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ABSTRACT 

Serotonin (5-HT) receptors modulate neuronal and synaptic properties, altering 

the functional output of neural circuits. Changing the functions of a neural circuit can 

alter behavior. Over evolutionary time, species differences in neuromodulation could 

allow for species-specific behaviors to evolve. To investigate this idea, this dissertation 

compared neuromodulatory receptor gene expression underlying species-specific 

swimming behaviors in sea slugs.  

The sea slug Tritonia diomedea (Mollusca, Gastropoda, Nudipleura, 

Nudibranchia), performs a rhythmic dorsal-ventral (DV) escape swim behavior. The 

behavior is controlled by a central pattern generator (CPG), composed of a small number 



of large, identifiable neurons. During swimming, 5-HT enhances the synaptic strength of 

a neuron in the swim CPG, called C2. In contrast, the nudibranch Hermissenda 

crassicornis does not swim in this manner. It has C2 homologues, and 5-HT is present, 

however, 5-HT does not modulate C2 synaptic strength. Pleurobranchaea californica, a 

Nudipleura species belonging to a sister clade of Nudibranchia, swims with DV flexions, 

although in this species swimming varies within individuals. 5-HT enhances 

Pleurobranchaea C2 homologue synaptic strength in swimming animals, only. 

Phylogenetic analysis showed that Tritonia and Pleurobranchaea independently evolved 

DV-swimming. Thus, there is a correlation between independently evolved swimming 

and serotonergic modulation of C2 homologues. It was hypothesized that 5-HT receptor 

differences in C2 neurons underlie species-specific swimming and modulation. 

To test this hypothesis, 5-HT receptor genes were identified in each species. A total 

of seven receptor subtypes, from five gene families, were found to be expressed in the 

brains of each species. Using single-cell quantitative PCR (qPCR), 5-HT receptor 

expression profiles were determined in C2 homologues. Genes known as 5-HT2a and 5-

HT7 were expressed in C2 homologues from Tritonia and swimming Pleurobranchaea, 

only. Single-neuron transcriptome sequencing verified these results. The expression 

profiles of neuromodulatory receptor genes in single, homologous neurons correlated 

with species-specific swimming and modulation. The results illustrate how differences in 

neuromodulatory gene expression may alter the functional output of homologous neural 

structures, shedding light on a means by which neuromodulation can alter the brain to 

facilitate the evolution of species-specific behaviors. 

INDEX WORDS: Evolution, Mollusc, Neuromodulation, Serotonin, Receptor, Behavior, 

Next-Generation Sequencing, Transcriptomics 
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1  INTRODUCTION  

1.1 General Introduction 

Animal behaviors evolve through species differences in the nervous system. The 

nervous system is evolutionarily constrained in many ways, however, so that large-scale 

anatomical or functional changes happen rarely (Striedter 2005). The evolutionary 

changes that more commonly shape behaviors must therefore be more subtle. One way 

that such subtle changes can occur is through species-specific functional changes to 

existing neural structures. Functional changes can occur through the actions of 

neuromodulators, such as serotonin (5-HT). Neuromodulators are chemicals that can 

change neuronal physiological properties or responses. Neuromodulation can therefore 

change the function of a neural circuit by modifying its component neurons, and thus 

alter the behavior output of that circuit. Thus, evolutionary changes in the 

neuromodulatory properties of neural circuit components could result in species 

differences in behavior (Katz and Harris-Warrick 1999). 

My dissertation hypothesizes that species differences in neuromodulatory 

receptors expressed by identified, homologous single neurons underlie species-specific 

behaviors. It also examines whether similar, independently evolved behaviors involve 

parallel neuromodulatory gene expression at the level of single cells. I examined these 

hypotheses in three species of sea slugs, two of which use serotonergic neuromodulation 

in species-specific swimming behaviors. Comparing neuromodulatory gene expression 

within homologous neural circuit components can help explain how behaviors evolved 

among closely related species, as well as general neural mechanisms of behaviors across 

species. Information from my work can help us better understand how evolution shaped 

the brain to create the diversity of animals and behaviors we see today. 
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1.2 Identifiable and Homologous Neurons 

Identifying and classifying neurons has been an important part of neuroscience 

for over a century. What are now considered classical methods of neuron identification 

formed Ramon y Cajal’s “Neuron Doctrine,” which first stated that neurons are discrete 

and identifiable cells (López-Muñoz et al. 2006; Ramon Y Cajal 1894). The identification 

of individual neurons has allowed researchers to connect synapses and track groups of 

neurons that connect to one another to form circuits, providing vital tools for the study of 

the neural basis of behavior, neural development, and neurological disease. Over the past 

50 years, identified neurons have been especially important in examining neural circuits 

controlling behaviors in invertebrates.  

Neurons can be reliably classified based on several characteristics. Traditionally, 

characterizations of neurons have been done using morphology and anatomical location, 

but more recently neurons have been classified by studies of single gene expression, 

synaptic properties, physiology, and the neurotransmitters they release (Bullock 2000; 

Hudson et al. 2010). In the past few years, single neuron transcriptome profiles have been 

used as an additional tool to identify neuronal subpopulations via large-scale gene 

expression comparisons (Cadwell et al. 2016; Crocker et al. 2016; Fuzik et al. 2016; Gokce 

et al. 2016; Lake et al. 2016; Usoskin et al. 2015; Zeisel et al. 2015).  

Identifying and characterizing neuron types and their synapses has allowed 

scientists to pinpoint synaptic chains of neurons within the brain, and thereby create 

maps of neural circuits controlling behaviors (Hudson et al. 2010). Although advances in 

technology have made neural circuit identification easier for researchers studying 

mammals, the dense and intricate connectivity of the vertebrate brain makes identifying 

neurons and their connectivity difficult in vertebrate species.  
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For this reason, invertebrate identified neurons have been popular in studies 

involving neural circuits controlling behaviors. Because brains of many invertebrate 

species are relatively small, behaviors are often controlled by a small number of distinct 

neurons. This fact has allowed researchers to characterize entire neural circuits 

controlling several behaviors. Some examples are the Tritonia diomedea swim motor 

pattern circuit (Dorsett et al. 1969; Hume et al. 1982; Katz 1998; Katz and Frost 1995a; 

Katz and Frost 1995b; Katz et al. 1994; Willows and Hoyle 1969), the gill withdrawal reflex 

circuit in Aplysia californica (Carew and Kandel 1973; Castellucci et al. 1970; 

Kupfermann et al. 1971; Leonard and Edstrom 2004), the gastric mill and pyloric circuits 

in crustaceans (Mulloney and Selverston 1974; Selverston et al. 2009), or neural-

controlled heartbeat in leeches (Calabrese et al. 2016; Calabrese and Peterson 1983; 

Maranto and Calabrese 1984; Shafer and Calabrese 1981). 

While identifying neurons in the brains of individuals within a species has been 

useful, evolutionary neuroscientists have gone a step beyond, finding that individual 

neurons can sometimes be identified across species as well (Bullock 2000; Croll 1987b). 

These neurons are homologous, that is, they are found in the brains of related species, 

share common characteristics, and are predicted to have been present in the common 

ancestor of those species.  

Homologous neurons have been defined by comparing across species, examining 

characteristics such as anatomical location, developmental origin, morphology, and 

biochemical and genetic makeup. For example, the Mauthner cells are a large pair of 

neurons found across species of teleost fish. They are located in the hindbrain, connected 

by gap junctions to other cells, and contain an axon cap formed by glia which help conduct 

electrical signals (Korn and Faber 2005). They control the fish C-start escape reflex, which 
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helps fish to quickly evade a predator or other potential danger. Those characteristics 

have been conserved across almost all teleost species, as well as some amphibians, likely 

because the morphological characteristics of the neurons allow for an extremely fast 

response, an important tool for survival (Zottoli 1978). In another example, researchers 

identified a set of three serotonergic homologous cells present across all lophotrochozoan 

larvae, which during development innervate the prototroch (Hay-Schmidt 2000). A large 

neuron found in the cerebral ganglia of sea slugs, called C1, is believed to be homologous 

within gastropod molluscs; it is serotonergic and is involved in feeding across species 

(Croll 1987a; Malyshev and Balaban 2011; Weiss and Kupfermann 1976). 

Homologous neurons are not necessarily functionally analogous, because function 

can diverge over evolutionary time. Functional differences can be compared across 

species by examining different aspects of the neural circuitry. For example, synaptic 

differences in homologous mechanosensory neurons known as P-cells correlate with 

species differences in body movements of two leech species, Hirudo verbana and 

Erpobdella obscura  (Baltzley et al. 2010). The modulatory proctolin neurons (MPNs) in 

the crab, Cancer borealis (Nusbaum and Marder 1989a; Nusbaum and Marder 1989b) 

and the GABA neurons 1 and 2 (GN1/2) in the lobster Homarus gammarus (Cournil et 

al. 1990) are homologous neurons with differing peptidergic signals that produce opposite 

effects on the species-specific gastric mill rhythm (Meyrand et al. 2000).  

A group of three homologous neurons known as the Dorsal Swim Interneurons 

(DSIs) has been studied in several species of gastropod molluscs. Across species, they are 

serotonergic, and cluster bilaterally in the cerebral ganglia. They function in relation to 

movement, although different species use the neurons in species-specific ways, and in 

some species the DSIs have been identified as having a multifunctional role (Newcomb 
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and Katz 2009). In the anaspid sea slug, Aplysia californica, the DSI homologues are 

known as the Posterior Cell Cluster (PCC), and function to increase the strength of the 

central pattern generator controlling muscular wave crawling (Jing et al. 2008; Katz et al. 

2001). DSI homologues, known as CPTs, in the nudibranch Hermissenda crassicornis act 

to cause foot retraction, but do not contribute to crawling (Tian et al. 2006). In the 

nudibranch, Tritonia diomedea, DSI neurons activate ciliary crawling (Popescu and Frost 

2002) and swimming (Getting 1981; Getting et al. 1980; Katz and Frost 1995a; Katz and 

Frost 1995b; Katz et al. 1994). In the more distantly related Nudipleura species 

Pleurobranchaea californica, the DSI homologues were found to have similar functions 

(Jing and Gillette 2000; Lillvis and Katz 2013; Newcomb et al. 2012). In 

Pleurobranchaea, the DSIs have also been characterized as facilitating directional 

avoidance (Jing and Gillette 2003), feeding, and arousal (Jing and Gillette 2000). The sea 

slugs Clione limacina and Melibe leonina both swim, although Clione swims by flapping 

parapodial wings, and Melibe swims by moving its body laterally. Clione swimming is 

controlled in part by DSI homologue CR-SP activation, which mediates wing flapping 

strength (Satterlie and Norekian 1995). In Melibe, the DSI homologues activate 

swimming (Newcomb and Katz 2009). Thus, these species have homologous neurons in 

their brains, but those neurons control species-specific locomotive behaviors. This likely 

occurs because of small species-specific differences in the synaptic wiring of the circuits 

of which the DSIs are a part. 

The cases of the leech P-cells, the crustacean projection neurons, and the 

molluscan DSI neurons mentioned above are examples of homologous neurons that share 

some characteristics, like morphology and anatomical position, but differ in their 

function. The differences are likely due to subtle physical variations between the 
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homologues, like synaptic connectivity and modulatory inputs, and through evolutionary 

adaptations in gene expression between species, for example species differences in ion 

channel or neurotransmitter receptor gene expression between homologues (Clark et al. 

2008; Grashow et al. 2010; Hamood and Marder 2014; Marder et al. 2014). The 

observation that functional differences occur between identified, homologous neurons 

has advanced a more modern view than that of the time of Ramon y Cajal’s “Neuron 

Doctrine,” that although neurons are discrete, identifiable cells within the nervous 

system, their connections and genetic identity allow them to be flexible in their functional 

output, within and between species (Bullock et al. 2005). 

 

1.3 Species Differences in Neural Circuits Underlying Species-Specific 

Behaviors 

Behaviors are controlled by groups of neurons that synapse together to form 

circuits. Because those circuits can be made up of homologous neurons, some researchers 

have postulated that neural circuits are conserved, and from that idea they reasoned that 

the behaviors those circuits control may also be well conserved (Tierney 1995). However, 

others have proposed that small changes within a circuit can result in dramatically 

different behaviors (Katz and Harris-Warrick 1999), opposing Tierney’s theory. Evidence 

against Tierney’s theory can be observed in closely related species that exhibit different 

behaviors, which are reflective of differences at the levels of sensory, motor, and 

interneurons in the nervous system.  

Between species, changes in sensory neuron circuit organization have evolved to 

reflect changing sensory structures and ecological habitats. An example of this is found in 

the insectivores, namely within a clade comprising hedgehogs, moles, and some shrews 
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(Stanhope et al. 1998). Hedgehogs use a combination of visual, auditory, and 

somatosensory cues to hunt, while moles and shrews do not rely heavily on vision, and 

moles have evolved a specialized Eimer’s organ to detect prey underground (Catania 

2005; Catania and Remple 2005). In each species, studies of neuromorphology and 

electrophysiological recordings have revealed somatosensory cortical organization that is 

specialized to reflect these disparate modes of sensing (Catania 2005; Catania et al. 2000; 

Catania and Kaas 2001). These species differences in sensory neuron circuitry reflect the 

role of evolution in shaping neural mechanisms underlying species-specific behaviors.  

Motor circuits containing homologous neurons also show species differences. 

Hexapods, decapod crustaceans, and scorpions use inhibitory motor neurons as part of 

their neural circuits for walking, which are believed to be homologous (Harzsch et al. 

2005; Wiersma 1941; Wolf and Harzsch 2002b). However, scorpion legs have up to twelve 

inhibitory motor neurons per legs, whereas hexapods and decapods have only one or two 

(Wolf and Harzsch 2002a; Wolf and Harzsch 2002b). Comparing across these three 

species, the number of inhibitory motor neurons was found to positively correlate with 

leg size, indicating that homologous motor neurons changed in number as leg size evolved 

(Wolf 2014). 

Comparisons of homologous interneurons in molluscs have also yielded species 

differences at the level of neural circuits. In gastropod sea slugs, different forms of 

swimming have been described at the level of the individual homologous neurons that 

control the behaviors. One form, which is only found among the nudibranchs, is left-right 

(LR) swimming, in which animals move their body laterally to propel themselves through 

the water. LR swimming appears to have evolved in several nudibranch lineages 

(Goodheart et al. 2015; Newcomb et al. 2012). However, comparisons of the swim neural 



13 

circuits in two LR-swimming species, Melibe leonina and Dendronotus iris, have shown 

that different species use different sets of interneurons in their swim neural circuits. Swim 

Interneuron 1 and 2 (Si1 and Si2) comprise part of the central pattern generator (CPG) 

controlling swimming in Melibe, while another neuron called Si3 is not involved in 

swimming.  In contrast, Dendronotus Si2 and Si3 homologues are parts of its swim CPG 

(Sakurai and Katz 2016), while Si1 homologues are not involved in the swim motor 

pattern (Sakurai et al. 2011). One caveat to this research is that whether the Si2s are 

homologous between these two species is unclear, however (Sakurai and Katz 2016). 

Regardless, the two species have evolved to produce the same behavior, but use disparate 

homologous neurons as part of their swim neural circuits. 

 

1.4 Neuromodulatory Mechanisms Underlying Species Differences in 

Behavior 

While individual neurons can be conserved across species, changes in their 

functions over evolutionary time result in species-specific behaviors (Katz and Harris-

Warrick 1999). These evolutionary changes are reflective of the nervous system’s 

flexibility. This flexibility is produced through the actions of substances released by 

neurons, called neuromodulators.  

Major neuromodulators in vertebrates and invertebrates include biogenic amines, 

like 5-HT, dopamine, octopamine, histamine, adrenaline/epinephrine, and 

noradrenaline/norepinephrine, as well as acetylcholine, some neuropeptides, and the 

gaseous transmitter nitric oxide (NO). Neuromodulators often act as “volume 

transmitters,” meaning that they are released to diffuse to several different neurons. 

Neuromodulatory chemicals change the properties of a neuron or synapse by activating 
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corresponding receptors in post-synaptic neurons, which in turn cause second messenger 

activation and downstream signaling changes within the cell. These effects change the 

post-synaptic neuron output, and its role within a neural circuit, altering the behavioral 

output of that circuit (Kupfermann 1979). Within an individual animal, small variations 

in properties related to neuromodulatory transmitter release or receptor activation could 

result in behavior modification. Species differences in these properties over evolutionary 

time are one way that species-specific behaviors can evolve (Katz and Harris-Warrick 

1999). 

Neuromodulators have been implicated in several comparisons of species-specific 

behaviors. In genomic comparisons of two baboon species, dopamine-related gene 

differences correlated with species differences in social behaviors and aggression (Bergey 

et al. 2016). NO-synthase (NOS) is used as a neuromodulator in a variety of species-

specific behaviors in sea slugs, like feeding in Pleurobranchaea (Hatcher et al. 2006; 

Korneev et al. 1998), the gill-withdrawal reflex in Aplysia (Antonov et al. 2007; Newcomb 

et al. 2012), and metamorphosis in the nudibranch Phestilla sibogae Bergh (Bishop et al. 

2008). Distinct arginine-vasotocin and 5-HT neuromodulatory activity controls species-

specific aggression in homologous brain regions of two species of electric fish (Silva et al. 

2013).  

Another series of experiments showed a causal relationship between species-

specific modulation and pair bonding in rodents. Larry Young and other researchers 

showed that monogamous prairie voles and non-monogamous montane voles differed in 

expression of neuromodulatory vasopressin receptor subtype V1A in the ventral forebrain 

(Hammock and Young 2002; Young et al. 1999). They went on to show that upregulation 

of that receptor could cause the non-monogamous montane to behave like the 
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monogamous prairie voles (Lim et al. 2004), meaning that changes in expression of a 

single neuromodulatory gene resulted in species differences in behavior. 

 

1.5 Neural and Genetic Comparisons of Species with Similar, 

Independently Evolved Behaviors 

Analogous behaviors, like analogous anatomical structures, can evolve 

independently in disparate species (Darwin 1859; Johnson et al. 2010; Katz 2011; York 

and Fernald 2017). That is, two different species may evolve to behave in the same way. 

Some examples include independently evolved courtship songs in frogs (Leininger and 

Kelley 2015; Tobias et al. 2011) and knuckle-walking in arboreal and terrestrial primates 

(Kivell and Schmitt 2009). Eusociality has evolved independently between bee species 

(Michener 1974), across insects (Nowak et al. 2010; Wilson 1971; Wilson and Holldobler 

2005), and twice in mole rats (Burland et al. 2002; Faulkes et al. 1994; Jarvis 1981). Such 

behaviors could have evolved through convergent or parallel means (Striedter and 

Northcutt 1991). In “Origin of Species,” Darwin described independent evolution as being 

like “two men [who] have sometimes independently hit on the very same invention” 

(Darwin 1859). 

Homologous neural or genetic mechanisms have been identified in several 

examples of independently evolved behaviors. Bats and cetaceans both use sonar, and 

both exhibit similar mutations in a protein called prestin, which was implicated in 

amplifying high-frequency sound (Liu et al. 2010). Neural connections and the genes that 

mediate their development are similar in vocal learning-related brain areas among 

songbird, parrot, and hummingbird species with independently evolved vocal learning 
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behaviors (Wang et al. 2015). In these examples, homoplasious behaviors were produced 

in different species using homologous neurons and genes. 

On the other hand, there are examples of analogous behaviors that evolved with 

different underlying mechanisms. Weakly electric fish species use electric pulses to 

communicate. When their electric organs and skeletal muscles were examined, a sodium 

channel normally expressed in the muscle of non-electric fish was found to be expressed 

only in the electric organs of electric species. This expression was found in two distinct 

lineages of electric fish, the African mormyrids and the South American gymnotiforms, 

which evolved electric signaling independently. When the amino-acid structures of the 

sodium channel genes were examined in each species, the gymnotiform and mormyrid 

gene orthologues were found to have different functional changes: in the gymnotiforms, 

the sodium channel amino acid residues forming the “ball” of the inactivation loop were 

mutated, while in the mormyrids, the amino acid motif making up the receptor site for 

the inactivation loop was mutated (Zakon et al. 2006). Thus, evolution produced the same 

behaviors, using parallel evolution of neural components but with different, convergent 

protein functions.  

Cephalopods, insects, and mammals are three taxa that are capable of complex 

learning and memory formation. Comparisons of the vertical lobe in cephalopods, the 

mammalian hippocampus, and the insect mushroom bodies have yielded insight into a 

universal organization plan that facilitates this ability (Buzsaki et al. 1990; Capaldi et al. 

1999; Hochner 2010; Schurmann 2016; Shomrat et al. 2015; Young 1988). The 

organizational structures of these regions are similar, although it is unclear if this 

organization evolved by convergence or through an ancient ground plan in these species 

(Farris 2008a; Farris 2008b; Strausfeld et al. 2009; Wolff and Strausfeld 2015). 
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Regardless, the structural similarities between the groups points to the importance of 

neural circuit architecture in producing complex behaviors, and their comparisons have 

yielded biological mechanisms that are important for the evolution of plasticity and 

learning (Hochner 2010). 

 

1.6 Dissertation Summary 

In the above review of the literature, I have shown specific examples of ways in 

which homologous neurons and neuromodulators contribute to species-specific 

behaviors. In some of these studies, however, the effects of neuromodulators were not 

studied at the level of single cells. In other studies, while single-cell data were available, 

comparisons were not made between independently evolved behaviors. My dissertation 

combines these aspects in the study of gene expression in single neurons controlling 

species-specific and independently evolved behaviors.  

The evolution of swimming in sea slugs provides an opportunity to dissect the 

neural mechanisms underlying species-specific, independently evolved behaviors at the 

level of single neurons. Tritonia diomedea is a sea slug that performs a rhythmic dorsal-

ventral (DV) flexion escape swim in response to a predator or noxious stimulus. The 

neural circuit that controls this behavior has been characterized (Getting 1981; Getting et 

al. 1980; Katz 1998; Newcomb et al. 2012; Willows and Hoyle 1969) and is composed in 

part by neurons called C2 and DSI (Getting et al. 1980).  The swim motor pattern is 

activated when DSI releases 5-HT onto post-synaptic C2, VSI, and motor neurons; 5-HT 

modulates C2 and VSI synapses with motor neurons (Katz and Frost 1995a; Katz et al. 

1994; McClellan et al. 1994). 
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Several studies on the effects of serotonergic modulation of C2 have elucidated its 

exact mechanisms. 5-HT release from DSI neurons directly enhances C2 excitability and 

modulates its synapses pre-synaptically. These actions enhance C2 transmitter release. 

This pre-synaptic enhancement is found at all known C2 synapses (Katz and Frost 1995a; 

Katz and Frost 1995b; Katz et al. 1994). C2 excitability is also enhanced by the 5-HT 

precursor 5-hydroxytryptophan (5-HTP) (Fickbohm and Katz 2000). DSI stimulation or 

a brief 5-HT puff results in increased calcium signaling in C2 neurites, indicating that 

serotonergic stimulation of C2 may occur via receptors that activate changes in 

intracellular calcium (Hill et al. 2008). DSI produces both fast and slow responses in C2. 

The fast EPSP response was believed to be produced by ionotropic receptors, because of 

the synaptic activity timing and actions of imipradine. The slow response was believed to 

be metabotropic, because it is blocked by the 5-HT metabotropic receptor antagonist 

methysergide. This research led to the conclusion that C2 may express both metabotropic 

and ionotropic receptors that respond to 5-HT (Clemens and Katz 2001; Katz and Frost 

1995a; Katz and Frost 1995b). However, the only known ionotropic 5-HT receptor, 5-HT3, 

has only been identified genetically in chordates (Reeves and Lummis 2002), and there 

are instances of fast-acting G-protein coupled receptors (GPCRs) (Chen 2005; Ferguson 

and Caron 1998; Najafi et al. 2012).  

One aspect of serotonin’s effects on C2 that had not been investigated is the identity 

of the 5-HT receptors that it expresses. Five subtypes were previously identified in 

Aplysia, Lymnaea, and other molluscs (Barbas et al. 2005; Barbas et al. 2003; Barbas et 

al. 2002; Kawai et al. 2011; Lee et al. 2009; Mapara et al. 2008b; Nagakura et al. 2010; 

Panasophonkul et al. 2009; Patocka et al. 2014), but none have been identified in Tritonia 

or closely related species. 
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Tritonia is a member of the clade, Nudibranchia (Mollusca, Gastropoda, 

Nudipleura) (Goodheart et al. 2015). Recent work on the phylogeny of the Nudibranchia 

and Nudipleura has informed our understanding of how DV swimming behaviors evolved. 

