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Learning Discrete Time Markov Chains
under Concept Drift
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Abstract—Learning under concept drift is a novel and promis-
ing research area aiming at designing learning algorithms able
to deal with nonstationary data-generating processes. In this
research field, most of the literature focuses on learning non-
stationary probabilistic frameworks, while some extensions about
learning graphs and signals under concept drift exist. For the first
time in the literature, this paper addresses the problem of learn-
ing Discrete-Time Markov Chains (DTMCs) under concept drift.
More specifically, following a hybrid active/passive approach, this
work introduces both a family of change-detection mechanisms
(differing in the required assumptions and performance) for
detecting changes in DTMCs and an adaptive learning algorithm
able to deal with DTMCs under concept drift. The effectiveness of
both the proposed change detection mechanisms and the adaptive
learning algorithm has been extensively tested on synthetically-
generated experiments and real datasets.

Index Terms—Concept drift, learning in nonstationary envi-
ronments, discrete time Markov chains, change detection mech-
anisms, adaptation.

I. INTRODUCTION

In the recent years the research interest about learning under
concept drift is significantly increased leading to a wide range
of machine learning solutions able to deal with nonstationary
learning problems [1]–[4]. Such solutions allow to weaken the
stationary hypothesis on the process generating the data, which
is generally implicitly or explicitly assumed in traditional
machine-learning techniques [5]. In this way, machine learning
solutions meant to operate in nonstationary environments are
able to learn from data-generating processes that evolve over
time due to variations in the environment in which a system
is operating (e.g., seasonality or periodicity, ageing effects),
changes in the interaction between the environment and the
system (e.g., cyber-attacks or changes in the users’ habits) or
faults/malfunctioning affecting the system [6].

The literature about learning under concept drift is very
wide and several families of solutions exist. Such solutions
differ in the considered approach (e.g., active vs. passive),
encompassed learning mechanism (e.g., single vs. ensemble
solutions), and required assumptions (e.g., abrupt changes vs.
drift) [3], [4]. Despite the heterogeneity of these solutions,
most of the research focused on probabilistic frameworks
(e.g., regression or classification) under concept drift. In
this scenario data are modelled as random variables and
concept drift refers to changes in the posterior probability
or the marginal distribution [2], [4]. Extensions to such a
probabilistic framework have been proposed in the field of
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learning nonstationary signals [7] or graph representations
under concept drift [8].

For the first time in the literature, this paper focuses on
the learning of Discrete Time Markov Chains (DTMCs) under
concept drift. DTMCs are stochastic models describing data-
generating processes, characterized by a discrete set of states
and discrete time, following the Markov property [9], [10].
DTMCs have been extensively studied for decades [9], [11]
and represent the theoretical basis of a wide range of real-
world applications and tools (e.g., web search engines, natural
language recognition and hidden Markov models). The change
of state in a DTMC is called transition and the probability
of moving from one state to another is called transition
probability. Typically, the transition probabilities of DTMCs
are assumed to be known or estimated from data [11], [12].
Such transition probabilities are time-independent as in homo-
geneous DTMCs or time-dependent as in non-homogeneous
DTMCs (where the transition probabilities evolve over time
according to a fixed law). Concept drift could affect both
time-independent and time-dependent transition probabilities
leading to a variation in the transition probabilities in case of
homogeneous DTMCs or to a change in the time-dependency
characterizing the transition probabilities in case of non-
homogeneous ones. In order to react and adapt to such concept
drift, the transition probabilities of DTMCs must be adapted
over time following a learning-under-concept-drift approach
[3], [4].

In this paper we focus on homogeneous DTMCs1 and we
introduce a family of change-detection mechanisms and an
adaptive algorithm, called ”ADaptive Algorithm for Markov
chains” (ADAM), for learning DTMCs under concept drift.

The proposed change detection mechanisms aim at sequen-
tially analyzing observations coming from the data-generating
process looking for changes in the associated DTMCs [4].
Inspired by the well-known and theoretically-grounded CU-
mulative SUM (CUSUM) test [13], three versions of the
change-detection mechanism for DTMCs are here introduced.
These three versions differ in the a-priori knowledge they
require to operate and performance. The first version, called
“parameteric”, relies on the knowledge of the transition proba-
bilities of the DTMC before and after the change. Asymptotic
properties for this parametric change-detection mechanism are
derived, i.e., the Average Run Length to a false positive
detection (ARL0) and to a correct detection (ARL1). The
second one, called “non-parametric”, does not require any
a-priori knowledge about the DTMC before or after the

1The proposed solutions could be extended to the case on non-homogeneous
DTMCs by modelling concept drift as a change in the law that drives the
evolution of transition probabilities over time.
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change. For this version, an approximated asymptotic ARL0 is
derived. In addition, following the approach proposed in [14],
a hierarchical version of the non-parametric change-detection
mechanism is introduced to improve the trade-off between
false-positive detections and detection delay.

The proposed algorithm for the learning of homogeneous
DTMCs under concept drift follows a hybrid active-passive
approach [15]: the DTMC is adapted at each observation
gathered from the data-generating process (as in passive
approaches), while a change-detection mechanism is used to
trigger the retraining of the DTMC when needed (as in active
approaches). The core of ADAM is the joint use of a change-
detection mechanism monitoring the stationarity of the data-
generating process and an adaptive window over the recently
acquired observations to estimate the transition probabilities
of the DTMC over time. In stationary conditions, thanks to
a change-detection index provided by the change-detection
mechanism, such an adaptive window is enlarged to improve
the transition-probability estimation of the DTMC over time.
In nonstationary conditions, the change-detection index drives
the reduction of the adaptive window to react to a possible
concept drift. When a change is detected, the DTMC is
retrained as in active approaches [16] on the new state of the
data-generating process on an adaptive window of recently-
acquired observations. The length of this adaptive window
is automatically defined by means of a novel procedure to
estimate the time instant a concept drift affected a DTMC.

The novel contributions of the paper can be summarized as:
• a hybrid active-passive adaptive algorithm called ADAM

for the learning of DTMCs under concept drift;
• three different change-detection mechanisms for detecting

changes in DTMCs differing in the required a-priori
knowledge about the data-generating process they require
to operate and the provided trade-off between false pos-
itive detections and detection delay;

• a change-detection index aiming at measuring the sta-
tionarity of the data-generating process and triggering the
adaptation of DTMCs under concept drift;

• a procedure to estimate the time instant a concept drift
affected a DTMC.

Both the proposed family of change-detection mechanisms
and the ADAM framework are made available to the scientific
community as a Matlab toolbox2.

The effectiveness of what proposed has been tested on a
wide synthetic experimental campaign and two real datasets,
i.e., a dataset from the Australia New South West (ANSW)
electricity market for electricity demand prediction and a
dataset from the National Oceanic and Atmospheric Adminis-
tration (NOAA) about annual hurricane rates for understanding
global climate processes.

This work is organized as follows. Section II describes
the related literature. Section III formulates the problem of
learning DTMCs under concept drift. The parametric, non-
parametric and hierarchical change-detection mechanisms are

2The toolbox can be downloaded from IEEE Code Ocean from
the following link https://codeocean.com/2018/12/06/adaptive-algorithm-for-
markov-chains/code

described in Section IV, while the proposed adaptive algorithm
ADAM for learning DTMCs under concept drift is detailed in
Section V. Experimental results are given in Section VI and
conclusions are finally drawn in Section VII.

II. RELATED LITERATURE

Estimating the unknown transition matrix of a DTMC from
the observations generated by a stochastic process has been
extensively studied in the literature [9] [11] [12] [17]. These
solutions are based on the maximum-likelihood principle and
generally rely on counting the times the stochastic process
moves from one state to another. To achieve this goal, one
or more sequences of observations can be used [11] and
consistency properties and bounds have been derived for both
homogeneous and non-homogenous DTMCs [9] [11] [10] [18]
[19]. As stated in Section I, concept drift could affect both
types of DTMCs by breaking the stationary assumption in the
homogeneous case and the time-invariance of the stochastic
process in the non-homogenous one. Interestingly, the problem
of learning DTMCs in presence of concept drift has been rarely
addressed in the literature and only few application-specific
solutions exist. For example, [20] introduces a discrete-time
Markov model aiming at investigating treatment-intervention
and death in patients affected by diabetic retinopathy. Here,
concept drift is explicitly introduced by combining two
Markov chains in the considered stochastic process to model
the progression of the disease over time.

