research

Molecular machines operating on nanoscale: from classical to quantum

Abstract

The main physical features and operating principles of isothermal nanomachines in microworld are reviewed, which are common for both classical and quantum machines. Especial attention is paid to the dual and constructive role of dissipation and thermal fluctuations, fluctuation-dissipation theorem, heat losses and free energy transduction, thermodynamic efficiency, and thermodynamic efficiency at maximum power. Several basic models are considered and discussed to highlight generic physical features. Our exposition allows to spot some common fallacies which continue to plague the literature, in particular, erroneous beliefs that one should minimize friction and lower the temperature to arrive at a high performance of Brownian machines, and that thermodynamic efficiency at maximum power cannot exceed one-half. The emerging topic of anomalous molecular motors operating sub-diffusively but highly efficiently in viscoelastic environment of living cells is also discussed

    Similar works

    Full text

    thumbnail-image