516 research outputs found

    Ionic mechanisms subserving mechanosensory transduction and neural integration in statocyst hair cells of Hermissenda

    Get PDF
    The neural processing of gravitational-produced sensory stimulation of statocyst hair cells in the nudibranch mollusk Hermissenda was studied. The goal in these studies was to understand how: gravireceptor neurons sense or transduce gravitational forces, gravitational stimulation is integrated so as to produce a graded receptor potential, and ultimately the generation of an action potential, and various neural adaptation phenomena which hair cells exhibit arise. The approach to these problems was primarily electrophysical

    Postsynaptic Ca2+, but not cumulative depolarization, is necessary for the induction of associative plasticity in Hermissenda

    Get PDF
    The neuronal modifications that underlie associative memory in Hermissenda have their origins in a synaptic interaction between the visual and vestibular systems, and can be mimicked by contiguous in vitro stimulation of these converging pathways. At the offset of vestibular stimulation (i.e., hair cell activity), the B photoreceptors are briefly released from synaptic inhibition resulting in a slight depolarization (2–4 mV). If contiguous pairings of light-induced depolarization and presynaptic vestibular activity occur in close temporal succession, this depolarization “accumulates” and has been hypothesized to culminate in a sustained rise in intracellular Ca2+ and a resultant Ca(2+)-mediated phosphorylation of K+ channels as well as an associated increase in input resistance. Here we demonstrate that this cumulative depolarization is neither necessary nor sufficient for the biophysical modifications of the B cell membrane indicative of memory formation. Consistent with several recent reports of one-trial learning in Hermissenda, one pairing of light with mechanical stimulation of the vestibular hair cells resulted in a rise in neuronal input resistance across the B cell membrane that was attenuated by a prepairing iontophoretic injection of the Ca2+ chelator EGTA (25 mM), indicating that this potentiation was Ca2+ dependent. However, the use of a single pairing negates the possibility of an accumulation of depolarization across trials. In a subsequent experiment, B photoreceptors underwent a cumulative depolarization, and a coincident rise in input resistance, during multiple pairings of light and hair cell stimulation. However, if the B photoreceptor was voltage clamped at its initial resting potential before and after each pairing, thus eliminating the cumulative depolarization, the rise in resistance not only persisted, but was enhanced. Moreover, if unpaired light presentations were followed by a current-induced depolarization (to mimic cumulative depolarization), no increase in input resistance was detected. To assess directly the effect of a cumulative depolarization on the voltage-dependent Ca2+ current, an analysis of the inward current on the B cell soma membrane was conducted. It was determined that (1) the inward current may undergo a partial inactivation during sustained depolarization, (2) the peak current was depressed during repetitive depolarizations, and (3) the peak current underwent a steady- state inactivation, such that it was reduced when elicited from holding potentials more positive than -60 mV. The analysis of this current suggests that pairings of light and presynaptic activity would reduce voltage-dependent Ca2+ influx when those pairings are conducted at depolarized membrane potentials, such as during cumulative depolarization

    Electrophysiological Organization of the Eye of Aplysia

    Get PDF
    The eye of Aplysia californica was studied by electrophysiological and histological methods. It has a central spheroidal lens which is surrounded by a retina composed of several thousand receptor cells which are replete with clear vesicles, pigmented support cells, neurons which contain secretory granules, and glial cells. The thin optic nerve that connects the eye to the cerebral ganglion gives a simple "on" response of synchronized action potentials. Tonic activity occurs in the optic nerve in the dark and is dependent on previous dark adaptation. Micropipette recordings indicate that the ERG is positive (relative to a bathelectrode) on the outer surface of the eye and negative in the region of the distal segments of the receptors. Intracellular recordings show that receptor cells have resting potentials of 40–50 mv and respond to illumination with graded potentials of up to 55 mv. Dark-adapted receptors exhibit discrete bumps on the graded response to brief light flashes. Other elements in the retina that do not give large graded responses fall into two classes. One class responds to illumination with action potentials that are in synchrony with the extracellularly recorded compound optic nerve potentials. The other class is tonically active and is depolarized or hyperpolarized and inhibited upon illumination. It is apparent that complex excitatory and lateral inhibitory interactions occur among the elements of the retina

    Investigating Serotonin Receptor Expression in Single Homologous Neurons Underlying Independently Evolved and Species-Specific Behaviors

