16 research outputs found

    Hellinger distance based drift detection for nonstationary environments

    Full text link
    Abstract—Most machine learning algorithms, including many online learners, assume that the data distribution to be learned is fixed. There are many real-world problems where the distribu-tion of the data changes as a function of time. Changes in nonstationary data distributions can significantly reduce the ge-neralization ability of the learning algorithm on new or field data, if the algorithm is not equipped to track such changes. When the stationary data distribution assumption does not hold, the learner must take appropriate actions to ensure that the new/relevant in-formation is learned. On the other hand, data distributions do not necessarily change continuously, necessitating the ability to monitor the distribution and detect when a significant change in distribution has occurred. In this work, we propose and analyze a feature based drift detection method using the Hellinger distance to detect gradual or abrupt changes in the distribution. Keywords-concept drift; nonstationary environments; drift detection I

    Request-and-Reverify: Hierarchical Hypothesis Testing for Concept Drift Detection with Expensive Labels

    Full text link
    One important assumption underlying common classification models is the stationarity of the data. However, in real-world streaming applications, the data concept indicated by the joint distribution of feature and label is not stationary but drifting over time. Concept drift detection aims to detect such drifts and adapt the model so as to mitigate any deterioration in the model's predictive performance. Unfortunately, most existing concept drift detection methods rely on a strong and over-optimistic condition that the true labels are available immediately for all already classified instances. In this paper, a novel Hierarchical Hypothesis Testing framework with Request-and-Reverify strategy is developed to detect concept drifts by requesting labels only when necessary. Two methods, namely Hierarchical Hypothesis Testing with Classification Uncertainty (HHT-CU) and Hierarchical Hypothesis Testing with Attribute-wise "Goodness-of-fit" (HHT-AG), are proposed respectively under the novel framework. In experiments with benchmark datasets, our methods demonstrate overwhelming advantages over state-of-the-art unsupervised drift detectors. More importantly, our methods even outperform DDM (the widely used supervised drift detector) when we use significantly fewer labels.Comment: Published as a conference paper at IJCAI 201

    Concept Drift Detection in Data Stream Mining: The Review of Contemporary Literature

    Get PDF
    Mining process such as classification, clustering of progressive or dynamic data is a critical objective of the information retrieval and knowledge discovery; in particular, it is more sensitive in data stream mining models due to the possibility of significant change in the type and dimensionality of the data over a period. The influence of these changes over the mining process termed as concept drift. The concept drift that depict often in streaming data causes unbalanced performance of the mining models adapted. Hence, it is obvious to boost the mining models to predict and analyse the concept drift to achieve the performance at par best. The contemporary literature evinced significant contributions to handle the concept drift, which fall in to supervised, unsupervised learning, and statistical assessment approaches. This manuscript contributes the detailed review of the contemporary concept-drift detection models depicted in recent literature. The contribution of the manuscript includes the nomenclature of the concept drift models and their impact of imbalanced data tuples

    Empirically Measuring Transfer Distance for System Design and Operation

    Full text link
    Classical machine learning approaches are sensitive to non-stationarity. Transfer learning can address non-stationarity by sharing knowledge from one system to another, however, in areas like machine prognostics and defense, data is fundamentally limited. Therefore, transfer learning algorithms have little, if any, examples from which to learn. Herein, we suggest that these constraints on algorithmic learning can be addressed by systems engineering. We formally define transfer distance in general terms and demonstrate its use in empirically quantifying the transferability of models. We consider the use of transfer distance in the design of machine rebuild procedures to allow for transferable prognostic models. We also consider the use of transfer distance in predicting operational performance in computer vision. Practitioners can use the presented methodology to design and operate systems with consideration for the learning theoretic challenges faced by component learning systems

    Evolving Ensemble Fuzzy Classifier

    Full text link
    The concept of ensemble learning offers a promising avenue in learning from data streams under complex environments because it addresses the bias and variance dilemma better than its single model counterpart and features a reconfigurable structure, which is well suited to the given context. While various extensions of ensemble learning for mining non-stationary data streams can be found in the literature, most of them are crafted under a static base classifier and revisits preceding samples in the sliding window for a retraining step. This feature causes computationally prohibitive complexity and is not flexible enough to cope with rapidly changing environments. Their complexities are often demanding because it involves a large collection of offline classifiers due to the absence of structural complexities reduction mechanisms and lack of an online feature selection mechanism. A novel evolving ensemble classifier, namely Parsimonious Ensemble pENsemble, is proposed in this paper. pENsemble differs from existing architectures in the fact that it is built upon an evolving classifier from data streams, termed Parsimonious Classifier pClass. pENsemble is equipped by an ensemble pruning mechanism, which estimates a localized generalization error of a base classifier. A dynamic online feature selection scenario is integrated into the pENsemble. This method allows for dynamic selection and deselection of input features on the fly. pENsemble adopts a dynamic ensemble structure to output a final classification decision where it features a novel drift detection scenario to grow the ensemble structure. The efficacy of the pENsemble has been numerically demonstrated through rigorous numerical studies with dynamic and evolving data streams where it delivers the most encouraging performance in attaining a tradeoff between accuracy and complexity.Comment: this paper has been published by IEEE Transactions on Fuzzy System

    Learning Discrete-Time Markov Chains Under Concept Drift

    Get PDF
    Learning under concept drift is a novel and promising research area aiming at designing learning algorithms able to deal with nonstationary data-generating processes. In this research field, most of the literature focuses on learning nonstationary probabilistic frameworks, while some extensions about learning graphs and signals under concept drift exist. For the first time in the literature, this paper addresses the problem of learning discrete-time Markov chains (DTMCs) under concept drift. More specifically, following a hybrid active/passive approach, this paper introduces both a family of change-detection mechanisms (CDMs), differing in the required assumptions and performance, for detecting changes in DTMCs and an adaptive learning algorithm able to deal with DTMCs under concept drift. The effectiveness of both the proposed CDMs and the adaptive learning algorithm has been extensively tested on synthetically generated experiments and real data sets

    Efficient adaptive face recognition systems based on capture conditions

    Full text link
    corecore