A relatively larger literature about detecting changes in
DTMCs exists. More specifically, the problem of detecting
changes in Markov chains has been initially defined in [21]
under a Bayesian formulation of geometric priors about the
concept-drift time instant. That work introduces an optimal
detection scheme for DTMCs based on the Shyrayev-Robert
formulation [22] under the assumption of a-priori knowing
the distribution of the concept-drift time instant as well as the
parameters of the transition matrix before and after the change.
Differently, [23] introduces a non-Bayesian framework for
change detection in DTMC. This framework does not require
any a-priori knowledge about the change-time distribution
but assumes specific dependency structures of the transition
matrices of DTMCs (i.e., symmetric variations of the transition
probabilities). Even in this case, the DTMCs before and
after the changes are assumed to be known. An interesting
approach is proposed in [24] for detecting changes in hidden
Markov models (HMMs). The change-detection mechanism is
reformulated as a sequential probability ratio-test [25], whose
log-likelihood ratio mechanism has been approximated to take
into account the fact that processed data are not independent
and identically distributed. HMMs are assumed to be known
before and after the change to compute the approximated
log-likelihood ratio. Nonstationary Markov models have been
also introduced in the literature. For example, [26] proposes a
nonstationary extension of HMMs to deal with time-varying
transition-probability parameters. Similarly, [27] introduces
HMMs able to model time-varying state durations. These
models represent extensions of traditional HMMs but, unfortu-
nately, they do not provide mechanisms for detecting changes
in the associated data-generating process.
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The problem of detecting changes in Markov chains has
been also addressed in application-specific scenarios. For
example, [28] reformulates the problem of change detection
into a change-point analysis aiming at detecting the presence
of a change-point into a fixed-length sequence of data. This
approach, which is not truly sequential, has been applied
to detect shifts in hurricane rates. Similarly, [29] proposes
a video-segmentation mechanism based on Markov chains
and change-point analysis. The proposed mechanism relies
on a Bayesian framework, while the segmentation assumes
the a-priori knowledge of the distribution of the number
of scenes within the video. Differently, [30] introduces a
sequential mechanism based on DTMCs for intrusion detection
in computer and network systems. This mechanism relies on
the estimation of a DTMC modelling the nominal behavior
of the computer/network system by means of an “intrusion-
free” training sequence. An intrusion is detected when the
trained DTMC is no more able to explain the recently-acquired
data (through the analysis of the likelihood). Similarly, [31]
introduces a sequential mechanism based on DTMCs for
detecting “unusual” human behaviors in intelligent houses.
The “usual” behavior is modelled through the learning of a
DTMC on a training sequence, while the change-detection
phase relies on the analysis of the likelihood computed on
acquired data.

Interestingly, a relatively wide literature about learning
classification and regression models under concept exists [3]
[4]. Examples of these families of solutions are the Adaptive
windowing algorithms [32] [33], the Just-In-Time Adaptive
Classifiers [34] [35], and the Ensemble-based Algorithms [36]
[37] [38]. In this research field the literature about change de-
tection mechanisms for detecting changes in random variables
is large and well established [4] [39]. Relevant and well known
examples of change-detection mechanisms are Drift Detection
Method (DDM) [32], Early Drift Detection Method (EDDM)
[40] and Exponentially Weighted Moving Average (EWMA)
[41], while other interesting change-detection mechanisms can
be found in [42], [43], and [44], just to name a few. We
emphasize that these solutions are meant to operate in a
probabilistic framework, hence they cannot be directly applied
to the scenario of DTMCs under concept drift.

Summarizing, for the first time in the literature, this paper
introduces an adaptive algorithm for the learning of DTMCs
under concept drift as well as three different mechanisms
(differing in the a-priori knowledge they require to operate
and the trade-off between detection delays and false positive
detections) for detecting changes in DTMCs. In addition, this
paper introduces a procedure to estimate the time instant a
concept drift affected a DTMC, a precious information to
support the adaptation of DTMCs over time.

III. PROBLEM FORMULATION

Let P be a data-generating process generating a sequence of
observations T = {s1, s2, . . . , st, . . . , sT } over discrete time
instants t = 1, 2, . . . , T . The time-horizon T could be finite,
i.e., T < +∞, or infinite, i.e., T = +∞.

Each observation st belongs to a finite state space, i.e., st ∈
Ω = {ω1, . . . , ωN} being N the finite number of states. We

assume that Ω does not change over time.
We also assume that P can be modelled as a DTMC Θ =

{π, P}, where π is the initial distribution of the states and P
the transition matrix. We model the concept drift in P as an
abrupt change in the transition matrix P :

P =

{
P0 t < t∗

P1 t ≥ t∗ , (1)

where P0 refers to the transition matrix of P before the change
(t < t∗),

P0 =


p0

1,1 p0
1,2 . . . p0

1,N

p0
2,1 p0

2,2 . . . p0
2,N

...
...

...
p0
N,1 p0

N,2 . . . p0
N,N

 ,
P1 refers to the transition matrix of P after the change (t ≥
t∗),

P1 =


p1

1,1 p1
1,2 . . . p1

1,N

p1
2,1 p1

2,2 . . . p1
2,N

...
...

...
p1
N,1 p1

N,2 . . . p1
N,N

 ,
being p0

i,j and p1
i,j the probability to move from state ωi to

ωj before and after the change, respectively and t∗ ≤ T refers
to the time instant the concept drift occurs (the case where
t∗ = T refers to a stationary DTMC in the considered time
horizon). We emphasize that t∗ in Eq. (1) is a-priori unknown.

Since concept drift refers to a change in the transition
matrix P , the data-generating process P before and after the
concept drift is defined as Θ0 = {π, P0} and Θ1 = {π, P1},
respectively.

We assume that the first L observations TS =
{s1, s2, . . . , sL} of T have been generated in stationary con-
ditions, i.e., L < t∗. This is reasonable since concept drift
generally occur with a large time constant, hence not affecting
P in the early stages of operation3.

The aim of the proposed change-detection mechanisms and
ADAM is to detect changes and learn DTMCs under concept
drift defined as in Eq. (1).

We emphasize that the solutions described in this paper
could be easily extended to the case of drift changes, where
P1 is time-dependent whose probability p1

i,js slowly vary over
time for t ≥ t∗. In fact, the three proposed change-detection
mechanisms are already ready to detect this type of changes,
while, to be effective in case of drift changes, the proposed
ADAM should be endowed with a non-homogeneous learning
mechanism since the DTMC is time-dependent after t∗.

IV. THE PROPOSED CHANGE-DETECTION MECHANISMS:
PARAMETRIC, NON-PARAMETRIC AND HIERARCHICAL

The goal of the proposed parameteric, non-parameteric and
hierarchical change-detection mechanisms is to promptly and
effectively detect concept drift, as defined in Eq. (1), affecting
DTMCs. These three change-detection mechanisms differ in

3For example, this reflects the scenario where historical data are available
to researches and practitioners to initially estimate the transition matrix of the
DTMC.
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the amount of a-priori knowledge they require to operate and
the trade-off between detection promptness and false positive
detection. More specifically, the parameteric change-detection
mechanism assumes the knowledge of P0 and P1 to operate,
while the non-parametric and the hierarchical ones do not.
In particular, the hierarchical change-detection mechanism
extends the non-parameteric change-detection mechanism by
introducing a validation layer to reduce false positive detec-
tions.

Besides being stand-alone tools for the analysis of DTMCs,
the proposed change detection mechanisms play a crucial role
in triggering the adaptation phase in the proposed ADAM, as
detailed in Section V.