    Get PDF
    Serotonin (5-HT) receptors modulate neuronal and synaptic properties, altering the functional output of neural circuits. Changing the functions of a neural circuit can alter behavior. Over evolutionary time, species differences in neuromodulation could allow for species-specific behaviors to evolve. To investigate this idea, this dissertation compared neuromodulatory receptor gene expression underlying species-specific swimming behaviors in sea slugs. The sea slug Tritonia diomedea (Mollusca, Gastropoda, Nudipleura, Nudibranchia), performs a rhythmic dorsal-ventral (DV) escape swim behavior. The behavior is controlled by a central pattern generator (CPG), composed of a small number of large, identifiable neurons. During swimming, 5-HT enhances the synaptic strength of a neuron in the swim CPG, called C2. In contrast, the nudibranch Hermissenda crassicornis does not swim in this manner. It has C2 homologues, and 5-HT is present, however, 5-HT does not modulate C2 synaptic strength. Pleurobranchaea californica, a Nudipleura species belonging to a sister clade of Nudibranchia, swims with DV flexions, although in this species swimming varies within individuals. 5-HT enhances Pleurobranchaea C2 homologue synaptic strength in swimming animals, only. Phylogenetic analysis showed that Tritonia and Pleurobranchaea independently evolved DV-swimming. Thus, there is a correlation between independently evolved swimming and serotonergic modulation of C2 homologues. It was hypothesized that 5-HT receptor differences in C2 neurons underlie species-specific swimming and modulation. To test this hypothesis, 5-HT receptor genes were identified in each species. A total of seven receptor subtypes, from five gene families, were found to be expressed in the brains of each species. Using single-cell quantitative PCR (qPCR), 5-HT receptor expression profiles were determined in C2 homologues. Genes known as 5-HT2a and 5-HT7 were expressed in C2 homologues from Tritonia and swimming Pleurobranchaea, only. Single-neuron transcriptome sequencing verified these results. The expression profiles of neuromodulatory receptor genes in single, homologous neurons correlated with species-specific swimming and modulation. The results illustrate how differences in neuromodulatory gene expression may alter the functional output of homologous neural structures, shedding light on a means by which neuromodulation can alter the brain to facilitate the evolution of species-specific behaviors. Evolution, Mollusc, Neuromodulation, Serotonin, Receptor, Behavior, Next-Generation Sequencing, Transcriptomic

    AA/12-Lipoxygenase Signaling Contributes to Inhibitory Learning in Hermissenda Type B Photoreceptors

    Get PDF
    Conditioned inhibition (CI) is a major category of associative learning that occurs when an organism learns that one stimulus predicts the absence of another. In addition to being important in its own right, CI is interesting because its occurrence implies that the organism has formed an association between stimuli that are non-coincident. In contrast to other categories of associative learning that are dependent upon temporal contiguity (pairings) of stimuli, the neurobiology of CI is virtually unexplored. We have previously described a simple form of CI learning in Hermissenda, whereby animals’ phototactic behavior is increased by repeated exposures to explicitly unpaired (EU) presentations of light and rotation. EU conditioning also produces characteristic reductions in the excitability and light response, and increases several somatic K+ currents in Type B photoreceptors. Type B photoreceptors are a major site of plasticity for classical conditioning in Hermissenda. Because arachidonic acid (AA) and/or its metabolites open diverse K+ channels in many cell types, we examined the potential contribution of AA to CI. Our results indicate that AA contributes to one of the major effects of EU-conditioning on Type B photoreceptors: decreases in light-evoked spike activity. We find that AA increases the transient (IA) somatic K+ current in Type B photoreceptors, further mimicking CI training. In addition, our results indicate that metabolism of AA by a 12-lipoxygenase enzyme is critical for these effects of AA, and further that 12-lipoxygenase metabolites are apparently generated during CI training

    A Comparative Analysis of the Neural Basis for Dorsal-Ventral Swimming in the Nudipleura

