6,004 research outputs found

    A direct method for the Boltzmann equation based on a pseudo-spectral velocity space discretization

    Full text link
    A deterministic method is proposed for solving the Boltzmann equation. The method employs a Galerkin discretization of the velocity space and adopts, as trial and test functions, the collocation basis functions based on weights and roots of a Gauss-Hermite quadrature. This is defined by means of half- and/or full-range Hermite polynomials depending whether or not the distribution function presents a discontinuity in the velocity space. The resulting semi-discrete Boltzmann equation is in the form of a system of hyperbolic partial differential equations whose solution can be obtained by standard numerical approaches. The spectral rate of convergence of the results in the velocity space is shown by solving the spatially uniform homogeneous relaxation to equilibrium of Maxwell molecules. As an application, the two-dimensional cavity flow of a gas composed by hard-sphere molecules is studied for different Knudsen and Mach numbers. Although computationally demanding, the proposed method turns out to be an effective tool for studying low-speed slightly rarefied gas flows

    Molecular machines operating on nanoscale: from classical to quantum

    Full text link
    The main physical features and operating principles of isothermal nanomachines in microworld are reviewed, which are common for both classical and quantum machines. Especial attention is paid to the dual and constructive role of dissipation and thermal fluctuations, fluctuation-dissipation theorem, heat losses and free energy transduction, thermodynamic efficiency, and thermodynamic efficiency at maximum power. Several basic models are considered and discussed to highlight generic physical features. Our exposition allows to spot some common fallacies which continue to plague the literature, in particular, erroneous beliefs that one should minimize friction and lower the temperature to arrive at a high performance of Brownian machines, and that thermodynamic efficiency at maximum power cannot exceed one-half. The emerging topic of anomalous molecular motors operating sub-diffusively but highly efficiently in viscoelastic environment of living cells is also discussed

    A general review of concepts for reducing skin friction, including recommendations for future studies

    Get PDF
    Four main concepts which have significantly reduced skin friction in experimental studies are discussed; suction, gaseous injection, particle additives, and compliant wall. It is considered possible that each of these concepts could be developed and applied in viable skin friction reduction systems for aircraft application. Problem areas with each concept are discussed, and recommendations for future studies are made
    corecore