A. The parametric change-detection mechanism: algorithm,
ARL0 and ARL1

This section details the proposed parametric mechanism,
called P-CDM, for detecting changes in DTMCs. The pro-
posed mechanism operates by sequentially analysing obser-
vation in T inspecting for changes defined in Eq. (1). More
specifically, the mechanism operates on non-overlapping sub-
sequences of length W of T , defined as

wi = {sW (i−1)+1, . . . , sWi} (2)

where wi is the i-th subsequence of T . Inspired by the
CUSUM approach [13], the core of the proposed parametric
change-detection mechanism is the computation of the log-
likelihood ratio

li = log

(
PΘ1

(wi)

PΘ0(wi)

)
(3)

where PΘ1
(wi) and PΘ0

(wi) represent the probability that
wi is generated by Θ1 and Θ0, respectively. Following the
parametric approach, here Θ1 and Θ0 are assumed to be
known. PΘ1

(wi) and PΘ0
(wi) are defined as follows [9]:

PΘ1(wi) = π
W (i−1)+1
1 (sW (i−1)+1)

Wi−1∏
j=W (i−1)+1

p1
sj ,sj+1

(4)

and

PΘ0(wi) = π
W (i−1)+1
0 (sW (i−1)+1)

Wi−1∏
j=W (i−1)+1

p0
sj ,sj+1

(5)

where πt
1(st) and πt

0(st) represent the probability of being in
state st at time t by Θ1 and Θ0, respectively, while p1

ωi,ωj
and

p0
ωi,ωj

are the transition probability from state ωi to ωj of Θ1

and Θ0, respectively.
Since we are interested in changes in the transition matrix

P , we approximate πt
1(•) and πt

0(•) with the asymptotic
distributions of the states π̃1(•) and π̃0(•) that can be easily
computed from P0 and P1 [9]. In this way we are removing
the dependency from the initial state distribution by assuming
that enough time passed to achieve the stationary state of
the DMTC [9]. This assumption is in line with the fact that

ALGORITHM 1: The parametric change-detection mechanism P-
CDM for detecting changes in DTMCs.
Input: T , Θ0 = {π0, P0}, Θ1 = {π1, P1} and K ;
Compute π̃0 and π̃1;
m0 = 0;
while (wi is available) do

Compute P̃Θ1(wi) and P̃Θ0(wi) as in Eq. (7) and (8);
l̃i = log

(
P̃Θ1(wi)/P̃Θ0(wi)

)
;

mi = max
(

0,mi−1 + sign
(
l̃i
))

;
if (mi ≥ K) then

Change detection in the i-th subsequence wi;
end

end

changes rarely occur in the early stages of P (as commented
in Section III). Hence, we can rewrite Eq. (3) as

l̃i = log

(
P̃Θ1

(wi)

P̃Θ0
(wi)

)
(6)

being

P̃Θ1
(wi) = π̃1(sW (i−1)+1)

Wi−1∏
j=W (i−1)+1

p1
sj ,sj+1

(7)

and

P̃Θ0
(wi) = π̃0(sW (i−1)+1)

Wi−1∏
j=W (i−1)+1

p0
sj ,sj+1

. (8)

In order to support the sequential analysis of T , we define
the following figure of merit

mi = max
(

0,mi−1 + sign
(
l̃i

))
(9)

being sign(•) the sign function and m0 = 0. A change is
detected in the i-th subsequence wi of T when

mi ≥ K (10)

being K ∈ N+ a user-defined parameter. The algorithm of the
proposed P-CDM for detecting changes in DTMCs is detailed
in Algorithm 1.

The choice of K is critical to balance the trade-off between
false positives and detection delay. For this reason, the rest of
this subsection is devoted to analyse the performance of the
proposed mechanism in terms of the average time to a false
positive detection ARL0 and to a correct change detection
ARL1 w.r.t. K.

More specifically, given W , the set U = {u1, . . . , u|U|} of
all the possible state sequences of length W is finite. The
cardinality |U| of U is the total number of permutations with
repetitions of N states over a sequence of length W , i.e., |U| =
NW .

To compute the ARL0, which is the average time to a
false positive detection, we assume that t∗ = +∞. Hence,
the whole T is generated by Θ0. The probability qΘ0|Θ0

j that
the j-th state sequence uj ∈ U , with j = 1, . . . , |U|, has been
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generated by Θ0 given the fact that it has been generated by
Θ0 is defined as

q
Θ0|Θ0

j = P̃Θ0(uj).

Similarly, we can define

q
Θ1|Θ0

j = P̃Θ1
(uj).

as the probability that uj has been generated by Θ1 given the
fact that it has been generated by Θ0. Obviously

⋃|U|
j=1 ui = U

and
∑|U|

j=1 q
Θ0|Θ0

j = 1.
Then, U is partitioned into two subsets {U0,U1} as follows{
U1 = {uj s.t. qΘ1|Θ0

j > q
Θ0|Θ0

j , i = 1, . . . , |U|}
U0 = U�U1

where U1 contains all the state sequences of U that are more
likely to be generated by Θ1 than Θ0 and U0 is the complement
set of U1 w.r.t. U . We can now define

QΘ1
0 =

|U1|∑
v=1

qΘ1|Θ0
v

being uv the v-th element of U1. QΘ1
0 represents the probabil-

ity of generating a state sequence of length W by Θ0 that is
more likely to be generated by Θ1 than Θ0. Similarly, we can
define QΘ0

0 as the probability of generating a state sequence
of length W by Θ0 that is more likely to be generated by
Θ0 than Θ1 (or where the probability is equal). Obviously
QΘ0

0 +QΘ1
0 = 1.

We can now compute the ARL0 as follows:
Theorem 1: Let t̄ be the detection time of the proposed

change-detection mechanism, t∗ = +∞ and QΘ1
0 > 0,

ARL0 = ET [t̄] = u(I − P 0
Z)−11 (11)

where I is the (K + 1)× (K + 1) identity matrix, P 0
Z is the

(K + 1)× (K + 1) matrix defined as follows

P 0
Z =


1−QΘ1

0 QΘ1
0 0 . . . 0

1−QΘ1
0 0 QΘ1

0 . . . 0
...

...
...

0 0 0 . . . 0

 ,
1 is the (K + 1)-dimensional vector of ones, and u is the
(K + 1)-dimensional vector defined as u = [1, 0, . . . , 0].

Proof: The demonstration is based on the fact that the
detection mechanism in Eq. (10) can be modelled as a discrete
time birth-death Markov chain with K+1 states {0, 1, . . . ,K}
defined by the following (K + 1)× (K + 1) transition matrix

PBD =


1−QΘ1

0 QΘ1
0 0 . . . 0

1−QΘ1
0 0 QΘ1

0 . . . 0
...

...
...

0 . . . 1−QΘ1
0 0 QΘ1

0

0 . . . 0 1−QΘ1
0 QΘ1

0

 ,

while the corresponding initial distribution vector is the (K+
1)-dimensional vector defined as [1, 0, . . . , 0].

A detection occurs when the state K is achieved starting
from state 0. Given this formalization we can resort on the

theory of DTMCs to compute µ that is the vector of the mean
first-time passages from the states {0, 1, . . . ,K} to the state
K. µ is computed by solving the following equation

(I − P 0
Z)µ = 1. (12)

The first element of µ represents the ARL0.
We can similarly define ARL1 as the average time to the

first detection when t∗ = 0, i.e., the whole T is generated by
Θ1. Even in this case we can compute

q
Θ0|Θ1

j = P̃Θ0
(uj) (13)

and
q

Θ1|Θ1

j = P̃Θ1
(uj). (14)

Then, we partition U as follows{
U1 = {uj s.t. qΘ1|Θ1

j > q
Θ0|Θ1

j , i = 1, . . . , |U|}
U0 = U�U1

(15)

and we can compute

QΘ1
1 =

|U1|∑
v=1

qΘ1|Θ1
v (16)

that is the probability of generating a state sequence of length
W by Θ1 that is more likely to be generated by Θ1 than Θ0

We can now compute the ARL1 as follows:
Lemma 2: Let t̄ be the detection time of the proposed

change-detection mechanism, t∗ = 0 and QΘ1
1 > 0,

ARL1 = ET [t̄] = u(I − P 1
Z)−11 (17)

where I is the (K + 1)× (K + 1) identity matrix, P 1
Z is the

(K + 1)× (K + 1) matrix defined as follows

P 1
Z =


1−QΘ1

1 QΘ1
1 0 . . . 0

1−QΘ1
1 0 QΘ1

1 . . . 0
...

...
...

0 0 0 . . . 0

 (18)

and 1 is the (K + 1)-dimensional vector of ones, while u is
the (K + 1)-dimensional vector defined as u = [1, 0, . . . , 0].

Proof: The demonstration relies on the same procedure
used for Theorem 1 and is omitted for brevity.