    Get PDF
    Despite having similar brains, related species can display divergent behaviors. Investigating the neural basis of such behavioral divergence can elucidate the neural mechanisms that allow behavioral change and identify neural mechanisms that influence the evolution of behavior. Fewer than three percent of Nudipleura (Mollusca, Opisthobranchia, Gastropoda) species have been documented to swim. However, Tritonia diomedea and Pleurobranchaea californica express analogous, independently evolved swim behaviors consisting of rhythmic, alternating dorsal and ventral flexions. The Tritonia and Pleurobranchaea swims are produced by central pattern generator (CPG) circuits containing homologous neurons named DSI and C2. Homologues of DSI have been identified throughout the Nudipleura, including in species that do not express a dorsal-ventral swim. It is unclear what neural mechanisms allow Tritonia and Pleurobranchaea to produce a rhythmic swim behavior using homologous neurons that are not rhythmic in the majority of Nudipleura species. Here, C2 homologues were also identified in species that do not express a dorsal-ventral swim. We found that certain electrophysiological properties of the DSI and C2 homologues were similar regardless of swim behavior. However, some synaptic connections differed in the non-dorsal-ventral swimming Hermissenda crassicornis compared to Tritonia and Pleurobranchaea. This suggests that particular CPG synaptic connections may play a role in dorsal-ventral swim expression. DSI modulates the strength of C2 synapses in Tritonia, and this serotonergic modulation appears to be necessary for Tritonia to swim. DSI modulation of C2 synapses was also found to be present in Pleurobranchaea. Moreover, serotonergic modulation was necessary for swimming in Pleurobranchaea. The extent of this neuromodulation also correlated with the swimming ability in individual Pleurobranchaea; as the modulatory effect increased, so too did the number of swim cycles produced. Conversely, DSI did not modulate the amplitude of C2 synapses in Hermissenda. This indicates that species differences in neuromodulation may account for the ability to produce a dorsal-ventral swim. The results indicate that differences in synaptic connections and neuromodulatory dynamics allow the expression of rhythmic swim behavior from homologous non-rhythmic components. Additionally, the results suggest that constraints on the nervous system may influence the neural mechanisms and behaviors that can evolve from homologous neural components

    Higher-order associative processing in Hermissenda suggests multiple sites of neuronal modulation.

    Get PDF
    Two important features of modern accounts of associative learning are (1) the capacity for contextual stimuli to serve as a signal for an unconditioned stimulus (US) and (2) the capacity for a previously conditioned (excitatory) stimulus to block learning about a redundant stimulus when both stimuli serve as a signal for the same US. Here, we examined the process of blocking, thought by some to reflect a cognitive aspect of classical conditioning, and its underlying mechanisms in the marine mollusc Hermissenda. In two behavioral experiments, a context defined by chemosensory stimuli was made excitatory by presenting unsignalled USs (rotation) in that context. The excitatory context subsequently blocked overt learning about a discrete conditioned stimulus (CS; light) paired with the US in that context. In a third experiment, the excitability of the B photoreceptors in the Hermissenda eye, which typically increases following light-rotation pairings, was examined in behaviorally blocked animals, as well as in animals that had acquired a normal CS-US association or animals that had been exposed to the CS and US unpaired. Both the behaviorally blocked and the normal learning groups exhibited increases in neuronal excitability relative to unpaired animals. However, light-induced multiunit activity in pedal nerves was suppressed following normal conditioning but not in blocked or unpaired control animals, suggesting that the expression of blocking is mediated by neuronal modifications not directly reflected in B-cell excitability, possibly within an extensive network of central light-responsive interneurons

    Ubiquitous molecular substrates for associative learning and activity-dependent neuronal facilitation.

    Get PDF
    Recent evidence suggests that many of the molecular cascades and substrates that contribute to learning-related forms of neuronal plasticity may be conserved across ostensibly disparate model systems. Notably, the facilitation of neuronal excitability and synaptic transmission that contribute to associative learning in Aplysia and Hermissenda, as well as associative LTP in hippocampal CA1 cells, all require (or are enhanced by) the convergence of a transient elevation in intracellular Ca2+ with transmitter binding to metabotropic cell-surface receptors. This temporal convergence of Ca2+ and G-protein-stimulated second-messenger cascades synergistically stimulates several classes of serine/threonine protein kinases, which in turn modulate receptor function or cell excitability through the phosphorylation of ion channels. We present a summary of the biophysical and molecular constituents of neuronal and synaptic facilitation in each of these three model systems. Although specific components of the underlying molecular cascades differ across these three systems, fundamental aspects of these cascades are widely conserved, leading to the conclusion that the conceptual semblance of these superficially disparate systems is far greater than is generally acknowledged. We suggest that the elucidation of mechanistic similarities between different systems will ultimately fulfill the goal of the model systems approach, that is, the description of critical and ubiquitous features of neuronal and synaptic events that contribute to memory induction

    Looking at the nudibranch family myrrhinidae (Gastropoda, heterobranchia) from a mitochondrial ‘2d folding structure’ point of view