The nudibranch clade includes over 2000 species, most of which do not swim (Figure 1-

1). Pleurobranchaea californica, a Nudipleura species that is an outgroup to 

Nudibranchia, performs DV swimming that is analogous to the behavior seen in Tritonia 

(Jing and Gillette 1999; Newcomb et al. 2012). The few Nudipleura species that do 

perform DV-swimming are not closely related to one another. It is therefore most 

parsimonious to assume that Tritonia and Pleurobranchaea evolved swimming 

independently (Newcomb et al. 2012).  

C2 neurons are found in all Nudipleura species examined. They share a common 

set of characteristics: they are single large white neurons located bilaterally in the cerebral 

ganglion, their axons project contralaterally to the pedal ganglia, they are 

immunoreactive for Small Cardioactive Peptide (SCP) and FMRFamide, they are 

electrically coupled, and at rest they exhibit few action potentials but regular excitatory 

post-synaptic potentials (EPSPs) (Lillvis et al. 2012). These common features uniquely 

identify the neuron in the brain of each species and therefore suggest that they are 

homologous. 

In Pleurobranchaea, C2 (A1) acts as part of the swim neural circuit. 5-HT released 

from Pleurobranchaea DSI homologues, also known as AS1-4 (Jing and Gillette 1995; 

Jing and Gillette 1999), modulates C2 neurons in a way that is similar to the neural 

mechanism in Tritonia (Lillvis and Katz 2013). Thus, in Tritonia and Pleurobranchaea, 

parallel neuromodulatory mechanisms underlie homoplasious swimming behaviors. 
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Similar 5-HT receptor expression profiles may underlie the parallel neural mechanisms 

controlling swimming in these two species. 

A third Nudipleura species, Hermissenda crassicornis, which is more closely 

related to Tritonia than Pleurobranchaea is, cannot perform DV-swimming and its C2 

homologues are not modulated by 5-HT, although serotonergic DSI homologues are 

present (Lillvis and Katz 2013). Species differences in C2 5-HT receptor expression may 

play a role in species differences in DV-swimming and C2 synapse modulation. 

In Pleurobranchaea, unlike Tritonia, swimming capability varies on an almost 

daily basis. That is, an individual Pleurobranchaea will swim one day, but not the next. 

Variability in serotonergic modulation of C2 correlated with swimming (Lillvis and Katz 

2013). It is possible that individual variability in 5-HT receptor expression in 

Pleurobranchaea C2 homologues is an underlying cause of the individual differences in 

swimming behavior. 

Using this background, my thesis tested the hypothesis that C2 homologue 5-HT 

receptor expression differences underlie species- and individual- differences in 

swimming behavior.  I predict that independently evolved behaviors are accompanied by 

similar 5-HT receptor expression. This hypothesis was tested at several levels. At the level 

of species differences in behavior, DV-swimmer Tritonia and non-DV-swimmer 

Hermissenda C2 homologues can be compared. Tritonia can also be compared with 

Pleurobranchaea, to determine whether independently evolved behaviors utilize 

orthologous 5-HT receptor genes. Finally, C2 homologue gene expression can be 

compared between swimming and non-swimming Pleurobranchaea, to determine 

whether individual variability can be tracked to gene expression in single neurons.  
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My thesis examined two specific aims: 1) identify 5-HT receptors in whole-brain 

tissue from each of the three species mentioned; and 2) determine 5-HT receptor 

expression profiles in C2 neuron homologues from each species.  

A lack of genetic data from molluscs was a major hindrance to achieving the above 

aims, because no genetic information on 5-HT receptor sequences was available for these 

species. In Chapter 2, I sequenced the transcriptome for the Hermissenda crassicornis 

brain, along with help from post-doctoral fellow and co-author Adriano Senatore. By 

BLAST-mining the Hermissenda transcriptome, along with other transcriptomes created 

by our lab, I identified Nudipleura orthologues of the five previously identified molluscan 

5-HT receptor subtypes (Nagakura et al. 2010). I identified two additional subtypes: 5-

HT2b, which was previously only identified in arthropods (Clark et al. 2004; Gasque et 

al. 2013); and 5-HT6, which was previously only identified in vertebrates (Peroutka and 

Howell 1994).  

I used the 5-HT receptor subtype gene sequences identified in Chapter 2 to execute 

a single-neuron quantitative PCR (qPCR) study of C2 homologues in chapter 3. I found 

that there were differences in 5-HT receptor expression by C2 neurons between DV-

swimmer Tritonia and non-DV-swimmer Hermissenda. Independently evolved DV-

swimmer Pleurobranchaea C2 homologues shared expression of 5-HT2a and 5-HT7 with 

Tritonia. I also found that there was a difference in 5-HT receptor expression between 

swimming and non-swimming Pleurobranchaea. These results are summarized in 

Chapter 4, in light of what is known about 5-HT receptor evolution and the evolution of 

neuromodulator-mediated behaviors.  
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1.7 Figure Legend 

Figure 1-1: Abbreviated Phylogeny of Nudipleura. Phylogenetic tree shows 

selected species from Nudibranchia and Nudipleura. Species swimming behavior is 

shown in parentheses: dorsal-ventral (DV), left-right (LR), asymmetrical swimmer (AS), 

flapping (F), non-swimmer (NS), unknown (?). The phylogeny is based on Goodheart et 

al. 2015 and Newcomb et al. 2012. 
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2 IDENTIFICATION OF 5-HT RECEPTOR SUBTYPE GENES EXPRESSED 

IN THE NUDIBRANCH BRAIN 

2.1 Introduction 

This chapter summarizes work to identify genes coding for 5-HT receptor subtypes 

in whole brain samples from Tritonia and Hermissenda. Identification of 5-HT receptor 

subtype was a major component of the overarching aim to identify 5-HT receptors 

underlying DV-swimming. Seven subtypes were found in the brains of both species, 

including two that were previously unidentified in molluscs. The gene sequences 

identified in this chapter were used in the receptor expression comparisons in the 

remainder of the dissertation. 

To reach a broader audience with these findings, the 5-HT receptor gene sequences 

were published with respect to their impact on the molluscan learning and memory 

research community. The publication included, in addition to the information on 5-HT 

receptors, single-gene phylogenies on other learning and memory-related genes, and 

information on the Hermissenda whole-brain transcriptome. The publication is included 

here as the second thesis chapter. It was originally published as “Identification of genes 

related to learning and memory in the brain transcriptome of the mollusc, Hermissenda 

crassicornis” by  A.N. Tamvacakis, A. Senatore, P.S. Katz, (2015) in Journal of Learning 

and Memory, Nov 16;22(12):617-21. 

 

2.2 Abstract 

The sea slug Hermissenda crassicornis (Mollusca, Gastropoda, Nudibranchia) has 

been studied extensively in associative learning paradigms. However, lack of genetic 

information previously hindered molecular level investigations. Here, the Hermissenda 
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brain transcriptome was sequenced and assembled de novo, producing 165,743 total 

transcripts. Homologues of 95 genes implicated in learning were identified. These 

included genes for a serotonin receptor and a GABA-B receptor subunit, which had not 

been previously described in molluscs, as well as an adenylyl cyclase gene not previously 

described in gastropods. This study illustrates the Hermissenda transcriptome’s potential 

as an important genetic tool in future learning and memory research. 

 

2.3 Background 

Nervous systems of molluscs have been a focus of neuroscience research for many 

decades, yet their study has been impeded by lack of genetic information. The nudibranch 

Hermissenda crassicornis exhibits a simple form of associative learning, which has been 

studied extensively: it can learn to associate light changes with vestibular stimulation 

(Crow & Alkon, 1978). The neural correlates of Hermissenda’s associative memories 

formed during light-movement pairings have been uncovered (Alkon, 1980; Crow & 

Alkon, 1980; Britton & Farley, 1999; Tamse et al., 2003; Cavallo et al., 2014). 

Hermissenda has also been the subject of investigations related to many other aspects of 

neuroscience, including sensory and motor neuron physiology (Crow & Tian, 2004; Nesse 

& Clark, 2010; Jin & Crow, 2011; Crow et al., 2013) and the evolution of behaviors and 

neurotransmitter systems (Lillvis et al., 2012; Newcomb et al., 2012; Lillvis & Katz, 2013). 

A limited number of molecular-level studies have been performed on Hermissenda in 

these areas (Nelson & Alkon, 1988; Crow et al., 1997). Broader-scale genetic experiments, 

such as identification of genes or specific genetic isoforms that produce proteins involved 

in Hermissenda associative learning, have been impossible without more extensive 

genetic information specifically from Hermissenda.  
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Transcriptomes have been sequenced in a small number of other gastropod 

species, including neuronal transcriptomes from Aplysia californica (Moroz et al., 2006; 

Fiedler et al., 2010; Heyland et al., 2011), Aplysia kurodai (Lee et al., 2008; Choi et al., 

2010), Lymnaea stagnalis (Bouetard et al., 2012; Sadamoto et al., 2012), and Tritonia 

diomedea (Senatore et al., 2015), which have been used in studies of learning and other 

aspects of neuroscience. The field of molluscan neuro-genetics is growing thanks in large 

part to recent advances in sequencing technologies, which allow larger amounts of 

transcriptomic information to be sequenced at lower costs compared with technologies 

available a few years ago. 

In this study, we describe the brain transcriptome of the sea slug Hermissenda 

crassicornis. The transcriptome was sequenced from central nervous system tissue 

mRNA, which included the cerebropleural ganglia, pedal ganglia, optic ganglia, eyes, and 

statocyst hair cells. Shotgun de novo assembly generated 165,743 total transcripts. To 

illustrate its usefulness as a genetic tool, we have identified homologues of genes related 

to learning and memory from the Hermissenda transcriptome, including genes that were 

not previously identified in molluscs. 

 

2.4 Methods 

The central nervous system, consisting of the cerebropleural ganglia, pedal ganglia, 

optic ganglia, the eyes and the statocysts, was dissected from thirty-one Hermissenda 

crassicornis specimens, weighing between 1 g and 3.6 g (Monterey Bay Abalone Co.). The 

tissue was immediately flash-frozen in liquid nitrogen for storage at -80°C. RNA was 

extracted with the RNeasy Universal Plus Midi-Kit (Qiagen). RNA concentration and 

quality were determined by Nanodrop and Bioanalyzer 2100 (Agilent). Beckman 
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Genomics isolated mRNA and reverse-transcribed to cDNA, which was then PCR-

amplified and barcoded for sequencing. Paired-end sequences were generated by an 

Illumina HiSeq 2500 high-throughput sequencer.  

Raw Illumina transcript reads were analyzed by FastQC (Barbraham 

Bioinformatics) for transcript quality, and then trimmed to remove low quality reads 

using Sickle (https://github.com/najoshi/sickle). The remaining reads were then de novo 

assembled by Trinity software (Haas et al., 2013) (version r20140717) on the VELA high 

performance computer system at Georgia State University, which consists of four IBM 

System x3850 X5 servers running Linux. Trinity assembly was run using FASTQ sequence 

type, with 140 GB Jellyfish memory and 40 processors. Assembly statistics were 

generated using TrinityStats.pl. RSEM (Li, 2011) was used to evaluate transcript 

expression levels. TransDecoder (Haas et al., 2013) was used to identify candidate 

predicted protein coding regions within the transcripts, specifying a minimum length of 

99 amino acids. A small amount of cross-contamination of cDNA from molluscan, plant, 

and insect species occurred during Beckman sequencing. Transcripts identified as 

matching a non-Hermissenda mollusc species were removed after transcriptome 

assembly, using a previously published filtering method (Senatore et al., 2015). Plant and 

insect transcripts were not removed, but are believed to represent a very small amount of 

transcripts.  

BLAST+ version 2.2.29 (Camacho et al., 2009) was used either as locally installed 

software or on VELA. Nucleotide databases were generated from the published Lymnaea 

stagnalis transcriptome (Sadamoto et al., 2012) and Aplysia californica NCBI mRNA 

collection (Taxid: 6500) on February 22nd, 2014, whereas the Tritonia diomedea 

transcriptome shotgun assembly database (Senatore et al., 2015) was generated by our 
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lab. Protein databases were generated from SwissProt on May 24th, 2014 and from RefSeq 

on July 14th, 2014. These databases were searched by querying both the transcriptome 

and its TransDecoder-predicted proteins and then analyzing the results with Microsoft 

SQL. Functional annotations of gene ontology (GO) terms (Ashburner et al., 2000) were 

done using BLAST2GO (http://www.blast2go.com/b2ghome). KEGG (Kanehisa & Goto, 

2000) pathways containing enzymes involved in learning or memory processes were then 

identified using the BLAST2GO interface.  

Individual genes coding for proteins whose function is related to learning or 

memory were identified in the Hermissenda transcriptome by BLAST search using single 

gene queries from molluscan SwissProt or NCBI published genes. Hermissenda 

orthologue identity was confirmed by BLAST against NCBI or UniProtKB/SwissProt 

databases. Select identified gene sequences were translated to predicted amino acid open 

reading frames and aligned using ClustalW (Larkin et al., 2007). For membrane bound 

proteins, predicted transmembrane domain regions were identified using Phobius (Käll 

et al., 2004). For Hermissenda and Tritonia genes used in phylogenetic tree generation, 

predicted proteins from serotonin (5-HT) receptor sequences (see below) generated from 

whole brain or whole body cDNA cloning and sequencing were used. Hermissenda and 

Tritonia dopamine receptor protein sequences were predicted from transcriptome 

sequences. A 15 amino acid-long predicted protein was deleted from the Aplysia 

dopamine receptor D2 protein sequence during alignment. GABA-B receptor and 

adenylyl cyclase (AC) predicted proteins were generated directly from transcriptome 

sequences. Unrooted phylogenetic trees were created by Maximum Likelihood with 

Jones-Taylor-Thornton model using MEGA6.06 software (Tamura K, 2011). Branch 

http://www.blast2go.com/b2ghome
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supports were provided using 500 bootstrap replicates. Gene identification numbers for 

all published genes are listed in Supplemental Table 2-3. 

To clone 5-HT receptor genes, primers were designed against transcriptome 5-HT 

receptor sequences. Primers for 5-HT receptors are listed in Supplemental Table 2-4. 

Whole brain RNA was extracted as described above. cDNA was reverse-transcribed using 

SuperScript IV (Invitrogen). PCR amplification of 5-HT receptor genes was performed 

using Taq DNA polymerase, buffer, dNTP, and magnesium chloride from ThermoFisher. 

DNA bands were excised using a Zymoclean Gel DNA Recovery Kit (Zymoresearch), 

ligated using pGEMT Easy (Promega), and transformed into JM109 competent cells 

(Promega). Resulting colonies were isolated and plasmids were extracted using a 

GenElute plasmid mini-prep kit (Sigma). Plasmids with inserts were sequenced by a 

3730xl DNA Analyzer (Life Technologies). Resulting sequences were verified against 

NCBI and UniProtKB/SwissProt databases. Three or more sequences resulting from 

separate PCRs, as well as the transcriptome sequence, were aligned using ClustalW to 

determine the most likely sequence for each gene. 

Plasmids from Hermissenda 5-HT2a, as well as 5-HT transporter and pedal 

peptide 3 precursor, were in vitro transcribed to make synthetic RNA using the Ambion 

MegaScript RNA synthesis kit (ThermoFisher). Copy number was determined using 

resulting synthetic RNA Nanodrop concentration and sequence information for that gene. 

RNA was serially diluted to volumes calculated to contain standard amounts of each RNA 

strand, and reverse-transcribed using SuperScript IV (Invitrogen). Absolute qPCR was 

performed on an Applied Biosystems 7500 Fast Real-Time PCR system, using Perfecta 

SYBR green with low Rox (Quanta Biosciences).  Whole brain cDNA was compared in 

triplicate against the RNA standards. No-reverse transcriptase controls and no-template 
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controls were subtracted from resulting values. To ensure that only a single amplification 

product was quantified, melt curves were determined for each qPCR trial, and resulting 

PCR products were run on a 1% agarose gel (not shown). 

 

2.5 Results 

Paired-end sequencing of Hermissenda mRNA generated 109M 100bp-reads. Low 

quality reads were trimmed using Sickle (Joshi and Fass, 2011), and reads were assembled 

by de novo assembly using Trinity (Haas et al., 2013). The 165,743 total transcripts, or 

contigs, were grouped in the assembly into 99,944 Trinity Chrysalis components (e.g. 

comp1, comp2, etc.) and 115,126 Trinity Butterfly components (e.g. comp1_c0, comp1_c1 

etc.). We consider the Chrysalis components as the completely non-redundant transcript 

groupings, since Butterfly components originated from Chrysalis-derived De Bruijn 

graphs, some of which subsequently partitioned during Butterfly due to low read support 

(Haas et al., 2013). The average contig length of the Hermissenda transcriptome was 

778.81 base pairs (bp) (Table 2-1). The largest contig was 35,109 bp in length. Proteins 

were predicted in silico by TransDecoder. More than half of the predicted proteins with 

complete open reading frames (ORFs) were 300 amino acids (aa) or longer, indicating 

that the transcriptome assembly contains a large number of genes coding for full-length 

proteins (Supplemental Figure 2-4A). Of the total number of TransDecoder predicted 

proteins, 4912 proteins were complete, 3515 were missing the 5’ end, 1851 were missing 

the 3’ end, and 5404 were missing both the 5’ and 3’ ends (Supplemental Figure 2-4A 

inlay).  

To compare the Hermissenda brain transcriptome with previously published 

genetic information, BLAST searches were run against published data sets. Matching 
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components were then filtered to select the best hit per component (BHPC). The 

Hermissenda transcriptome yielded 20,152 non-redundant BHPC matches with E-values 

below 1e-6 by tBLASTx (i.e. protein level alignment) against a database created from 

Tritonia diomedea brain transcriptome mRNA and 16,995 matches against an Aplysia 

californica mRNA data set (Supplemental Figure 2-4B). The invertebrate RefSeq protein 

dataset matched the highest number of Hermissenda translated nucleotide transcripts, 

compared with mammalian and non-mammalian vertebrate RefSeq protein datasets, as 

well as the SwissProt protein dataset (Supplemental Figure 2-4C). These BLAST results 

indicate that the Hermissenda transcriptome is complete in its genetic coverage relative 

to other published transcriptome assemblies. 

Using translated protein BLAST results from the comparison with the SwissProt 

protein dataset, components were filtered to remove hits with E-values of 1e-3 or greater, 

in order to reduce potential redundant matches or matches made by chance alone. The 

12,081 resulting transcripts were subsequently uploaded to BLAST2GO (Conesa et al., 

2005), which used a cut-off value of 1e-6 to infer homology to SwissProt database 

sequences, followed by InterProScan, GO-SLIM, and Enzyme Code Mapping. The 

resulting 8,916 genes were assigned gene ontology (GO) terms (Ashburner et al., 2000). 

GO assignments were generated for each of the three major GO branches at BLAST2GO 

Level 2: molecular function, biological process, and cellular component (Supplemental 

Figure 2-5A). GO terms were similar at level 2 compared with the previously published 

Lymnaea stagnalis (Sadamoto et al., 2012) and Tritonia diomedea (Senatore et al., 2015) 

assemblies. 

Using the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa & Goto, 

2000), enzymatic pathways were mapped via BLAST2GO-KEGG: 103 biological pathways 
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were identified. These pathways incorporated 1,143 transcriptome sequences, including 

579 enzyme sequences. Seventeen pathways were identified as containing one or more 

enzymes related to learning (Supplemental Figure 2-5C). Together, these analyses 

indicate that the Hermissenda transcriptome contains a large amount of genetic 

information, meaning that it can be used as a new tool in the study of molluscan learning.  

Several intracellular mechanisms have been identified as mediating light-

turbulence associative learning in Hermissenda. Hair cells activated by turbulence 

release gamma-aminobutyric-acid (GABA) through a mechanism mediated by adenylyl 

cyclase (AC), protein kinase A (PKA), and calcium (Alkon et al., 1993; Tamse et al., 2003). 

GABA release activates type B photoreceptor metabotropic GABA receptors, and when 

paired with light stimulation enhances photoreceptor response. Serotonin (5-HT) 

stimulation from interneurons paired with light also enhances photoreceptor responses. 

Within the photoreceptors, the light-turbulence pairing and subsequent GABA and 5-HT 

release activates pathways involving IP3/DAG, protein kinase C (PKC), and mitogen 

activated protein kinase (MAPK), and elevation of arachidonic acid (AA) (Supplemental 

Figure 2-6). This leads to an increase in calcium within photoreceptors, which amplifies 

their excitability and is a correlate of memory storage (Blackwell, 2006; Blackwell & 

Farley, 2008). The specific genes underlying these protein interactions have not, 

however, been identified previously in Hermissenda. We have used the proposed model 

for Hermissenda associative learning as a basis to identify genes that code for proteins 

related to these changes (Supplemental Table 2-2), and have highlighted three categories 

of genes using phylogenetic analyses here. 

5-HT modulates Hermissenda photoreceptors and interneurons during paired 

light and turbulence associative learning (Jin et al., 2009). Therefore, we investigated 5-
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HT receptor genes in Hermissenda. Four families of 5-HT receptors genes (families 1, 2, 

4, and 7) had been previously identified in molluscs (Nagakura et al., 2010) and a fifth 

family (family 6) had been predicted from the Aplysia genome (XP_005105784.1). The 

5-HT1 gene has undergone a duplication event in molluscs, resulting in 5-HT1a and 5-

HT1b receptors (Nagakura et al., 2010). No 5-HT receptor genes had been previously 

identified in Hermissenda or other nudibranchs. 

The Hermissenda brain transcriptome revealed putative homologues of each of the 

previously identified receptor genes, 5-HT1a, -1b, -2, -4, and -7. It also uncovered a 5-HT6 

homologue, which had previously not been identified as expressed from mRNA in any 

invertebrate, to our knowledge. A maximum likelihood phylogenetic tree shows that all of 

the families cluster with other known receptor genes (Figure 2-1A). As previously shown, 

5-HT2 receptors clustered with dopamine D2 receptors, whereas 5-HT6 genes were more 

closely related to dopamine D1 receptors (Nagakura et al., 2010; Mustard et al., 2005; 

Spielman et al., 2015).  

We confirmed the existence of the 5-HT6 gene in the Aplysia 

(aplysiagenetools.org) and Tritonia brain transcriptomes. DNA plasmids were generated 

by three or more independent PCR reactions, followed by cloning to pGEM-T Easy 

vectors. Each plasmid was sequenced, and sequences were aligned using ClustalW to 

verify that sequence identity matched between the transcriptomes and the cDNA. 

Hermissenda 5-HT 1a, 1b, 4, 6, and 7 receptor genes were sequenced. Tritonia 5-HT 1a, 

1b, 4, 6, and 7 receptor genes were also sequenced. The resulting PCR-generated DNA 

sequences were ~98% identical to the transcriptome sequences by ClustalW alignment 

(data not shown). 
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The transcriptome also contained a novel isoform of the 5-HT2 family, referred to 

here as 5-HT2b. The previously identified molluscan 5-HT2 type gene will be referred to 

as 5-HT2a here. The 5-HT2bHerm gene fragment predicted a 335 amino acid-long protein 

containing transmembrane domains 1-5, only, and aligned by BLAST to arthropod 5-

HT2b receptors. The 5-HT2aHerm gene was fragmented between two contigs: 

comp74520_c0_seq1 predicted a 314 amino acid protein containing transmembrane 

domains 1-5, while comp77190_c0_seq1 predicted a 383 amino acid protein, which coded 

for intracellular loop 5 and transmembrane domains 6-7. To our knowledge, 5-HT2b has 

not been previously identified in any other mollusc. To be assured that the gene is 

molluscan, we identified 5-HT2b homologues using BLAST searches in the Aplysia 

(aplysiagenetools.org) and Tritonia brain transcriptomes. Phylogenetic analysis and 

BLAST comparisons revealed that the molluscan 5-HT2b receptor clustered more closely 

with the arthropod 5-HT2b gene than with the molluscan 5-HT2a gene. Note that 

although the 5-HT2 receptors in invertebrates and vertebrates form a cluster, the 

nomenclature for 5-HT2 subtypes in vertebrates and invertebrates does not correspond 

because the genes diverged in each group after the protostome/deuterostome split 

(Peroutka and Howell, 1994).  