B. The non-parametric change-detection mechanism

The parametric change-detection mechanism described
above assumes the a-priori knowledge of Θ0 and Θ1. Un-
fortunately, in real-world conditions, this assumption rarely
holds. To overcome this limitation, non-parametric solutions
should be considered [16]. In this section, we present the
non-parametric extension of the parametric change-detection
mechanism described in Section IV-A.

The core of the proposed non-parametric change detection
mechanism, called NP-CDM, is that, being not a-priori known,
Θ0 and Θ1 are estimated from data.

More specifically, under the assumption that the first L
samples of T have been generated in stationary conditions,
TS = {s1, . . . , sL} is used to compute an estimate Θ̃0 of Θ0.
Several techniques are available for this purpose and we opted
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ALGORITHM 2: The non-parametric change-detection mechanism
NP-CDM for detecting changes in DTMCs.
Input: T , L and K ;
Estimate Θ̃0 and Θ̃1 on TS = {s1, . . . , sL};
i = 0, m̃i = 0;
while (st is available) do

if (mod(t,W ) == 0) then
i = i+ 1;
wi = {st−W+1, . . . , st};
Compute P̃Θ̃1

(wi) and P̃Θ̃0
(wi) as described in Section

IV-B;
lnp
i = log

(
P̃Θ̃1

(wi)/P̃Θ̃0
(wi)

)
;

m̃i = max (0, m̃i−1 + sign (lnp
i ));

if (m̃i ≥ K) then
Change detection in the i-th subsequence wi;

end
end
Estimate Θ̃1 on {st−L+1, . . . , st};

end

for the statistical procedure based on maximum likelihood
described in [9]. Similarly, to compute an estimate Θ̃1 of Θ1,
the NP-CDM relies on a sliding window of length L over the
latest acquired observations from P . Hence, at time t, Θ̃1 is
estimated from the state sub-sequence {st−L+1, . . . , st}.

Similarly to its parametric version, the NP-CDM operates
by analysing non-overlapping sequences of length W defined
in Eq. (2) and where Θ0 and Θ1 are approximated with Θ̃0

and Θ̃1. In particular, the proposed NP-CDM approximates
the log-likelihood ratio defined in Eq. (6) with

lnpi = log

(
P̃Θ̃1

(wi)

P̃Θ̃0
(wi)

)
(19)

where P̃Θ̃1
(wi) and P̃Θ̃0

(wi) represent the probability that wi

is generated by Θ̃1 and Θ̃0, respectively. P̃Θ̃1
(wi) and P̃Θ̃0

(wi)
are defined as in Eq. (7) and (8) by replacing Θ1 and Θ0 with
Θ̃1 and Θ̃0, respectively.

The non-parametric sequential analysis of T is performed
by analysing

m̃i = max (0, m̃i−1 + sign (lnpi )) (20)

with m̃0 = 0. A change is detected in the i-th subsequence
wi when

m̃i ≥ K. (21)

The proposed non-parametric mechanism for detecting
changes in DTMCs is detailed in Alg. 2.

The choice of K is more critical in this case since in station-
ary conditions, i.e., before the change, Θ̃0 and Θ̃1 represent
two realizations of the same random variable modelling the
unknown DTMC Θ0. This could lead to a larger probability
of FPs than the parametric case given the same K. This aspect
is explored in the rest of the subsection.

We approximate the ARLNP
0 of the NP-CDM by assuming

that, in stationary conditions, QΘ1
0 ≈ 0.5 meaning that, before

the change, the subsequence wi could be assigned with equal
probability to Θ̃0 or Θ̃1. More specifically, let t∗ = 0 and

ALGORITHM 3: The hierarchical non-parametric change-detection
mechanism H-NPCDM for detecting changes in DTMCs.
Input: T , L, K, α and N ;
Estimate Θ̃0 and Θ̃1 on TS = {s1, . . . , sL};
i = 0, m̃i = 0;
while (st is available) do

if (mod(t,W)==0) then
i = i+ 1;
wi = {ωt−W+1, . . . , ωt};
Compute P̃Θ̃1

(wi) and P̃Θ̃0
(wi) as described in Section

IV-B;
lnp
i = log

(
P̃Θ̃1

(wi)/P̃Θ̃0
(wi)

)
;

m̃i = max (0, m̃i−1 + sign (lnp
i ));

if (m̃i ≥ K) then
temp = 0, j = 1;
while (j ≤ N ) do

temp = temp+ χ2(p0
j , p

1
j , α/N);

j = j + 1;
end
if (temp > 0) then

Change detection at time t;
end

end
end
Estimate Θ̃1 on {st−L+1, . . . , st}

end

QΘ1
0 ≈ 0.5, the approximated ARLNP

0 t̄ of the proposed NP-
CDM is computed as

ARLNP
0 = u(I − P 0

NP )−11 (22)

where I is the (K+ 1)× (K+ 1) identity matrix, PNP
Z is the

(K + 1)× (K + 1) matrix defined as follows

P 0
NP =


0.5 0.5 0 . . . 0
0.5 0 0.5 . . . 0

...
...

...
0 0 0 . . . 0

 (23)

and 1 is the (K + 1)-dimensional vector of ones, while u is
the (K + 1)-dimensional vector defined as u = [1, 0, . . . , 0].

C. The hierarchical non-parametric change-detection mecha-
nism

The choice of K defines a trade-off between false positive
detections and detection delay in both the parametric and non-
parametric mechanism detailed above. Following the hierar-
chical approach for change-detection tests proposed in [14],
we coupled the non-parametric change detection algorithm
described in Section IV-B with an hypothesis test. This allowed
us to define a two-layer hierarchical non-parametric change
detection mechanism, called H-NPCDM, for detecting changes
in DTMCs.

More specifically, the proposed H-NPCDM relies on the
following two-layer architecture:

1) The first layer comprises the NP-CDM described above.
When a change is detected, the first layer triggers the
activation of the second layer of analysis;

2) The second layer relies on a multiple two-sample χ2

hypothesis test on the estimated DTMCs to reduce false
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positive detections. This second layer of analysis aims at
confirming (or not) the change detected at the first layer
by inspecting variations in the frequency distribution of
the estimated DTMCs.

More specifically, the second layer operates as a multiple
hypothesis test applied to the corresponding rows of the
estimated transition matrices P̃Θ̃0

and P̃Θ̃1
of Θ̃0 and Θ̃1,

respectively, as follows
h1 = χ2(p0

1, p
1
1, α/N)

h2 = χ2(p0
2, p

1
2, α/N)

. . .
hN = χ2(p0

N , p
1
N , α/N)

(24)

where χ2(a, b, γ) is the two-sample χ2 hypothesis test [45]
applied to vectors a and b with confidence γ, and p0

j and

p1
j are the j-th row of the transition matrix P̃Θ̃0

and P̃Θ̃1
,

respectively. The output of χ2(a, b, γ) is 0 when the null
hypothesis is accepted (i.e., no change in distribution between
a and b is detected), and 1 when rejected. Please note that the
Bonferroni correction α/N is considered in Eq. (24) to take
under control false positive detections occurring in multiple
hypothesis testing. The detected change is confirmed by the
second layer when at least one of the hypothesis tests in Eq.
(24) rejects the null hypothesis, i.e., when

∑N
i=1 hi > 0.

The hierarchical non-parametric change-detection mecha-
nism is detailed in Alg. 3.

V. THE PROPOSED ADAPTIVE ALGORITHM
FOR LEARNING DISCRETE-TIME MARKOV CHAINS

UNDER CONCEPT DRIFT

The Adaptive Algorithm for Markov chains (ADAM) pro-
posed in this paper aims at learning and tracking the evolution
of the transition matrix of a DTMC under concept drift. The
proposed ADAM, which is detailed in Alg. 4, is based on a
hybrid active-passive approach [15] where the transition matrix
is continuously adapted as new observations become available
as in passive approaches, while the re-training of the transition
matrix is triggered by the change-detection mechanism in
response to concept drift as in active ones.

More specifically, ADAM initially estimates the transition
matrix P̂ on TS during the initial training phase. Then, during
the operational life, P̂ is updated at each new observation
st provided by P by relying on an adaptive window over
the recently acquired observations. The core of ADAM is the
adaptive definition of the length Ladapt of such a window that
is widened in stationary conditions to improve the estimation
of P̂ [9] and reduced in nonstationary ones to remove out-to-
date knowledge from P̂ and adapt it to the concept drift.

