37 research outputs found

    A New Approach of Colour Image Encryption Based on Henon like Chaotic Map

    Get PDF
    In modern era of digital world, exchange of information in form of image often very frequently over communication channel, the secrecy of multimedia data like images becomes very important, The issue of secrecy for image resolved In many digital applications such as sensitive visual aids, broadcasting, military services, rare satellites images and confidential medical images etc. To reduce the processing overhead with the concern of Real-time data transmission application, to reduce such a huge file processing cost, we needs to enhance our encryption/decryption techniques. This paper proposed a novel image encryption technique based on Hannon like chaotic map. Chaos-based image encryption technique is one of the more promising encryption algorithms that provide very efficient and fast way of image encryption due to its ubiquitous phenomenon in deterministic nonlinear systems that exhibit extreme sensitivity to initial condition and random like behaviours. Keywords— Image RGB colour component, image encryption, Henon map, chaotic system

    Novel lightweight video encryption method based on ChaCha20 stream cipher and hybrid chaotic map

    Get PDF
    In the recent years, an increasing demand for securing visual resource-constrained devices become a challenging problem due to the characteristics of these devices. Visual resource-constrained devices are suffered from limited storage space and lower power for computation such as wireless sensors, internet protocol (IP) camera and smart cards. Consequently, to support and preserve the video privacy in video surveillance system, lightweight security methods are required instead of the existing traditional encryption methods. In this paper, a new light weight stream cipher method is presented and investigated for video encryption based on hybrid chaotic map and ChaCha20 algorithm. Two chaotic maps are employed for keys generation process in order to achieve permutation and encryption tasks, respectively. The frames sequences are encrypted-decrypted based on symmetric scheme with assist of ChaCha20 algorithm. The proposed lightweight stream cipher method has been tested on several video samples to confirm suitability and validation in term of encryption–decryption procedures. The performance evaluation metrics include visual test, histogram analysis, information entropy, correlation analysis and differential analysis. From the experimental results, the proposed lightweight encryption method exhibited a higher security with lower computation time compared with state-of-the-art encryption methods

    A Lightweight Chaos-Based Medical Image Encryption Scheme Using Random Shuffling and XOR Operations

    Get PDF
    Medical images possess significant importance in diagnostics when it comes to healthcare systems. These images contain confidential and sensitive information such as patients’ X-rays, ultrasounds, computed tomography scans, brain images, and magnetic resonance imaging. However, the low security of communication channels and the loopholes in storage systems of hospitals or medical centres put these images at risk of being accessed by unauthorized users who illegally exploit them for non-diagnostic purposes. In addition to improving the security of communication channels and storage systems, image encryption is a popular strategy adopted to ensure the safety of medical images against unauthorized access. In this work, we propose a lightweight cryptosystem based on Henon chaotic map, Brownian motion, and Chen’s chaotic system to encrypt medical images with elevated security. The efficiency of the proposed system is proved in terms of histogram analysis, adjacent pixels correlation analysis, contrast analysis, homogeneity analysis, energy analysis, NIST analysis, mean square error, information entropy, number of pixels changing rate, unified average changing intensity, peak to signal noise ratio and time complexity. The experimental results show that the proposed cryptosystem is a lightweight approach that can achieve the desired security level for encrypting confidential image-based patients’ information

    Implementation of a Multimaps Chaos-Based Encryption Software for EEG Signals

    Get PDF
    In the chapter, we adopted a chaos logic map and a quadratic map to develop the chaos-based multi-maps EEG encryption software. The encryption performances of the chaos-based software were studied. The percent root-mean-square difference (PRD) is used to estimate the accuracy of a correctly decrypted EEG signal with respect to the original EEG signal. Pearson correlation coefficient (PCC) is used to estimate the correlation between the original EEG signal and an incorrectly decrypted EEG signal. The seven encryption aspects were testing, the average PRD value of the original and correctly decrypted EEG signals for the chaos-based multi-maps software is 2.59 x 10-11, and the average encryption time is 113.2857 ms. The five error decryption aspects were testing, the average PCC value of the original and error decrypted EEG signals for the chaos-based multi-maps software is 0.0026, and the average error decryption time is 113.4000 ms. These results indicate that the chaos-based multimaps EEG encryption software can be applied to clinical EEG diagnosis
    corecore