〉 dt + o

(
r2

)
since γ is a unique minimizing geodesic, and ν(t) is parallel transported along γ.
Since |ν(t)| = |ν| = 1, and |γ̇(t)| = |γ̇(0)| = d(x0, y0) for t ∈ [0, 1], we have that

E(0) − E(r) = r2
∫ 1

0
〈R (γ̇(t), ν(t)) γ̇(t), ν(t)〉 dt + o

(
r2

)
= r2

∫ 1

0
Sec (γ̇(t), ν(t)) ·

(
|γ̇(t)|2 − 〈γ̇(t), ν(t)〉2

)
dt + o

(
r2

)
≥ −r2

∫ 1

0
κ
(
|γ̇(t)|2 − 〈γ̇(t), ν(t)〉2

)
dt + o

(
r2

)
≥ −r2κ |γ̇(0)|2 + o

(
r2

)
= −r2κ d2(x0, y0) + o

(
r2

)
.

Recalling that E(0) = d2(x0, y0), and

E(r) ≥ d2
(
expγ(0) rν(0), expγ(1) rν(1)

)
= d2

(
expx0

Ly0,x0rν, expy0
rν

)
,

we obtain

d2(x0, y0) − d2
(
expx0

Ly0,x0rν, expy0
rν

)
≥ E(0) − E(r)

≥ −r2κ d2(x0, y0) + o
(
r2

)
,

which proves the second inequality of (4.3.8).
Since d2(x0, y0)+ |t0− s0|

2 ≤ 4ε||u||L∞
(
Ω×[T0,T2]

) from Lemma 4.3.1, (c), it follows
that

d2(x0, y0) ≤ 2ε |u(x0, t0) − u(y0, s0)| ≤ 2εω
(
2
√
ε||u||L∞

(
Ω×[T0,T2]

)) , (4.3.9)
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where ω is a modulus of continuity of u on Ω× [T0,T2]. Therefore, we use (4.3.8)
and (4.3.9) to conclude that for any ν ∈ Ty0 M with |ν| = 1, and for small r ∈
R, σ ≤ 0,

u
(
expy0

rν, s0 + σ
)
≥ u(y0, s0) + r

〈
Lx0,y0ζ, ν

〉
y0

+ σp +
r2

2

〈(
Lx0,y0 ◦ A

)
· ν, ν

〉
y0

− r2κ ω
(
2
√
ε||u||L∞

(
Ω×[T0,T2]

)) + o
(
r2 + |σ|

)
.

Therefore, Lemma 2.2.9 implies(
p, Lx0,y0ζ, Lx0,y0 ◦ A − 2κ ω

(
2
√
ε||u||L∞

(
Ω×[T0,T2]

)) gy0

)
∈ P2,−u(y0, s0).

�

Now, we recall the intrinsic uniform continuity of the operator with respect
to x from [5], which is a natural extension of the Euclidean notion of uniform
continuity of the operator with respect to x.

Definition 4.3.1. The operator F : Sym T M → R is said to be intrinsically
uniformly continuous with respect to x if there exists a modulus of continuity
ωF : [0,+∞)→ [0,+∞) with ωF(0+) = 0 such that

F (S ) − F
(
Lx,y ◦ S

)
≤ ωF (d(x, y)) (F2)

for any S ∈ Sym T Mx, and x, y ∈ M with d(x, y) < min {iM(x), iM(y)} .

We may assume that ωF is nondecreasing on (0,+∞). Recall some examples
of the intrinsically uniformly continuous operator from [5].

Remark 4.3.4. (a) When M = Rn, we have Lx,y ◦ S ≡ S so (F2) holds.

(b) In general, we consider the operator F,which depends only on the eigenvalues
of S ∈ Sym T M, of the form :

F(S ) = G
(

eigenvalues of S
)

for some G. (4.3.10)

Since S and Lx,y ◦ S have the same eigenvalues, the operator F satisfies in-
trinsic uniform continuity with respect to x (with ωF ≡ 0). The trace and
determinant of S are typical examples of the operator satisfying (4.3.10).
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(c) Pucci’s extremal operatorsM± satisfy (4.3.10), (F2) and (F1).