This widening/reduction mechanism, which is activated
for every subsequence wi of observations, is driven by the
change-detection index m̃i ∈ {0, 1, . . . ,K} defined in Eq.
(20). When m̃i < K/2, P can be safely associated to the
stationary state and Ladapt can be increased. On the contrary,
when m̃i > K/2, P could approach a concept drift and
Ladapt is reduced to remove obsolete knowledge from P̂ .

ALGORITHM 4: The ADaptive Algorithm for Markov chains
(ADAM) for learning DTMCs under concept drift.
Input: T , L, K and γ ;
Estimate P̂ on TS = {s1, . . . , sL}
m̃i = 0;
Lt

adapt = L;
i = L/W ;
while (st is available) do

if (mod(t,W)==0) then
i = i+ 1;
wi = {ωt−W+1, . . . , ωt};
Compute m̃i as described in Section IV;
∆L = −bηW (σ(m̃i −K/2)− 0.5)c;
Li

adapt = Li−1
adapt + ∆L;

if (m̃i == K) then
i0 = maxi=1,...,̄i{i|m̃i == K/2};
t0 = W (i0 − 1) + 1;
Li

adapt = t− t0 + 1;
end

end
Estimate P̂ on {st−Li

adapt
+1, . . . , st};

end

This widening/reduction mechanism is formalized through the
following adaptive definition of Ladapt, i.e.,

Li
adapt = Li−1

adapt + ∆L (25)

where Li
adapt is the value of Ladapt at the i-th subwindow wi

and
∆L = −bηW (σ(m̃i −K/2)− 0.5)c (26)

being η a user-defined learning-rate parameter, b•c the floor
function and σ(•) the log-sigmoidal function. Bounds on ∆L

can be easily defined since m̃i ∈ {0, 1, . . . ,K}, hence

b−γWσ(K/2)c ≤ ∆L ≤ bγWσ(K/2)c (27)

that can be approximated with

b−γW c ≤ ∆L ≤ bγW c (28)

when K � 2. Hence, the widening/reduction of Li
adapt is

adaptive and strictly depends on how far m̃i is from K/2.
Given Eq. (26) and (28), ∆L is equal to +bγW c, 0 and
−bγW c when m̃i is equal to 0, K/2 and K, respectively.
In addition, a maximum LMAX and minimum LMIN value
(suitably defined by the user) can be set to bound Li

adapt

during the operational life.
When m̃i == K, the considered change-detection mech-

anism (i.e., the non-parameteric NP-CDM or the hierarchical
H-NPCDM confirmed by the second layer of analysis) detects
a change in P . Let wi be the subwindow where a change is
detected (corresponding to time instant t equal to Wi), ADAM
triggers the re-training of P̂ by relying on an estimate t0 of
the time instant t∗ the drift occurred. Such an estimate t0 is
computed as

t0 = W (i0 − 1) + 1 (29)

where
i0 = max

j=1,...,i
{j|m̃j == K/2} (30)
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(a) ARL0 and N = 5 (b) ARL0 and N = 10

(c) ARL1 and N = 5 (d) ARL1 and N = 10

Fig. 1. The comparison between theoretical and estimated ARL0 and ARL1 of the proposed parametric change-detection mechanism P-CDM for N = 5
and N = 10 w.r.t. K

being i0 the largest subwindow index such that m̃i is equal
to K/2. t0 represents an estimate of the time instant t∗ the
concept drift occurred and all the observations acquired from
t0 to t = Wi can be safely associated to the new state
of the DTMC, following the formalization in Eq. (1). These
observations are used to re-estimate P̂ , hence neglecting all
the observations acquired before t0.

In this way, the DTMC is adapted to the new state of P
and, after that, it is ready to operate, being able to detect and
adapt to further concept drift affecting P .

The estimation of P̂ , during both the training and the oper-
ational phase, is carried out through the maximum likelihood
procedure (as described in the previous section).

VI. EXPERIMENTAL RESULTS

The experimental campaign described in this section aims at
evaluating both the ability of the proposed change-detection
mechanisms in correctly detecting changes in DTMCs (see
Section VI-A) and the capability of the proposed ADAM in
learning DTMCs under concept drift (see Section VI-B).

A. Evaluating the change-detection mechanisms

The ability in correctly detecting changes of the proposed
change-detection mechanisms, i.e., P-CDM, NP-CDM and
H-NPCDM, is tested through three different steps. At first,
we experimentally evaluate ARL0 and ARL1 of P-CDM
and ARL0 of NP-CDM. Then, we experimentally show the
ability of the proposed H-NPCDM in reducing false positive
detections w.r.t. NP-CDM. Finally, we compare H-NPCDM
with state-of-the-art change-detection mechanisms on both
synthetic experiments and a real-world dataset.

1) Analysis of ARL0 and ARL1: We initially evaluated
the expected ARL0 and ARL1 characterizing P-CDM as
described in Section IV-A. To achieve this goal we generated
Ncouple = 1000 couples of DTMCs {Θ0,Θ1} and, for
each couple, Nseq = 10000 state sequences. In this set of
experiments, t∗ = +∞ for ARL0 and t∗ = 0 for ARL1.
Following the parametric approach, {Θ0,Θ1} are assumed to
be known by P-CDM. The results are shown in Figure 1 for
N = 5 and N = 10 w.r.t. K. These results corroborate the
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(a) ARL0 and N = 5 (b) ARL0 and N = 10

Fig. 2. Approximated ARL0 of the non-parametric change-detection mechanism NP-CDM with N = 5 and N = 10 w.r.t. K. The errorbar represents the
standard deviation.

ability of Eq. (11) and (17) to correctly compute ARL0 and
ARL1 for P-CDM. Moreover, as expected, ARL0 and ARL1

increase with K.
Similarly, we computed the approximated ARL0 for the

NP-CDM. Results are shown in Figure 2. Even in this case,
the estimated ARL0 well approximates the theoretical ARL0

computed according to Eq. (22).
2) Comparing H-NPCDM with NP-CDM: We defined an

experiment to measure the percentage of false positive (FP),
false negative detections (FN) and mean detection delay (DD),
measured as the mean delay between a correct detection
t̄ > t∗ and t∗, for NP-CDM and its hierarchical extension
H-NPCDM. These experiments have been organized by gen-
erating Ncouple = 1000 couples of DTMCs {Θ0,Θ1} and by
considering Nseq = 10000 state sequences of length T = 2000
defined as follows

P =

{
Θ0 t < t∗ = 1500
Θ1 t ≥ t∗ = 1500

(31)

with L = 1000. W has been set to 5. Experimental results,
averaged over the couples and the sequences, are shown in
Table I and confirm the ability of the hierarchical approach to
reduce FP detections not at the expenses of an increase in the
DD.

NP-CDT H-NPCDT
K FP (%) FN(%) DD FP(%) (%) FN DD
5 100.0 0.0 - 8.20 0.29 133.3
10 58.59 0.0 98.9 4.00 0.11 154.1
15 26.43 0.0 130.1 1.71 0.07 159.9
20 9.64 0.29 166.8 0.57 0.26 183.3

TABLE I
FALSE POSITIVE (%), FALSE NEGATIVE (%) AND DETECTION DELAYS OF

THE PROPOSED NON-PARAMETRIC CDT (NP-CDT) AND ITS
HIERARCHICAL EXTENSION (H-NPCDT).

3) Comparing H-NPCDT with state-of-the-art change-
detection mechanisms: In order to show the effectiveness of

the proposed H-NPCDT, we compared its performance, in
terms of FP, FN and DD, with three state-of-the-art change-
detection mechanisms: Drift Detection Method (DDM) [32],
Early Drift Detection Method (EDDM) [40] and Exponentially
Weighted Moving Average (EWMA) [41].

To achieve this goal, two sets of experiments have been
considered. In both sets of experiments W = 5 and N =
2 to allow the comparison between H-NPCDT operating on
DTMCs and the considered state-of-the-art change-detection
mechanisms operating on sequences of random variables (i.e.,
the binary classification error over time).

