1,849 research outputs found

    Physics-informed Neural Network Modelling and Predictive Control of District Heating Systems

    Full text link
    This paper addresses the data-based modelling and optimal control of District Heating Systems (DHSs). Physical models of such large-scale networked systems are governed by complex nonlinear equations that require a large amount of parameters, leading to potential computational issues in optimizing their operation. A novel methodology is hence proposed, exploiting operational data and available physical knowledge to attain accurate and computationally efficient DHSs dynamic models. The proposed idea consists in leveraging multiple Recurrent Neural Networks (RNNs) and in embedding the physical topology of the DHS network in their interconnections. With respect to standard RNN approaches, the resulting modelling methodology, denoted as Physics-Informed RNN (PI-RNN), enables to achieve faster training procedures and higher modelling accuracy, even when reduced-dimension models are exploited. The developed PI-RNN modelling technique paves the way for the design of a Nonlinear Model Predictive Control (NMPC) regulation strategy, enabling, with limited computational time, to minimize production costs, to increase system efficiency and to respect operative constraints over the whole DHS network. The proposed methods are tested in simulation on a DHS benchmark referenced in the literature, showing promising results from the modelling and control perspective

    Predicting Energy Requirement for Cooling the Building Using Artificial Neural Network

    Get PDF
    This paper explores total cooling load during summers and total carbon emissions of a six storey building by using artificial neural network (ANN). Parameters used for the calculation were conduction losses, ventilation losses, solar heat gain and internal gain. The standard back-propagation learning algorithm has been used in the network. The energy performance in buildings is influenced by many factors, such as ambient weather conditions, building structure and characteristics, the operation of sub-level components like lighting and HVAC systems, occupancy and their behavior. This complex situation makes it very difficult to accurately implement the prediction of building energy consumption. The calculated cooling load was 0.87 million kW per year. ANN application showed that data was best fit for the regression coefficient of 0.9955 with best validation performance of 0.41231 in case of conduction losses. To meet out this energy demand various fuel options are presented along with their cost and carbon emission

    Pseudo Dynamic Transitional Modeling of Building Heating Energy Demand Using Artificial Neural Network

    Get PDF
    International audienceThis paper presents the building heating demand prediction model with occupancy profile and operational heating power level characteristics in short time horizon (a couple of days) using artificial neural network. In addition, novel pseudo dynamic transitional model is introduced, which consider time dependent attributes of operational power level characteristics and its effect in the overall model performance is outlined. Pseudo dynamic model is applied to a case study of French Institution building and compared its results with static and other pseudo dynamic neural network models. The results show the coefficients of correlation in static and pseudo dynamic neural network model of 0.82 and 0.89 (with energy consumption error of 0.02%) during the learning phase, and 0.61 and 0.85 during the prediction phase respectively. Further, orthogonal array design is applied to the pseudo dynamic model to check the schedule of occupancy profile and operational heating power level characteristics. The results show the new schedule and provide the robust design for pseudo dynamic model. Due to prediction in short time horizon, it finds application for Energy Services Company (ESCOs) to manage the heating load for dynamic control of heat production system

    Cooling load estimation using machine learning techniques

    Get PDF
    Estimating cooling loads in heating, ventilation, and air-conditioning (HVAC) systems is a complex task. This is mainly due to its dependence on numerous factors which are both intrinsic and extrinsic to buildings. These include climate, forecasts, building material, fenestration etc. In addition, these factors are non-linear and time-varying. Therefore, capturing the effect of these parameters on the cooling load is a complex task. This investigation combines forward modelling, i.e., physics based model simulated using energyPlus with deep-learning techniques to build a cooling load estimator. The forward model captures all the time-varying factors influencing the cooling loads. We use the long short-term memory (LSTM), a deep-learning method to provide forecasts of cooling loads. The advantage of the proposed approach is that cooling load estimations can be provided in real-time thus providing sort of soft-sensor for estimating cooling loads in buildings. The proposed approach is illustrated on a building of suitable scale and our results demonstrates the ability of the tool to provide forecasts
    • …
    corecore