Lemma 4.3.5. Under the same assumption as Proposition 4.3.3, we also assume
that F satisfies (F1) and (F2). For f ∈ C (Ω × (T0,T2]), let u ∈ C

(
Ω × [T0,T2]

)
be a viscosity supersolution of

F(D2u) − ∂tu = f in Ω × (T0,T2].

If 0 < ε < ε0, then the inf-convolution uε (with respect to Ω×(T0,T2]) is a viscosity
supersolution of

F(D2uε) − ∂tuε = fε on H × (T1,T2],

where ε0 > 0 is the constant as in Proposition 4.3.3, and

fε(x, t) := sup
B2
√

mε(x)×[t−2
√

mε,min{t+2
√

mε,T2}]
f + ωF

(
2
√

mε
)

+ 2nΛκ ω
(
2
√

mε
)

for m := ||u||L∞
(
Ω×[T0,T2]

). Moreover, we have

F(D2uε) − ∂tuε ≤ fε a.e. in H × (T1,T2).

Proof. Fix 0 < ε < ε0. Let ϕ ∈ C2,1 (H × (T1,T2]) be a function such that uε − ϕ
has a local minimum at (x0, t0) ∈ H× (T1,T2] in the parabolic sense. Then we have(

∂tϕ(x0, t0),∇ϕ(x0, t0),D2ϕ(x0, t0)
)
∈ P2,−uε(x0, t0).

We apply Proposition 4.3.3 to have that(
∂tϕ(x0, t0), Lx0,y0∇ϕ(x0, t0), Lx0,y0 ◦ D2ϕ(x0, t0) − 2κω

(
2
√

mε
)

gy0

)
∈ P2,−u(y0, s0)

for
y0 := expx0

(−ε∇ϕ(x0, t0)) ∈ B2
√

mε(x0) ⊂ Ω,

and some s0 ∈
[
t0 − 2

√
mε,min

{
t0 + 2

√
mε,T2

}]
⊂ (T0,T2]. Since u is a viscosity

supersolution in Ω × (T0,T2], we see that

f (y0, s0) ≥ F
(
Lx0,y0 ◦ D2ϕ(x0, t0) − 2κ ω

(
2
√

mε
)

gy0

)
− ∂tϕ(x0, t0)

≥ F
(
Lx0,y0 ◦ D2ϕ(x0, t0)

)
− nΛ · 2κ ω

(
2
√

mε
)
− ∂tϕ(x0, t0)

≥ F
(
D2ϕ(x0, t0)

)
− ωF (d(x0, y0)) − 2nΛκ ω

(
2
√

mε
)
− ∂tϕ(x0, t0)
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using the uniform ellipticity and intrinsic uniform continuity of F. Thus, we de-
duce that

F
(
D2ϕ(x0, t0)

)
− ∂tϕ(x0, t0) ≤ f (y0, s0) + ωF (d(x0, y0)) + 2nΛκ ω

(
2
√

mε
)

≤ fε(x0, t0).

Therefore, uε is a viscosity supersolution of F(D2uε) − ∂tuε = fε in H × (T1,T2].
According to Lemma 4.3.2, uε admits the Hessian almost everywhere in Ω ×

(T0,T2) satisfying (4.3.3). For almost every (x, t) ∈ Ω × (T0,T2), we use (4.3.3)
and Lemma 2.2.9 to deduce(

∂tuε(x, t), ∇uε(x, t), D2uε(x, t)
)
∈ P2,−uε(x, t) ∩ P2,+uε(x, t).