Interestingly the crustacean 5-HT2b protein contains a highly derived DRF-motif, 

which causes constitutive activity of the associated G-protein activation site (Clark et al., 

2004), instead of a DRY-motif G-protein activation site, which is more common in 5-HT 

receptors. The DRF-motif was also found in the molluscan 5-HT2b predicted proteins 

(Figure 2-1C), which might be further indication that the 5-HT2b gene evolved before the 

lophotrochozoan-ecdysozoan split. Alternatively, it could indicate parallel evolution of G-
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protein activation site motifs.  The identification of a 5-HT2b gene may provide useful 

information about the functions of 5-HT receptors in molluscan learning. 

We PCR amplified, cloned, and sequenced 5-HT2a and 5-HT2b genes from cDNA 

generated from Hermissenda and Tritonia brains and from Hermissenda whole-body 

cDNA. In Hermissenda, the initial PCR amplification indicated that 5-HT2a and 2b genes 

were more highly expressed in whole-body cDNA compared with brain cDNA. This 

indicates that while 5-HT2a and 2b are expressed at very low levels in the Hermissenda 

brain, they are expressed at higher levels elsewhere in the body. RSEM (Li, 2011), a 

program that estimates relative abundance of genes in the transcriptome by providing 

transcripts per million (TPM) values, indicated that these genes were in very low 

abundance in the brain (see RSEM Relative Transcriptome Abundance, Supplemental 

Table 2-2; Tritonia RSEM abundance not shown). To verify the RSEM data, we compared 

5-HT2aHerm (Table 2-2, TPM 3.38) with the Hermissenda 5-HT transporter (Table 2-2, 

TPM 166.17), and the Hermissenda Pedal peptide 3 precursor (contig ID 

comp64571_c0_seq1, TPM 1264.32). Using absolute real-time quantitative PCR (qPCR), 

we found that there was a strong correlation between the RSEM-predicted expression 

level in the transcriptome and the amount measured from whole brain tissue by qPCR 

(Supplemental Figure 2-7). 

GABA is another neurotransmitter that modulates light-movement paired learning 

(Schultz & Clark, 1997; Blackwell, 2002). No GABA receptor genes had been previously 

described from Hermissenda. Metabotropic GABA type B receptor subunits 1 (GABA-

BR1) and 2 (GABA-BR2) were predicted from the Aplysia genome (XM_005092746.1 

and XM_005109637.1) and a GABA-BR1 subunit gene was described in the Tritonia brain 

transcriptome (Senatore et al., 2015). The BR1 and BR2 subunits most likely function as 
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heterodimers, as they do in other species (Kammerer et al., 1999). A GABA-BR3 subunit 

was identified in Drosophila (Mezler et al., 2001), but had not been previously identified 

in any molluscs. We identified GABA-BRs in the Hermissenda transcriptome, and 

verified sequences by tBLASTx or BLASTx against NCBI and UniProt/SwissProt 

databases. GABA-BR1 genes were identified in the Hermissenda, as well as the Aplysia 

brain transcriptomes. GABA-BR2 genes were identified in Hermissenda, Tritonia, and 

Aplysia transcriptomes. A GABA-BR3 subunit was also identified in the brain 

transcriptomes of each of the three species, which aligns more closely with the Drosophila 

GABA-BR3 subunit than it does with molluscan GABA-BR1 or GABA-BR2 subunits 

(Figure 2-2). The function of the GABA-BR3 gene in Drosophila is unknown, however 

(Mezler et al., 2001), so we cannot predict whether this gene is involved in molluscan 

learning, although the newly identified GABA-BR1Herm and GABA-BR2Herm genes most 

likely play roles in mediating Hermissenda light-vestibular stimulation pairing. 

Adenylyl cyclase (AC) is part of the second messenger system required for memory 

formation, and is involved in changes within the pre-synaptic hair cells that occur during 

Hermissenda associative learning (Tamse et al., 2003). In Aplysia, four AC genes had 

been previously identified from families known as AC1, AC5/6, AC2/4/7, and AC9 (Sossin 

& Abrams, 2009; Lin et al., 2010). Of those genes, the AC1 family is calcium-sensitive, 

and is involved in learning (Abrams, 1985). Homologues of each of the four AC genes were 

identified in the Hermissenda and Tritonia transcriptomes (Figure 2-3). The 

Hermissenda and Tritonia AC genes were fragmented into several contigs, which 

spanned portions of the C1 region or transmembrane spanning domains. It may be that 

the transcriptome assembly did not detect the entire genes, since it would be unlikely that 

all known gene homologues are truncated in these species. The fragmentation of the 
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molluscan genes may have caused the resulting phylogenetic tree in Figure 2-3 to indicate 

that Drosophila and rat AC genes are more closely related to one another than they 

actually are. Hermissenda and Tritonia AC genes were named here using the naming 

convention previously published for Aplysia (Sossin & Abrams, 2009).  

In addition to the four previously identified AC genes, a fifth family, known as AC3, 

has been predicted from Aplysia genomic DNA (NCBI reference XM_005108194.1) and 

was also identified in the Lottia gigantea genome (Sossin & Abrams, 2009), but had not 

been identified as being expressed as mRNA in molluscs. The Hermissenda 

transcriptome contained a homologue of the AC3 gene. A similar gene was also found in 

the Aplysia transcriptome, although no AC3 gene was found in the Tritonia 

transcriptome (Figure 2-3). Tritonia’s missing AC3 gene may be explained by an 

incomplete transcriptome, but could also be because the orthologue was lost in that 

species.  

 

2.6 Discussion 

In conclusion, we have sequenced and de novo assembled the Hermissenda 

crassicornis brain transcriptome, generating 165,743 total transcripts. Using BLAST 

annotations of the assembled transcriptome and its TransDecoder-predicted proteins, the 

Hermissenda transcriptome was found to be highly similar in gene content to other 

published transcriptomes. BLAST searches against SwissProt and RefSeq, in combination 

with BLAST2GO annotation, revealed a large number of transcripts that are likely 

homologues of previously published genes. Although a portion of the transcripts revealed 

fragmented genes, TransDecoder analysis showed that at least 50% of predicted proteins 

greater than 300 amino acids in length were full length proteins. As assembly methods 
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continue to improve, greater assembly coverage may be attained using this transcriptome, 

therefore we have published the raw transcriptome data to NCBI BioProject 

PRJNA270545, and have published a BLAST-searchable assembly at 

http://neuroscience.gsu.edu/blast/. 

To illustrate its power as a tool for learning and memory research, we selected 

genes that produce proteins involved in learning and mined their homologues from the 

Hermissenda transcriptome. We identified 95 genes by BLAST analysis as homologues of 

learning-related genes. Of those, we highlighted three families of genes by phylogenetic 

analysis: 5-HT receptors, GABA-B receptors, and ACs. Within each gene family, one or 

more genes were identified that are novel for molluscs. Their identification indicates that 

the Hermissenda transcriptome is not only able to identify homologues of Aplysia 

learning and memory genes, but can advance the field of molluscan learning and memory 

studies by identifying genes previously not described in molluscs. Gastropod molluscs are 

useful research subjects because their brains contain relatively simple neural circuits 

composed of identifiable neurons, but their value as a genetic research model has been 

limited to a few species. The Hermissenda transcriptome will increase knowledge of the 

neural correlates of learning by providing new genetic information and a basis for gene 

manipulation that was not previously possible, therefore making it a beneficial tool for 

learning and other molluscan research in the future.  

 

2.7 Figure and Table Legends 

Figure 2-1: 5-HT Receptor Phylogenetic Relationships. (A) Maximum likelihood 

phylogenetic tree showing relationships between receptor subtypes. Bootstrap values are 

shown for each node. Subunits were aligned using transmembrane regions 1-5 and 6-7, 
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or 1-5 only for fragmented receptor subtypes. Receptors that were identified from 

Hermissenda or Tritonia are shown in bold and marked with an asterisk. Receptors that 

were identified as novel in molluscs (5-HT2b) or invertebrates (5-HT6) are shown in bold 

and underlined text. The dopamine receptors D1 and D2 are also shown, as they are part 

of the superfamily of aminergic receptors. (B) 5-HT receptor model showing seven 

transmembrane domain regions with location of predicted ligand binding site and G-

protein activation site shown. (C) 5-HT2b ClustalW alignment shows location of predicted 

ligand binding conserved cysteine residue, shaded in light grey, and predicted G-protein 

activation site shaded in light grey for DRY motif, dark grey for DRF motif. Species 

abbreviations: Hermissenda crassicornis (Herm), Tritonia diomedea (Trit), Aplysia 

californica (Aply), Drosophila melanogaster (Dros), Rattus norvegicus (Rat), 

Procambarus clarkii (Proc). 

 

Figure 2-2: Phylogenetic Relationships between GABA-B Receptor Subunits. 

(A) Diagram of GABA-B receptor subunits, with predicted GABA-BR3Herm. The seven 

transmembrane domains, heterodimeric C-terminals, and venus-flytrap motif N-

terminals are shown. (B) Maximum likelihood phylogenic tree of GABA-B receptor 

subunits. Subunits were aligned using transmembrane regions 1-7. Bootstrap values are 

shown for each node. Receptor subunits identified for Hermissenda, Tritonia, or Aplysia 

are shown in bold and marked with an asterisk. Receptor subunits that were identified as 

novel in molluscs are shown in bold and underlined text. Species abbreviations: 

Hermissenda crassicornis (Herm), Tritonia diomedea (Trit), Aplysia californica (Aply), 

Drosophila melanogaster (Dros), Rattus norvegicus (Rat).  
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Figure 2-3: Phylogenetic Relationships between Adenylyl Cyclase (AC) 

Genes. Maximum likelihood phylogenetic tree showing relationship between AC 

families. Bootstrap values are shown for each node. Genes identified as novel for 

Hermissenda and Tritonia are shown in bold and marked with an asterisk. Genes that 

were identified as novel in gastropods are shown in bold underlined text. Fragments of 

the Hermissenda and Tritonia genes, and the Aplysia AC3 gene, were identified from 

their transcriptomes and aligned against full length homologues from Aplysia, 

Drosophila, and rat to determine their orientation. Most fragments aligned to the C1 

region of the gene or to one of the transmembrane domain spanning regions. For 

previously published species, full-length proteins were used in the alignment. Species 

abbreviations: Hermissenda crassicornis (Herm), Tritonia diomedea (Trit), Aplysia 

californica (Aply), Lottia gigantea (Lott), Drosophila melanogaster (Dros), Rattus 

norvegicus (Rat). 

 

Supplemental Figure 2-4: TransDecoder and BLAST Comparisons. (A) 

TransDecoder-predicted peptides from the Hermissenda transcriptome assembly. 

Predicted proteins are separated to show numbers of predicted complete and incomplete 

open reading frames. Inlay shows cumulative histogram of TransDecoder predicted 

proteins. There were 4912 complete sequences, 3515 that were missing the 5; end and 

1851 that were missing the 3’ end. Most of the fragments with just internal sequences are 

under 200 amino acids in length. (B) BLAST comparisons of the Hermissenda 

transcriptome assembly are shown against published mRNA databases from Tritonia, 

Aplysia, and Lymnaea with E-values less than 1e-6, using as query Hermissenda 

transcriptome (white bars, tBLASTx) or Hermissenda predicted peptides (light grey bars, 
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tBLASTn). (C) BLAST comparisons of the Hermissenda transcriptome assembly are 

shown against published protein databases with E-values less than 1e-6, using as query 

Hermissenda transcriptome cDNA (dark grey bars, BLASTx) or Hermissenda predicted 

peptides (black bars, BLASTp). Protein database abbreviations: Invertebrate RefSeq 

database (Invert RS), Mammalian RefSeq database (Mamm RS), Non-mammalian 

vertebrate RefSeq database (Non-mamm vert RS), and SwissProt database (SwissProt). 

See supplemental methods for database details. 

 

Supplemental Figure 2-5: GO-terms Mapped to the Hermissenda 

Transcriptome. (A) Gene ontology (GO) comparisons were done at BLAST2GO level 2 

for molecular functions, biological processes, and cellular processes. (B) Selected 

additional GO-terms are shown from levels 3 to 8. (C) Selected KEGG-pathway predicted 

enzymes related to learning and memory were calculated using BLAST2GO. 

 

Supplemental Figure 2-6: Model of Hermissenda Associative-Learning 

Pathways, Including Gene Products Predicted From the Hermissenda 

Transcriptome. Genes identified in Supplemental Table 2-2 were used to re-create an 

associative learning pathway model that has been previously described (Tamse et al., 

2003; Blackwell & Farley, 2008). Solid black lines represent known pathways, dashed 

lines indicate hypothesized pathways. Gene and metabolic product abbreviations: 5-HT 

(serotonin), GABA (gamma-aminobutyric acid), DAG (diacylglycerol), IP3 (inositol 

triphosphate), IP3R (inositol triphosphate receptor), AC (adenylyl cyclase), cAMP (cyclic 

adenosine monophosphate), PLC (phospholipase C), PLA2 (phospholipase 2), AA 

(arachidonic acid), RyR (ryanodine receptor), PKC (protein kinase C), MAPK (mitogen-
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activated protein kinase), MEK (ERK-activating kinase), PKA (protein kinase A), Ca 

(calcium). 

 

Supplemental Figure 2-7: Comparison of RSEM Values and qPCR-Derived 

Absolute Copy Numbers for Three Hermissenda Genes. 5-HT2a, 5-HT 

transporter, and Pedal peptide 3 precursor gene synthetic RNA standards were used to 

determine the absolute copy number for each gene in whole brain cDNA. The absolute 

copy numbers for each gene correlated with their RSEM transcripts per million reads 

(TPM) values with an r2 value of 0.9999436. Error bars represent standard deviation. 

 

Table 2-1: Hermissenda crassicornis Brain Transcriptome Assembly 

Statistics. The de novo assembly of trimmed reads. (A) Transcriptome size and content. 

(B) Contig size and quality based on entire assembled transcriptome, or (C) based on 

longest isoform per component.  

 

Supplemental Table 2-2: Select Learning- Related Genes With Homologues 

Identified In The Hermissenda Brain Transcriptome. Molluscan genes related to 

learning or memory were selected from the UniProt/SwissProt database and BLAST 

searched against the Hermissenda transcriptome. Hermissenda gene homologues 

identified are listed as their contig identification number, and include their transcript 

length in base pairs (bp), their predicted protein open reading frame (ORF) length in 

amino acids (aa), and their RSEM-estimated relative abundance in the Hermissenda 

transcriptome as transcripts per million mapped reads (TPM) value. The predicted 

protein length for each identified gene was compared against published full length genes 
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from other species: if the published gene was 100 or more amino acids longer than the 

Hermissenda predicted gene, then the Hermissenda gene was considered a fragment, and 

was labeled next to the ORF length in the table. If multiple fragments were identified as 

being part of the same gene, then their contigs are listed in single cells. 

 

Supplemental Table 2-3: Gene Identification Numbers for Previously 

Published Genes. The gene identification number and the database location it was 

retrieved from are listed. 

 

Supplemental Table 2-4: Primer Sequences for 5-HT Receptor Verification 

from Whole Brain cDNA. 
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Figure 2-1: 5-HT Receptor Phylogenetic Relationships. 
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Figure 2-2: Phylogenetic Relationships between GABA-B Receptor Subunits. 
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Figure 2-3: Phylogenetic Relationships between Adenylyl Cyclase (AC) Genes. 
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Supplemental Figure 2-7: Comparison of RSEM Values and qPCR-Derived Absolute 
Copy Numbers for Three Hermissenda Genes. 
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Table 2-1: Hermissenda crassicornis Brain Transcriptome Assembly Statistics 
  

(A) Description of Transcripts 
Total transcripts:       165,743 

Total Chrysalis 
components: 

99,944 

Total Butterfly 
components: 

115,126 

Percent GC:  39.51 

  
(B) Based on All Transcripts 

(bp) 
Median contig 

length: 
389 

Average contig: 778.1 

Total assembled 
bases:  

128,965,468 

        Contig N10:  4,851 

        Contig N20:  3,341 

        Contig N30:  2,483 

        Contig N40:  1,880 

        Contig N50:  1,400 

  
(C) Based on Longest Isoform  

per Sub-Component (bp) 
Median contig 

length: 
329 

Average contig: 604.5 

Total assembled 
bases:  

69,593,541 

        Contig N10:  3,831 

        Contig N20:  2,566 

        Contig N30:  1,842 

        Contig N40:  1,300 

        Contig N50:  903 
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Supplemental Table 2-2: Select Learning- Related Genes with Homologues Identified 
in The Hermissenda Brain Transcriptome. 

 

Protein names Contig ID number 
Contig 
Length 

(bp) 

Predicted 
Protein 

ORF 
Length 

(aa) 

RSEM Relative 
Transcriptome 

Abundance 
(TPM) 

Serotonin receptor 
5HT1a 

comp75907_c0_seq1 2484 522 2.54 

Serotonin receptor 
5HT1b 

comp80902_c1_seq2 1908 544 4.19 

Serotonin receptor 
5HT2a 

comp74520_c0_seq1, 
comp77190_c0_seq1 

1229,              
1544 

  314 
(fragment), 

383 
(fragment)      

3.38,              3.81 

Serotonin receptor 
5HT2b 

comp79654_c1_seq1 1582 
335 

(fragment) 
0 

Serotonin receptor 
5HT4 

comp77096_c1_seq1  3988 381 1.59 

Serotonin receptor 
5HT6 

comp87935_c0_seq1  3647 347 6.53 

Serotonin receptor 
5HT7 

comp76525_c1_seq1  2819 522 1.87 

          

GABA receptor B 
subunit 1  

comp88149_c3_seq4 2761 838 1.94 

GABA receptor B 
subunit 2 

comp81756_c2_seq2 2812 877 0.95 

GABA receptor B 
subunit 3 

comp82183_c0_seq1  2398 783 2.38 

          

GABA receptor A 
subunit alpha  

comp78604_c1_seq1 1946 490 39.38 

  comp87192_c0_seq3 3824 449 11.97 

  comp85609_c0_seq1 2074 629 9.35 

GABA receptor A 
subunit beta  

comp77774_c0_seq2 2331 503 13.66 

          

Dopamine D1 receptor comp78910_c0_seq1 2561 421 3.84 

Dopamine D2 receptor comp72330_c1_seq1 1770 355 17.28 

          

Glycine receptor 
subunit 

comp87365_c3_seq3 2913 451 1.9 

  comp84820_c0_seq5 2383 428 8.5 

  comp86462_c0_seq1 3095 439 8.54 

  comp85632_c0_seq2 1514 405 15 

  comp85691_c0_seq6 1686 485 3.61 

  comp83920_c0_seq4 1448 322 2.02 
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NMDA-like glutamate 
receptor subunit 1 

comp88311_c0_seq1 6328 990 16.38 

NMDA-like glutamate 
receptor subunit 
2b/epsilon 

comp84136_c0_seq1 3790 985 2.8 

  comp81259_c3_seq3 3969 963 1.81 

  comp87786_c2_seq1 3771 842 8.24 

  
comp84692_c1_seq1  3102 

632 
(fragment) 

3.81 

NMDA-like glutamate 
receptor 3A subunit  

comp80220_c1_seq2 4045 1095 0 

  comp85214_c1_seq11 6637 1676 2.68 

          

AMPA-like glutamate 
receptor subunit 3 or 4 

comp77836_c3_seq7 3732 929 17.4 

AMPA-like glutamate 
receptor subunit 1 or 2 

comp85099_c0_seq6 3266 920 5.86 

AMPA-like glutamate 
receptor subunit, class 
unclear 

comp87697_c0_seq1  2152 919 11.94 

  comp84942_c2_seq1 711 
230 

(fragment) 
4.67 

  comp85436_c2_seq1  3844 905 23.5 

          

Kainate-like glutamate 
receptor subunit, class 
unclear 

comp87624_c0_seq12 3723 760 0.17 

  comp81488_c0_seq5 2774 709 1.97 

  comp88219_c0_seq1 7096 918 14.76 

  
comp53416_c0_seq1, 
comp73915_c0_seq2 

1113,            
714 

364 
(fragment),    

214 
(fragment) 

1.8,                 1.38 

  comp87976_c0_seq2 3766 922 9.42 

  comp79834_c0_seq1 1724 
510 

(fragment) 
3.01 

  comp71700_c0_seq1 1278 
382 

(fragment) 
1.68 

  comp86103_c0_seq1 2171 
580 

(fragment) 
9.56 

  comp45483_c1_seq1  546 
147 

(fragment) 
0.45 

          

Ionotropic glutamate 
receptor, class unclear 

comp77775_c0_seq1  3591 901 21.42 

          

Metabotropic 
glutamate receptor, 
class unclear 

comp89428_c0_seq1, 
comp64312_c0_seq1 

1281,           
959  

336 
(fragment),   

279 
(fragment) 

2.04,             1.8 
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  comp77788_c0_seq1  3418 909 0 

  
comp93998_c0_seq1, 
comp72401_c1_seq1 

294,           
1976 

61 
(fragment),     

539 
(fragment) 

.79,             1.96 

  comp64725_c0_seq1  2399 772 1.28 

  comp80942_c1_seq1 2710 833 14.63 

  comp68453_c0_seq1 1650 
425 

(fragment) 
2.27 

          

TRP channel comp84209_c0_seq6 2870 953 3.28 

  

comp86024_c0_seq1, 
comp85557_c0_seq3 

2347,                 
1559 

618 
(fragment),   

511 
(fragment) 

3.91,               4.63 

  
comp72133_c1_seq1 1096 

345 
(fragment) 

1.11 

          

Ryanodine receptor comp85614_c1_seq8 11566 2818 4 

  comp86886_c1_seq3 3789 
1235 

(fragment) 
5.99 

          

IP3 Receptor comp84922_c0_seq3 6123 
800 

(fragment) 
5.92 

  
comp88019_c1_seq5, 
comp86034_c0_seq5 

2867,                
5033 

935 
(fragment), 

1381 
(fragment) 

3.58,               0.88 

  comp85064_c0_seq3 4710 1350 2.84 

          

Serotonin Transporter comp80597_c1_seq1  4027 627 166.17 

Glycine Transporter, 
Na and Cl dependent  

comp76784_c0_seq1     2772 677 13.45 

  comp87032_c0_seq2 3414 743 5.53 

  comp88337_c0_seq3 6252 631 0.52 

  comp87711_c0_seq7 6641 519 7.88 

  comp81128_c2_seq1   2737 602 6.7 

  comp66058_c0_seq1 1933 617 1.51 

Taurine Transporter comp82773_c0_seq1  5110 426 21.58 

GABA transporter, Na 
and Cl dependent  

comp82343_c2_seq6 2757 522 1.85 

  comp87809_c1_seq2  2033 627 6.25 

Catecholamine 
transporter, Na and Cl 
dependent 

comp80019_c0_seq2  2560 579 3.35 

  
comp93073_c0_seq1, 
comp34995_c0_seq1, 
comp53751_c0_seq1  

950,                
346,              
1042 

269 
(fragment), 

103 
(fragment), 

1.08,                1.08,                 
1.68       
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114 
(fragment) 

Amino acid transporter 
comp88051_c0_seq1, 
comp86739_c0_seq4 

5068,           
1727 

1571,                      
311 

(fragment) 
6.03,                 4.85 

          

Adenylyl cyclase ACa  
comp72421_c0_seq1, 
comp78525_c0_seq1, 
comp86305_c3_seq1 

2336,             
699,             
1910 

406 
(fragment),          

127 
(fragment), 

577 
(fragment) 

1.45,             4.17,              
1.59 

Adenylyl cyclase ACb comp85926_c1_seq4 953 
291 

(fragment) 
1.04 

Adenylyl cyclase ACd comp88080_c2_seq1 1953 
529 

(fragment) 
4.92 

Adenylyl cyclase ACc comp7502_c0_seq1 354 
101 

(fragment) 
0.73 

Adenylyl cyclase AC3 comp33277_c0_seq1 548 
165 

(fragment) 
0.82 

Guanylyl cyclase comp88355_c0_seq3 7331 1620 8.6 

  comp80491_c1_seq2  3525 916 0.66 

          

Synapsin comp79643_c0_seq1 3138 495 36.49 

          

Calcium/calmodulin-
dependent serine 
protein kinase (CASK) 

comp80189_c0_seq8 1484 393 0.42 

CaM kinase II  comp84598_c1_seq7  3830 487 12.88 

CaM kinase I  comp81905_c1_seq1  1495 365 24.07 

P38 MAP kinase comp84061_c0_seq2 2651 357 13.29 

cAMP-dependent PKA 
subunit 

comp78774_c4_seq1  1776 352 87.93 

G-protein coupled 
receptor protein kinase 

comp78088_c1_seq6 3542 575 6.2 

PKC delta-type comp74846_c0_seq1  1409 316 2 

PKC atypical comp83489_c1_seq11 2173 616 3.78 

Calcium-independent 
protein kinase C 

comp79370_c5_seq1  2437 742 22.74 

PKC alpha-type comp86858_c0_seq5  1670 533 7.42 

serine/threonine 
protein kinase H1 

comp59268_c0_seq1  3658 452 2.59 

serine/threonine 
protein kinase chk2 

comp83090_c1_seq3  2683 481 3.16 

RAC serine-threonine 
kinase 

comp88229_c0_seq1  5348 486 10.34 

Diacylglycerol kinase 
zeta 

comp86914_c0_seq9 5831 1496 1.1 
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Diacylglycerol kinase 
theta 

comp78773_c0_seq1 4526 944 3.03 

Diacylglycerol kinase 
beta 

comp76021_c0_seq1 2551 813 3.26 

Diacylglycerol kinase 
delta 

comp87731_c0_seq6 2405 598 1.17 

Diacylglycerol kinase 
epsilon 

comp87949_c0_seq3 3106 526 5.55 
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Supplemental Table 2-3: Gene Identification Numbers for Previously Published Genes. 
 