The first one refers to the same experiment described in
Eq. (31) where T has been set to 2000, 3000 and 5000. We
considered two different configurations for the state-of-the-art
change-detection mechanisms: in DDM, σ has been set to 3
and 2; in EDDM, β has been set to 0.95 and 0.9; in EWMA,
L has been set as Table 1 -ARL0 = 1000 of [41] and 5. As
regards H-NPCDT, we considered K equal to 1 and 5.

The experimental results of this comparison are detailed in
Table II. Several comments arise. It is worth noting that H-
NPCDT provides the best performance in terms of FP and
FN with respect to DDM, EDDM and EWMA. As expected,
FN decreases for all the change-detection mechanisms when
T increases (also leading to a corresponding increase in
the DDs). Moreover, the configuration of H-NPCDT with
K = 5 provides the lowest FPs at the expense of an increase
of FNs and DDs. Similarly, the different configurations of
DDM, EDDM and EWMA provide a trade-off among FP,
FN and DD. We emphasize that, in all the experiments, the
best configuration of DDM, EDDM and EWMA provides
lower performance than H-NPCDT. Obviously, configurations
providing the largest FPs are also characterized by the lowest
DDs.

The proposed H-NPCDT is also lightweight in terms of
computational load, making it suitable for streaming analysis.
The last column of Table II shows the comparison of the
execution times per iteration (in ms) of the four considered
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tmax = 2000 tmax = 3000 tmax = 5000 Exec. Time
FP (%) FN(%) DD FP(%) (%) FN DD FP (%) FN(%) DD (ms)

Sy
nt

he
tic

H-NPCDT K = 1 0.69 12.93 211.5 0.78 2.22 252.2 0.96 1.68 275.6 0.31
K = 5 0.39 14.28 218.1 0.45 2.71 260.6 0.52 1.54 282.6

DDM σ = 3 17.45 56.83 156.7 16.26 53.90 320.9 17.83 53.34 636.6 0.29
σ = 2 60.23 25.27 96.7 60.98 22.49 271.0 60.69 20.46 615.1

EDDM β = 0.95 79.09 20.91 NaN 79.56 19.87 218.7 80.48 18.27 738.2 0.35
β = 0.9 59.96 40.04 NaN 62.93 36.04 210.4 62.92 34.63 708.8

EWMA L as in [41] 99.07 0.11 36.4 98.60 0.02 47.0 98.96 0.02 80.1 0.13
L = 5 64.65 10.87 84.6 65.72 8.09 191.1 64.58 6.55 326.6

δCD = 0.5 δCD = 0.25 δCD = 0.1
FP (%) FN(%) DD FP(%) (%) FN DD FP (%) FN(%) DD

E
L

E
C

[3
2] H-NPCDT K = 1 0.00 0.00 1365.7 0.00 0.00 2458.3 0.00 0.00 3675.2 -

DDM σ = 10 0.00 0.00 1464.7 0.00 0.00 5193.0 0.00 100.00 NaN -
EDDM β = 0.2 0.00 100.00 NaN 0.00 100.00 NaN 0.00 100.00 NaN -
EWMA L = 18 0.00 100.00 NaN 0.00 100.00 NaN 0.00 100.00 NaN -

TABLE II
FALSE POSITIVE (FP), FALSE NEGATIVE (FN) AND DETECTION DELAYS (DD): COMPARISON AMONG H-NPCDT, DDM, EDDM AND EWMA.

L̄ ∆L (ADAM w.r.t.)
N Change Fixed Active Passive ADAM Fixed Active Passive
2 S0 8.103630e-02 8.293574e-02 8.113073e-02 8.071688e-02 0.996100 + 0.01 0.973265 + 0.01 0.994917 + 0.01
2 S1 2.743110e-02 4.636851e-02 5.023415e-02 6.192471e-02 2.258169 + 0.06 1.335591 + 0.02 1.232837 + 0.02
2 S2 1.131956e-02 1.185468e-02 1.314581e-02 3.172813e-02 2.809538 + 0.27 2.676692 + 0.20 2.413166 + 0.15
5 S0 2.795334e-06 2.814755e-06 2.781474e-06 2.781308e-06 0.996342 + 0.06 0.988957 + 0.06 1.000145 + 0.02
5 S1 9.037156e-07 2.207568e-06 2.687480e-06 4.034711e-06 4.764445 + 1.65 1.849614 + 0.38 1.514499 + 0.27
5 S2 5.434207e-07 6.180067e-07 7.336953e-07 3.343776e-06 6.135610 + 9.45 4.930982 + 5.81 3.884824 + 3.35

10 S0 1.498579e-09 1.500390e-09 1.497509e-09 1.497632e-09 0.999571 + 0.02 0.998351 + 0.02 1.000093 + 0.01
10 S1 4.508413e-10 8.214064e-10 9.987959e-10 1.239264e-09 2.750571 + 0.08 1.508949 + 0.02 1.240864 + 0.02
10 S2 4.392315e-10 4.746833e-10 5.323545e-10 6.442083e-10 1.467239 + 0.04 1.357507 + 0.03 1.210345 + 0.02
2 Storm 1.439869e-01 3.054131e-01 3.798536e-01 4.170199e-01 2.896234 1.365429 1.097844
2 Hurricane 3.296223e-02 3.143671e-02 3.449289e-02 3.670496e-02 1.113546 1.167583 1.064131
2 Major Hurr. 8.953661e-02 1.518917e-01 2.617715e-01 3.018572e-01 3.371327 1.987318 1.153132

TABLE III
AVERAGE LIKELIHOOD L̄ AND RATIO ∆L FOR THE CONSIDERED SOLUTIONS IN SCENARIOS S0, S1 AND S2 WITH N = 2, 5, 10.

change-detection mechanisms. More specifically, to compute
these values, we measured the execution time of 100 iterations
without any detection by the change-detection mechanisms
and we computed the median value to remove outliers. The
considered hardware platform is a 2,5 GHz Intel Core i7 with
16 GB 2133 MHz LPDDR3. Interestingly, execution times of
H-NPCDT, DDM and EDDM are similar, while EWMA is
characterized by the lowest computational load.

We also emphasize that, similarly to the other change de-
tection mechanisms, the memory occupation of the H-NPCDT
is very low, requiring only the storage of 2(N2 + N) Float
values and W + 2N2 + 4 Integer values.

The second set of experiments refers to detection of changes
in the ELEC2 benchmark that is typically used in the concept
drift community [32]. This dataset contains 45312 records
about the prediction of the electricity prices of the Australian
New South West electricity market. The two classes are ”UP”
and ”DOWN”, representing the N = 2 states of the associated
stochastic process. The experiment has been set-up by defining
a dataset comprising the class labels of all the records. The first
L = 20000 labels have been used for the training. The concept
drift has been inserted at t∗ = 25000 and modelled as a change
of the label of δCD-percentage randomly-selected observations

with ”UP” label (that are transformed into ”DOWN”). The
parameters of DDM, EDDM and EWMA have been experi-
mentally configured to avoid false-positive detections in case
of no concept drift in the dataset. Three different values
of δCD have been considered: 0.5, 0.25, and 0.1. Results,
which are detailed in Table II, are particularly interesting
and show that, even in this case, H-NPCDT provides the
best trade-off between FP and DD, being able to detect the
concept drift in all the three configurations of δCD without
introducing false positive or negative detections. The DDM
change-detection mechanism is able to detect all the concept
drift in the configurations δCD = 0.5 and δCD = 0.25 but
with larger DDs. The DDM is not able to detect any concept
drift with δCD = 0.1. Similarly, EDDM and EWMA are not
able to detect any concept drift in any of the configurations of
δCD.

B. Evaluating the Adaptive Algorithm for Markov Chains
(ADAM)

In order to evaluate the ability of ADAM to learn
DTMCs under concept drift, we defined the following set of
synthetically-generated scenarios:
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S0: No concept drift. The experiment lasts T = 3000 obser-
vations. The first L = 1000 samples represent the training
sequence TS. Θ0 is randomly generated and no concept
drift occurs during the experiment;

S1: Concept drift. The experiment lasts T = 3000 observa-
tions. The first L = 1000 samples represent the training
sequence TS. A concept drift occurs at time t∗ = 1500.
Θ0 and Θ1 are randomly generated;

S2: Sequence of concept drift. The experiment lasts T = 3000
observations. The first L = 1000 samples represent the
training sequence TS. A sequence of three concept drift
occurring at time t∗ = 1500, t∗ = 2000 and t∗ = 2500
is here considered. Θ0 and the three Θ1s of the sequence
of concept drift are randomly generated.