Therefore, we conclude that

F(D2uε) − ∂tuε ≤ fε a.e. in H × (T1,T2),

since uε is a viscosity supersolution in H × (T1,T2]. �

For a viscosity subsolution, we can obtain similar results to Lemmas 4.3.1,4.3.2,
4.3.5, and Proposition 4.3.3 using the sup-convolution:

uε(x0, t0) := sup
(y,s)∈Ω×[T0,T2]

{
u(y, s) −

1
2ε

{
d2(y, x0) + |s − t0|

2
}}

for (x0, t0) ∈ Ω × [T0,T2].

4.3.2 Proof of parabolic Harnack inequality

Now we shall prove Proposition 4.3.6 from a priori estimate in Section 4.2.

Proposition 4.3.6. Assume that

Sec ≥ −κ on M, for κ ≥ 0,

and that F satisfies (F1). Let 0 < η < 1 and Kα1R, α2R2(z0, 4R2) ⊂ KR0(x0, t0) ⊂
M × R. For f ∈ C

(
KR0(x0, t0)

)
, let u ∈ C

(
KR0(x0, t0)

)
be a viscosity supersolution

of
F(D2u) − ∂tu = f in Kα1R, α2R2(z0, 4R2),
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such that
u ≥ 0 in Kα1R, α2R2(z0, 4R2)\Kβ1R, β2R2(z0, 4R2),

and
inf

K2R(z0,4R2)
u ≤ 1.

Then, there exist uniform constants Mη > 1, 0 < µη < 1, and 0 < εη < 1 such that∣∣∣∣{u ≤ Mη

}
∩ KηR(z0, 0)

∣∣∣∣∣∣∣Kα1R, α2R2(z0, 4R2)
∣∣∣ ≥ µη,

provided ?
KR0 (x0,t0)

∣∣∣R2
0 f +

∣∣∣nθ+1
 1

nθ+1

≤ εη, (4.3.11)

where θ := 1 + log2 cosh(4
√
κR0), and Mη > 0, 0 < µη, εη < 1 depend only on

η, n, λ,Λ and
√
κR0.

Proof. It suffices to prove the proposition for F = M− from (F1) (or (F1’)). Set-
ting α̃1 := (α1 + β1)/2, and α̃2 := (α2 + β2)/2, we define

Ω × (T0,T2] := Kα̃1R, α̃2R2(z0, 4R2), and H × (T1,T2] := Kβ1R, β2R2(z0, 4R2).

We note that u and f belong to C
(
Ω × [T0,T2]

)
, and we denote by ω the modulus

of continuity of u on Ω × [T0,T2], which is nondecreasing with ω(0+) = 0.
For ε > 0, let uε be the inf-convolution of u with respect to Ω × (T0,T2] as in

(4.3.1). According to Lemma 4.3.5, there exists ε0 > 0 such that if 0 < ε < ε0,

then uε satisfies

M−(D2uε) − ∂tuε ≤ fε a.e. in Kβ1R, β2R2(z0, 4R2),

where fε is defined as follows: for (x, t) ∈ Kβ1R, β2R2(z0, 4R2),

fε(x, t) := sup
B2
√

mε(x)×[t−2
√

mε,min{t+2
√

mε,T2}]
f +2nΛκ ω

(
2
√

mε
)

; m := ||u||
L∞

(
Kα̃1R, α̃2R2 (z0,4R2)

),
and we recall thatM− is intrinsically uniformly continuous with respect to x with
ωM− ≡ 0. Using (2.2.5) and (4.3.11), we have that(>

Kβ1R, β2R2 (z0,4R2)

∣∣∣β2
1R2 f +

∣∣∣nθ+1
) 1

nθ+1
≤ 2

(
β2

β2
1

)− 1
nθ+1

(>
KR0 (x0,t0)

|R2
0 f +|nθ+1

) 1
nθ+1

≤ 2
(
β2

β2
1

)− 1
nθ+1

εη =: ε̃η,
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and hence for small ε > 0,(>
Kβ1R, β2R2 (z0,4R2)