Gene Name Gene Identification # Database 

5-HT1aTrit comp44433_c0_seq1  Tritonia diomedea transcriptome assembly 

5-HT1bTrit comp64711_c0_seq1  Tritonia diomedea transcriptome assembly 

5-HT2aTrit 
comp74599_c0_seq1, 
comp58370_c0_seq1  

Tritonia diomedea transcriptome assembly 

5-HT2bTrit comp67836_c0_seq1 Tritonia diomedea transcriptome assembly 

5-HT4Trit comp56135_c0_seq1 Tritonia diomedea transcriptome assembly 

5-HT6Trit comp57581_c0_seq1  Tritonia diomedea transcriptome assembly 

5-HT7Trit comp70307_c2_seq2  Tritonia diomedea transcriptome assembly 

5-HT1aAply AF041039  NCBI 

5-HT1bAply AF372526  NCBI 

5-HT2aAply HM187583.1 NCBI 

5-HT2bAply comp88174_c8_seq3 Aplysia californica transcriptome assembly 

5-HT4Aply HM187584.1 NCBI 

5-HT6Aply comp79116_c0_seq1 Aplysia californica transcriptome assembly 

5-HT7Aply FJ477896.1 NCBI 

5-HT1aDros NM_166322.2  NCBI 

5-HT1bDros NM_079065.6  NCBI 

5-HT2aDros NM_001104214.3  NCBI 

5-HT2bDros NM_001300309.1  NCBI 

5-HT7Dros NM_079860.3  NCBI 

5-HT1Rat NM_012585.1  NCBI 

5-HT2Rat NM_017254.1  NCBI 

5-HT4Rat NM_012853.1  NCBI 

5-HT6Rat NM_024365.1  NCBI 

5-HT7Rat NM_022938.2  NCBI 

5-HT2bProc EU131666.1  NCBI 

D1Trit comp12659_c0_seq1  Tritonia diomedea transcriptome assembly 

D2Trit comp66454_c1_seq1  Tritonia diomedea transcriptome assembly 

D1Aply XP_005100403.1 NCBI 

http://www.jneurosci.org/external-ref?link_type=GEN&access_num=AF041039
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=Nucleotide&dopt=GenBank&term=AF372526
http://www.ncbi.nlm.nih.gov/nucleotide/442624192?report=genbank&log$=nucltop&blast_rank=1&RID=8C5714Z401R
http://www.ncbi.nlm.nih.gov/nucleotide/665402036?report=genbank&log$=nucltop&blast_rank=1&RID=8C56KY4X01R
http://www.ncbi.nlm.nih.gov/nucleotide/665393181?report=genbank&log$=nucltop&blast_rank=1&RID=8C5FPU6101R
http://www.ncbi.nlm.nih.gov/nucleotide/665393585?report=genbank&log$=nucltop&blast_rank=1&RID=8C5JD2JY01R
http://www.ncbi.nlm.nih.gov/nucleotide/442621997?report=genbank&log$=nucltop&blast_rank=9&RID=8C5JTGH2014
http://www.ncbi.nlm.nih.gov/nucleotide/6981053?report=genbank&log$=nucltop&blast_rank=1&RID=8C5ME4SZ014
http://www.ncbi.nlm.nih.gov/nucleotide/8393582?report=genbank&log$=nucltop&blast_rank=1&RID=8C5MWWB0014
http://www.ncbi.nlm.nih.gov/nucleotide/6981059?report=genbank&log$=nucltop&blast_rank=1&RID=8C6CUD1501R
http://www.ncbi.nlm.nih.gov/nucleotide/13242258?report=genbank&log$=nucltop&blast_rank=1&RID=8C6D3RCD01R
http://www.ncbi.nlm.nih.gov/nucleotide/148747169?report=genbank&log$=nucltop&blast_rank=1&RID=8C6DAD5R014
http://www.ncbi.nlm.nih.gov/nucleotide/160213429?report=genbank&log$=nucltop&blast_rank=1&RID=8C57BTUS01R
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D2Aply XP_005099999.1 NCBI 

D1Dros NP_001262563.1 NCBI 

D2Dros NP_001014760.2 NCBI 

D1Rat NP_036678.3 NCBI 

D2Rat D2_XP_008764413.1 NCBI 

GABA-BR1Trit comp69887_c11_seq1 Tritonia diomedea transcriptome assembly 

GABA-BR2Trit omp70543_c5_seq4 Tritonia diomedea transcriptome assembly 

GABA-BR3Trit comp67894_c0_seq2 Tritonia diomedea transcriptome assembly 

GABA-BR1Aply comp79706_c0_seq3 Aplysia californica transcriptome assembly 

GABA-BR2Aply comp83693_c1_seq2 Aplysia californica transcriptome assembly 

GABA-BR3Aply comp88599_c1_seq14 Aplysia californica transcriptome assembly 

GABA-BR1Dros Q9V3Q9 SwissProt/UniProtKB 

GABA-BR2Dros Q9Y133 SwissProt/UniProtKB 

GABA-BR3Dros Q9VPS7 SwissProt/UniProtKB 

GABA-BR1Rat Q9Z0U4 SwissProt/UniProtKB 

GABA-BR2Rat O88871 SwissProt/UniProtKB 

ACaTrit comp70707_c0_seq6 Tritonia diomedea transcriptome assembly 

ACbTrit comp31797_c0_seq1 Tritonia diomedea transcriptome assembly 

ACcTrit comp60825_c0_seq3 Tritonia diomedea transcriptome assembly 

ACdTrit comp70550_c1_seq3 Tritonia diomedea transcriptome assembly 

ACaAply NM_001204606.1 NCBI 

ACbAply NM_001204726.1  NCBI 

ACcAply NM_001204659.1 NCBI 

ACdAply NM_001204733.1 NCBI 

AC3Aply comp64659_c0_seq1 Aplysia californica transcriptome assembly 

AC3Lott  XP_009050770.1 NCBI 

RutabegaDros M81887.1 SwissProt/UniProtKB 

AC78cDros  Q9Y2V0 SwissProt/UniProtKB 

AC39eDros  O96306 SwissProt/UniProtKB 

AC35cDros  Q9VXU0 SwissProt/UniProtKB 

ADCY2Dros  Q9VW60 SwissProt/UniProtKB 

ACXbDros  Q9NJA1 SwissProt/UniProtKB 

http://www.ncbi.nlm.nih.gov/nucleotide/325296826?report=genbank&log$=nucltop&blast_rank=1&RID=8C6XTDA2015
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ACXdDros  Q9NJ94 SwissProt/UniProtKB 

ACXeDros  Q9VV038 SwissProt/UniProtKB 

AC1Rat NM_001107239.1 NCBI 

AC2Rat NM_031007.1 NCBI 

AC3Rat NM_130779.2 NCBI 

AC5Rat NM_022600.1  NCBI 

AC9Rat XM_008774618.1 NCBI 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/nucleotide/12018267?report=genbank&log$=nucltop&blast_rank=2&RID=8C7GS4GD01R
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Supplemental Table 2-4: Primer Sequences for 5-HT Receptor Verification from Whole 
Brain cDNA. 

 

Gene Name Sense Primer (5'-3') Antisense Primer (5'-3') 

5-HT1aHerm GTGCCCACGATTCAAGTAATTGG 
ATAGAATAGCATAGTGCAATCTTAGTC

G 

5-HT1bHerm CCATGATGAGTAACGTCACGCTACCG CAGGAGAGTCGTTCGATGATGCGTC 

5-HT2aHerm GCTTTAACGGAACGGACGGTGATTCG 
CAGGGGAGGAATAAGTTTTACGGAGGA

G 

5-HT2bHerm 
CACGCACCACTACAACAACATCATCC

TC 
GGTCATCGGGAAAATCCTGTTCGTGTG 

5-HT4Herm CCAACACAGCGGCCCCACC CCATGGCAAGTCGCTCTATGGTTAGG 

5-HT6Herm GCAGATTCCCAGTAGAGTGGTCAACG CATAGCATCACCGCTGTCCCTAACC 

5-HT7Herm CCCCTTCCCAATCAATCGGTTG CCCGACACAACACGGAGTCT 

5-HT1aTrit 
CCAGACTACATTCAACCTAAACCAGA

GC 
GTGGTCAGTTTATGCCTCTGGCTTG 

5-HT1bTrit GGTAATGGTAGTTTAATCAGCGTG GTTCGGTAAACAGTTAAAGCTCTAG 

5-HT2aTrit CAGGGTCAAGGAACTCTCGGCAATC 
GATTCGGAGATCCACAAGCAGTAAGTC

G 

5-HT2bTrit CCCATTTGCTGAGAGGTCCTGTCG 
CAGATGGCACCCTTAATCGCTATTGAT

GG 

5-HT4Trit 
CAATAGCGACATTGTGATCCTTGCGC

C 
GCGGAGGTGGAGGAACACGAAAAG 

5-HT6Trit GCCTTTCTCCAGACGCCTGCTG 
GGGTGGCTTCTGCAGATTTAAGAATTA

TC 

5-HT7Trit 
GACTATCACTCTCACCGATTCTAACAC

GG 
CCCTAGATAACCCAGCGCGAATATTTTA

C 

5-HT 
TransporterHerm 

CTTCATCACCACCATCATCTCCACCAC GTCTCTGGGAGTGAGGTTGAAGTCC 

qPCR 5-HT 
TransporterHerm 

TCTATGGCGTGGAGCGATTCTG GAAGAAGACGACGACGATGAAGATG 

Pedal Peptide 3 
PrecursorHerm 

TGAACACCTTGCGAATCATCCTGG 
CTATTTCAGGCTCATACGGGCTTCAAG

G 

qPCR Pedal 
Peptide 3 

PrecursorHerm 
GAACACCTTGCGAATCATCCTGG GGCTCATACGGGCTTCAAGGATT 
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3 SPECIES- AND INDIVIDUAL- DIFFERENCES IN SEROTONIN 

RECEPTOR EXPRESSION IN HOMOLOGOUS SINGLE NEURONS 

CORRELATES WITH SWIMMING BEHAVIORS IN SEA SLUGS. 

3.1 Abstract 

Species differences in neuromodulation can facilitate evolution of behaviors. This 

study tested this idea by examining correlations between species-specific gene expression 

in single neurons and species- and individual-differences in behavior. In the Nudibranch 

sea slug Tritonia diomedea (Mollusca; Gastropoda; Heterobranchia; Nudipleura), 

serotonin (5-HT) is necessary for the activation of a dorsal-ventral (DV) escape swim 

behavior and modulation of a neuron that comprises part of the swim motor pattern 

circuit, called C2. Neurons homologous to C2 are present across the Nudipleura. Previous 

research found that in the Nudibranch, Hermissenda crassicornis, C2 homologues are 

not modulated by 5-HT and no DV swimming occurs. A third Nudipleura species, 

Pleurobranchaea californica, independently evolved DV swimming, with intrinsic 

neuromodulation of its C2 homologues by 5-HT playing a role in the generation of its 

swim motor pattern. Pleurobranchaea is a variable swimmer, meaning an individual 

animal swims some days but not others; C2 modulation was previously found to correlate 

with this behavioral variability. We tested the hypothesis that expression of 

neuromodulatory receptor genes underlies species-specific and individual DV swimming 

behaviors. Using single C2 neuron absolute quantitative PCR (qPCR), we found that 5-

HT receptor expression in C2 homologues correlates with swimming behaviors. 

Furthermore, we found that independently evolved behaviors shared expression patterns 

for orthologous 5-HT receptor genes in C2 homologues. These results support the idea 

that neuromodulatory gene expression can facilitate behavioral evolvability.  
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3.2 Introduction 

Katz and Harris-Warrick (1999) proposed that species differences in behavior 

could arise through differences in neuromodulatory signaling. Neuromodulation changes 

aspects of neuronal physiology, such as action potential firing frequency, membrane 

potential, or synaptic strength, effectively changing the outputs of neural circuits (Harris-

Warrick 2011; Kupfermann 1979; Marder 2012). Neuromodulators, such as serotonin (5-

HT), perform these actions by activating corresponding receptors. Thus, species 

differences in neuromodulatory receptor expression might underlie differences in 

species-typical behaviors. Furthermore, individuals within a species also show variability 

in their behaviors. Individual variability in behavior might be accounted for by individual 

differences in neuromodulatory receptor expression, as is hypothesized for species-level 

differences. 

Species differences are seen in swimming behaviors among Nudipleura sea slugs 

(Mollusca; Gastropoda; Heterobranchia). The nudibranch Tritonia diomedea swims by 

producing alternating dorsal and ventral (DV) body flexions. In contrast, the nudibranch 

Hermissenda crassicornis lacks this swimming behavior. However, the more distantly 

related Pleurobranchaea californica does swim with DV body flexions. Based on the 

phylogeny of Nudipleura (Goodheart et al. 2015) and the distribution of swimming 

behaviors, (Newcomb et al. 2012) we concluded that Tritonia and Pleurobranchaea 

evolved DV swimming independently.  

The neural basis for DV swimming in Tritonia has been well-studied (Dorsett et al. 

1973; Willows et al. 1973). The central pattern generator (CPG) underlying swimming 

consists of the identified neurons C2, DSI, and VSI, which fire bursts of action potentials 

that drive the swimming behavior (Figure 3-1a). The DSIs are serotonergic and enhance 



63 

the synapses made by C2 and VSI by presynaptically increasing neurotransmitter release 

(Katz and Frost 1995b). In C2, this is accompanied by an increase in spike-evoked Ca2+ 

influx (Hill et al. 2008). This “intrinsic neuromodulation” is essential for production of 

the swim motor pattern (Calin-Jageman et al. 2007; Katz 1998; Katz et al. 1994). The 5-

HT receptor antagonist methysergide blocks DSI’s neuromodulatory actions on C2 

synapses (Katz and Frost 1995a). Methysergide, the mammalian 5-HT2 family antagonist, 

blocks the production of the swim motor pattern in the isolated brain and prevents the 

animal itself from swimming (McClellan et al. 1994).  Furthermore, application of 5-HT 

to the isolated brain is sufficient to evoke a swim motor pattern and injection of the animal 

with 5-HT evokes a swim motor pattern (McClellan et al. 1994). Serotonergic 

neuromodulation of C2 synaptic strength plays a central role in the production of the 

swim motor pattern in Tritonia. 

Although Hermissenda does not produce a DV swim motor pattern (Figure 3-1b), 

it has neurons that are homologous to DSI and C2. The DSIs are identified by 5-HT 

immunoreactivity and their position in the brain (Newcomb et al. 2006; Newcomb and 

Katz 2007; Newcomb and Katz 2009). C2 is identified by its white soma in the cerebral 

ganglion, which is about 80μm in diameter and immunoreactive to the neuropeptides 

FMRFamide and Small Cardioactive Peptide (SCP), and its contralaterally-projecting 

axon (Lillvis et al. 2012). However, unlike in Tritonia, neither DSI nor 5-HT modulates 

C2 synaptic strength in Hermissenda. Furthermore, application of 5-HT to the isolated 

Hermissenda brain fails to evoke a swim motor pattern, and injection of Hermissenda 

with 5-HT does not cause the animal to swim (Lillvis and Katz 2013). Thus, behavioral 

differences between Tritonia and Hermissenda could be caused by differences in the 

expression of particular 5-HT receptors in C2. 
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Pleurobranchaea also has homologs of both DSI and C2, known as As1-3 and A1 

respectively, which are identified by the same criteria as in Tritonia and Hermissenda 

(Jing and Gillette 1995; Jing and Gillette 1999; Lillvis et al. 2012). Furthermore, as in 

Tritonia, these neurons are members of its DV swim CPG and fire rhythmic bursts of 

action potentials during the swim motor pattern (Figure 3-1c) (Jing and Gillette 1999). In 

this paper, we will refer to the neurons using the Tritonia nomenclature.  In 

Pleurobranchaea, DSI and 5-HT enhance the strength of C2 synapses. Additionally, 5-

HT enhances swimming following injection in live Pleurobranchaea or bath application 

to isolated brain preparations. Methysergide blocks swimming in live Pleurobranchaea 

(Lillvis and Katz 2013). Pleurobranchaea and Tritonia appear to have evolved DV 

swimming behaviors independently, but their underlying neuromodulatory mechanisms 

evolved in parallel. 

Unlike in Tritonia, swimming in Pleurobranchaea is not consistent; the same 

animal varies in its propensity to swim on subsequent days (Jing and Gillette 1995; Jing 

and Gillette 1999; Lillvis and Katz 2013). Similarly, some isolated brain preparations do 

not exhibit bursting activity typical of a swim motor pattern (Figure 3-1d). Furthermore, 

the extent of enhancement of C2 synaptic strength is correlated with the number of burst 

cycles in the motor pattern (Lillvis and Katz 2013). Thus, serotonergic neuromodulation 

plays a central role in swimming in Pleurobranchaea and the modulation correlates with 

individual variability in swimming behavior. 

The 5-HT receptor subtypes expressed by C2 homologues are not identified. Seven 

receptor subtypes, from five families of 5-HT receptors, have been identified in whole 

brain tissue of Aplysia, Tritonia, and Hermissenda (Nagakura et al. 2010; Tamvacakis et 

al. 2015) (Supplemental Figure 3-4). Using their gene sequences, we examined the 
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expression of 5-HT receptor genes in C2 neurons from Tritonia, Hermissenda, and 

Pleurobranchaea. We hypothesize that differences in 5-HT receptor expression among 

C2 homologues underlies species and individual differences in swimming behavior. 

 

3.3 Methods 

Animals 

Tritonia diomedea was collected by Living Elements LLC (Vancouver, B.C.), 

Hermissenda crassicornis and Pleurobranchaea californica were collected by Monterey 

Abalone Co. (Monterey, CA). All animals were housed at 10°C in recirculating artificial 

seawater (ASW, Instant Ocean). Individual Tritonia were anaesthetized before dissection 

using cold temperature, and the other species were anaesthetized using 0.33 M 

magnesium chloride.  

 

Whole-Brain RNA Extraction and cDNA Production 

For whole-brain RNA extraction, brains were dissected and cleaned of connective 

tissue, flash-frozen using liquid nitrogen, then stored at -80°C. RNA extraction was 

performed using the RNeasy Plus Universal Mini Kit (Qiagen). RNA extracts were 

quantified using Nanodrop (Thermo Fisher). RNA was reverse transcribed to cDNA using 

Superscript IV (Thermo Fisher) following manufacturer’s instructions. 

 

5-HT Receptor Plasmid Cloning 

Species-specific primers were designed using transcriptome-derived 5-HT 

receptor sequences from Tritonia (Senatore et al. 2015), Hermissenda (Tamvacakis et al. 

2015), and a previously unpublished Pleurobranchaea transcriptome (NCBI SRA TBD). 
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The primers (Eurofins) are listed in Supplemental Table 3-1a. PCR was performed to 

amplify putative 5-HT receptor genes from whole-brain cDNA from each species using 

Taq polymerase (Thermo Fisher). PCR products were gel purified using the Qiaquick Gel 

Extraction Kit (Qiagen). Resulting DNA was ligated using T4 DNA ligase and inserted into 

JM109 competent cells (Promega). Cloned plasmids were extracted using GenElute 

Plasmid Mini-prep Kit (Sigma Aldrich). Plasmids were sequenced on a 3730 DNA 

Analyzer (Thermo Fisher), and sequences were aligned against transcriptome sequences 

using MUSCLE (Edgar 2004) to verify gene identity. 

 

Phylogenetic Analysis of 5-HT Receptors 

A phylogenetic tree was created using methods described previously for Tritonia 

and Hermissenda receptors (Supplemental Figure 3-4) (Tamvacakis et al. 2015). 

Previously unpublished Pleurobranchaea californica 5-HT receptor sequences were 

determined from a whole brain transcriptome, and sequences were confirmed by plasmid 

cloning. MUSCLE alignment followed by maximum likelihood tree construction with 

bootstrapping was done using MEGA6 software (Tamura K. 2013). 

 

Synthetic RNA Production for qPCR Standards 

Plasmid DNA sequences for each species-specific 5-HT receptor subtype were 

linearized with T7- or Sp6-oriented enzyme digests (New England Biosciences) and gel-

verified. Digested plasmids were purified using phenol-chloroform extraction and alcohol 

precipitation, and quantified using a Nanodrop 2000C (Thermo Fisher). Synthetic RNA 

was produced using either T7 or Sp6 MegaScript Kit (Thermo Fisher) and purified. RNA 

was quantified using Nanodrop. The copy number for each 5-HT receptor synthetic RNA 
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sample was calculated using the gene-specific molecular weight and RNA concentration 

(Fronhoffs et al. 2002). RNA standards were then serially diluted and individually reverse 

transcribed to cDNA using SuperScript IV (Thermo Fisher). 

 

Single-Neuron Isolation 

Following initial dissection, the brain, which consists of the fused cerebral, pleural, 

and pedal ganglia, was stored in either artificial sea water (Instant Ocean) or normal 

saline (NS) (420 mM NaCl, 10 mM KCl, 10 mM CaCl2, 50 mM MgCl2, 11 mM d-glucose, 

and 10 mM HEPES, pH 7.5). The connective sheath was removed using fine scissors and 

forceps. C2 was visually identified as the white neuron in the anterolateral cerebral 

ganglion (Getting 1977; Lillvis et al. 2012; Taghert 1978).  

Intracellular recordings were made using 10-30 MΩ glass microelectrodes 

connected to an IX2-700 Intracellular Amplifier (Dagan). Extracellular recordings and 

stimulation of body wall nerves were made by placing them in polyethylene tubing 

connected to a Model 1700 differential amplifier (A-M Systems). Signals were digitized 

using the Micro1401 and Spike2 software (Cambridge Electronic Design Limited).  

To identify C2, cells were recorded intracellularly and a swim motor pattern was 

evoked by stimulating a body wall nerve with 20–35 V at 5 Hz for 3 s. C2 neurons from 

Tritonia were not isolated if a swim motor pattern consisting of two or more bursts could 

not be evoked, an indication that the C2 cell or another part of the swim neural circuit 

was damaged. In Pleurobranchaea, C2 neurons were isolated from bursting and non-

bursting preparations; individual preparations were defined as “swimming” if two or 

more bursts could be evoked, and “non-swimming” if one or fewer bursts was stimulated 

(Figure 3-1). Contralateral C2 neurons are electrically coupled to each other in Tritonia, 
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Hermissenda, and Pleurobranchaea (Getting 1981; Getting et al. 1980; Jing and Gillette 

1995; Jing and Gillette 1999; Lillvis et al. 2012b; Taghert PH 1978). Electrical coupling 

was tested in some Hermissenda and non-swimming Pleurobranchaea preparations 

when participation in the swim motor pattern could not be used to help identify C2.  