    Get PDF
    Integrative taxonomy is an evolving field of multidisciplinary studies often utilised to elucidate phylogenetic reconstructions that were poorly understood in the past. The systematics of many taxa have been resolved by combining data from different research approaches, i.e., molecular, ecological, behavioural, morphological and chemical. Regarding molecular analysis, there is currently a search for new genetic markers that could be diagnostic at different taxonomic levels and that can be added to the canonical ones. In marine Heterobranchia, the most widely used mitochondrial markers, COI and 16S, are usually analysed by comparing the primary sequence. The 16S rRNA molecule can be folded into a 2D secondary structure that has been poorly exploited in the past study of heterobranchs, despite 2D molecular analyses being sources of possible diagnostic characters. Comparison of the results from the phylogenetic analyses of a concatenated (the nuclear H3 and the mitochondrial COI and 16S markers) dataset (including 30 species belonging to eight accepted genera) and from the 2D folding structure analyses of the 16S rRNA from the type species of the genera investigated demonstrated the diagnostic power of this RNA molecule to reveal the systematics of four genera belonging to the family Myrrhinidae (Gastropoda, Heterobranchia). The “molecular morphological” approach to the 16S rRNA revealed to be a powerful tool to delimit at both species and genus taxonomic levels and to be a useful way of recovering information that is usually lost in phylogenetic analyses. While the validity of the genera Godiva, Hermissenda and Phyllodesmium are confirmed, a new genus is necessary and introduced for Dondice banyulensis, Nemesis gen. nov. and the monospecific genus Nanuca is here synonymised with Dondice, with Nanuca sebastiani transferred into Dondice as Dondice sebastiani comb. nov

    Bryostatin enhancement of memory in Hermissenda

    Get PDF
    Author Posting. © Marine Biological Laboratory, 2006. This article is posted here by permission of Marine Biological Laboratory for personal use, not for redistribution. The definitive version was published in Biological Bulletin 210 (2006): 201-214.Bryostatin, a potent agonist of protein kinase C (PKC), when administered to Hermissenda was found to affect acquisition of an associative learning paradigm. Low bryostatin concentrations (0.1 to 0.5 ng/ml) enhanced memory acquisition, while concentrations higher than 1.0 ng/ml down-regulated the pathway and no recall of the associative training was exhibited. The extent of enhancement depended upon the conditioning regime used and the memory stage normally fostered by that regime. The effects of two training events (TEs) with paired conditioned and unconditioned stimuli, which standardly evoked only short-term memory (STM) lasting 7 min, were—when bryostatin was added concurrently—enhanced to a long-term memory (LTM) that lasted about 20 h. The effects of both 4- and 6-paired TEs (which by themselves did not generate LTM), were also enhanced by bryostatin to induce a consolidated memory (CM) that lasted at least 5 days. The standard positive 9-TE regime typically produced a CM lasting at least 6 days. Low concentrations of bryostatin (<0.5 ng/ml) elicited no demonstrable enhancement of CM from 9-TEs. However, animals exposed to bryostatin concentrations higher than 1.0 ng/ml exhibited no behavioral learning. Sharp-electrode intracellular recordings of type-B photoreceptors in the eyes from animals conditioned in vivo with bryostatin revealed changes in input resistance and an enhanced long-lasting depolarization (LLD) in response to light. Likewise, quantitative immunocytochemical measurements using an antibody specific for the PKC-activated Ca2+/GTP-binding protein calexcitin showed enhanced antibody labeling with bryostatin. Animals exposed to the PKC inhibitor bisindolylmaleimide-XI (Ro-32-0432) administered by immersion prior to 9-TE conditioning showed no training-induced changes with or without bryostatin exposure. However, if animals received bryostatin before Ro-32, the enhanced acquisition and demonstrated recall still occurred. Therefore, pathways responsible for the enhancement effects induced by bryostatin were putatively mediated by PKC. Overall, the data indicated that PKC activation occurred and calexcitin levels were raised during the acquisition phases of associative conditioning and memory initiation, and subsequently returned to baseline levels within 24 and 48 h, respectively. Therefore, the protracted recall measured by the testing regime used was probably due to bryostatin-induced changes during the acquisition and facilitated storage of memory, and not necessarily to enhanced recall of the stored memory when tested many days after training.AMK and HTE acknowledge the support of the Marine Biological Laboratory and Blanchette Rockefeller Neurosciences Institutes for these initial studies
    corecore