In addition, we also considered a public-available dataset
from the National Oceanic and Atmospheric Administration
[46] about storms, hurricanes and major hurricanes yearly
registered in the Atlantic Basin from 1851 to 2016. Here, the
problem has been reformulated as a two-state learning problem
aiming at modelling the following three data sequences:
• in a year at least five storms were registered in the

Atlantic basin (0: no/1: yes);
• in a year at least five hurricanes were registered in the

Atlantic basin (0: no/1: yes);
• in a year at least one major hurricane was registered in

the Atlantic basin (0: no/1: yes).
We compared ADAM, in the configuration encompassing the

H-NPCDT, with the following learning solutions inspired by
the literature of learning in presence of concept drift [4]:
• Fixed: P̂ is estimated on TS and not updated during

the experiment. This solution refers to a traditional not-
adaptive learning approach;

• Active: P̂ is estimated on TS. The hierarchical change-
detection mechanism monitors the observations coming
from P . When a change is detected, P̂ is estimated on
the recently-acquired L observations;

• Passive: P̂ is trained on TS and adapted over time by
relying on a sliding window of length L on the recently-
acquired observations .

The considered figures of merit are the average likelihood
L̄ over the experiment, the ratio ∆L between L̄ provided by
ADAM and that by the other solutions, and the length Ladapt

of the adaptive window in ADAM. γ has been set to 2 and,
even in this case, W = 5.

Experimental results are shown in Table III and Fig. 3.
More specifically, Table III shows the average likelihood L̄ and
the ratio ∆L for the considered experimental scenarios with
N = 2, 5, 10. Three main comments arise. First, as expected,
all the considered solutions provide similar likelihood L̄s in
scenario S0 for all the values of N (as emphasized by the
values ∆Ls that are close to 1). This is reasonable since, in
stationary conditions, both adaptive and non-adaptive solutions
are effective. Differently, in scenarios S1 and S2, adaptive
solutions (i.e., Active, Passive and ADAM) outperform the
Fixed solution. Second, ADAM clearly outperforms both the
Active and the Passive solution in scenarios S1 and S2 and
N = 2, 5, 10 (see values of ∆L with related standard devi-

ation). This corroborates the ability of the proposed solution
to effectively adapt to concept drift affecting a DTMC. It is
also worth noting that, as expected, the advantages provided
by ADAM are even more evident in scenario S2, comprising a
sequence of concept drift. Third, ADAM is also very effective
with the real-world dataset about storms, hurricanes and major
hurricanes from the NOAA. A particularly interesting result
is that, as regards the major hurricane, the change has been
detected by the H-NPCDT in the year 1950. This result is also
confirmed by the climatological analysis described in [28],
showing that a larger major-hurricane activity is present in
North Atlantic in the decade 1940-1950. It is also worth noting
that, in that climatological analysis, the activity of hurricanes
in the considered period (1851-2016) revealed to be stationary.
Even this fact is confirmed by the results of ADAM showing
that no change-detection occurred after the training sequence
during the analysis of the hurricane dataset.

Results depicted in Fig. 3 show the ability of ADAM to adapt
DTMCs in presence of concept drift in Scenario S0, S1 and
S2 with N = 5. In particular, the histograms of the change-
detection time instants t̄, i.e., Fig. 3(a), (c) and (e), corroborate
the expected behavior of detections. In fact, in Fig. 3(a) the
number of detections is low and detections are distributed in
the whole time-horizon of the experiment since no concept
drift is here introduced (i.e., these detections are FPs); Fig.
3(c) shows a peak of detections between t = 1500 and 2000
and this is reasonable since in S1 the concept drift occurs at
time t∗ = 1500; Fig. 3(e) shows three peaks of detections
between t = 1500 and t = 3000 and, again, this is reasonable
since S2 encompasses three concept drift in that time horizon.
Fig. 3(b), (d) and (f) show the average window size Ladapt

of ADAM in the three considered scenarios. These results are
particularly interesting since they show the ability of ADAM
to adapt the window size to concept drift. In fact, as expected,
Ladapt decreases after a concept drift and increases during
the stationary periods (see Fig. 3 (d) and (f)). The reduction
of Ladapt in S0 is due to the false positive detections.

VII. CONCLUSIONS

This paper introduces, for the first time in the literature,
a family of change-detection mechanisms and a learning
algorithm, called ADAM, to deal with DTMCs under concept
drift. In particular, three different change-detection mecha-
nisms have been proposed differing in required assumptions
and performance. Theoretical properties have been derived for
the parameteric change-detection mechanism. The proposed
ADAM relies on a hybrid active-passive approach where the
estimated transition matrix is adapted over time at each new
observation (as in passive approaches), while the estimation
of the transition matrix is triggered by the change-detection
mechanism to react to concept drift to remove obsolete knowl-
edge. The adaptive mechanism of ADAM relies on an adaptive
window on the recently acquired observations whose length
is widened or reduced according to a change-detection index
extracted from the proposed change-detection mechanisms.
Results on both synthetically-generated datasets and real-
world datasets show the effectiveness of the proposed change
detection mechanisms and ADAM.
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(a) Histogram of change detection t̄ in S0 (b) Average window size Ladapt in S0

(c) Histogram of change detection t̄ in S1 (d) Average window size Ladapt in S1

(e) Histogram of change detection t̄ in S2 (f) Average window size Ladapt in S2

Fig. 3. Histogram of change-detection time instant t̄s and average window size Ladapt for ADAM in Scenarios S0, S1 and S2 with N = 5.

Future works will encompass the integration of adaptive
mechanisms to deal with gradual or intermittent concept
drift, the extension of ADAM to non-homogeneous DTMCs
and the introduction of the change detection and adaptation
mechanisms in Hidden Markov Models.
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[3] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM Computing Surveys (CSUR),
vol. 46, no. 4, p. 44, 2014.

[4] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar, “Learning in non-
stationary environments: A survey,” IEEE Computational Intelligence
Magazine, vol. 10, no. 4, pp. 12–25, 2015.



13

[5] C. M. Bishop, Pattern recognition and machine learning. springer,
2006.

[6] C. Alippi and M. Roveri, “The (not) far-away path to smart
cyber-physical systems: An information-centric framework,” Computer,
vol. 50, no. 4, pp. 38–47, 2017.

[7] C. Alippi, W. Qi, and M. Roveri, “An improved hilbert-huang transform
for non-linear and time-variant signals,” in Multidisciplinary Approaches
to Neural Computing. Springer, 2018, pp. 109–117.

[8] D. Zambon, C. Alippi, and L. Livi, “Concept drift and anomaly detection
in graph streams,” arXiv preprint arXiv:1706.06941, 2017.

[9] J. R. Norris, Markov chains. Cambridge university press, 1998, no. 2.
[10] M. Sharpe, General theory of Markov processes. Academic press, 1988,

vol. 133.
[11] T. W. Anderson and L. A. Goodman, “Statistical inference about markov

chains,” The Annals of Mathematical Statistics, pp. 89–110, 1957.
[12] C. Zhang and D. Tao, “Generalization bounds of erm-based learning

processes for continuous-time markov chains,” IEEE Trans. on Neural
Networks and Learning Systems, vol. 23, no. 12, pp. 1872–1883, Dec
2012.

[13] M. Basseville, I. V. Nikiforov et al., Detection of abrupt changes: theory
and application. Prentice Hall Englewood Cliffs, 1993, vol. 104.

[14] C. Alippi, G. Boracchi, and M. Roveri, “Hierarchical change-detection
tests,” IEEE transactions on neural networks and learning systems,
vol. 28, no. 2, pp. 246–258, 2017.

[15] C. Alippi, W. Qi, and M. Roveri, “Learning in nonstationary environ-
ments: A hybrid approach,” in International Conference on Artificial
Intelligence and Soft Computing. Springer, 2017, pp. 703–714.

[16] C. Alippi, Intelligence for Embedded Systems: A Methodological Ap-
proach. Springer, 2014.

[17] B. A. Craig and P. P. Sendi, “Estimation of the transition matrix of
a discrete-time markov chain,” Health economics, vol. 11, no. 1, pp.
33–42, 2002.