After identification of C2, the brain was bathed in 0.2% Protease IX for five min 

and washed with ASW or NS. Individual C2 neurons were removed with forceps, and a 

suction pipette and placed in a 1.5 ml tube containing distilled water and RNaseOut 

(Thermo Fisher). 

C2 neurons were discarded from isolation if they appeared damaged at any point 

during isolation, or did not meet species-specific physiological hallmarks of C2 neurons 

as previously described (Lillvis et al. 2012). Neurons were not isolated if the central 

ganglia appeared damaged. C2 neurons that appeared to have other neurons attached to 

them were also discarded.  After removal from the brain, C2 neurons were put in tubes 

and visually inspected under a light microscope to verify that cells were present and intact 

in the tube.  

 

Single-Neuron cDNA Synthesis for Quantitative PCR 

Neurons used for qPCR were isolated as described above and were directly 

transcribed to cDNA using Superscript IV (Thermo Fisher). The cells were added to a 

mixture of distilled water and RNaseOut and frozen at -80°C. A master mix was created 

following the Superscript IV manufacturer’s protocol, and aliquots were added directly to 

the RNA. The RNA was annealed and cooled on ice. The annealed RNA was then divided 

by volume equally into two tubes. One tube received reverse transcriptase enzyme plus 

additional Superscript IV reagents (+RT). The other tube served as the without reverse 
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transcriptase control (-RT control) and received a volume of distilled water in place of the 

enzyme volume. The RNA samples were then reverse-transcribed following 

manufacturer’s instructions. 

 

mRNA Quantification Using Single-Neuron and Whole Brain Absolute qPCR 

Absolute qPCR was performed for individual genes from each species. qPCR-

specific primers were designed against each gene orthologue (Supplemental Table 3-1b). 

For 5-HT2a in Tritonia and Hermissenda, two sets of primers were used to measure 

mRNA expression at multiple locations along the 5-HT2a mRNA. Other gene orthologues 

were measured with one primer pair. RNA standards were prepared as described above, 

and were run alongside cell cDNA, -RT control samples, and without-template control 

samples on every qPCR trial. C2 samples were run as either single cells, or pooled cells 

from multiple animals; raw copy numbers were divided by starting cell amount. Whole 

brain tissue was run with 150 ng RNA calculated per one triplicate sample. All C2 and 

whole brain samples, standards, and controls were run in triplicate using Perfecta SYBR 

Green Supermix with ROX or Low ROX (Quanta Bio) on an Applied Biosystems 7500 or 

StepOne Plus qPCR machine.  

Absolute mRNA copy number values were calculated using the standard curve 

generated during each trial. If amplification occurred in the –RT samples, it was 

subtracted from the +RT samples. Trials were omitted if the standard curve efficiency was 

calculated to be outside the range of 85 to 110%. A melt curve was run on every trial, and 

samples were omitted if a double peak was detected or if samples showed multiple bands 

in an agarose gel (Sigma Aldrich) following the qPCR trial. mRNA copy numbers were 

analyzed using SigmaPlot v10 (Systat Software Inc.). 
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3.4 Results  

A Subset of 5-HT Receptors Were Expressed In Tritonia C2 Neurons  

We measured 5-HT receptor subtype gene expression from single Tritonia C2 

neurons. Only four of the seven receptor subtypes previously identified from whole brain 

transcriptomes were reliably expressed in Tritonia C2 neurons. 5-HT2a and 5-HT7 

receptor subtypes both had median expression well above 200 copies per cell (Figure 3-

2). Within these two data sets, variability in copy number across samples was high, with 

5-HT2a showing a range between 152 and 655 copies, and 5-HT7 ranging between 209 

and 611 copies. 5-HT1b consistently expressed at fewer than 200 copies per cell. One out 

of the five Tritonia C2 neurons that were tested expressed the 5-HT1a receptor, and three 

out of six Tritonia samples expressed 5-HT2b. The other subtypes, 5-HT4 and 5-HT6 

were not detected in Tritonia C2 neurons. All seven of the 5-HT receptor subtypes were 

measured in whole brain tissue using qPCR, however, indicating that the qPCR primers 

were able to amplify the gene of interest when it was present (Supplemental Figure 3-5).  

 

Hermissenda C2 Homologues Expressed a Different Subset of 5-HT Receptors than 

Tritonia  

When comparing single neuron 5-HT receptor expression in Tritonia with that in 

Hermissenda, there were clear species differences (Figure 3-2). In Hermissenda, C2 

expressed 5-HT4 and 5-HT6 receptors at greater than 200 copies per cell. These genes 

were not expressed in C2 in Tritonia. In Hermissenda, C2 also expressed 5-HT1a and 1b 

below 200 copies per cell, which is similar to what was observed in Tritonia. Hermissenda 

C2s did not express 5-HT2a receptors, which were highly expressed in Tritonia. Only one 

Hermissenda sample tested showed low expression of 5-HT7, the others did not express 
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that gene. Furthermore, Hermissenda did not express 5-HT2b, which was expressed in 

some Tritonia C2 samples. Thus, there was a clear species difference in the expression of 

5-HT receptors in homologous neurons that differ in their responses to 5-HT. 

 

5-HT Receptor Subtypes Were Identified In Pleurobranchaea Whole-Brain Tissue  

Before testing which 5-HT receptor subtypes Pleurobranchaea C2 homologues 

expressed, we identified the receptor genes from the Pleurobranchaea whole brain 

transcriptome. All seven molluscan 5-HT receptor subtype orthologues were identified 

(Supplemental Table 3-2). To confirm their sequence identities, we created consensus 

sequences using plasmid DNA for each receptor subtype, generated from whole-brain 

tissue. The Pleurobranchaea 5-HT receptor subtype sequences clustered with other 

subtypes from each 5-HT receptor family (Supplemental Figure 3-4). 

 

Receptor Expression Differed In Swimming and Non-Swimming Pleurobranchaea 

Since Pleurobranchaea does not reliably swim, we partitioned samples from this 

species based on the motor pattern produced at the time that the C2 sample was taken. If 

the motor pattern consisted of more than a single burst, it was considered a “swimmer” 

(Figure 3-1c). On the other hand, if stimulation of the body wall nerve produced one or 

fewer bursts, the individual was categorized as a “non-swimmer” (Figure 3-1d).  

Receptors 5-HT2a and 5-HT7 were expressed in Tritonia C2, but not in the 

Hermissenda homologues. 5-HT2a was expressed in the C2s of swimming 

Pleurobranchaea. Only one sample from the non-swimming Pleurobranchaea group 

showed low expression of 5-HT2a, calculated at 45 mRNA copies (Figure 3-3a). There was 

a large degree of variability in the amount expressed in individual C2 samples from 
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swimming individuals, from 100 to 1276 copies, a greater range in individual expression 

levels than that observed in any of the Tritonia or Hermissenda C2 samples measured. 

5-HT7 receptor expression was also compared in swimmers and non-swimmers. 

5-HT7 receptors were highly expressed in swimming Pleurobranchaea, except for one 

sample, which did not express this gene (Figure 3-3b). Variability in expression was 

highest in this group, with a range of 0 to 2446. In one of the seven non-swimmers 

measured, C2 homologues expressed 5-HT7. Overall, the results showed that swimming 

Pleurobranchaea expressed two of the same receptor subtypes measured in Tritonia. The 

remaining five subtypes were not tested in this species, however. 

 

Small Cardioactive Peptide Precursor Was Expressed in C2 Homologues from Each 

Species 

Measuring 5-HT receptor subtype gene expression in C2s revealed several 

differences between homologous neurons. To determine if there were any gene expression 

similarities, we measured the expression of the gene for the precursor of SCP. C2 

homologues are immunoreactive against SCP in all three species (Lillvis et al. 2012), and 

were therefore expected to contain the precursor genes. The gene for SCP was expressed 

in C2 neurons from all three species (Supplemental Figure 3-6). For SCP measurements 

from Pleurobranchaea, C2 neurons from swimming and non-swimming individuals were 

used and are presented as one group. There was no difference in SCP expression between 

Pleurobranchaea swimmers and non-swimmers.  There were differences in the amounts 

expressed between species, however.  
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3.5 Discussion 

Our results provide evidence that species differences in expression of 

neuromodulatory receptor genes in single homologous cells facilitates species-specific 

behaviors. Using single-neuron qPCR, 5-HT receptors and SCP were measured in C2 

homologues from three species of Nudipleura sea slugs. Tritonia and Hermissenda C2 

homologues differed in their expression patterns of 5-HT receptor subtypes, correlating 

with species differences in C2 synapse modulation by 5-HT and swimming capability. 

Pleurobranchaea C2 homologues extracted from swimming individuals shared 5-HT 

receptor subtype expression with Tritonia. Overall, these results indicate a role for 

neuromodulatory genes in facilitating species-specific behaviors, as well as individual 

variability in behaviors. 

 

Individual C2 Neurons Expressed Many Receptor Subtypes 

C2 homologues expressed multiple 5-HT receptor subtypes in Tritonia, 

Hermissenda, and Pleurobranchaea. In Tritonia C2 neurons, three subtypes were 

consistently measured across samples, while Hermissenda C2 neurons consistently 

expressed four subtypes. C2 homologues of swimming Pleurobranchaea expressed two 

subtypes. The function of each receptor subtype in these cells is currently unknown, but 

the identification of multiple subtypes points to the possibility that C2 is a multifunctional 

neuron.  

Neurons can have multiple functions. In addition to their role in DV swimming, C2 

neurons in Tritonia may be involved in foot cilia-mediated crawling (Snow 1982), while 

Pleurobranchaea C2 homologues inhibit feeding command neurons, possibly to inhibit 

feeding behavior when an escape response is necessary (Jing and Gillette 1995; Jing and 
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Gillette 2000). The multiple 5-HT receptor subtypes identified in C2 homologues may 

facilitate C2’s multiple functional roles in the brain by activating different downstream 

pathways.  

The expression of multiple neuromodulatory receptors is a feature that has been 

observed in several single-neuron studies. In the gastropod mollusc Aplysia californica, 

pleural ganglion sensory neurons express at least three 5-HT receptor subtypes, identified 

with single cell PCR (Nagakura et al. 2010).  In crustaceans, single identified neurons have 

been studied with respect to their neuromodulatory receptor expression. The pyloric 

dilator (PD) pacemaker cells, for example, have been shown to express multiple 5-HT 

receptor subtypes, an acetylcholine receptor (Katz and Harris-Warrick 1989; Katz and 

Harris-Warrick 1990; Zhang and Harris-Warrick 1994), and dopamine receptors 

(Oginsky et al. 2010), using a combination of pharmacology, immunohistochemistry, and 

single-cell PCR.  

 

Tritonia Swimming May Be Controlled Through 5-HT2a and 5-HT7 Receptor-Mediated 

Mechanisms 

Serotonergic modulation is an important characteristic of DV swimming in 

Tritonia, a behavior that has been studied for over 30 years. With recent advances in 

technology, we can now dissect the neural circuit controlling swimming down to genes 

expressed in single cells. The single-neuron qPCR experiments from this study measured 

reliable expression of 5-HT1b, 5-HT2a, and 5-HT7 in Tritonia C2 neurons, pointing to 

their potential roles in Tritonia swimming and serotonergic modulation of C2. 

Other evidence published previously supports the findings presented here. 

Methysergide, a mammalian 5-HT1/2 family antagonist, blocked swimming in both 
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Tritonia and Pleurobranchaea (Lillvis and Katz 2013; McClellan et al. 1994). 

Additionally, it reduced DSI-mediated modulation of C2 when bath applied to isolated 

Tritonia brain preparations (Katz and Frost 1995a).  It is possible that methysergide acts 

on 5HT2a receptors in Tritonia and Pleurobranchaea C2 homologues, consistent with its 

actions on orthologous receptors in mammals. However, methysergide binding selectivity 

may differ between members of different animal phyla, as has been reported previously 

with respect to receptor pharmacology (Dumitriu et al. 2006; Tierney 2001). While 

methysergide preferentially binds to 5-HT receptors in invertebrates and vertebrates, it 

may not by itself be a reliable means of determining receptor subtype identity in non-

mammalian species. 

Tritonia C2 neurons were reported to exhibit increased calcium signaling in 

neurites following 5-HT bath application, indicating that a 5-HT receptor linked to 

calcium was being stimulated (Hill et al. 2008). 5-HT2 family receptors, such as 5-HT2a, 

have conserved G-protein coupling to the IP3/DAG pathway, which increases 

intracellular calcium when stimulated. Furthermore, Tritonia C2 neurons exhibit fast and 

slow responses to DSI-released 5-HT. The multiple responses were predicted to be due to 

different receptor types expressed by C2 neurons (Clemens and Katz 2001; Katz and Frost 

1995a; Katz and Frost 1995b). Thus, the finding that Tritonia C2 expressed multiple 

receptor subtypes, including at least one that is predicted to increase intracellular 

calcium, is consistent with previously published research. 

C2 Homologue 5-HT Receptor Expression was Species-Specific 

While both Tritonia and Hermissenda C2 neurons expressed multiple 5-HT 

receptor subtypes, the identity of those subtypes was species-specific. Although the exact 

role played by each subtype in C2 is currently unknown, the expression of 5-HT2a and 5-
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HT7 in C2 in Tritonia, but not Hermissenda, indicates that one or both of these subtypes 

likely contributes to species-specific modulation and swimming capability. On the other 

hand, Hermissenda C2 homologues expressed 5-HT4 and 6, which were not observed in 

Tritonia C2 neurons. The functions of 5-HT receptors in Hermissenda C2 homologues 

are currently unknown. It is unclear if the presence of 5-HT4 and 5-HT6 actively prevents 

C2 serotonergic modulation and swimming ability, or if they are present for other 

purposes. 

Each 5-HT receptor subtype is descended from a conserved family of G-protein 

coupled receptors, and each has a predicted downstream second messenger pathway 

(Nichols and Nichols 2008). Family 1, 4, 6, and 7 receptors affect adenylyl cyclase (AC), 

family 1 receptors are Gi-coupled and inhibit AC activity, whereas family 4, 6, and 7 

receptors are Gs-coupled and increase AC activity. Family 2, which has two known 

subtypes (5-HT2a and 2b) in arthropods and molluscs, is predicted to be coupled to Gq, 

which activates the IP3/DAG pathway. Tritonia and swimming Pleurobranchaea C2 

homologues expressed 5-HT2a according to qPCR, while the non-swimming 

Pleurobranchaea and Hermissenda did not. It is possible that the presence of the 

IP3/DAG pathway activation is an underlying cause of DV swimming capability in both 

species. 

While the experiments described here showed species-specific expression of 5-HT 

receptors, the SCP precursor gene was expressed across C2 homologues, regardless of 

species. SCP was previously identified as a hallmark of C2 neurons, and an indication of 

their homology across species (Lillvis et al. 2012). The presence of SCP mRNA in C2 

homologues from each species confirmed the identity of the cell, and showed that there 

are gene markers found across homologues cells, regardless of species. It is likely that 
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there are many more gene expression similarities shared by these homologous cells. As a 

next step to the current study, measuring broad scale gene expression through a 

technique such as single-cell RNA sequencing is predicted to show many more 

similarities, as well as species differences. 

Previous research has found receptor expression differences between homologous 

neurons from different species. The LP neurons of crabs, for example, respond to 5-HT 

(Zhang and Harris-Warrick 1994), proctolin (Zhao et al. 2011), and CCAP (Weimann et 

al. 1997), while their homologues in lobsters respond to DA through D1Rs (Zhang et al. 

2010), mGLUR agonists (Perez-Acevedo and Krenz 2005), and orcokinin (Li et al. 2002). 

Species differences in the genes expressed by homologous neurons is expected, given the 

fact that homologous neurons often have species-specific functions (Katz 2011). 

 

Independently Evolved Swimming Behaviors, Parallel Evolution of Neuromodulatory 

Genes 

Most Nudipleura species do not exhibit DV swimming. Furthermore, based on 

phylogeny, it appears that Tritonia and Pleurobranchaea do not share a most recent 

common ancestor that exhibited this behavior and thus likely evolved DV swimming 

independently (Newcomb et al. 2012). Both species use serotonergic modulation of C2 

homologues, an example of parallel evolution of a neural mechanisms underlying 

convergent behaviors (Lillvis and Katz 2013). The shared 5-HT2a and 5-HT7 expression 

in C2 homologues from swimming Pleurobranchaea and Tritonia indicates that the 

neuromodulatory responses of C2 homologues in these two species also evolved in 

parallel. 
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It was previously proposed that serotonergic modulation transformed C2 and 

other neurons from a latent Nudipleura circuit into the functional swim motor pattern 

circuit observed in Tritonia and Pleurobranchaea (Lillvis and Katz 2013). In fact, it may 

be that the presence of 5-HT2a and/or 5-HT7 is the “switch” in this evolutionary 

transformation. A similar phenomenon has been well characterized in species-specific 

mating behaviors in voles: the neuromodulatory vasopressin receptor V1a is expressed in 

the ventral pallidum of monogamous prairie voles, but not the closely related, non-

monogamous montane voles (Hammock and Young 2002; Nair and Young 2006; Young 

et al. 1999; Young and Wang 2004). In this example, the non-monogamous voles could 

become monogamous when the V1a receptor was exogenously expressed in their ventral 

pallidum (Lim et al. 2004). Although the functional roles of the 5-HT receptors are 

currently unknown in C2 homologues, the correlation between their expression and 

independently evolved swimming behaviors shown here presents a tantalizing possibility 

that manipulating 5-HT2a or 5-HT7 expression in non-swimmer C2 neurons might cause 

DV swimming to occur, while knocking down their expression in DV-swimmers may 

reduce or eliminate the swim motor pattern. 

 

Individual Variability in Behavior Correlated with Gene Expression Differences 

DV swimming varies daily in Pleurobranchaea, as measured using both in vivo 

behavioral assays and in vitro fictive swimming (Jing and Gillette 1995; Jing and Gillette 

1999; Lillvis and Katz 2013). This variability was found previously to correlate with 

serotonergic enhancement of C2 synaptic strength (Lillvis and Katz 2013).  In the present 

study, 5-HT receptor expression was found to correlate with fictive swimming. While the 

presence of mRNA in a cell does not necessarily indicate that the corresponding protein 
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will also be present (Maier et al. 2009), the correlation of 5-HT receptor mRNA 

expression and swim motor pattern bursts by C2 in Pleurobranchaea points to a genetic 

mechanism that may at least partially facilitate the mechanism by which C2 and other 

neural components become functional as the swim motor pattern circuit (Lillvis and Katz 

2013). 

The Pleurobranchaea 5-HT receptor genes tested in this study were 5-HT2a and 

5-HT7. Pleurobranchaea whole brain tissue expressed all seven known molluscan 5-HT 

receptor subtypes, however (Supplemental Figure 3-4). It is possible that, like Tritonia 

and Hermissenda, other 5-HT receptor genes are expressed in Pleurobranchaea C2 

neurons. Will the full Pleurobranchaea C2 5-HT receptor profile include 5-HT1b, like 

Tritonia and Hermissenda? Or will a different subset of receptors be expressed? If other 

receptors are expressed, will their expression amounts vary with swimming as 5-HT2a 

and 5-HT7 did? Additional experiments will be necessary to answer these questions.  

Variability in gene expression has been shown to correlate with individual 

variability in behaviors in other species. Individual variability in neural circuit function 

correlating with individual neuron properties and gene expression has been studied in the 

crab, Cancer borealis, where individual variability in ion channel and other gene 

expression in single cells correlates with pyloric rhythms (Goaillard et al. 2009; Hamood 

and Marder 2014; Schulz et al. 2006; Schulz et al. 2007; Shruti et al. 2014; Temporal et 

al. 2012; Temporal et al. 2014). In this system, variability likely ensures robustness of the 

neural circuit output to disturbances. However, there is no difference in the functional 

output of the circuit. 
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C2s Showed Within- And Between-Species Variability in Amount of 5-HT Receptor 

mRNA Expressed 

There was variability in C2 expression of some receptor subtypes within each 

species that was not tied to known behavioral or neurophysiological variability. 5-HT7 

was expressed in one of six Hermissenda C2 samples, and in one non-swimming 

Pleurobranchaea sample. 5-HT1a was expressed in one Tritonia C2 neuron sample, while 

it was below the level of qPCR detection in the other five samples tested for that gene. 

Similarly, 5-HT2b was expressed in half of the Tritonia C2 neurons tested. In the 

remaining qPCR trials, there was variability in the amounts of each subtype expressed 

between samples from the same species. This variability could be due to natural 

fluctuations in the amount of mRNA for a given gene, which occurs randomly in many 

cell types (Ozbudak et al. 2002; Raser and O'Shea 2005). On the other hand, variable ion 

channel gene expression correlates with bursting properties of stomatogastric neurons 

(Goaillard et al. 2009), indicating the possibility that the observed variability in 5-HT 

receptor mRNA in C2 homologues may have as yet undiscovered functional 

consequences. It is also worth noting that the animals used in this study were wild-caught 

adults. They may have exhibited varying mRNA expression because of their individual 

experiences in the wild before ending up in a laboratory tank.  

  

Individual Variability in 5-HT Receptor Gene Expression May Be Due To Intracellular 

mRNA Cycling  

In all eukaryotic cells, mRNA molecules are transcribed in the nucleus, translated 

to proteins by ribosomes, and then degraded as part of normal cell cycling. It is therefore 

to be expected that mRNA amounts would wax and wane over time, causing the variability 
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in qPCR measurements observed in these experiments. There was some variability 

between almost all of the samples, but Pleurobranchaea C2 samples were the most 

variable in all three genes measured, 5-HT2a, 5-HT7, and SCP.  

In other systems, 5-HT receptor mRNA is variable in its expression, in ways that 

correlate with specific behaviors. In the neural circuit controlling song production in 

birds, microRNAs alter seasonal expression of 5-HT and other receptors (Larson et al. 

2015). Estrogen produced during reproductive phases causes a reduction in 5-HT 

receptor mRNA in mussel gonads (Cubero-Leon et al. 2010). In non-human primates and 

rats, 5-HT receptors and other 5-HT-related genes vary with stress in several brain 

regions (Bethea et al. 2013; Bethea et al. 2005; Centeno et al. 2007; Holmes et al. 1995). 

5-HT receptor mRNA was found to vary with circadian rhythm and hibernation periods 

in rodents (Naumenko et al. 2008; Volgin et al. 2013). The variability in 5-HT receptor 

expression observed in Nudipleura C2 homologues may be due to some as yet 

undocumented cellular process that is also found outside the Mollusca.  

Perhaps some aspect of mRNA cycling in Pleurobranchaea C2 homologues 

resulted in the increased variability observed. If this were the case, then over time there 

would be periods where there were few 5-HT receptor proteins expressed at C2 synapses 

in Pleurobranchaea, which could cause temporary loss of DV swimming and serotonergic 

modulation, leading to the previously observed individual variability in this species.  

 

Conclusion 

Measuring 5-HT receptor gene expression in single neurons controlling 

independently evolved DV swimming uncovered a correlation between neuromodulatory 

gene expression and behavior. Neuromodulation has been hypothesized to be a means of 
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functionally repurposing a tissue or cell to facilitate the evolution of species-specific 

behaviors (Katz and Harris-Warrick 1999). The identification of 5-HT2a and 5-HT7 in C2 

neurons from two DV swimming species can help in our understanding of how 

neuromodulators can facilitate adaptation of existing network structures, and is an 

example of a potential neural mechanism underlying the evolvability of behaviors. 

 

3.5 Figure and Table Legends 

Figure 3-1: Swim Motor Patterns in Three Nudipleura Species. Intracellular 

microelectrodes impaled C2 neurons from Tritonia (a), Hermissenda (b), and swimming 

(c) and non-swimming (d) Pleurobranchaea. C2 responses to body wall stimulation 

(black arrow) are shown. Only Tritonia and swimming Pleurobranchaea show action 

potential bursts, forming the swim motor pattern.  

 

Figure 3-2: 5-HT Receptor Expression in C2 from Tritonia and Hermissenda. 

5-HT receptor expression was measured using absolute qPCR to determine mRNA copy 

number in individual C2 homologue samples from each species. Individual samples are 

shown as open circles within whisker plots for Tritonia (light gray) and Hermissenda 

(dark gray). The boxes represent the range from 25% to 75% of sample expression levels. 