∣∣∣∣β2
1R2

{
M−(D2uε) − ∂tuε

}+
∣∣∣∣nθ+1) 1

nθ+1

≤

(>
Kβ1R, β2R2 (z0,4R2)

∣∣∣β2
1R2 f +

ε

∣∣∣nθ+1
) 1

nθ+1

≤ 2ε̃η,
(4.3.12)

since fε converges uniformly to f in Kβ1R, β2R2(z0, 4R2). For a fixed δ > 0, we may
assume that for small ε > 0,

uε ≥ −δ in Kα̃1R, α̃2R2(z0, 4R2)\Kβ1R, β2R2(z0, 4R2),

and
inf

K2R(z0,4R2)
uε ≤ 1 + δ

since uε converges uniformly to u in Kα̃1R, α̃2R2(z0, 4R2) from Lemma 4.3.1.
Now, we fix a small ε > 0. According to Lemma 4.3.2, (c), there is a smooth

function ϕ on M × (−∞,T2] satisfying 0 ≤ ϕ ≤ 1 on M × (−∞,T2],

ϕ ≡ 1 in Kβ1R, β2R2(z0, 4R2), and suppϕ ⊂ Kα̃1R, α̃2R2(z0, 4R2),

and we find a sequence {wk}
∞
k=1 of smooth functions on M × (−∞,T2] satisfying

wk → ϕuε uniformly in M × (−∞,T2] as k → +∞,

|∇wk| + |∂twk| ≤ C in M × (−∞,T2],
∂twk → ∂tuε a.e. in Kβ1R, β2R2(z0, 4R2) as k → +∞,

D2wk ≤ Cg in M × (−∞,T2],
D2wk → D2uε a.e. in Kβ1R, β2R2(z0, 4R2) as k → +∞,

where the constant C > 0 is independent of k. For large k, we may assume that

wk ≥ −2δ in Kα1R, α2R2(z0, 4R2)\Kβ1R, β2R2(z0, 4R2), inf
K2R(z0,4R2)

wk + 2δ
1 + 4δ

≤ 1,

and ?
Kβ1R, β2R2 (z0,4R2)

∣∣∣∣β2
1R2

{
M−(D2wk) − ∂twk

}+
∣∣∣∣nθ+1


1

nθ+1

≤ 4ε̃η,

where we used the dominated convergence theorem to obtain the last estimate
from (4.3.12).
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Selecting εη > 0 small enough, we apply Proposition 4.2.5 to
wk + 2δ
1 + 4δ

(for
large k) to obtain ∣∣∣∣{wk + 2δ ≤ (1 + 4δ)Mη

}
∩ KηR(z0, 0)

∣∣∣∣∣∣∣Kβ1R, β2R2(z0, 4R2)
∣∣∣ ≥ µη.

By letting k → +∞, we have∣∣∣∣{uε + δ ≤ (1 + 4δ)Mη

}
∩ KηR(z0, 0)

∣∣∣∣∣∣∣Kβ1R, β2R2(z0, 4R2)
∣∣∣ ≥ µη.

Since uε converges uniformly to u in Kα̃1R, α̃2R2(z0, 4R2), we let ε → 0 and δ → 0,
and use Bishop-Gromov’s Theorem 2.2.4 to deduce that∣∣∣∣{u ≤ Mη

}
∩ KηR(z0, 0)

∣∣∣∣∣∣∣Kα1R, α2R2(z0, 4R2)
∣∣∣ ≥

1
D

(
β1

α1

)log2D β2

α2

∣∣∣∣{u ≤ Mη

}
∩ KηR(z0, 0)

∣∣∣∣∣∣∣Kβ1R, β2R2(z0, 4R2)
∣∣∣ ≥

1
D

(
β1

α1

)log2D β2

α2
µη > 0

forD := 2n coshn−1(4
√
κR0), which finishes the proof. �

Therefore, Harnack inequality is obtained according to Proposition 4.3.6.