[18] J. Hajnal and M. Bartlett, “Weak ergodicity in non-homogeneous markov
chains,” in Mathematical Proceedings of the Cambridge Philosophical
Society, vol. 54, no. 2. Cambridge University Press, 1958, pp. 233–246.

[19] ——, “The ergodic properties of non-homogeneous finite markov
chains,” in Mathematical Proceedings of the Cambridge Philosophical
Society, vol. 52, no. 1. Cambridge University Press, 1956, pp. 67–77.

[20] B. A. Craig, D. G. Fryback, R. Klein, and B. E. Klein, “A bayesian
approach to modelling the natural history of a chronic condition from
observations with intervention,” Statistics in medicine, vol. 18, no. 11,
pp. 1355–1371, 1999.

[21] T. L. Lai, “Information bounds and quick detection of parameter changes
in stochastic systems,” IEEE Transactions on Information Theory,
vol. 44, no. 7, pp. 2917–2929, 1998.

[22] A. N. Shiryaev, Optimal stopping rules. Springer Science & Business
Media, 2007, vol. 8.

[23] G. V. Moustakides, “Quickest detection of abrupt changes for a class of
random processes,” IEEE Transactions on Information Theory, vol. 44,
no. 5, pp. 1965–1968, 1998.

[24] B. Chen and P. Willett, “Detection of hidden markov model transient
signals,” IEEE Transactions on Aerospace and Electronic systems,
vol. 36, no. 4, pp. 1253–1268, 2000.

[25] A. Wald and J. Wolfowitz, “Optimum character of the sequential
probability ratio test,” The Annals of Mathematical Statistics, pp. 326–
339, 1948.

[26] B. Sin and J. H. Kim, “Nonstationary hidden markov model,” Signal
Processing, vol. 46, no. 1, pp. 31–46, 1995.

[27] P. M. Djuric and J.-H. Chun, “An mcmc sampling approach to estimation
of nonstationary hidden markov models,” IEEE Transactions on Signal
Processing, vol. 50, no. 5, pp. 1113–1123, 2002.

[28] J. B. Elsner, X. Niu, and T. H. Jagger, “Detecting shifts in hurricane
rates using a markov chain monte carlo approach,” Journal of climate,
vol. 17, no. 13, pp. 2652–2666, 2004.

[29] Y. Zhai and M. Shah, “Video scene segmentation using markov chain
monte carlo,” IEEE Trans. on Multimedia, vol. 8, no. 4, pp. 686–697,
2006.

[30] N. Ye et al., “A markov chain model of temporal behavior for anomaly
detection,” in Proceedings of the 2000 IEEE Systems, Man, and Cyber-
netics Information Assurance and Security Workshop, vol. 166. West
Point, NY, 2000, p. 169.

[31] K. Hara, T. Omori, and R. Ueno, “Detection of unusual human behavior
in intelligent house,” in Neural Networks for Signal Processing, 2002.
IEEE, 2002, pp. 697–706.

[32] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with drift
detection,” in Brazilian symposium on artificial intelligence. Springer,
2004, pp. 286–295.

[33] A. Bifet and R. Gavalda, “Learning from time-changing data with
adaptive windowing,” in Proceedings of the 2007 SIAM international
conference on data mining. SIAM, 2007, pp. 443–448.

[34] C. Alippi and M. Roveri, “Just-in-time adaptive classifierspart ii: De-
signing the classifier,” IEEE Transactions on Neural Networks, vol. 19,
no. 12, pp. 2053–2064, 2008.

[35] C. Alippi, G. Boracchi, and M. Roveri, “Just-in-time classifiers for
recurrent concepts,” IEEE transactions on neural networks and learning
systems, vol. 24, no. 4, pp. 620–634, 2013.

[36] W. N. Street and Y. Kim, “A streaming ensemble algorithm (sea) for
large-scale classification,” in Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2001, pp. 377–382.

[37] J. Z. Kolter and M. A. Maloof, “Dynamic weighted majority: A new
ensemble method for tracking concept drift,” in Data Mining, 2003.
ICDM. IEEE, 2003, pp. 123–130.

[38] R. Elwell and R. Polikar, “Incremental learning of concept drift in
nonstationary environments,” IEEE Transactions on Neural Networks,
vol. 22, no. 10, pp. 1517–1531, 2011.

[39] C. Alippi, G. Boracchi, M. Roveri, G. Ditzler, and R. Polikar, “Adap-
tive classifiers for nonstationary environment,” Contemporary Issues in
Systems Science and Engineering, pp. 265–288, 2015.

[40] M. Baena-Garcı́a, J. del Campo-Ávila, R. Fidalgo, A. Bifet, R. Gavaldà,
and R. Morales-Bueno, “Early drift detection method,” 2006.

[41] G. J. Ross, N. M. Adams, D. K. Tasoulis, and D. J. Hand, “Exponentially
weighted moving average charts for detecting concept drift,” Pattern
recognition letters, vol. 33, no. 2, pp. 191–198, 2012.

[42] P. Sobhani and H. Beigy, “New drift detection method for data streams,”
in Adaptive and intelligent systems. Springer, 2011, pp. 88–97.

[43] D. Kifer, S. Ben-David, and J. Gehrke, “Detecting change in data
streams,” in Proceedings of the Thirtieth international conference on
Very large data bases-Volume 30, 2004, pp. 180–191.

[44] G. Ditzler and R. Polikar, “Hellinger distance based drift detection for
nonstationary environments,” in Computational Intelligence in Dynamic
and Uncertain Environments (CIDUE), 2011 IEEE Symposium on.
IEEE, 2011, pp. 41–48.

[45] E. L. Lehmann and J. P. Romano, Testing statistical hypotheses.
Springer Science & Business Media, 2006.

[46] N. Oceanic and A. Administration. (2017) Atlantic basin. individual
years with the numbers in each category. [Online]. Available:
http://www.aoml.noaa.gov/hrd/tcfaq/E11.html

PLACE
PHOTO
HERE

Manuel Roveri Manuel Roveri received the Dr.
Eng. degree in Computer Science Engineering from
the Politecnico di Milano (Italy) in June 2003, the
MS in Computer Science from the University of
Illinois at Chicago (USA) in December 2003 and
the Ph.D. degree in Computer Engineering from the
Politecnico di Milano (Italy) in May 2007. He has
been Visiting Researcher at Imperial College London
(UK) in 2011. Currently, he is an Associate Profes-
sor at the Department of Electronics and Information
of the Politecnico di Milano (Italy). Current research

activity addresses include intelligent embedded and cyber-physical systems,
learning in nonstationary-evolving environments and adaptive algorithms.

Manuel Roveri is a Senior Member of IEEE and an Associate Editor of the
IEEE Transactions on Neural Networks and Learning Systems. He served
as Chair of the Neural Networks Technical Committee and Chair of the
Task Force on Intelligent Cyber-Physical Systems of the IEEE Computational
Intelligent Society. He also served as a Chair and Member in several IEEE
subcommittees. He holds 1 patent and has published about 100 papers in
international journals and conference proceedings.

Manuel Roveri received the following scientific awards: the Outstanding
Transactions on Neural Networks and Learning Systems Paper Award from
the IEEE Computational Intelligence Society in 2016; the Best Regular Paper
Award at the INNS Conference on Big Data in 2016; the Outstanding Com-
putational Intelligence Magazine Paper Award from the IEEE Computational
Intelligence Society in 2018.

http://www.aoml.noaa.gov/hrd/tcfaq/E11.html

	Introduction
	Related literature
	Problem Formulation
	The proposed Change-Detection Mechanisms: parametric, non-parametric and hierarchical
	The parametric change-detection mechanism: algorithm, ARL0 and ARL1
	The non-parametric change-detection mechanism
	The hierarchical non-parametric change-detection mechanism

	The proposed Adaptive Algorithmfor Learning Discrete-Time Markov chainsunder Concept Drift
	Experimental Results 
	Evaluating the change-detection mechanisms
	Analysis of ARL0 and ARL1
	Comparing H-NPCDM with NP-CDM
	Comparing H-NPCDT with state-of-the-art change-detection mechanisms

	Evaluating the Adaptive Algorithm for Markov Chains (ADAM)

	Conclusions
	References
	Biographies
	Manuel Roveri