The median is represented by a black line in each box. When the standard error of the 

mean was beyond the 25% to 75% range, it is represented as grey error bars. 

 

Figure 3-3: 5-HT2a and 5-HT7 Receptor Expression in C2 from 

Pleurobranchaea with Variable Swimming Behaviors. 5-HT2a (a) and 5-HT7 (b) 

receptor expression was measured in Pleurobranchaea C2 homologues, which were 
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categorized as “Swimmers” (hatches) and “Non-swimmers” (light dots). Individual 

samples are represented as open circles on each graph. The boxes represent the range 

from 25% to 75% of sample expression levels. The median is represented by a black line 

in each box. When the standard error of the mean was beyond the 25% to 75% range, it is 

represented as grey error bars. 

 

Supplemental Figure 3-4: Phylogenetic Tree of 5-HT and Dopamine Receptor 

Subtypes. Maximum likelihood phylogeny showing seven 5-HT receptor subtypes 

spanning five families, with dopamine D1 and D2 receptors included because they fall 

within the same ancestral grouping. Bootstrap values represent percentage of predicted 

replicates at each node. Receptor subunits were aligned using conserved transmembrane 

domain regions. 

 

Supplemental Figure 3-5: Whole-brain Expression of 5-HT Receptors. qPCR 

measured 5-HT receptor subtype expression from whole brain tissue in Tritonia (a), 

Hermissenda (b), and Pleurobranchaea (c).  

 

Supplemental Figure 3-6: Small Cardioactive Peptide (SCP) Gene Expression 

in C2 Homologues. SCP gene expression was measured in C2 homologues from 

Tritonia (light gray), Hermissenda (dark gray), and Pleurobranchaea (white), using 

absolute qPCR. Individual samples are represented as open circles on each graph. The 

boxes represent the range from 25% to 75% of sample expression levels. The median is 

represented by a black line in each box. When the standard error of the mean was beyond 

the 25% to 75% range, it is represented as grey error bars. 
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Figure 3-1: Swim Motor Pattern in Three Nudipleura Species. 
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Figure 3-2: 5-HT Receptor Expression in C2 from Tritonia and Hermissenda 
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A:            B: 

 

Figure 3-3: 5-HT2a and 5-HT7 Receptor Expression in C2 from Pleurobranchaea with 
Variable Swimming Behaviors. 
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Supplemental Figure 3-4: Phylogenetic Tree of 5-HT and Dopamine Receptor 
Subtypes.  
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C: 
 

 
 

Supplemental Figure 3-5: Whole-Brain Expression of 5-HT Receptors. 
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Supplemental Figure 3-6: Small Cardioactive Peptide (SCP) Gene Expression in C2 
Homologues. 
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Supplemental Table 3-1: Primers for Cloning (A) and Quantitative PCR (B) 
 

A: 

 

 

 

 

 

 

 

 

Gene FW Primer RV Primer 

5-HT1aTrit CCAGACTACATTCAACCTAAACCAGAGC GTGGTCAGTTTATGCCTCTGGCTTG 

5-HT1bTrit GGTAATGGTAGTTTAATCAGCGTG GTTCGGTAAACAGTTAAAGCTCTAG 

5-HT2aTrit  CAGGGTCAAGGAACTCTCGGCAATC GATTCGGAGATCCACAAGCAGTAAGTCG 

5-HT2bTrit CCCATTTGCTGAGAGGTCCTGTCG CAGATGGCACCCTTAATCGCTATTGATGG 

5-HT4Trit CAATAGCGACATTGTGATCCTTGCGCC GCGGAGGTGGAGGAACACGAAAAG 

5-HT6Trit GCCTTTCTCCAGACGCCTGCTG GGGTGGCTTCTGCAGATTTAAGAATTATC 

5-HT7Trit GACTATCACTCTCACCGATTCTAACACGG CCCTAGATAACCCAGCGCGAATATTTTAC 

5-HT1aHerm GTGCCCACGATTCAAGTAATTGG ATAGAATAGCATAGTGCAATCTTAGTCG 

5-HT1bHerm CCATGATGAGTAACGTCACGCTACCG CAGGAGAGTCGTTCGATGATGCGTC 

5-HT2aHerm GCTTTAACGGAACGGACGGTGATTCG CAGGGGAGGAATAAGTTTTACGGAGGAG 

5-HT2bHerm CACGCACCACTACAACAACATCATCCTC GGTCATCGGGAAAATCCTGTTCGTGTG 

5-HT4Herm CCAACACAGCGGCCCCACC CCATGGCAAGTCGCTCTATGGTTAGG 

5-HT6Herm GCAGATTCCCAGTAGAGTGGTCAACG CATAGCATCACCGCTGTCCCTAACC 

5-HT7Herm CCCCTTCCCAATCAATCGGTTG CCCGACACAACACGGAGTCT 

5-HT2aPleu GACACCTTCCACTCCAGCAACAT TACGGCTCCATCTTCGCTTTCTTCAT 

5-HT7Pleu GAGACCAGGTCACCATGACCAGC CACACTGCCGGTACACACGGG 

SCPTrit GTTGTCGCAGGTCAGGCTTGATAC GTTGTCTACTCAATGTGTGTTCCTGACG 

SCPHerm TCCAGCCCGAAGTCCAACAGTAATG CCAACCACCATCCCGTCTATTGTAG 

SCPPleu CAAGCAGAACCCTCCAAGACACAATG GTTCGGCATTTCCATCACAGTTTGAAGG 
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B: 

Gene FW Primer RV Primer 

5-HT1aTrit GATTTCAATGGATGTCTTGTGCTGC GCATTCTACTGTCCTCTGATTCTCA 

5-HT1bTrit CAGCCAGGTATGGTTTCTCCAC GAAACGAAGTGCCAGGCGGATT 

5-HT2aTrit ATTACGGCTCTCACCCGAAGAAG CGATTCCACGAACGACAAGCAG 

5-HT2aTrit CAGGGTCAAGGAACTCTCGGCAATC GATTCGGAGATCCACAAGCAGTAAGTCG 

5-HT2bTrit GTTATGCCCTTTGGAATGGTAGTAG ATGGGACTCGTAGATAGGACAG 

5-HT4Trit CGTGTTTGGAAATAGCGTGGTCATT CAGACAGATAAACAGCAACGACTG 

5-HT6Trit CAGAACCGTCTCCAACCTCTTTAT GAGCATTTGTGCCATCAGCTTC 

5-HT7Trit GACTATCACTCTCACCGATTCTAACACGG CCCTAGATAACCCAGCGCGAATATTTTAC 

5-HT1aHerm GTGCCCACGATTCAAGTAATTGG ATAGAATAGCATAGTGCAATCTTAGTCG 

5-HT1bHerm CCAACGGAAATAGCAATACCAACAT CGAGTATCGTTCTGGGACTGTTC 

5-HT2aHerm GCTTTAACGGAACGGACGGTGATTCG CAGGGGAGGAATAAGTTTTACGGAGGAG 

5-HT2aHerm CACGCACCACTACAACAACATCATCCTC GGTCATCGGGAAAATCCTGTTCGTGTG 

5-HT2bHerm CGCTAACCCTCATCATTCTGTGC CCGAACTATGCGTGTTGTGGG 

5-HT4Herm GTCCCAATCCTGACCGTGTT CATTTTCCATCTTTCTTGTCTCGCC 

5-HT6Herm CAGCAGCACCTTGAGAACCAT GCGATCATAACGCCTCTACG 

5-HT7Herm CCCCTTCCCAATCAATCGGTTG CCCGACACAACACGGAGTCT 

5-HT2aPleu CGAGCACTTCATCATCTACGGC TCCACCAGCCGCCGTAAC 

5-HT7Pleu GAGACCAGGTCACCATGACCAGC CACACTGCCGGTACACACGGG 

SCPTrit GAAATGACAATGCCCCGAGCAAC CACGGCATCAGTGTCTGTGTG 

SCPHerm GAGAATGTTGTGGCATCGGACTC ACCCCAGTTCCCTGACCAAG 

SCPPleu GTCCAAAGCCGACGCATCG CGACGAGAAACAGGACGGC 
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Supplemental Table 3-2: Pleurobranchaea 5-HT Receptor Transcriptome Gene 
Identification Numbers. 

 

 

 

 

 

 

 

 

  

Gene Gene Identification # 

5-HT1aPleu comp77412_c0_seq1 

5-HT1bPleu comp71667_c0_seq4 

5-HT2aPleu comp68325_c1_seq1 and comp70123_c2_seq3 

5-HT2bPleu comp53876_c0_seq1 

5-HT4Pleu comp159323_c0_seq1 and comp48526_c1_seq1 

5-HT4Pleu comp43137_c0_seq1 

5-HT6Pleu comp68387_c1_seq1 

5-HT7Pleu comp73047_c11_seq1 
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4 CONCLUSION 

4.1 General Discussion 

DV-swimming is a behavior found in only a handful of the more than 3000 

Nudipleura species that are currently known, and is believed to have not been present in 

the common ancestor of this clade (Goodheart et al. 2015; Newcomb et al. 2012). It is 

therefore most parsimonious to assume that it evolved independently in Tritonia and 

Pleurobranchaea. In both species, swimming behaviors are controlled in part by the 

neuromodulatory action of 5-HT on C2 homologues, an example of parallel evolution of 

a biological mechanism underlying analogous behaviors (Katz and Frost 1995a; Lillvis 

and Katz 2013). This dissertation addresses two main questions related to this 

phenomenon: 1) what 5-HT receptors are expressed in the brains of Nudipleura sea slugs, 

and 2) which of those receptors are expressed in C2 homologues from Tritonia, 

Pleurobranchaea, and non-DV swimmer Hermissenda? The answers to these questions 

increase our understanding of the evolution of biogenic amine receptors across animal 

phyla, and illustrate a biological mechanism by which neuromodulatory receptor genes 

may facilitate the evolution of species-specific behaviors.  

The findings presented in this dissertation provide support for a proposed 

biological mechanism by which species-specific behaviors can occur, namely that species-

differences in neuromodulation can result in species-specific behavior (Katz et al. 1999). 

This dissertation examined this idea with respect to neuromodulatory 5-HT receptor 

expression. The results of the dissertation showed that similar receptor expression 

correlates with species-specific, independently evolved swimming behaviors. Below, I will 

review literature on 5-HT receptor evolution and homologous cells, two subjects which 

have implications for the results of this dissertation.  
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4.2 Serotonin Receptor Evolution 

Introduction 

The previous chapters of this thesis contributed to our understanding of 5-HT 

receptor evolution by identifying 5-HT receptor subtype genes in molluscs, and 

characterizing their expression patterns in single homologous cells from three species. 

This portion of the concluding chapter discusses these findings with respect to what was 

previously known about 5-HT receptor evolution.  

5-HT is an ancient signaling molecule from a class of neurotransmitters known as 

biogenic amines. It is currently theorized that 5-HT first evolved as early as 2 billion years 

ago, in an ancestor of eukaryotes (Levine 1980; Turlejski 1996). Because it evolved so 

early, it is present in a diverse array of extant organisms, from single-celled eukaryotes, 

to almost all living animals and many plants (Pelagio-Flores et al. 2011; Turlejski 1996; 

Walker and Holden-Dye 1991; Wojtaszek 2003). 5-HT is synthesized from tryptophan 

through a series of enzymatic reactions. The chemical preferentially acts on 5-HT 

receptors, which first evolved over 700 MYA (Peroutka and Howell 1994). The first three 

families of 5-HT receptor genes were characterized in the 1980s (Bradley et al. 1986). In 

the approximately 30 years following this discovery, the repertoire of known 5-HT 

receptors has grown exponentially both in terms of species in which they are expressed, 

and in the number of families and subtypes. 

Today, 5-HT receptors have more identified families and subtypes than any other 

biogenic amine receptor known (Nichols and Nichols 2008). Seven families of G-protein 

coupled 5-HT receptors (GPCRs) have been identified in bilaterians (Hoyer and Martin 

1996; Nichols and Nichols 2008; Peroutka 1994; Peroutka and Howell 1994). Within 

some of these families, different subtypes have evolved independently in different phyla. 
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Despite the divergence in subtypes, however, the GPCR families share common amino 

acid structures, G-protein coupling, and pharmacological traits (Hen 1993; Nichols and 

Nichols 2008). 

5-HT receptors are involved in a vast number of different biological processes. 

They regulate learning and memory in the hippocampus, amygdala, and cerebellum in 

mammals (Glikmann-Johnston et al. 2015; Stiedl et al. 2015; Zhang and Stackman 2015), 

and may work similarly in single neurons that form memories in Aplysia (Barbas et al. 

2003; Dumitriu et al. 2006; Lee et al. 2009). They are activated during aggressive 

postures and in dominance hierarchy formation in crayfish (Momohara et al. 2013; 

Tierney and Mangiamele 2001; Yeh et al. 1996). They control swimming through their 

activation and modulation of synapses in sea slugs (Katz 1998; Katz et al. 1994; Lillvis and 

Katz 2013; Newcomb et al. 2012). They are activated shortly after mammalian spinal cord 

injury, and may contribute to the individual variability in healing observed in humans 

following traumatic nervous system injury (Ghosh and Pearse 2014; Nardone et al. 2015; 

Navailles et al. 2013; Slawinska et al. 2014). They are important in human cognition, and 

their dysfunction may be at the core of human mental disorders: mutations in human 5-

HT2c have been correlated with occurrence of schizophrenia and depression (Chagraoui 

et al. 2016; Fakhoury 2016; McCreary and Newman-Tancredi 2015; Samuels et al. 2016). 

These examples show that 5-HT receptor function has been characterized in a diverse 

array of behaviors across many animal species. The diverse functions 5-HT plays are 

relevant to the evolutionary history of its receptors. 

The evolutionary origin of 5-HT receptors has been described previously (Nichols 

and Nichols 2008; Peroutka 1994; Peroutka and Howell 1994). The findings from chapter 

2, as well as other recently identified 5-HT receptor genes, support the prevailing theory 
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of 5-HT receptor origin, however they add new information to our understanding of how 

these receptors evolved. Studying the origin of this gene family, and the potential reasons 

for the diversity of its members, can impact our understanding of 5-HT-mediated 

behaviors and disorders. 

 

Vertebrate and invertebrate 5-HT receptors shared a common ancestor 

The 5HT receptor families in vertebrates and invertebrates share a common origin 

(Peroutka 1992; Peroutka 1993; Peroutka 1994). The currently accepted theory is that a 

single ancient receptor diverged into three super families, known now as 5-HT1, 5-HT2, 

and 5-HT6. This divergence occurred after metazoans diverged to become cnidarians and 

bilaterians, but before the separation of protostomes and deuterostomes (Table 4-1). The 

Nudipleura 5-HT receptor sequences identified in Figures 2-1 and 3-4 fall in 

phylogenetically with receptors from other animal phyla, because their sequences cluster 

together with other receptors from the same family, rather than with sequences from 

more closely related animal species. Their identification and phylogenetic 

characterization in Chapter 2 supports the single 5-HT receptor origin theory. 

The theory of a common ancestor of all 5-HT receptors was first presented over 

two decades ago (Peroutka 1993; Peroutka 1994; Peroutka and Howell 1994). Peroutka 

and Howell analyzed rates of amino acid substitution between 5-HT receptor families 

from diverse phyla, including vertebrates, insects, and molluscs. They compared amino 

acid substitution rates from extant 5-HT receptor protein sequences with estimated dates 

of divergence between species, to estimate the age of the receptor gene divergence. 

Peroutka and Howell’s research calculated that the first 5-HT receptor evolved between 

700 and 900 million years ago (MYA) (Peroutka and Howell 1994), after metazoans 



98 

diverged to form bilaterians and cnidarians (Park et al. 2012). At approximately 700 to 

800 MYA, the authors concluded that the primordial 5-HT receptor differentiated into 

super-families 5-HT1, 5-HT2, and 5-HT6. At approximately 600 to 700 MYA, the 5-HT1 

super family further diverged, forming the extant families 1, 5, and 7. At approximately 

600 MYA, the ancient ancestor of bilaterians diverged to form protostomes and 

deuterostomes (Erwin and Davidson 2002). Consequently, the extant 5-HT receptors are 

believed to share a common origin, even between distantly related phyla, and were 

present in the common ancestor of deuterostomes and protostomes. No extant 5-HT 

receptor, however, represents the original ancestral genes, because the individual genes 

have undergone mutations for up to hundreds of millions of years. 

Although there has been a large amount of divergence in the genetic sequences of 

5-HT receptors in the past 600 million years, amino acid features that are essential to 5-

HT receptor functioning have remained conserved. One prominent characteristic of all 

known 5-HT receptors is the conserved cysteine residue in the extracellular loop of the 

receptor between transmembrane domains two and three, which is believed to be 

involved in securing the helices together in a loop and in ligand binding (Nichols and 

Nichols 2008; Wurch and Pauwels 2000). This feature is found in all known 5-HT 

receptor amino acid sequences, including the Nudipleura receptors identified in Chapter 

2 (Nichols and Nichols 2008; Tamvacakis et al. 2015). Another conserved feature is the 

G-protein activation site, which activates binding to GTP. It is represented as the amino 

acid motif DRY or ERY in almost all 5-HT GPCRs(Nichols and Nichols 2008), with the 

exception of the 5-HT2b subtypes found in molluscs and arthropods (Clark et al. 2004; 

Tamvacakis et al. 2015). These are two examples of the phylogenetic commonalities of 5-

HT receptors, which are believed to maintain their basic function.  
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Until the early 2000s, genetic data from many invertebrate species was severely 

lacking, so while the theory of 5-HT receptor evolution explained above was accepted, it 

was based on a relatively limited sample size of species. As more and more invertebrate 

genetic information became available, however, analyses showed phylogenetic 

relationships between invertebrate and vertebrate 5-HT receptors with better resolution. 

More recent publications showed that invertebrate and vertebrate receptor proteins fall 

into the same 5-HT receptor families predicted by Peroutka and Howell. For example, a 

given 5-HT receptor gene is more closely related to members of its gene family in distantly 

related animal phyla than it is to different genes in closely related species (Barbas et al. 

2003; Dacks et al. 2013; Dass and Sudandiradoss 2012; Mapara et al. 2008a; Mustard et 

al. 2005; Nagakura et al. 2010; Nichols and Nichols 2008; Paluzzi et al. 2015; Spielman 

et al. 2015; Tamvacakis et al. 2015). One exception to the rule appears to be opossums, 

and possibly all marsupials. Opossum 5-HT2a and 5-HT7 do not cluster with the current 

classification (Dass and Sudandiradoss 2012). It may be that recent evolutionary events 

have allowed amino acid substitutions in this species after its divergence with placental 

mammalian species, but it is unclear whether these changes result in functional changes 

in the receptors. Another exception is the 5-HT3 receptor gene, an ionotropic receptor 

found only in vertebrates, which according to phylogenetic analysis most likely evolved 

from existing nicotinic acetylcholine receptors (Maricq et al. 1991; Reeves and Lummis 

2002).  Overall, even with the recent advancements in gene sequencing technology, the 

single 5-HT receptor ancestor idea proposed in 1994 by Peroutka and Howell is still 

supported. 

The early research on 5-HT receptor evolution estimated that the first 5-HT 

receptor evolved after the bilaterian-cnidarian split, approximately 600 MYA. This would 
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predict that cnidarian nervous systems do not express a 5-HT receptor-like gene. While 

cnidarian nervous systems do possess biogenic amine-like chemicals (Anctil and 

Bouchard 2004) and GPCRs (New et al. 2000), they seem to rely more on neuropeptide 

signaling than other phyla do (Grimmelikhuijzen et al. 2002). Using radio-ligand binding 

assays, a group of researchers showed that polyps of the sea pansy Renilla koellikeri bind 

5-HT (Dergham and Anctil 1998; Hajj-Ali and Anctil 1997). This research indicates that a 

cnidarian receptor may be present that recognizes 5-HT. However, no subsequent study 

has shown expression of any genes that are phylogenetically similar to 5-HT receptors, 

indicating that the cnidarian 5-HT response may be due to a protein that does not share 

ancestry with the extant bilaterian receptors. Thus, the idea that 5-HT receptors evolved 

after bilaterians and cnidarians split is still supported. 

Pharmacological studies have also attempted to characterize 5-HT receptors, but 

these have been performed mainly on vertebrate receptor orthologues. Exogenous 

agonists and antagonists, which are often developed against specific mammalian 5-HT 

receptor subtypes, cannot be used to identify invertebrate 5-HT receptor orthologues. 

Selection pressure on extant 5-HT receptor families has resulted in divergence of the 

genes (Dumitriu et al. 2006; Tierney 2001). The invertebrate receptors all still 

preferentially respond to 5-HT (at least, those species-specific subtypes that have been 

functionally characterized respond), but beyond that, pharmacological characterization 

is difficult. For example, an agonist against a mammalian 5-HT7 receptor cannot reliably 

identify 5-HT7 receptors in a mollusc or arthropod, because divergence of the amino acid 

sequences between these phyla has caused changes in the conformation of the receptor 

proteins. Thus, invertebrate and vertebrate 5-HT receptors are pharmacologically 

distinct, despite their phylogenetic similarities. That is why the majority of 5-HT receptor 
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identification done today uses phylogenetic analysis of amino acid sequences, a much 

more accurate means of identifying homology between invertebrate and vertebrate genes. 

Although each family was originally classified by the similarity of their protein 

structures, the families each have specific and conserved G-protein coupling, and each 

receptor family’s activation results in specific downstream activity (Nichols and Nichols 

2008). For example, 5-HT2 family receptors are coupled to Gq/G11 G-proteins and 

activate an intracellular activity pathway involving IP3/DAG. In the description of the 

Aplysia 5-HT2 receptor, Nagakura et al. (2010) show that the Aplysia 5-HT2a gene has 

these same coupling and IP3/DAG pathway.  

The phylogeny of 5-HT receptors presented in Chapters 2 and 3 recapitulates the 

previously published GPCR phylogenies, even with the addition of the newly identified 

molluscan 5-HT receptor genes 5-HT2b and 5-HT6. Overall, it is clear that the single 

origin of 5-HT receptors theory originally proposed by Peroutka and Howell is upheld.  

 

Phylogenetic Analyses of Selected Specific Molluscan 5-HT Receptor Subtypes 

The evolutionary relationships between specific receptors identified over the last 

two decades support Peroutka and Howell’s theory of a common ancestor of 5-HT 

receptor subtypes (Tierney 2001). Here, the theory will be applied to 5-HT1, 5-HT2, and 

5-HT6 family genes. 

 After the protostome/deuterostome split, the 5-HT receptor genes continued to 

diverge within the newly evolving species. 400 to 500 MYA, differentiation of the 

mammalian 5-HT1 orthologue occurred, leading to mammalian subtypes 1a, 1b, 1d, 1e, 

and 1f (Peroutka 1994). These mammalian receptor subtypes are not considered as being 

homologous to the invertebrate type 1x receptors. Instead, the 5-HT1a and 1b subtypes 
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found in molluscs and arthropods diverged from the ancestral 5-HT1 family receptor 

independently in each phyla, resulting in molluscan-specific and arthropod-specific 5-

HT1a and 1b paralogs. The phylogeny presented in Chapter 2 supports this idea: the 

Nudipleura 5-HT1a and 1b subtypes are more closely related to one another than to the 

Drosophila 1a and 1b receptors (Figure 4-1a). Thus, we can conclude that the divergences 

seen in the invertebrate 5-HT1 genes are phyla-specific gene duplication events. 

The 5-HT2 family genes have also duplicated independently. The vertebrate 5-HT2 

receptor differentiated into the subtypes we call 5-HT2a, 2b, and 2c between 500 and 600 

MYA (Peroutka 1993). Recent research has shown that there are two 5-HT2 subtypes 

expressed by arthropods (Clark et al. 2004; Dacks et al. 2013). Research presented in 

Chapter 2 provided the first evidence that there are two 5-HT2 family subtypes expressed 

in the molluscan brain. According to the phylogenetic tree presented in Chapter 2, the 

molluscan 5-HT2a and 2b subtypes are more closely related to their arthropod 

counterparts than they are to one another, indicating that, unlike the molluscan specific 

duplication event in the 5-HT1 family, the 5-HT2 subtypes diverged from one another 

before the ecdysozoan/lophotrochozoan split. The molluscan/arthropod 2a and 2b 

receptors are not phylogenetically similar to the vertebrate 5-HT2x subtypes, indicating 

that these two groups diverged within the 5-HT2 gene family (Figure 4-1b). An alternative 

explanation is that the 5-HT2 duplication event occurred independently in each 

arthropods and molluscs, and the sequences converged in such a way that they appear 

similar.  