Theorem 4.3.7 (Harnack inequality). Assume that M has sectional curvature
bounded from below by −κ for κ ≥ 0, i.e., Sec ≥ −κ on M, and F satisfies (F1). Let
f ∈ C

(
K2R(x0, 4R2)

)
. If u ∈ C

(
K2R(x0, 4R2)

)
is a nonnegative viscosity solution

of the equation F(D2u) − ∂tu = f in K2R(x0, 4R2), then we have

sup
KR(x0,2R2)

u ≤ C

 inf
KR(x0,4R2)

u + R2
(?

K2R(x0,4R2)
| f |nθ+1

) 1
nθ+1

 ,
where θ := 1 + log2 cosh(8

√
κR) and C > 0 is a uniform constant depending only

on n, λ,Λ and
√
κR.

Theorem 4.3.8 (Weak Harnack inequality). Assume that Sec ≥ −κ on M for
κ ≥ 0, and F satisfies (F1). Let f ∈ C

(
K2R(x0, 4R2)

)
. If u ∈ C

(
K2R(x0, 4R2)

)
is a nonnegative viscosity supersolution of the equation F(D2u) − ∂tu = f in
K2R(x0, 4R2), then we have(?

KR(x0,2R2)
up

) 1
p

≤ C

 inf
KR(x0,4R2)

u + R2
(?

K2R(x0,4R2)
| f +|nθ+1

) 1
nθ+1

 ; f + := max( f , 0),
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where θ := 1 + log2 cosh(8
√
κR), and the positive constants p ∈ (0, 1) and C are

uniform depending only on n, λ,Λ, and
√
κR.

Sketch of proof of Theorems 4.3.7 and 4.3.8
Proposition 4.3.6 and Bishop and Gromov’s Theorem 2.2.4 imply Theorems

4.3.7 and 4.3.8 following the proofs of Theorems 4.2.6 and 4.2.7. The main dif-
ference is the fact that u solves the parabolic equation in the viscosity sense so it
is necessary to mention that w := C1 −C2u (for C1,C2 > 0) satisfies

M−(D2w) − ∂tw = −C2

{
M+(D2u) − ∂tu

}
≤ −C1

{
F(D2u) − ∂tu

}
= −C1 f .

in the viscosity sense. �
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국문초록

이학위논문에서는비발산구조를갖는완전비선형포물방정식의해의

정칙이론과그응용에대하여연구하였다.
첫번째 장은 완전 비선형 고른 포물형 및 퇴화된 포물형 방정식의 해의

점근적 행동 양상에 대한 연구이다. 먼저, 포물 방정식의 정규화 된 해가
시간이 흐름에 따라 방정식과 관련된 완전 비선형 타원 작용소의 제 1 고
유함수로수렴함을증명하였다.또한볼록한영역에서오목한완전비선형
제차 작용소가 주어졌을때, 포물형 해의 초기 기하적 구조-특정한 오목성
(log-concavity, power concavity)-가보존되는것을보였다.위의수렴성을이
용하면제 1고유함수또한같은기하적구조를가짐을알수있다.
두번째 장에서는 완전 리만 다양체 위에서 완전 비선형 포물 방정식의

해를 다루었는데, 특히 정칙 이론의 초석이 되는 포물형 Harnack 부등식을
증명하였다.선형작용소에대해서는거리함수로정의된특정한조건을가
정하고정칙인해의대역적 Harnack부등식을얻었다.또단면곡률의하한
을가지는다양체에대해비선형작용소의국소적Harnack부등식을보였다.
마지막으로 Jensen의 sup- and inf-convolution을이용하여,연속해인 viscosity
해에대한 Harnack부등식을증명하였다.

주요어휘:완전비선형포물방정식,비선형타원형고유치문제,퇴화된포
물방정식, Harnack부등식, ABP추정
학번: 2007-20268
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