This alternative explanation is less parsimonious given the existence of a special 

G-protein binding sight shared by arthropod and molluscan 5-HT2b receptors. Most 

GPCRs contain a G-protein activation site coded by amino acids DRY or ERY. The 5-HT2b 
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receptors in arthropods, however, were found to have an altered site coded by amino acids 

DRF, resulting in altered G-protein activity (Clark et al. 2004). The Nudipleura and 

Aplysia 5-HT2b receptors were found to contain the same DRF motif, although the 

Melibe 5-HT2b receptor was found to have the more common DRY. The shift between 

tyrosine (Y) and phenylalanine (F) is a single nucleotide, so it may be that the 5-HT2b 

genes evolved independently across groups. Furthermore, NCBI data sets revealed no 5-

HT2b orthologue in other lophotrochozoans. It is also important to note that the 5-HT2b 

receptor has not been functionally characterized in any mollusc, although it was in 

crustaceans and insects (Clark et al. 2004; Dacks et al. 2013). Despite this point, we make 

the assertion that the gene coding for 5-HT2b evolved in the common ancestor of 

arthropods and molluscs, because of the shared DRF motif and phylogenetic tree 

distribution.  

5-HT6 was proposed to be one of the three ancestral 5-HT receptor families 

(Peroutka 1994). However, more recent 5-HT receptor phylogenies call this idea in to 

question: 5-HT4 family genes, which were not included in the Peroutka publication, may 

be ancestral to 5-HT6. More current publications show 5-HT4 and 6 as sister groups, so 

that the exact identity of the ancestor is unclear (Nichols and Nichols 2008; Spielman et 

al. 2015; Tamvacakis et al. 2015). A focus on the evolutionary history of these specific 

receptors would better determine the true ancestral state.  

The 5-HT4 and 5-HT6 genes are missing from several large extant phyla. They have 

only been characterized in vertebrates and molluscs (Nichols and Nichols 2008; 

Tamvacakis et al. 2015). Perhaps the gene was lost in other species, and retained in only 

these two phyla. It could have been lost and regained in either vertebrates or molluscs. 

Or, it could be that one or the other phylum independently evolved a receptor that is 
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highly similar to the extant 5-HT6. An examination of 5-HT6 amino acid substitution 

rates in extant species, and potential pseudogenization in species that do not express the 

receptor, could help answer these questions. While a 5-HT4/6 ancestor was undoubtedly 

one of the three ancestral families, the amino acid sequence of the ancestral receptor 

could be better understood with a more thorough investigation. 

 

5-HT Receptor Subtype Diversity  

Individual 5-HT receptor subtypes are more numerous than any other major 

biogenic amine receptor class, possibly excluding trace amine-associated receptors 

(TAARs) (Nichols and Nichols 2008). This is because several of the receptor gene families 

contain multiple subtypes. The 5-HT1 family, for example, contains up to five subtypes in 

vertebrates. Two subtypes evolved in insects, and two in molluscs, through independent 

gene duplication events (Nagakura et al. 2010). In the 5-HT2 family, multiple subtypes 

again evolved independently in different species (Clark et al. 2004; Dacks et al. 2013; 

Tamvacakis et al. 2015). The 5-HT5 family contains at least one gene duplication, 

resulting in 5-HT5a and 5b (Grailhe et al. 2001; Rees et al. 1994). In contrast, there has 

been little to no documented evidence of gene duplications in families 4, 6, or 7 (Nichols 

and Nichols 2008), although one study has identified 5-HT4 subtypes in humans (Bach 

et al. 2001). It appears that some 5-HT receptor gene families more likely to contain 

multiple receptor subtypes. 

Gene duplication events likely led to the evolution of many of the additional 

subtypes. The molluscan 5-HT1a and 1b subtypes, for example, resulted from tandem 

gene duplication (Nagakura et al. 2010). The two genes are located next to one another 

on a chromosome in the Aplysia genome (taxonomic ID 6500). Other tandem gene 
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duplications likely allowed for subtype divergence amongst other species, like the whole-

genome duplication event in vertebrates (Herculano and Maximino 2014). An 

examination of genomic 5-HT receptors and their potential pseudogenes would illustrate 

the number of 5-HT receptors that evolved through these types of events. 

Comparing the divergence rates of 5-HT1 and 2 families with the other families 

might illustrate why some receptor families have more subtypes than others. Positive 

selection on gene families 1 and 2, or negative selection on the other families, could be 

inferred by comparing amino acid substitution rates. Although this would not explain 

why those families have diverged into numerous subtypes, it would explain how it 

happened through the course of evolution. 

If there is increased positive selection on these receptors, then there may be a 

greater diversity of them than previously known. 5-HT receptors from the more diverse 

families may have been gained and lost several times due to mutations resulting in 

additions and deletions. This has been shown to be the case for opsins, in which nine 

families of opsin genes have been identified in bilaterians, and four families are shared 

between bilaterians and cnidarians (Ramirez et al. 2016). Olfactory receptors have 

undergone multiple gene duplications and losses, as illustrated by the variable identity of 

olfactory receptor genes across closely related species (Nei et al. 2008; Niimura 2012; 

Niimura and Nei 2007). One interesting theory that has come from this is the idea that 

the high rates of amino acid substitutions has brought about orphan receptors (Ramirez 

et al. 2016). 

Some of those gains and losses may have resulted in orphaned 5-HT receptors, as 

well. It may also mean that there is greater diversity in the specific DNA and amino acid 

sequences of the extant subtypes between individuals of the same species. Although we 
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did not observe this in molluscan 5-HT receptor DNA sequences, it would be interesting 

to know if such a diversity exists in species with more subtypes per family, as is the case 

in humans. If it does, does that contribute to the vast variability of heritable mental 

disorders, responses to brain trauma, and drug addiction in humans? This has been 

postulated for human OXTR (Brune 2012), and could occur in 5-HT receptors as well. 

 

Conclusion 

The evidence summarized above describes what is currently known about how 5-

HT receptors evolved. This research shows that 5-HT receptors evolved from a single 

ancient receptor that was present before the divergence of protostomes and 

deuterostomes. The receptors have since diverged greatly from one another, and are today 

essential to neural functioning in almost all bilaterian animals. It is possible that many 

important 5-HT-mediated behaviors occur the way that they do because of subtle changes 

in the evolution of the receptor sequences. If so, then understanding how 5-HT receptor 

subtypes evolved across species can help us better understand neural mechanisms of 

behavior in light of evolution.   

 

4.3 Evolution of Cell Types across Species 

Introduction 

In Chapter 3, gene expression in homologous C2 neurons was compared using 

qPCR, and differences in 5-HT receptor expression were found to correlate with species-

specific behaviors. This finding illustrates an important point about homologous cells: 

that while they share a common ancestor, they do not necessarily share common 

functions or gene expression in extant organisms. In this section, I will discuss 
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homologous single cells beyond those found in the relatively closely related Nudipleura, 

to explain what they can tell us about the evolution of the cell, with respect to recent 

advances in RNA-Seq and cellular fingerprinting technologies. 

 

Homologous Cells, Again 

Homologous neurons were described in Chapter 1 as identifiable cells that are 

found across species, share some common traits, and are predicted to have been present 

in a common ancestor. According to the theory of common descent (Darwin 1859), 

however, all neurons and other cell types are descended from a common ancestor, so 

technically all cells are homologous at some level. Instead, the term is used to describe 

more recent evolutionary events, which allows us to distinguish between the 

differentiated cell types within and between species. The term “homologous cell” is 

therefore different from that of “sister cell,” which indicates a cell that was derived from 

the same ancestor but then diverged to form a new cell type (Arendt 2008). Comparing 

cells that are considered homologous between extant species can help explain how cells 

diversified and specialized over evolutionary time. 

Cells are complex and highly diversified from one another, yet they share 

commonalities because they descended from a common ancestor. If cells descended from 

a common ancestor, then it follows that they would be subject to principles of evolution 

that are similar to those found to occur for single genes (Arendt 2008). Arendt (2008) 

proposes that a major property of cellular evolution is ancestral multifunctionality, 

followed by increasing specialization and diversification. One example of this is the 

proposed ancient ancestor of the neuron, which is believed to have been a cell with 

multiple roles in sensing the external environment and secreting chemicals to 
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communicate with neighboring cells by paracrine signaling (Marlow and Arendt 2014; 

Striedter GF et al. 2013). This ancestral cell diversified into the neuron types known today. 

The proposed ideas of how cells evolve is similar to that observed in single genes, 

but single-gene evolutionary studies are more common. For example, HOX genes are 

believed to have been multifunctional in the ancestors of bilaterians (Force et al. 1999), 

then were subject to gene duplications and asymmetric divergence in functions (Holland 

et al. 2017).  

The idea that cells evolve in ways that are similar to single gene evolution has 

existed for several years, yet it has been difficult to test (Arendt 2008). Cellular homology 

was traditionally characterized using microscopy, but conclusions became difficult with 

less closely related species. With recent advances in technology, however, it is now 

possible to compare broad scale gene expression across single cells from much more 

distantly related species. This could allow for the potential to identify suites of gene 

markers that identify a homologous cell across species, and would lead to the creation of 

phylogenies for cells, like those for species or individual genes. This could tell us how cells 

evolved across more distantly related species, and how differences in homologous cells 

can lead to species-specific traits. 

 

Single-Cell Transcriptomics 

Using RNA-Seq, microarray, and other molecular fingerprinting techniques, large-

scale gene expression comparisons are now being used to determine the evolutionary 

relationships between cells. Next-Gen sequencing applied to single cell types has the 

potential to identify homologous cells based on their gene expression.  



109 

In Appendix A of this dissertation, we attempted a pilot study of single-neuron 

RNA-Seq, to compare gene expression between homologous C2 neurons from four 

species. The datasets produced were used to compare 5-HT receptor expression across 

species. Other studies have performed RNA-Seq on single cell types to look more broadly 

at the molecular expression signatures of extant cells. In comparing maternal and fetal 

placental cells using single-cell RNA-Seq, a recent study found that specific gene markers 

could reliably identify specific cell types (Nelson et al. 2016). In a study of mouse retinal 

cells, a technique called Drop-Seq was used to sequence individual cell types in the retina. 

The authors found that the molecular fingerprinting of those cells separated them reliably 

in to cell classes that were predicted based on previous morphological and single-gene 

expression data (Macosko et al.). In embryonic rats and mice, gene expression in 

pyramidal neurons and hippocampal neurons was compared, and common gene markers 

were identified that were shared by the cell types between species. The same study also 

identified significant variability in gene expression across repeated samples compared 

with controls (Dueck et al. 2015). The authors hypothesized that the gene expression 

variability may be under regulatory control, and that such variability may be necessary 

for functioning in large, complex tissues like the brain. The technology used to perform 

these studies is relatively new, and as the number of studies undertaken increases we can 

expect to see more species-comparisons of single cell transcriptomes, with further 

investigations into gene expression variability.  

Comparing homologous cells from different species using single-cell 

transcriptome sequencing is the next step in understanding how cells evolved. In many 

systems, this comparison is limited to embryonic development, when there are fewer 

numbers and types of cells. The adult molluscan nervous system is composed of large, 
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identifiable cells that can be compared across species, however, making it a viable 

alternative to embryonic-only studies. Furthermore, because several neurons in the 

Nudipleura brain have been functionally characterized, their functions can be compared 

at the level of species-specific single cell transcriptomes.  

 

Conclusions 

In this dissertation, I have used the study of gene expression in homologous 

neurons to make inferences about how behaviors evolved. The study of homologous cells 

has broader utility, however. It allows for an understanding of biology and evolution at a 

different level from that of genes or larger tissues, which are more common for 

evolutionary biologists to compare. Cells have evolved just as genes have, and may be 

subject to evolutionary principles that are similar to those for individual gene evolution 

(Arendt 2008). Understanding how cell types evolved can help explain how more complex 

systems like the nervous system evolved, which in turn can lead to a better understanding 

of the diversity of animals and behaviors seen today. 

 

4.4 Dissertation Conclusion 

The results of this dissertation illustrated 5-HT receptor expression across 

Nudipleura species, and correlated specific receptor subtype expression in single neurons 

with species-specific swimming behaviors. This work aligns with previously published 

research on the evolution of 5-HT receptors, and work on 5-HT modulation of DV 

swimming in Nudipleura sea slugs. 

The dissertation also addresses the comparison of homologous cells with respect 

to their receptor expression. While there were commonalities in some of the biogenic 
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amine receptors identified between Tritonia and Hermissenda C2 neurons as 

summarized in Appendix A, there were also species-differences in both 5-HT receptors 

and dopamine receptors. While the exact functions of these species-differences in 

receptor expression are currently unknown, the differences in some specific 5-HT 

receptors correlated with DV swimming and modulation. The observed differences 

between C2 homologues presented here may be reflective of a more widespread 

phenomenon, in which homologous cells express different genes, yielding species-specific 

functions. Neuromodulatory receptor expression plasticity in homologous neurons could 

explain many other species-differences in behavior. Studying these subtle changes in gene 

expression can expand our view of the neural mechanisms and evolution of behavior. 

 

4.5 Figure and Table Legends 

Figure 4-1: Updated Phylogeny of 5-HT Receptors. The 5-HT1 family receptors (a) 

show phylum-specific gene duplications resulting in 5-HT1a and 5-HT1b in Nudipleura 

representatives, Tritonia and Hermissenda. The 5-HT2 family receptors (b) split into two 

subtypes, 5-HT2a and 5-HT2b. 

 

Table 4-1: 5-HT Receptor Evolution Timeline. Timeline shows estimated number 

of years of 5-HT receptor evolution. Based on Peroutka and Howell, 1994.  
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Table 4-1: 5-HT Receptor Evolution Timeline 

 

Years Event 

1,000,000,000 Life begins 

1,200,000,000 Plant and animal differentiation occurs  

  First GPCR 

900,000,000 Bilaterian/cnidarian split 

  Ancestral 5-HT receptor 

800,000,000 Ancestral 5-HT receptor differentiates to 5-HT1, 5-HT2, and 5-HT6 

700,000,000 5-HT5, 5-HT7 differentiation occurs 

600,000,000 Deuterostome/protostome split 

500,000,000 Further differentiation of phyla-specific subtypes  

400,000,000 Fish/amniotic vertebrate differentiation occurs 

240,000,000 Dinosaurs evolve 

90,000,000 Differentiation of mammalian receptors 

65,000,000 Dinosaurs disappear in fossil record 

4,000,000 Humans appear in fossil record 

60 5-HT discovered 

25 First 5-HT receptor genes sequenced 
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5 APPENDIX  

Appendix A: Single Cell Transcriptome Sequencing 

5.1 Introduction 

C2 homologues from DV and non-DV swimming species were compared in 

Chapter 3 using qPCR to determine whether 5-HT receptor genes expression differences 

correlated with swimming. To go beyond a single gene family, we sequenced the 

transcriptomes of single C2 neurons from each of four species in a pilot study to establish 

cell isolation and sequencing methodology. This project will allow for a broad scale 

comparison of gene expression in homologous neurons with different behavioral 

functions.  

 

5.2 Methods 

Animals 

Tritonia diomedea were collected by Living Elements Ltd. (Vancouver, BC). 

Hermissenda crassicornis, Dendronotus iris, and Pleurobranchaea californica were 

collected by Monterey Abalone Co (Monterey, CA). Animals were housed at 10° C in 

artificial salt water. Animals were dissected in Normal Saline (NS) (see chapters 2 and 3). 

All dissections were done between 24 hours and two weeks following animal delivery.  

 

Recording 

Tritonia and Pleurobranchaea C2 neurons were recorded from during body wall 

nerve stimulation to determine swimming capability. Hermissenda and Dendronotus C2 

neurons were recorded to determine left-right coupling using a series of 3 nA electrical 
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pulses to the contralateral cell. Following recording, electrodes were carefully removed 

from the soma to prevent damaging the cells. 

 

Isolation 

A 0.2% Protease IX (Sigma Aldrich) solution in normal saline was bath applied for 

five minutes to the brains following recording. Following this incubation, the brains were 

washed with filtered artificial salt water (FSW). A second wash of FSW was done before 

cell removal, to remove as much contaminating genetic material from the bath as 

possible. A glass electrode attached to a suction tube and syringe was placed near the C2 

neuron. Cells were removed from the ganglia, pulled into the electrode, and placed in a 

micro-centrifuge tube containing 8ul distilled water and 2ul RNaseOut (Invitrogen). One 

or two C2 neurons per animal were considered as one “sample”. Cells were either frozen 

at -80°C immediately, or were taken immediately to the first step of the cDNA synthesis 

process. 

Eyes were removed during initial dissection for Tritonia and Pleurobranchaea, 

and from the ganglia following C2 isolation for Hermissenda and Dendronotus. They 

were handled and stored as described for C2 homologues. 

 

Transcriptome assembly and gene identification 

Single cell and eye cDNA was synthesized using the Clontech SmartSeq v4 Ultra-

Low Input RNA Kit (Takara). Libraries were prepared and indexed using the Nextera XT 

DNA Library Preparation Kit and 96-Sample Index Kit (Illumina). Qubit (Thermo Fisher) 

and Bioanalyzer (Agilent) analyses were used to judge quantity and quality of cDNA 

outputs during both protocols. cDNA samples were sequenced on a Hi-Seq2500 
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(Illumina) with a read depth of 10 million reads per sample. Sequencing reads as fastq 

files were analyzed using FastQC (Andrews 2010) via BaseSpace analysis (Illumina). J. 

Boykin assembled the fastq files using Trinity (Grabherr et al. 2011) for both single-

sample fastq files and concatenated files. BLAST+ version 2.4.0 (Camacho et al. 2009) 

was used to identify genes with queries from whole-brain transcriptomes of the same 

species. NCBI tBLASTx was used to confirm phylogenetic identity of each identified gene. 

MUSCLE (Edgar 2004) was used to align individual sequences. 

 

5.3 Results 

The initial sequencing results were analyzed for quality control, and 94% of reads 

were found to have a Q-score above Q30 (Figure 5-1a), indicating that the initial reads 

were of good quality and that sequence base calls were likely accurate. Additionally, 

alignments were done for select individual genes from the C2 concatenated 

transcriptomes with their whole-brain transcriptome counterpart. The alignments were 

more than 94% identical between the two. However, many of the genes selected for this 

analysis were fragmented in the C2 transcriptome, meaning that only the 5’, 3’, or middle 

of the gene was present in the C2 databases (Figure 5-1b).  

The concatenated and single-sample C2 transcriptomes were BLAST searched for 

5-HT receptors. The results are summarized in Table 5-1. One single-sample 

Hermissenda C2 assembly showed expression of a 5-HT2a-like gene. The expression of 

this receptor subtype conflicted with the data reported in chapter 3 using qPCR. When 

the Hermissenda C2 5-HT2a-like gene was BLAST searched on NCBI, it aligned with both 

molluscan muscarinic acetylcholine receptors (E-value 9e-25) and several insect 5-HT2a 

receptors (E-value 2e-19 and greater). When it was aligned with its Hermissenda whole-
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brain counterpart, the alignment quality was poor (28%) (Figure 5-2a). When aligned 

against 5-HT2a orthologues from other species, the Hermissenda C2 gene also showed 

poor alignment (Figure 5-2b and 5-2c). In contrast, other genes from the datasets showed 

good alignment. For example, the Hermissenda C2 orthologue for 5-HT1b showed 94% 

alignment to its whole-brain counterpart (Figure 5-2d). In addition to 5-HT2a, 5-HT7 was 

measured in one qPCR trial testing Hermissenda C2 homologues, but was not measured 

in any other qPCR or sequencing trial. 

5-HT receptors represented in the concatenated assembly were often not present 

in the single-sample assemblies. For example, only one of the five Tritonia C2 assemblies 

showed expression of 5-HT1b, and one of five assemblies showed expression of 5-HT7. 

Similarly inconsistent patterns were seen for all of the seven 5-HTR subtypes tested 

(Table 5-3). 

The concatenated transcriptome databases from Tritonia, Hermissenda, and 

Pleurobranchaea were also BLAST searched for a number of other genes. The gene 

precursor for Small Cardioactive Peptide (SCP) was found to be expressed in the C2 

transcriptomes from all three species. In molluscan whole brain tissue, long and short 

isoforms of SCP had been previously identified (Perry et al. 1999). The C2 transcriptome 

SCP gene was found to align to the short isoform of the gene in all three species (Figure 

5-3). 

The molluscan brain has at least three dopamine receptor subtypes, known as D1, 

D2, and DInv (Nagakura et al. 2010a; Perry et al. 1999). D2 was expressed in all three 

species, but Tritonia alone expressed DInv, and Hermissenda expressed D1 (Table 5-4).  

Finally, a number of other G-protein coupled receptors (GPCRs), were expressed 

in the C2 transcriptomes (Table 5-5). These receptors were expressed in both Tritonia 
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and Hermissenda concatenated C2 transcriptomes. The receptors were identified during 

5-HT receptor BLAST searches, because they are phylogenetically similar to the 5-HT 

receptor genes used as BLAST queries. Each of the reported non-5-HT receptors was 

verified using NCBI tBLASTx. The Pleurobranchaea and Dendronotus C2 transcriptomes 

were not analyzed for these receptors, and the single-sample assemblies were not 

searched.  

 

5.4 Discussion   

The C2 transcriptome study was a pilot effort to determine the parameters 

necessary for deep sequencing. Determining read depth, number of samples, number of 

cells per sample and other parameters is crucial to create a database that accurately 

reflects all of the genes expressed in a given tissue type, in this case single neurons. While 

other single-neuron transcriptome studies have reported their parameters (Dueck et al. 

2015; Kadakkuzha et al. 2013; Moroz and Kohn 2013; Wang and Song 2017), many of 

those studies used single-neuron populations, or single neurons that were much smaller 

or larger than Nudipleura C2 cells, meaning that there was no study similar enough to our 

aims for us to replicate. We chose to sequence 10 million reads per sample. We also chose 

to sequence C2 samples containing only one or two neurons, from the same animal, in 

order to attempt to capture individual variability. Finally, we chose to sequence up to five 

samples per species, because we were constrained by the number of species and cost of 

an additional lane in the sequencer. 

While the initial quality control metrics (as in Figure 5-1a) indicated good quality 

sequencing, the fragmented nature of many individual genes (as in Figure 5-1b) and the 

variability between individual assemblies for low copy number 5-HT receptor genes 
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indicated that in subsequent experiments a greater depth of reads should be attempted. 

This could be achieved by pooling C2 neurons from multiple animals, using fewer samples 

per lane to allow for more reads per sample. The fragmented nature of the genes also 

indicates that making assumptions about the presence or absence of genes could lead to 

false positives or false negatives. 

The conflict between the C2 transcriptome and qPCR results on the Hermissenda 

5-HT2a receptor subtype expression could have several potential explanations. It is 

possible that it conflicted because of individual variability in the animals sequenced. 

Using qPCR, 5-HT1a was measured by qPCR in two Tritonia C2 neuron samples, and 5-

HT7 was expressed in one Hermissenda C2 sample and one non-swimming 

Pleurobranchaea sample (see chapter 3). Thus, there is some variability in the 5-HT 

receptor subtype profile by qPCR, for a yet unknown reason. This variability could 

represent a biological phenomenon, reflected in the C2 transcriptomes. However, the 

Hermissenda C2 5-HT2a-like gene did not align well with orthologues from the 

Hermissenda whole brain transcriptome, or from other molluscan databases, although 

the Hermissenda C2 contig was labeled as most similar to 5-HT2a according to BLAST 

search of the C2 assembly. The alignment shows that the C2 gene is poorly aligned to 

other 5-HT2a orthologues. NCBI BLAST search showed that it was weakly related to a 

molluscan acetylcholine receptor, and insect 5-HT2a receptors. These results could 

indicate that the Hermissenda 5-HT2a-like gene is a pseudogene that is not functional in 

its current mRNA form. However, the most likely explanation is that it is an assembly 

artifact, given its low alignment percentage, poor E-values, and its presence in only one 

individual C2 transcriptome database. This conclusion led me to omit them from the 

transcriptome 5-HT receptor subtype tables 5-1, 5-2, and 5-3. 
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The SCP precursor gene was identified in the C2 transcriptome databases. The SCP 

gene is known to code for two isoforms, SCP-A and SCP-B (Lloyd et al. 1987; Mahon et al. 

1985). Furthermore, the SCP gene has two isoform in molluscan whole-brain tissue, a 

short and long isoform. The Aplysia SCP precursor gene published on Uniprot is the short 

isoform (Uniprot ID P09892). According to its Uniprot entry, the short isoform codes for 

both SCP-A and SCP-B proteins through a post-translation cleavage event. It can be 

inferred from this information that the short and long isoforms of the gene found in 

Nudipleura likely both code for SCP-A and -B. Thus, the finding that the short SCP 

isoform is expressed in the C2 transcriptomes does not allow for any conclusion about 

which form(s) of the protein C2 might express.  

Some dopamine receptor subtypes also showed species-specific expression in C2 

homologues, using the concatenated datasets. D2 was expressed across species, and 

between swimming and non-swimming Pleurobranchaea, while D1 was found only in 

Hermissenda and DInv was found in Tritonia. There could be several explanations for 

this. It is possible that D2 is conserved across Nudipleura C2 homologues. The dopamine 

receptor subtypes D1 and DInv could have been ancestral in Nudipleura and lost in 

Pleurobranchaea, or evolved in Nudibranchs, only. D1 or DInv could have been lost and 

gained within different Nudibranchs. There could be several other phylogenetic 

explanations. It could also be that the transcriptome sequencing did not detect dopamine 

receptor subtypes in one or more C2 samples, however. Finally, because the receptor 

sequences are fragmented, positive identification is more difficult: it is possible that while 

the fragments currently available align with portions of different dopamine receptor 

subtypes, a more complete sequence generated from additional sequencing may yield a 

different result. More samples and more species would help clarify this discrepancy. Of 
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note, the Aplysia dopamine receptors B1 and B2 were found in neither the whole brain 

transcriptomes nor the C2 transcriptomes, supporting the theory that they are specific to 

Aplysia (Nagakura et al. 2010a). 

Non-5-HT biogenic amine receptors and other GPCRs were also identified through 

BLAST searches. These receptors were identified because of their gene sequence 

similarities to 5-HT receptors, which were used as BLAST queries, which means that other 

receptors may be present in the C2 transcriptomes but are as yet unaccounted for. The 

biogenic amine receptors Alpha-1x adrenergic receptors, two octopamine receptor 

subtypes, and one histamine receptor subtype were expressed in both Hermissenda and 

Tritonia concatenated C2 assemblies. Because their expression is shared between a 

swimming and non-swimming species, it is unlikely that they play a role in swimming. It 

would be interesting to understand the other roles that C2 plays in the brain and how the 

modulation from these neurotransmitters affects this cell type. An orphan receptor, 

GPR83, was expressed. The identification of this receptor could make C2 a useful tool to 

determine GPR83s function, through knockdown experiments, for example.  Finally, 

several neuropeptide receptors were identified. Some of these were uncharacterized, 

according to NCBI. C2 could again provide a useful tool to functionally characterize these 

neuropeptide receptors. Overall, these finding indicate that C2 is likely modulated by a 

number of other chemicals besides 5-HT, and points to its multifunctional role within the 

brain (Jing and Gillette 1995; Jing and Gillette 2000; Snow 1982). 

The initial C2 transcriptomes represent the first study comparing single 

homologous cells with different functions across species that we know of. Although these 

datasets may be greatly improved with more sequencing efforts, they are a good first step 
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to understanding how homologous single cells differ across species, and how those 

differences relate to species-specific behaviors.  

 

5.5 Figure and Table Legends 

Figure 5-1: Single-Cell Transcriptome Quality Control Illustrations. FASTQC 

(1a) was used to predict quality scores following initial sequencing. Individual genes, like 

the Tritonia 5-HT7 gene shown (1b), were performed using MUSCLE with genes from the 

concatenated C2 transcriptome files and the whole brain transcriptome files from the 

same species. 

 

Figure 5-2: Hermissenda C2 5-HT2a Alignments. A gene expressed in 

Hermissenda C2 concatenated and C2-4 individual assemblies was identified as most 

similar to 5-HT2a by BLAST. The gene sequence used in alignments a-c is from the 

concatenated file (HcC2_2a). The gene was aligned against the Hermissenda whole-brain 

transcriptome (a), the Tritonia whole brain transcriptome (b), and the Aplysia published 

5-HT2a orthologue. For comparison (d), the Hermissenda C2 concatenated assembly 5-

HT1b gene (HcC2_1b) is aligned with its whole-brain transcriptome orthologue. 

 

Figure 5-3: C2 and Whole Brain SCP Sequence Alignment. MUSCLE was used to 

align the short and long SCP gene sequences identified in whole brain tissue with the 

single sequence identified from the C2 transcriptome.  

 

Table 5-1: 5-HT Receptors Identified from Concatenated Assembly.  
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Table 5-2: Comparison of Tritonia and Hermissenda 5-HT Receptor 

Expression in qPCR and Concatenated Assembly.  

 

Table 5-3: Comparison of 5-HT Receptor Expression in Individual C2 

Assemblies. Each of the five individual C2 assemblies for Tritonia (a) and Hermissenda 

(b) were searched using BLAST to examine expression of 5-HT receptor genes across non-

concatenated assemblies. The results are compared to the concatenated assembly (C2-

concat) and to the qPCR results for each species. 

 

Table 5-4: Identification of Dopamine Receptors in C2 Homologues. 

Dopamine receptors D1, D2, and the invertebrate-specific DInv were BLAST searched in 

each of the concatenated transcriptome assemblies.  

 

Table 5-5: Other Biogenic Amine Receptors Identified in the Concatenated 

Tritonia and Hermissenda Assemblies. Several other GPCRs were identified in the 

concatenated assemblies. Select identified receptors were listed here. 
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B: 
 

Td7_WB          MTSIPAPVVVTPPFVSTILNGSDNILVPYDVNASSIVTTTINYVSNVTTMVANVTNPSSN 

Td7_C2          ------------------------------------------------------------ 

                                                                             

 

Td7_WB          VTNGTTEIQQPPIPYQVWEQIVIALILGVLIICTLIGNSLVCMSVAIVKRLQSPSNLLIV 

Td7_C2          ------------------------------------------------------------ 

                                                                             

 

Td7_WB          SLAVADLCVGLFVMPFAAVLQVYGSWVLGSVVCDMWTTVDVLLCTSSILNLCAISVDRYF 

Td7_C2          ------------------------------------------------------------ 

                                                                             

 

Td7_WB          VITQPFRYAMKRTPKRMGLMVLFVWTLSSVVCIPPVFGWKSEHQKYNCMISNDLGYQIYA 

Td7_C2          ---------MKRTPKRMGLMVLFVWTLSSVVCIPPVFGWKSEHQKYNCMISNDLGYQIYA 

                         *************************************************** 

 

Td7_WB          TLCAFYLPLFVMIFVYFKIWRVSSKIARQEAQSKIGSFDKGAEFQLGRPSHDSGDSNLLA 

Td7_C2          TLCAFYLPLFVMIFVYFKIWRVSSKIARQEAQSKIGSFDKGAEFQLGRPSHDSGDSNLLA 

                ************************************************************ 

 

Td7_WB          NGTTKEGGVANGDDDGSIEILQKKPEFEKLNKRRFTIRSLLPRHPKSSISKDSKATKTLG 

Td7_C2          NGTTKEGGVANGDDDGSIEILQKKPEFEKLNKRRFTIRSLLPRHPKSSISKDSKATKTLG 

                ************************************************************ 

 

Td7_WB          IIMGCFTLCWLPFFILALVKTFCLECEVPMALDNILMWLGYTNSFLNPVIYARFNREFRT 

Td7_C2          IIMGCFTLCWLPFFILALVKTFCLECEVPMALDNILM----------------------- 

                *************************************                        

 

Td7_WB          PFKEILLFRCRGINRRMRSESYVEQYGPVASHRDSLRTTTDTVVRYNSQGQTMVTVGNGS 

Td7_C2          ------------------------------------------------------------ 

                                                                             

 

Td7_WB          ANGSRHTESRI 

Td7_C2          ----------- 

 

 

 

Figure 5-1: Single-Cell Transcriptome Quality Control Illustrations 
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A:  
 
Hc2a_WB               -------MDNIFTGSGSDVIFNLNDTISGGFHNMNMNNMNSSFN---------------- 

HcC2_combined_2a      SYPSSITTTTIYNNNNNFTTNNITHHYNNIILNGTITSIQSYYNNITQSSGGGILPAGAV 

                               .*:..... .  *:..  .. : * .:..::* :*                 

 

Hc2a_WB               ---GTDGDSTSPADLY---------VWMVLLMAPLVLFGIAGNTLVILAISLERRLQNIT 

HcC2_combined_2a      GTEGLDELGLTPSSLLPASQKGQPLKWGMLALTLIILCTAVGNLLVCLAVCWERRLQNMT 

                         * *  . :*:.*           * :* :: ::*   .** ** **:. ******:* 

 

Hc2a_WB               NYFLLSLAVTDLLVSLIVMPFSIINMITGRWLFGLLLCDFFVTSDVLMCTSSIFHLCFIS 

HcC2_combined_2a      NYFLMSLAIADFLVSLLVMPLGM------------------------------------- 

                      ****:***::*:****:***:.:                                      

 

Hc2a_WB               AERYIGIRYPLWSKNKSKRVVLLKIVLVWTLAFAVTSPISILGVVQEQNILVDGRCVLSN 

HcC2_combined_2a      ------------------------------------------------------------ 

                                                                                   

 

Hc2a_WB               EYFIIYGSIFAFVIPLSIMVIMYILTVRMLNHQAKLCHKRRGEDGEVEPMIRRSTSSKHR 

HcC2_combined_2a      ------------------------------------------------------------ 

                                                                                   

 

Hc2a_WB               SWQGRNKFYGGGGEFQTSFRNHDLKEHILDCSGNFHLQPNMYDCGGGGG 

HcC2_combined_2a      ------------------------------------------------- 

 
B: 
 

Td2a_WB               MLLMAPLVVFGIAGNTLVILAISLEKRLQNVTNYFLLSLAVTDLLMSLIVMPFSIINVFT 

HcC2_combined_2a      ------------------------------------------------------------ 

                                                                                   

 

Td2a_WB               GRWLFGALVCDFFVTSDVLMCTSSIFHLCTISTERYIGIRYPLWSKNKSKRLVLLKIVLV 

HcC2_combined_2a      ------------------------------------------------------------ 

                                                                                   

 

Td2a_WB               WTLAIAITSPITVLGVVREENVLVHGECVLSNDHFIIYGSIFAFYIPLTIMVLMYILTVR 

HcC2_combined_2a      -----SYPSSITTTTIYNNNNNFTTNNITHHYNNIILNGTITSIQS-------------- 

                           : .*.**.  : .::* :. .: .   :::*: *:* ::                 

 

Td2a_WB               MLSKQAKMCSSRRGNDSEGEPMIRRSTSSKSWRGRPKYYGNSLRSPEPNEKIMSSGGLNP 

HcC2_combined_2a      -------------------------------------YYNNITQS--------------- 

                                                           **.*  :*                

 

Td2a_WB               HYFELTTRGNARPHFKASSRHATLNHGGGMNGDNGGGGGGSGNSGGGGSGVISSGGSPIA 

HcC2_combined_2a      ---------------------------------SGGGILPAGAVGTEG------------ 

                                                       .***   :*  *  *             

 

Td2a_WB               KRNTINVISTINNNKSNQGVLSKNSKNGKNNVRRSRNGVLFDAITCGGNRSGGVENRSNA 

HcC2_combined_2a      ------------------------------------------------------------ 

                                                                                   

 

Td2a_WB               NSSEHQYCNGHSSDLGSNGKDDGNRQDPLSSSPSHDQKHLKDLVRKHHVALRAANILLMK 

HcC2_combined_2a      -------------------------LDELGLTPS-------------------------- 

                                                * *. :**                           

 

Td2a_WB               KVDQSPNPMHLVPTTATTKTSTVLTTTPPSSTKASIRRDNSVKTEQKATKVLGVVFMIFV 

HcC2_combined_2a      ------------------------SLLPASQKGQPLKWGMLALTLIILCTAVGNLLVCLA 

                                              :  *.*..  .:: .  . *     ..:* ::: :. 

 

Td2a_WB               VCWAPFFTVNILTVLCDRCKFEPTLITVFVWLGYASSTLNPIIYTIFNNIFRNTFIKLLC 

HcC2_combined_2a      VCWERRLQN----------MTNYFLMSLAIADFLVSLLVMPLGM---------------- 

                      ***   :              :  *::: :    .*  : *:                   
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Td2a_WB               CRYRLLHRARRNSNLIRKENGIMTSNCTSYSTTTNLINSSNCCSNNNSNLSASNKASTSS 

HcC2_combined_2a      ------------------------------------------------------------ 

                                                                                   

 

Td2a_WB               VMDESNC 

HcC2_combined_2a      ------- 

 
C: 
 
Ac_5HTR2a_published      MSDNDPWSLRPPGLASAGREEGEGEDILGMNKSARNTGAGHRHRHNKHNQLAGALSEASA 

HcC2_combined_2a         ------------------------------------------------------------ 

                                                                                      

 

Ac_5HTR2a_published      DGAAGGGGAGHGNVDLNRGSNYAASASSPAADFRDYSRDIGVKGEFQDALKESSAFNSSA 

HcC2_combined_2a         --------------------------------------------------SYPSSITTTT 

                                                                           . .*::.::: 

 

Ac_5HTR2a_published      LYDRLLRGGRPRSDFPVSAPRRVIGDGDDDFFGLPGSNGTVSDDASGLFSGMVKNPMRQN 

HcC2_combined_2a         IYN-------------------------------------------------------NN 

                         :*:                                                       :* 

 

Ac_5HTR2a_published      SQFPLSNNTYSISDLDLGSAKSDPDIDSTIPVHYTEYDIMNLGGGGGDGRGGGGGGGVVG 

HcC2_combined_2a         NNFTTNNITHHYNNIILN---------GTITSIQSYYNNITQSSGGGILPAGAVG----- 

                         .:*. .* *:  .:: *.         .**.   : *: :. ..***   .*. *      

 

Ac_5HTR2a_published      GYSPGTQDLYDIHANNDADTFYRDVYDDENDAEYQVNHILPINADEGSKTPHFDAEFFPE 

HcC2_combined_2a         ------------------------------------------------------------ 

                                                                                      

 

Ac_5HTR2a_published      SAGDSEDNLSFNNTLLNPSSGGVFTNPKNDAASYSFSFPSWSASPPTGAGTSDVFSNSQP 

HcC2_combined_2a         --TEGLDELGLTPSSLLPASQ--------------------------------------- 

                            :. *:*.:. : * *:*                                         

 

Ac_5HTR2a_published      QPVPNFDLDHLHNLTLRGGSEFNITPLVDPEYTNVLFDQGTRLAPDYDYSIVAHAAANNS 

HcC2_combined_2a         ------------------------------------------------------------ 

                                                                                      

 

Ac_5HTR2a_published      SIFGGNITDLLMADGGREDEYTWSILMMAPLVVFGVAGNTLVILAISLEKRLQNVTNYFL 

HcC2_combined_2a         ----------------KGQPLKWGMLALTLIILCTAVGNLLVCLAVCWERRLQNMTNYFL 

                                         : :  .*.:* :: :::  ..** ** **:. *:****:***** 

 

Ac_5HTR2a_published      LSLAVTDLLVSLIVMPFSIINVFTGRWLFGLLLCDFFVTSDVLMCTSSILHLCTISLERY 

HcC2_combined_2a         MSLAIADFLVSLLVMPLGM----------------------------------------- 

                         :***::*:****:***:.:                                          

 

Ac_5HTR2a_published      IGIRYPLWTKNKSKRVVLLKIVLVWTIALAITSPITVLGVVRAQNVLVDDVCVVNNEHFV 

HcC2_combined_2a         ------------------------------------------------------------ 

                                                                                      

 

Ac_5HTR2a_published      IYGSIFAFFLPLAIMILMYALTVRMLNKQARLCQTRRADDGEGEPMIRRSTSRRNWQGRR 

HcC2_combined_2a         ------------------------------------------------------------ 

                                                                                      

 

Ac_5HTR2a_published      KFYGREVLSATPSCCDPRSGGGGGGGDSGGGSGGVLSFHQRYRPLGGGVSRHNTIPLYHN 

HcC2_combined_2a         ------------------------------------------------------------ 

                                                                                      

 

Ac_5HTR2a_published      SHHHHHHHNHNHHNHQQQHHHRNHNSSYAHHNNYLPLDRHHQIERRETANCCGVGGVDWG 

HcC2_combined_2a         ------------------------------------------------------------ 
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Ac_5HTR2a_published      GGGEPKRLRELVRKHHVAVKAANILLLKRDGQQQQQQQQQHHQQRGQGGVQGPGSSGHHG 

HcC2_combined_2a         ------------------------------------------------------------ 

                                                                                      

 

Ac_5HTR2a_published      GHHRGSTSSSTNYSVRRDNSVRTEQKASKVLGVVFMIFVVCWAPFFTVNILTVLCTSCRF 

HcC2_combined_2a         ------------------------------------------------------------ 

                                                                                      

 

Ac_5HTR2a_published      EPTLITAFVWLGYVSSTLNPIIYTIFNNIFRITFIKLLCCRYRLLHRARSSSHMTGLRNG 

HcC2_combined_2a         ------------------------------------------------------------ 

                                                                                      

 

Ac_5HTR2a_published      ILACNAFCPAPLAVQTSNSNVTNSTLHDESHC 

HcC2_combined_2a         -------------------------------- 

                                                          

D:   
 
Hc1b_transcriptome      MMSNVTLPSETISDMSITPTTAAKIMISTLVSNIKRLNDSINESTSFSIAAAGGGSSISP 

HcC2_combined_1b        ------------------------------------------------------------ 

                                                                                     

 

Hc1b_transcriptome      GVLGTSADMIDKSNGNSNTNMAATGSGSSSSSGGGSNGSNVGVTDGEIPVWEFSVYSQEH 

HcC2_combined_1b        ------------------------------------------------------------ 

                                                                                     

 

Hc1b_transcriptome      LIVTSIVLGLFVLCCIIGNCFVIAAVILERSLHNVANHLIVSLAVADLMVAVLVMPLSVV 

HcC2_combined_1b        ------------------------------------------------------------ 

                                                                                     

 

Hc1b_transcriptome      SEISTDWFLDQEVCDMWISVDVLCCTASILHLVAISLDRYWAVTGIDYIRKRSAKRILLM 

HcC2_combined_1b        ------------------------------------------------------------ 

                                                                                     

 

Hc1b_transcriptome      IFTVWVVALFISIPPLFGWRDPKNDSDITGMCIISQDKGYTIFSTVGAFYLPMILMMIIY 

HcC2_combined_1b        ------------------------------------------------------------ 

                                                                                     

 

Hc1b_transcriptome      AKIYVVAKSRIRKDKFHKRLHKRKTEETTLVSSPKTEYSVVNDCNGCGENNSPATENGKK 

HcC2_combined_1b        ---------------------------------------GINAEYGCGENNSPATENGKK 

                                                                :*   *************** 

 

Hc1b_transcriptome      KRRAPFKSYGCSPRPERKKRGGNNKQNSEGNNHNGVNGNSTDRLQHLTVIEPDAFTSGHN 

HcC2_combined_1b        KRRAPFKSYGCSPRPERKKRGGNNKQNSEGNNHNGVNGNSTDRLQHLTVIEPDAFTSGHN 

                        ************************************************************ 

 

Hc1b_transcriptome      DEAKLAMLDTAHTNSSTPSHNPQALDNYNFQRNKEKLELKRERKAARTLAIITGAFIICW 

HcC2_combined_1b        DEAKLAMLDTAHTNSSTPSHNPRALR---------------------------------- 

                        **********************:**                                    

 

Hc1b_transcriptome      LPFFIVALIGPFIHQEIPAFVGSFILWLGYFNSLLNPIIYTIFSPEFRSAFHKILFGKYR 

HcC2_combined_1b        ------------------------------------------------------------ 

                                                                                     

 

Hc1b_transcriptome      RVVR 

HcC2_combined_1b        ---- 

 

 
 
Figure 5-2: C2 and Whole Brain SCP Sequence Alignment. 
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Td_WB_long       MEMTMPRATVSLTLLFVIICTVDAMNYLAFPRMGRSDLTRVKRHVDMPWNMIFPRKRGGM 

Td_C2_SCP        MEMTMPRATVSLTLLFVIICTVDAMNYLAFPRMGRS------------------------ 

Td_WB_short      MEMTMPRATVSLTLLFVIICTVDAMNYLAFPRMGRS------------------------ 

                 ************************************                         

 

Td_WB_long       LPENFIFPRKRGSMLPGNFIFPRKRQNGYLAFPRMGRSQAKAGTAEAIDTECCGIGLKSE 

Td_C2_SCP        ---------------------------GYLAFPRMGRSQAKAGTAEAIDTECCGIGLKSE 

Td_WB_short      ---------------------------GYLAFPRMGRSQAKAGTAEAIDTECCGIGLKSE 

                                            ********************************* 

 

Td_WB_long       FAVSDDGKEELHNICTASVSVCCEGLRELADEKPNGVVYSMCVPDVSKMYPSSYNKLKRL 

Td_C2_SCP        FAVSDDGKEELHNICTASVSVCCEGLRELADEKPNGVVYSMCVPDVSKMYPSSYNKLKRL 

Td_WB_short      FAVSDDGKEELHNICTASVSVCCEGLRELADEKPNGVVYSMCVPDVSKMYPSSYNKLKRL 

                 ************************************************************ 

 

Td_WB_long       LTK 

Td_C2_SCP        LTK 

Td_WB_short      LTK 

                 *** 

 

 

Figure 5-3: C2 and Whole Brain SCP Sequence Alignment. 
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Tritonia
C2

Hermissenda
C2

Pleurobranchaea
(swimmer) C2

Pleurobranchaea
(non-swimmer) C2

5-HT1a

5-HT1b

5-HT2a

5-HT2b

5-HT4

5-HT6

5-HT7

Table 5-1: 5-HT Receptors Identified from Concatenated Assembly.  
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Table 5-2: Comparison of Tritonia and Hermissenda 5-HT Receptor Expression in qPCR 
and Concatenated Assembly. 

 

 
 
 
  

Tritonia C2 
transcriptome

Tritonia C2 
qPCR

Hermissenda C2 
transcriptome

Hermissenda C2 
qPCR

5HT1a 1/5

5HT1b

5HT2a

5HT2b 3/6

5HT4

5HT6

5HT7 1/7
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Table 5-3 Comparison of 5-HT Receptor Expression in Individual C2 Assemblies. 

A:  
 

 

 
B: 
 

 
 
 
 
  

TdC2-1 TdC2-2 TdC2-3 TdC2-4 TdC2-5
TdC2-
concat

TdC2-
qPCR

5HT1a 1/5

5HT1b

5HT2a

5HT2b 3/6

5HT4

5HT6

5HT7

HcC2-1 HcC2-2 HcC2-3 HcC2-4 HcC2-5
HcC2-
concat

HcC2-
qPCR

5HT1a

5HT1b

5HT2a

5HT2b

5HT4

5HT6

5HT7 1/7
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Table 5-4:  Identification of Dopamine Receptors in C2 Homologues. 

 

 
 
  

Tritonia
C2

Hermissenda
C2

Pleurobranchaea
C2 (swimmer)

Pleurobranchaea
C2 (non-swimmer)

D1

D2

DInv
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Additional receptors identified in Tritonia and 
Hermissenda concatenated C2 transcriptomes

Alpha-1x adrenergic receptor

Histamine H1 receptor

Muscarinic acetylcholine receptor

Multiple neuropeptide receptors

Octopamine receptors 1 and 2

Orexin receptor

Orphan GPCR83

Table 5-5: Other Biogenic Amine Receptors Identified in the Concatenated Tritonia 
and Hermissenda Assemblies. 
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